JP5373474B2 - Combustible gas detector - Google Patents

Combustible gas detector Download PDF

Info

Publication number
JP5373474B2
JP5373474B2 JP2009116311A JP2009116311A JP5373474B2 JP 5373474 B2 JP5373474 B2 JP 5373474B2 JP 2009116311 A JP2009116311 A JP 2009116311A JP 2009116311 A JP2009116311 A JP 2009116311A JP 5373474 B2 JP5373474 B2 JP 5373474B2
Authority
JP
Japan
Prior art keywords
temperature
detected
atmosphere
combustible gas
heating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009116311A
Other languages
Japanese (ja)
Other versions
JP2010266265A (en
Inventor
昌哉 渡辺
昇治 北野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2009116311A priority Critical patent/JP5373474B2/en
Publication of JP2010266265A publication Critical patent/JP2010266265A/en
Application granted granted Critical
Publication of JP5373474B2 publication Critical patent/JP5373474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustible gas detector which has a high accuracy of combustible gas detection by correcting the effect of the absolute humidity of an atmosphere to be detected and which is designed to lower the cost and to improve the productivity by reducing the number of components. <P>SOLUTION: The combustible gas detector 1 includes: a heating resistor exposed to the atmosphere to be detected, the temperature of the heating resistor changing depending on the concentration of the combustible gas in the atmosphere to be detected; a gas detection unit 100 for controlling the current in the heating resistor so that the heating resistor is kept at a predetermined temperature and for detecting a voltage between terminals of the heating resistor; a concentration calculation means 3a for calculating the combustible gas concentration in the atmosphere to be detected as a calculated gas concentration value from the voltage between the terminals based on a first relation between the combustible gas concentration and the voltage between the terminals; a main temperature detection means 3a, 50 for detecting the temperature of the atmosphere to be detected, and a correction means 3a for correcting the calculated gas concentration value or the voltage between the terminals from the temperature detected by the main temperature detection means based on a second relation between the calculated gas concentration value or the voltage between the terminals and the temperature of the atmosphere to be detected. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、可燃性ガスの濃度測定や漏洩検知等に用いられる可燃性ガス検出装置に関するものである。   The present invention relates to a combustible gas detection device used for measuring the concentration of combustible gas, detecting leakage, and the like.

近年、環境保護や自然保護などの社会的要求から、高効率でクリーンなエネルギ源として、燃料電池の研究が活発に行われている。特に、低温で作動し、高出力で高密度な固体高分子型燃料電池(PEFC)や水素内燃機関は、家庭用途や車載用途に期待されている。但し、これらのエネルギ源は水素を燃料としているため、水素漏れの有無を検知する必要がある。   In recent years, research on fuel cells has been actively conducted as a highly efficient and clean energy source in response to social demands such as environmental protection and nature protection. In particular, polymer electrolyte fuel cells (PEFC) and hydrogen internal combustion engines that operate at a low temperature and have a high output and a high density are expected for home use and in-vehicle use. However, since these energy sources use hydrogen as a fuel, it is necessary to detect the presence or absence of hydrogen leakage.

従来、被検出雰囲気に含まれる可燃性ガス濃度の検出装置として、可燃性ガス濃度に応じて被検出雰囲気の熱伝導率が変化することを利用し、被検出雰囲気中に置いた発熱抵抗体の端子間電圧を測定するものが知られている。しかし、可燃性ガスの濃度が同一であっても、被検出雰囲気の相対湿度が変わるとその熱伝導率も変動し、可燃性ガスの検出精度に影響を与えるという問題がある。
そこで、2つの発熱抵抗体の各抵抗値を、それぞれ異なる一定温度に対応するように制御し、各発熱抵抗体の端子電圧の電圧比を求めて、被検出雰囲気の相対湿度をこの電圧比と温度との間の関係から決定する技術が開発されている(特許文献1参照)。この技術によれば、被検出雰囲気の相対湿度による被検出雰囲気の熱伝導率の変動を考慮し、可燃性ガスの検出精度を高くすることができる。
Conventionally, as a device for detecting the concentration of combustible gas contained in the atmosphere to be detected, utilizing the fact that the thermal conductivity of the atmosphere to be detected changes according to the concentration of the combustible gas, a heating resistor placed in the atmosphere to be detected is used. One that measures the voltage between terminals is known. However, even if the concentration of the combustible gas is the same, if the relative humidity of the atmosphere to be detected changes, the thermal conductivity also changes, which affects the detection accuracy of the combustible gas.
Therefore, the resistance values of the two heating resistors are controlled so as to correspond to different constant temperatures, the voltage ratio of the terminal voltage of each heating resistor is obtained, and the relative humidity of the detected atmosphere is set to this voltage ratio. A technique for determining from the relationship between temperature has been developed (see Patent Document 1). According to this technique, it is possible to increase the detection accuracy of the combustible gas in consideration of the variation in the thermal conductivity of the detected atmosphere due to the relative humidity of the detected atmosphere.

特開2006−10670号公報JP 2006-10670 A

しかしながら、水の発生を伴う燃料電池のように被検出雰囲気の相対湿度が安定している環境においても、絶対湿度の影響により検出精度が低下する事がある。また、上記特許文献1記載の技術の場合、ガス検出装置に2つの発熱抵抗体を設ける必要があるため部品点数が増加し、コスト低減や生産性の点で改善の余地がある。
そこで、本発明は、被検出雰囲気の絶対湿度の影響を補正して可燃性ガスの検出精度を高めるとともに、部品点数を低減してコスト低減や生産性向上を図ることができる可燃性ガス検出装置を提供することを目的とする。
However, even in an environment where the relative humidity of the atmosphere to be detected is stable, such as a fuel cell with water generation, the detection accuracy may decrease due to the influence of absolute humidity. In the case of the technique described in Patent Document 1, since it is necessary to provide two heating resistors in the gas detection device, the number of parts increases, and there is room for improvement in terms of cost reduction and productivity.
Accordingly, the present invention corrects the influence of the absolute humidity of the atmosphere to be detected to increase the detection accuracy of the combustible gas and reduce the number of parts to reduce the cost and improve the productivity. The purpose is to provide.

上記課題を解決するため、本発明の可燃性ガス検出装置は、安定した相対湿度環境下における被検出雰囲気に連通し可燃性ガス検出装置に形成された測定室内に曝され、前記被検出雰囲気中の可燃性ガスの濃度に応じて温度が変化する1つの発熱抵抗体と、前記測定室内に配置されて該測定室内の温度を検出する第2温度検出手段と、前記発熱抵抗体が所定温度に保たれるよう該発熱抵抗体を通電制御し、このときの該発熱抵抗体の端子間電圧を検出するガス検出部と、前記第2温度検出手段によって検出された温度に対応した前記可燃性ガスの濃度と前記端子間電圧との間の第1関係に基づき、前記端子間電圧から前記被検出雰囲気内の前記可燃性ガスの濃度をガス濃度算出値として算出する濃度算出手段と、前記第2温度検出手段と別体であって前記被検出雰囲気の温度を検出する主温度検出手段と、前記ガス濃度算出値又は前記端子間電圧と、前記主温度検出手段によって検出された前記被検出雰囲気の温度との間の第2関係に基づき、前記主温度検出手段によって検出された温度から前記ガス濃度算出値又は前記端子間電圧を補正する補正手段と、を備えている。
ここで、相対湿度が安定していれば、絶対湿度と温度には一定の関係がある為、被検出雰囲気の温度を用いて絶対湿度の影響を補正する事が可能である。そこで、安定した相対湿度環境下において検出雰囲気の温度を測定し、被検出雰囲気の温度とガス濃度算出値又は端子間電圧との間の第2関係に基づいて、可燃性ガス検出装置の出力の補正をすることでガス検出精度を向上する事ができる。
さらに、ガス検出素子の発熱抵抗体が1つで済むので、部品点数を低減してコスト低減や生産性向上を図ることができる。なお、安定した相対湿度環境下とは、相対湿度の変動が±5%以下の環境を例示できる。
又、発熱抵抗体近傍に結露防止ヒータを設けた場合等に、発熱抵抗体近傍の温度を反映した測定室内の温度を第2温度検出手段で測定し、この温度に応じて第1関係を変更するので、端子間電圧からガス濃度算出値を精度よく算出することができる。
To solve the above problems, the combustible gas detector of the present invention is exposed to a stable relative humidity in the measuring chamber formed combustible gas detector communicates with the atmosphere to be detected under the atmosphere to be detected One heating resistor whose temperature changes in accordance with the concentration of the combustible gas therein, second temperature detection means arranged in the measurement chamber for detecting the temperature in the measurement chamber, and the heating resistor having a predetermined temperature The heating resistor is energized and controlled so as to be maintained at a gas detecting portion for detecting the voltage across the heating resistor at this time, and the combustibility corresponding to the temperature detected by the second temperature detecting means based on the first relationship between the concentration and the terminal voltage of the gas, and the concentration calculating means for calculating the concentration of said combustible gas in said atmosphere to be detected as the gas concentration calculation value from the inter-terminal voltage, the first 2 Separate from temperature detection means A main temperature detecting means for detecting the temperature of the atmosphere to be detected there, the second between the voltage between the gas concentration calculated value or the terminal, and the temperature of the atmosphere to be detected which has been detected by the main temperature detecting means Correction means for correcting the calculated gas concentration value or the inter-terminal voltage from the temperature detected by the main temperature detection means based on the relationship.
Here, if the relative humidity is stable, there is a certain relationship between the absolute humidity and the temperature, so that the influence of the absolute humidity can be corrected using the temperature of the detected atmosphere. Therefore, the temperature of the detection atmosphere is measured under a stable relative humidity environment, and the output of the combustible gas detection device is calculated based on the second relationship between the temperature of the detection atmosphere and the calculated gas concentration or the voltage between the terminals. The gas detection accuracy can be improved by performing the correction.
Furthermore, since only one heat generating resistor of the gas detection element is required, the number of parts can be reduced to reduce costs and improve productivity. The stable relative humidity environment can be exemplified by an environment where the relative humidity fluctuation is ± 5% or less.
In addition, when a dew condensation prevention heater is provided near the heating resistor, the temperature in the measurement chamber reflecting the temperature near the heating resistor is measured by the second temperature detecting means, and the first relationship is changed according to this temperature. Therefore, the gas concentration calculation value can be accurately calculated from the inter-terminal voltage.

前記発熱抵抗体の結露を防止する結露防止ヒータをさらに備えてもよい。
このような構成とすると、例えば燃料電池の水素漏れを検出する場合等、被検出雰囲気が水蒸気の飽和状態又はそれに近い状態にあるときに、被検出雰囲気に曝される発熱抵抗体の結露による検出精度の低下を防止することができる。
You may further provide the dew condensation prevention heater which prevents dew condensation of the said heating resistor.
With such a configuration, for example, when detecting a hydrogen leak in a fuel cell, when the atmosphere to be detected is at or near the saturated state of water vapor, detection by condensation of the heating resistor exposed to the atmosphere to be detected A reduction in accuracy can be prevented.

記主温度検出手段は前記測定室の外に配置さてもよい。
このような構成とすると第2関係による補正は、被検出雰囲気の温度を反映した測定室外の主温度検出手段の温度に基づくので、補正の精度も向上する。


Before SL main temperature detecting means may be located outside of the measuring chamber.
With this configuration, the correction of the second relation, so based on the temperature of the main temperature detecting means of the outdoor measurement that reflects the temperature of the atmosphere to be detected, is improved accuracy of the correction.


前記測定室を形成すると共に、前記測定室の外側に前記主温度検出手段を取り付けるための主温度検出手段取付部を一体に形成してなるケーシング部材をさらに備えてもよい。
このような構成とすると、ケーシング部材上に測定室と主温度検出手段とを容易に配置することができ、生産性が向上する。
You may further provide the casing member which forms the said measurement chamber and forms the main temperature detection means attachment part for attaching the said main temperature detection means on the outer side of the said measurement chamber integrally.
With such a configuration, the measurement chamber and the main temperature detecting means can be easily arranged on the casing member, and productivity is improved.

この発明によれば、被検出雰囲気の絶対湿度の影響を補正して可燃性ガスの検出精度を高めるとともに、部品点数を低減してコスト低減や生産性向上を図ることができる可燃性ガス検出装置を得ることができる。   According to this invention, the influence of the absolute humidity of the atmosphere to be detected is corrected to improve the detection accuracy of the combustible gas, and the number of parts can be reduced to reduce costs and improve productivity. Can be obtained.

本発明の実施形態に係る可燃性ガス検出装置の断面図である。It is sectional drawing of the combustible gas detection apparatus which concerns on embodiment of this invention. ガス検出素子の平面図である。It is a top view of a gas detection element. 図2のIII−III線に沿う断面図である。It is sectional drawing which follows the III-III line of FIG. 制御部の構成を示す図である。It is a figure which shows the structure of a control part. 被検出雰囲気の温度と、湿度との関係を示す図である。It is a figure which shows the relationship between the temperature of to-be-detected atmosphere, and humidity. 可燃性ガス検出装置の出力(水素ガス濃度)と、水蒸気量(湿度)との関係を示す図である。It is a figure which shows the relationship between the output (hydrogen gas concentration) of a combustible gas detection apparatus, and the amount of water vapor | steam (humidity). 可燃性ガス検出装置の出力と、温度との関係を示す図である。It is a figure which shows the relationship between the output of a combustible gas detection apparatus, and temperature. 発熱抵抗体の端子間電圧と、被検出雰囲気中の水素濃度との関係を示す図である。It is a figure which shows the relationship between the voltage between terminals of a heating resistor, and the hydrogen concentration in to-be-detected atmosphere. マイクロコンピュータによる、被検出雰囲気中の水素ガス濃度の算出及び補正処理のフローを示す図である。It is a figure which shows the flow of calculation and correction | amendment processing of the hydrogen gas concentration in to-be-detected atmosphere by a microcomputer. 補正処理を行わなかったときの、可燃性ガス検出装置の出力と、モデルガス中の水素濃度との関係を示す図である。It is a figure which shows the relationship between the output of a combustible gas detection apparatus when not performing correction | amendment processing, and the hydrogen concentration in model gas. 補正処理を行ったときの、可燃性ガス検出装置の出力と、モデルガス中の水素濃度との関係を示す図である。It is a figure which shows the relationship between the output of a combustible gas detection apparatus when a correction | amendment process is performed, and the hydrogen concentration in model gas.

以下、本発明の実施形態について説明する。
図1は、本発明の実施形態に係る可燃性ガス検出装置1の断面図を示す。なお、可燃性ガス検出装置1は、後述するガス検出素子100を実装した回路基板2を収容している。図1は、回路基板2の表面に垂直な方向で切断した断面図である。
なお、可燃性ガス検出装置1は、被検出雰囲気中の水素濃度を測定するものである。又、可燃性ガス検出装置1の側面には、外部との信号の入出力を行うための図示しないコネクタが設けられている。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 shows a cross-sectional view of a combustible gas detection device 1 according to an embodiment of the present invention. The combustible gas detection device 1 houses a circuit board 2 on which a gas detection element 100 described later is mounted. FIG. 1 is a cross-sectional view taken along a direction perpendicular to the surface of the circuit board 2.
In addition, the combustible gas detection apparatus 1 measures the hydrogen concentration in the atmosphere to be detected. Further, a connector (not shown) for inputting / outputting signals to / from the outside is provided on the side surface of the combustible gas detection device 1.

可燃性ガス検出装置1は、プラスチック等から一体成形された略矩形箱状のケーシング部材11と、ケーシング部材11の背面を閉塞する背面板12とからなるケーシング10を備えている。ケーシング部材11の側壁の上部には、外側に向かって広がる段部11fが形成され、回路基板2の端縁を段部11fに係止しつつ回路基板2がケーシング部材11に取付けられている。回路基板2の下面(ケーシング部材11の表側で背面板12と反対の面)中央には、可燃性ガス検出装置1を制御する制御部3(マイコンを含む)が実装されている。制御部3については後述する。   The combustible gas detection device 1 includes a casing 10 including a substantially rectangular box-shaped casing member 11 integrally formed of plastic or the like, and a back plate 12 that closes the back surface of the casing member 11. A step portion 11 f that extends outward is formed on the upper portion of the side wall of the casing member 11, and the circuit board 2 is attached to the casing member 11 while the edge of the circuit board 2 is locked to the step portion 11 f. A control unit 3 (including a microcomputer) for controlling the combustible gas detection device 1 is mounted at the center of the lower surface of the circuit board 2 (the surface opposite to the back plate 12 on the front side of the casing member 11). The control unit 3 will be described later.

ケーシング部材11の右側内面には、略円筒状の素子固定壁11aが立ち上がり、素子固定壁11aの軸方向中心にはガス導入口11bが形成されている。又、ケーシング部材11の左側には、内側に凹む凹部11cが形成されるとともに、凹部11cの底面からケーシング部材11の外側に向かって主温度センサ取付部(主温度検出手段取付部)11dが突出している。
主温度センサ取付部11dは、先端が半球状に閉じられた円筒状をなし、筒内には薄膜抵抗体からなる主温度センサ50が配置されている。主温度センサ取付部11dの先端は、ケーシング部材11の表面とほぼ面一になっている。そして、主温度センサ50から回路基板2側に向かって2本のピン状の端子51、52が突出し、各端子51、52を回路基板2のスルーホールに挿入してはんだ付けすることにより、主温度センサ50が回路基板2に実装されている。
なお、素子固定部11aに後述する素子ホルダ21を取り付けることにより、素子ホルダ21の内部空間が測定室21sを形成し、主温度センサ50が測定室21sの外側に位置することになる。つまり、この実施形態では、ケーシング部材11自体が測定室を形成せず、素子ホルダ21が測定室を形成しているが、本発明においてはのような場合も含め、測定室はケーシング部材に直接又は他部材(例えば素子ホルダ21)を介して形成されるものとする。
A substantially cylindrical element fixing wall 11a rises on the inner surface on the right side of the casing member 11, and a gas inlet 11b is formed at the center of the element fixing wall 11a in the axial direction. Further, a concave portion 11c that is recessed inward is formed on the left side of the casing member 11, and a main temperature sensor mounting portion (main temperature detecting means mounting portion) 11d protrudes from the bottom surface of the concave portion 11c toward the outside of the casing member 11. ing.
The main temperature sensor mounting portion 11d has a cylindrical shape whose tip is closed in a hemispherical shape, and a main temperature sensor 50 made of a thin film resistor is disposed in the cylinder. The front end of the main temperature sensor mounting portion 11 d is substantially flush with the surface of the casing member 11. Then, two pin-like terminals 51 and 52 project from the main temperature sensor 50 toward the circuit board 2 side, and the terminals 51 and 52 are inserted into the through-holes of the circuit board 2 and soldered. A temperature sensor 50 is mounted on the circuit board 2.
By attaching an element holder 21 (described later) to the element fixing portion 11a, the internal space of the element holder 21 forms the measurement chamber 21s, and the main temperature sensor 50 is located outside the measurement chamber 21s. That is, in this embodiment, the casing member 11 itself does not form a measurement chamber, and the element holder 21 forms a measurement chamber. However, in the present invention, the measurement chamber is directly attached to the casing member. Or it shall be formed via other members (for example, element holder 21).

素子ホルダ21は略円筒状をなし、素子固定壁11aの内面に同軸に嵌るようになっている。又、素子ホルダ21の側壁の上部には、外側に向かって広がる段部21fが形成され、円板状のターミナル板40の端縁が段部21fに係止されている。ターミナル板40の下面中央にはガス検出素子100が固定され、ガス検出素子100が有する後述の電極パッドに電気的に接続された3本のピン状の端子41〜43が突出している。各端子41〜43がターミナル板40と電気的に絶縁した状態でターミナル板40に挿通されている。そして、各端子41〜43を回路基板2のスルーホールに挿入してはんだ付けすることにより、ガス検出素子100が回路基板2に実装されている。
なお、詳しくは後述するが、ガス検出素子100は発熱抵抗体110と第2温度センサ(第2温度検出手段)130とを備えており、端子41、42はそれぞれ発熱抵抗体110と第2温度センサ130の正極側端子である。又、端子43は、発熱抵抗体110と第2温度センサ130の共通のグランドとなっている。
The element holder 21 has a substantially cylindrical shape and is fitted coaxially to the inner surface of the element fixing wall 11a. Further, a stepped portion 21f extending outward is formed on the upper portion of the side wall of the element holder 21, and the edge of the disk-shaped terminal plate 40 is locked to the stepped portion 21f. The gas detection element 100 is fixed at the center of the lower surface of the terminal plate 40, and three pin-shaped terminals 41 to 43 electrically connected to electrode pads (described later) of the gas detection element 100 project. Each terminal 41 to 43 is inserted through the terminal board 40 in a state where it is electrically insulated from the terminal board 40. And the gas detection element 100 is mounted in the circuit board 2 by inserting each terminal 41-43 in the through hole of the circuit board 2, and soldering.
As will be described in detail later, the gas detection element 100 includes a heating resistor 110 and a second temperature sensor (second temperature detecting means) 130, and terminals 41 and 42 are connected to the heating resistor 110 and the second temperature, respectively. This is a positive electrode side terminal of the sensor 130. The terminal 43 serves as a common ground for the heating resistor 110 and the second temperature sensor 130.

そして、ターミナル板40の背面に、端子41〜43の挿通孔を有する円板状の素子ホルダ背面板22が被せられ、素子ホルダ背面板22をターミナル板40と共に、図示しないパッキン等を介して素子ホルダ21の上端に気密に嵌合することにより、ターミナル板40及びガス検出素子100が素子ホルダ21内に取付けられる。   And the disk-shaped element holder back plate 22 which has the insertion hole of the terminals 41-43 is covered on the back surface of the terminal plate 40, and the element holder back plate 22 is put together with the terminal plate 40 through an unillustrated packing or the like. The terminal plate 40 and the gas detection element 100 are mounted in the element holder 21 by fitting in an airtight manner to the upper end of the holder 21.

一方、素子ホルダ21の下面は、ガス導入口11bと連通した中心開口を有する環状をなし、素子ホルダ21の下面内側には、円板状の撥水フィルタ31と金網32とが積層して圧入され、撥水フィルタ31が外側に位置している。そして、素子ホルダ21の側壁と、金網32と、ターミナル板40の下面とによって囲まれる内部空間が測定室21sを形成し、ガス検出素子100が測定室21sに臨むようになっている。
撥水フィルタ31は、ガス導入口11cから測定室21s内への水滴や粉塵等の侵入を防止する。金網32は、ガス検出素子100が有する後述の発熱抵抗体110に通電した際、発熱抵抗体110の温度が水素ガスの下限爆発温度を上回って水素ガスが測定室21s内で発火した場合に、測定室21sから可燃性ガス検出装置1の外側へ引火することを防止し、防爆機能を有している。
On the other hand, the lower surface of the element holder 21 has an annular shape having a central opening communicating with the gas introduction port 11b, and a disk-shaped water-repellent filter 31 and a metal mesh 32 are laminated and press-fitted inside the lower surface of the element holder 21. The water repellent filter 31 is located outside. An internal space surrounded by the side wall of the element holder 21, the wire mesh 32, and the lower surface of the terminal plate 40 forms a measurement chamber 21s, and the gas detection element 100 faces the measurement chamber 21s.
The water repellent filter 31 prevents intrusion of water droplets or dust from the gas inlet 11c into the measurement chamber 21s. The metal mesh 32 is used when the temperature of the heating resistor 110 exceeds the lower limit explosion temperature of the hydrogen gas and the hydrogen gas is ignited in the measurement chamber 21s when the heating resistor 110 (described later) of the gas detection element 100 is energized. It prevents the ignition from the measurement chamber 21s to the outside of the combustible gas detection device 1, and has an explosion-proof function.

さらに、この実施形態では、素子ホルダ背面板22の上面(回路基板2に対向する面)に、発熱抵抗体からなる結露防止ヒータ60が載置され、結露防止ヒータ60から回路基板2側に向かって2本のピン状の端子61、62が突出している。各端子61、62を回路基板2のスルーホールに挿入してはんだ付けすることにより、結露防止ヒータ60が回路基板2に実装される。
結露防止ヒータ60は発熱抵抗体110近傍(この例では、測定室21s内)を加熱し、発熱抵抗体110の結露を防止する。特に、燃料電池の水素漏れを検出する場合、被検出雰囲気は水蒸気の飽和状態又はそれに近い状態にあり、被検出雰囲気に曝される発熱抵抗体110が結露し易くなって検出精度の低下を招くので、結露防止ヒータ60が有効である。
Furthermore, in this embodiment, a dew condensation prevention heater 60 made of a heating resistor is placed on the upper surface of the element holder back plate 22 (the surface facing the circuit board 2), and the dew condensation prevention heater 60 faces the circuit board 2 side. Two pin-like terminals 61 and 62 protrude. The dew condensation prevention heater 60 is mounted on the circuit board 2 by inserting the terminals 61 and 62 into the through holes of the circuit board 2 and soldering them.
The dew condensation prevention heater 60 heats the vicinity of the heating resistor 110 (in this example, in the measurement chamber 21 s) to prevent condensation of the heating resistor 110. In particular, when detecting a hydrogen leak in a fuel cell, the atmosphere to be detected is saturated or close to water vapor, and the heating resistor 110 exposed to the atmosphere to be detected is likely to condense, resulting in a decrease in detection accuracy. Therefore, the dew condensation prevention heater 60 is effective.

次に、図2、図3を参照してガス検出素子100の構成について説明する。
図2は、ガス検出素子100の平面図を示す。ガス検出素子100は平面視矩形状をなし、シリコン基板からなる基体101を備えている。基体101の表面の中央部には、渦巻き状の発熱抵抗体110が配置され、発熱抵抗体110から2本のリード110a、110bが延びている。基体101下側の両隅部には、それぞれ矩形の電極パッド112、114が表出し、リード110aが電極パッド112に接続され、リード110bが電極パッド114に接続されている。
一方、基体101のうち発熱抵抗体110より上側の表面には、薄膜抵抗体からなり、基体101の上辺に沿って細長い矩形状の第2温度センサ(第2温度検出手段)130が配置され、第2温度センサ130から図示しない2本のリードが延びている。基体101上側の両隅部には、それぞれ矩形の電極パッド132、134が表出し、第2温度センサ130の各リードがそれぞれ電極パッド132、134に接続されている。
なお、電極パッド112、132は、例えばワイヤボンディングによりそれぞれ端子41、42に電気的に接続されている。電極パッド114、134は、例えばワイヤボンディングにより共通の端子43に電気的に接続されている。
又、発熱抵抗体110及び第2温度センサ130は、基体101表面に形成された図示しない内側保護層107内に埋設されている。
Next, the configuration of the gas detection element 100 will be described with reference to FIGS. 2 and 3.
FIG. 2 shows a plan view of the gas detection element 100. The gas detection element 100 has a rectangular shape in plan view, and includes a base 101 made of a silicon substrate. A spiral heating resistor 110 is disposed at the center of the surface of the substrate 101, and two leads 110 a and 110 b extend from the heating resistor 110. Rectangular electrode pads 112 and 114 are exposed at both corners on the lower side of the base 101, the lead 110 a is connected to the electrode pad 112, and the lead 110 b is connected to the electrode pad 114.
On the other hand, on the surface of the base 101 above the heating resistor 110, a second temperature sensor (second temperature detecting means) 130 made of a thin film resistor and having an elongated rectangular shape along the upper side of the base 101 is disposed. Two leads (not shown) extend from the second temperature sensor 130. Rectangular electrode pads 132 and 134 are exposed at both corners on the upper side of the substrate 101, and the leads of the second temperature sensor 130 are connected to the electrode pads 132 and 134, respectively.
The electrode pads 112 and 132 are electrically connected to the terminals 41 and 42, for example, by wire bonding. The electrode pads 114 and 134 are electrically connected to the common terminal 43 by wire bonding, for example.
The heating resistor 110 and the second temperature sensor 130 are embedded in an inner protective layer 107 (not shown) formed on the surface of the base 101.

図3は、図2のIII−III線に沿う断面図である。基体101の上下面には、それぞれ上側絶縁層105、下側絶縁層103が形成されている。上側絶縁層105は、基体101の上面に形成された酸化ケイ素膜105aと、酸化ケイ素膜105aの上面に積層された窒化ケイ素膜105bとから構成されている。同様に、下側絶縁層103は、基体101の下面に形成された酸化ケイ素膜103aと、酸化ケイ素膜103aの下面に積層された窒化ケイ素膜103bとから構成されている。
一方、基体101の下面の中央部は、厚み方向に沿った断面で見たときに台形状に除去されて開口部101aが形成され、開口部101aから上側絶縁層105が露出している。即ち、基体101は、開口部101aと上側絶縁層105とにより、ダイヤフラム構造を形成している。そして、開口部101aの上に位置する上側絶縁層105の上面に発熱抵抗体110を配置することで、発熱抵抗体110が周囲と熱的に遮断され、発熱抵抗体110の昇温や降温を短時間で行うことができ、発熱抵抗体110の消費電力を低減することができる。
3 is a cross-sectional view taken along line III-III in FIG. An upper insulating layer 105 and a lower insulating layer 103 are formed on the upper and lower surfaces of the substrate 101, respectively. The upper insulating layer 105 includes a silicon oxide film 105a formed on the upper surface of the base 101 and a silicon nitride film 105b stacked on the upper surface of the silicon oxide film 105a. Similarly, the lower insulating layer 103 includes a silicon oxide film 103a formed on the lower surface of the base 101 and a silicon nitride film 103b stacked on the lower surface of the silicon oxide film 103a.
On the other hand, the central portion of the lower surface of the substrate 101 is removed in a trapezoidal shape when viewed in a cross section along the thickness direction to form an opening 101a, and the upper insulating layer 105 is exposed from the opening 101a. That is, the base 101 forms a diaphragm structure by the opening 101 a and the upper insulating layer 105. By disposing the heating resistor 110 on the upper surface of the upper insulating layer 105 located on the opening 101a, the heating resistor 110 is thermally isolated from the surroundings, and the heating resistor 110 is heated and lowered. This can be done in a short time, and the power consumption of the heating resistor 110 can be reduced.

上側絶縁層105の上面には絶縁性の内側保護層107が形成され、内側保護層107の内部には、発熱抵抗体110、各リード部110a、110b(図示せず)、及び各リード部110a、110bの先端に接続されたコンタクト部112a、114aが埋設されている。内側保護層107上にこれら構成部分を形成した後、さらに内側保護層107の成分を成膜することで、各構成部分が内側保護層107内に埋設される。さらに、内側保護層107の表面に外側保護層109が積層されている。
なお、内側保護層107及び外側保護層109のうち、コンタクト部112a、114aの上側部分がエッチング等によって除去され、除去部分にそれぞれ電極パッド112、114が堆積されている。これにより、コンタクト部112a、114aと電極パッド112、114とがそれぞれ電気的に接続され、電極パッド112、114を介して発熱抵抗体110に通電可能になっている。
An insulating inner protective layer 107 is formed on the upper surface of the upper insulating layer 105. Inside the inner protective layer 107, a heating resistor 110, lead parts 110a and 110b (not shown), and lead parts 110a are provided. , 110b, contact portions 112a, 114a connected to the tips of the electrodes 110b are embedded. After these constituent parts are formed on the inner protective layer 107, the constituent parts of the inner protective layer 107 are further deposited to embed each constituent part in the inner protective layer 107. Further, an outer protective layer 109 is laminated on the surface of the inner protective layer 107.
Of the inner protective layer 107 and the outer protective layer 109, the upper portions of the contact portions 112a and 114a are removed by etching or the like, and electrode pads 112 and 114 are deposited on the removed portions, respectively. Thereby, the contact portions 112a and 114a and the electrode pads 112 and 114 are electrically connected to each other, and the heating resistor 110 can be energized through the electrode pads 112 and 114.

発熱抵抗体110、第2温度センサ130、主温度センサ50、これらのリード部、及び電極パッド112、114、132、134は、白金(Pt)やPt合金等の導電材料から形成することができる。
又、基体101は、シリコン基板に限られず、アルミナ(Al)や半導体材料から作製してもよい。
内側保護層107及び外側保護層109は、酸化ケイ素や窒化ケイ素等から形成することができる。
The heating resistor 110, the second temperature sensor 130, the main temperature sensor 50, the lead portions thereof, and the electrode pads 112, 114, 132, and 134 can be formed of a conductive material such as platinum (Pt) or a Pt alloy. .
The base 101 is not limited to a silicon substrate, and may be made of alumina (Al 2 O 3 ) or a semiconductor material.
The inner protective layer 107 and the outer protective layer 109 can be formed from silicon oxide, silicon nitride, or the like.

次に、図4を参照して制御部3の構成について説明する。制御部3は、ガス検出素子回路(特許請求の範囲の「ガス検出部」に相当)310、第2温度測定回路320、主温度測定回路330、及びこれら回路からの信号が入力されるマイクロコンピュータ3aを備えている。マイクロコンピュータ3aは、公知のCPU(中央演算処理装置)、メモリ(ROM、RAM)を備え、ROM等に予め格納されたプログラムがCPUにより実行され、ガス濃度信号として外部に出力される。マイクロコンピュータ3a(のCPU)が、特許請求の範囲の「濃度算出手段」、「主温度検出手段」、「補正手段」に相当する。
なお、制御部3は、上記した端子41〜43、51、52、61、62を介して発熱抵抗体110、第2温度センサ130、主温度センサ50に接続されている。
Next, the configuration of the control unit 3 will be described with reference to FIG. The control unit 3 includes a gas detection element circuit (corresponding to a “gas detection unit” in the claims) 310, a second temperature measurement circuit 320, a main temperature measurement circuit 330, and a microcomputer to which signals from these circuits are input. 3a. The microcomputer 3a includes a known CPU (central processing unit) and a memory (ROM, RAM), and a program stored in advance in the ROM or the like is executed by the CPU and output to the outside as a gas concentration signal. The microcomputer 3a (CPU) corresponds to “concentration calculation means”, “main temperature detection means”, and “correction means” in the claims.
The control unit 3 is connected to the heating resistor 110, the second temperature sensor 130, and the main temperature sensor 50 through the terminals 41 to 43, 51, 52, 61, and 62 described above.

ガス検出素子回路310は、発熱抵抗体110、及び固定抵抗a1〜a3で構成されるホイートストーンブリッジ回路311と、ホイートストーンブリッジ回路311から得られる電位差を増幅するオペアンプ312と、トランジスタからなる一定温度制御回路314とを備える。ホイートストーンブリッジ回路311において、固定抵抗a2の一端と固定抵抗a3の一端とが接続され、固定抵抗a1の一端と発熱抵抗体110の一端とが接続されている。又、固定抵抗a3の他端と発熱抵抗体110の他端とがグランドに接続され、固定抵抗a2の他端と固定抵抗a1の他端とが一定温度制御回路314(トランジスタ)のコレクタに接続されている。
固定抵抗a2と固定抵抗a3の間の電位は、所定の抵抗を介してオペアンプ312の反転入力端子(-)に入力される。発熱抵抗体110と固定抵抗a1の間の電位は、所定の抵抗を介してオペアンプ312の非反転入力端子(+)に入力されると共に、マイクロコンピュータ3aに図示しないA/Dコンバータを介して入力される。オペアンプ312の出力はネガティブフィードバックされると共に、一定温度制御回路314のベースに入力される。一定温度制御回路314のエミッタには定電圧Vccが印加されている。
このように、オペアンプ312の出力に応じ、一定温度制御回路314は、発熱抵抗体110が一定温度に保たれるように電圧を制御する。又、このときの制御電圧がマイクロコンピュータ3aに出力され、発熱抵抗体110の端子間電圧(被検出雰囲気中の水素濃度に対応)が検出される。なお、この実施形態では、発熱抵抗体110が200℃に保たれるようにガス検出素子回路310が設定されている。
The gas detection element circuit 310 includes a Wheatstone bridge circuit 311 including a heating resistor 110 and fixed resistors a1 to a3, an operational amplifier 312 that amplifies a potential difference obtained from the Wheatstone bridge circuit 311, and a transistor. And a constant temperature control circuit 314. In the Wheatstone bridge circuit 311, one end of the fixed resistor a2 and one end of the fixed resistor a3 are connected, and one end of the fixed resistor a1 and one end of the heating resistor 110 are connected. The other end of the fixed resistor a3 and the other end of the heating resistor 110 are connected to the ground, and the other end of the fixed resistor a2 and the other end of the fixed resistor a1 are connected to the collector of the constant temperature control circuit 314 (transistor). Has been.
The potential between the fixed resistor a2 and the fixed resistor a3 is input to the inverting input terminal (−) of the operational amplifier 312 via a predetermined resistor. The potential between the heating resistor 110 and the fixed resistor a1 is input to the non-inverting input terminal (+) of the operational amplifier 312 via a predetermined resistor and input to the microcomputer 3a via an A / D converter (not shown). Is done. The output of the operational amplifier 312 is negatively fed back and input to the base of the constant temperature control circuit 314. A constant voltage Vcc is applied to the emitter of the constant temperature control circuit 314.
As described above, the constant temperature control circuit 314 controls the voltage so that the heating resistor 110 is maintained at a constant temperature according to the output of the operational amplifier 312. Further, the control voltage at this time is output to the microcomputer 3a, and the voltage across the terminals of the heating resistor 110 (corresponding to the hydrogen concentration in the atmosphere to be detected) is detected. In this embodiment, the gas detection element circuit 310 is set so that the heating resistor 110 is maintained at 200 ° C.

第2温度測定回路320は、抵抗体からなる第2温度センサ130、及び固定抵抗b1〜b3で構成されるホイートストーンブリッジ回路321と、ホイートストーンブリッジ回路321から得られる電位差を増幅するオペアンプ322とを備える。ホイートストーンブリッジ回路321において、第2温度センサ130の一端と固定抵抗b3の一端とが接続され、固定抵抗b1の一端と固定抵抗b2の一端とが接続されている。又、第2温度センサ130の他端と固定抵抗b2の他端とがグランドに接続され、固定抵抗b3の他端と固定抵抗b1の他端とに定電圧Vccが印加されている。
第2温度センサ130と固定抵抗b3の間の電位は、所定の抵抗を介してオペアンプ322の反転入力端子(-)に入力される。固定抵抗b1と固定抵抗b2の間の電位は、所定の抵抗を介してオペアンプ322の非反転入力端子(+)に入力される。オペアンプ322の出力はネガティブフィードバックされると共に、マイクロコンピュータ3aに図示しないA/Dコンバータを介して入力される。
このようにして、第2温度センサ130の温度変化による電圧変化がオペアンプ322から出力され、第2温度センサ130の周囲の温度(測定室21s内の温度)が測定される。
The second temperature measurement circuit 320 includes a Wheatstone bridge circuit 321 composed of a second temperature sensor 130 made of resistors and fixed resistors b1 to b3, and an operational amplifier that amplifies the potential difference obtained from the Wheatstone bridge circuit 321. 322. In the Wheatstone bridge circuit 321, one end of the second temperature sensor 130 and one end of the fixed resistor b3 are connected, and one end of the fixed resistor b1 and one end of the fixed resistor b2 are connected. The other end of the second temperature sensor 130 and the other end of the fixed resistor b2 are connected to the ground, and a constant voltage Vcc is applied to the other end of the fixed resistor b3 and the other end of the fixed resistor b1.
The potential between the second temperature sensor 130 and the fixed resistor b3 is input to the inverting input terminal (−) of the operational amplifier 322 via a predetermined resistor. The potential between the fixed resistor b1 and the fixed resistor b2 is input to the non-inverting input terminal (+) of the operational amplifier 322 via a predetermined resistor. The output of the operational amplifier 322 is negatively fed back and input to the microcomputer 3a via an A / D converter (not shown).
In this way, a voltage change due to the temperature change of the second temperature sensor 130 is output from the operational amplifier 322, and the temperature around the second temperature sensor 130 (the temperature in the measurement chamber 21s) is measured.

主温度測定回路330は、抵抗体からなる主温度センサ50、及び固定抵抗c1〜c3で構成されるホイートストーンブリッジ回路331と、ホイートストーンブリッジ回路331から得られる電位差を増幅するオペアンプ332とを備える。ホイートストーンブリッジ回路331において、主温度センサ50の一端と固定抵抗c3の一端とが接続され、固定抵抗c1の一端と固定抵抗c2の一端とが接続されている。又、主温度センサ50の他端と固定抵抗c2の他端とがグランドに接続され、固定抵抗c3の他端と固定抵抗c1の他端とに定電圧Vccが印加されている。
主温度センサ50と固定抵抗c3の間の電位は、所定の抵抗を介してオペアンプ332の反転入力端子(-)に入力される。固定抵抗c1と固定抵抗c2の間の電位は、所定の抵抗を介してオペアンプ332の非反転入力端子(+)に入力される。オペアンプ332の出力はネガティブフィードバックされると共に、マイクロコンピュータ3aに図示しないA/Dコンバータを介して入力される。
このようにして、主温度センサ50の温度変化による電圧変化がオペアンプ332から出力され、主温度センサ50の周囲の温度(被検出雰囲気の温度、つまりケーシング部材11周囲の温度)が測定される。
The main temperature measurement circuit 330 includes a Wheatstone bridge circuit 331 including a main temperature sensor 50 made of resistors and fixed resistors c1 to c3, and an operational amplifier 332 that amplifies a potential difference obtained from the Wheatstone bridge circuit 331. Is provided. In the Wheatstone bridge circuit 331, one end of the main temperature sensor 50 and one end of the fixed resistor c3 are connected, and one end of the fixed resistor c1 and one end of the fixed resistor c2 are connected. The other end of the main temperature sensor 50 and the other end of the fixed resistor c2 are connected to the ground, and a constant voltage Vcc is applied to the other end of the fixed resistor c3 and the other end of the fixed resistor c1.
The potential between the main temperature sensor 50 and the fixed resistor c3 is input to the inverting input terminal (−) of the operational amplifier 332 via a predetermined resistor. The potential between the fixed resistor c1 and the fixed resistor c2 is input to the non-inverting input terminal (+) of the operational amplifier 332 via a predetermined resistor. The output of the operational amplifier 332 is negatively fed back and input to the microcomputer 3a via an A / D converter (not shown).
In this manner, a voltage change due to the temperature change of the main temperature sensor 50 is output from the operational amplifier 332, and the temperature around the main temperature sensor 50 (the temperature of the detected atmosphere, that is, the temperature around the casing member 11) is measured.

次に、図5〜図7を参照して、被検出雰囲気の絶対湿度による可燃性ガス検出装置1の出力への影響について説明する。なお、絶対湿度は水蒸気量(vol.%)と同義として捉える事ができる為、以下は水蒸気量という記載も用いる。
図5は、被検出雰囲気の温度と、90%RHでの水蒸気量との関係を示す。なお、この実施形態では、可燃性ガス検出装置1が水の発生を伴う燃料電池へ適用されることを想定しているため、相対湿度が高い状態として、90%RHでの水蒸気量を用いている。
図6は、可燃性ガス検出装置1の出力に与える影響(具体的には発熱抵抗体110の端子間電圧から算出した水素ガス濃度)と、水蒸気量との関係を示す。この関係は、水蒸気量を変動させた時に、可燃性ガス検出装置1の出力の理想出力に対する誤差を測定し作成したものである。ここで、理想出力に対する誤差とは、例えば水素濃度が0%の環境において測定を行ったとすると、理想出力は水素濃度0%であるのに対し、実際の可燃性ガス検出装置1の出力が水素濃度1%であれば、理想出力に対する誤差(つまり出力に与える影響)が1%と規定される値である。
図6から、水蒸気量が変動すると可燃性ガス検出装置1の出力の誤差が変動することがわかる。
Next, the influence of the absolute humidity of the atmosphere to be detected on the output of the combustible gas detection device 1 will be described with reference to FIGS. In addition, since absolute humidity can be taken as synonymous with the amount of water vapor (vol.%), The description of the amount of water vapor is also used below.
FIG. 5 shows the relationship between the temperature of the atmosphere to be detected and the amount of water vapor at 90% RH. In this embodiment, since it is assumed that the combustible gas detection device 1 is applied to a fuel cell with generation of water, the amount of water vapor at 90% RH is used as a state where the relative humidity is high. Yes.
FIG. 6 shows the relationship between the influence on the output of the combustible gas detector 1 (specifically, the hydrogen gas concentration calculated from the voltage across the terminals of the heating resistor 110) and the amount of water vapor. This relationship is created by measuring the error of the output of the combustible gas detection device 1 with respect to the ideal output when the amount of water vapor is changed. Here, the error with respect to the ideal output is, for example, when measurement is performed in an environment where the hydrogen concentration is 0%, while the ideal output is the hydrogen concentration 0%, whereas the actual output of the combustible gas detection device 1 is hydrogen. If the density is 1%, the error with respect to the ideal output (that is, the influence on the output) is a value that is defined as 1%.
It can be seen from FIG. 6 that the error in the output of the combustible gas detection device 1 varies when the amount of water vapor varies.

図7は、図5の関係(温度と水蒸気量)と図6の関係(出力と水蒸気量)とから、可燃性ガス検出装置1の出力に与える影響と温度との関係を求めたグラフを示す。図7より、主温度センサ50によって被検出雰囲気の温度を測定することで、水蒸気量による可燃性ガス検出装置1の出力変動を見積もることができる。
ここで、被検出雰囲気の温度と、可燃性ガス検出装置1の出力変動との関係(より正確には、被検出雰囲気の水蒸気量(絶対湿度)と可燃性ガス検出装置1の出力変動との関係を、温度で表したもの)が、特許請求の範囲の「第2関係」に相当する。
そして、図7の関係、つまり、被検出雰囲気の温度と、可燃性ガス検出装置1の出力変動との関係から、実際の被検出雰囲気中の水素ガス(可燃性ガス)濃度を測定する際、被検出雰囲気の温度(絶対湿度)による出力への影響を補正することができる。なお、この実施例では、被検出雰囲気の温度と90%RHでの水蒸気量との関係と、可燃性ガス検出装置1の出力(具体的には発熱抵抗体110の端子間電圧から算出した水素ガス濃度)と水蒸気量との関係を元に、被検出雰囲気の温度と、可燃性ガス検出装置1の出力変動との関係である第2関係を求めたが、被検出雰囲気の温度と可燃性ガス検出装置1の出力変動との関係を直接求めたものを第2関係としても良い。
FIG. 7 shows a graph in which the relationship between the influence on the output of the combustible gas detection device 1 and the temperature is obtained from the relationship of FIG. 5 (temperature and water vapor amount) and the relationship of FIG. 6 (output and water vapor amount). . From FIG. 7, by measuring the temperature of the atmosphere to be detected by the main temperature sensor 50, it is possible to estimate the output fluctuation of the combustible gas detection device 1 due to the amount of water vapor.
Here, the relationship between the temperature of the atmosphere to be detected and the output fluctuation of the combustible gas detection device 1 (more precisely, the amount of water vapor (absolute humidity) in the atmosphere to be detected and the output fluctuation of the combustible gas detection device 1). The relationship expressed by temperature) corresponds to the “second relationship” in the claims.
And, when measuring the hydrogen gas (combustible gas) concentration in the actual detected atmosphere from the relationship of FIG. 7, that is, the relationship between the temperature of the detected atmosphere and the output fluctuation of the combustible gas detection device 1, The influence on the output due to the temperature (absolute humidity) of the atmosphere to be detected can be corrected. In this embodiment, the relationship between the temperature of the atmosphere to be detected and the amount of water vapor at 90% RH and the output of the combustible gas detector 1 (specifically, the hydrogen calculated from the voltage across the terminals of the heating resistor 110). Based on the relationship between the gas concentration and the amount of water vapor, the second relationship that is the relationship between the temperature of the detected atmosphere and the output fluctuation of the combustible gas detection device 1 was obtained. It is good also considering what calculated | required the relationship with the output fluctuation | variation of the gas detection apparatus 1 directly as a 2nd relationship.

図8は、発熱抵抗体110の端子間電圧と、被検出雰囲気中の水素濃度との関係(特許請求の範囲の「第1関係」に相当)を示す。第1関係は、例えば、予め水素濃度が既知のモデルガスを被検出雰囲気として用いて得られる検量線である。
ここで、第1関係は、発熱抵抗体110の周囲の温度(具体的には、第2温度センサ130で測定する測定室21s内の温度)によって変化し、測定室21s内の温度が高いほど、発熱抵抗体110の温度を一定に保つための電圧が少なくて済むので、第1関係も変化する。
このように、発熱抵抗体110に近接した第2温度センサ130の温度に基づき、第1関係を変更することにより、発熱抵抗体110の周囲の温度に応じた適切な第1関係を用いることができ、水素(可燃性ガス)の検出精度が向上する。
特に、結露防止ヒータ60を用いて発熱抵抗体110近傍(この例では、測定室21s内)を加熱する場合、発熱抵抗体110近傍の温度が主温度センサ50の温度と異なる。このため、測定室21s内の温度を反映した第2温度センサ130の温度に基づき、第1関係を変更することが有効である。
FIG. 8 shows the relationship between the voltage between the terminals of the heating resistor 110 and the hydrogen concentration in the atmosphere to be detected (corresponding to the “first relationship” in the claims). The first relationship is, for example, a calibration curve obtained using a model gas with a known hydrogen concentration in advance as the detected atmosphere.
Here, the first relationship changes depending on the ambient temperature of the heating resistor 110 (specifically, the temperature in the measurement chamber 21s measured by the second temperature sensor 130), and the higher the temperature in the measurement chamber 21s, the higher the temperature in the measurement chamber 21s. Since the voltage for keeping the temperature of the heating resistor 110 constant is small, the first relationship also changes.
In this way, by changing the first relationship based on the temperature of the second temperature sensor 130 close to the heating resistor 110, an appropriate first relationship according to the ambient temperature of the heating resistor 110 can be used. And detection accuracy of hydrogen (combustible gas) is improved.
In particular, when heating the vicinity of the heating resistor 110 (in this example, in the measurement chamber 21 s) using the dew condensation prevention heater 60, the temperature near the heating resistor 110 is different from the temperature of the main temperature sensor 50. For this reason, it is effective to change the first relationship based on the temperature of the second temperature sensor 130 reflecting the temperature in the measurement chamber 21s.

一方、この場合、発熱抵抗体110近傍(測定室21s内)の温度は被検出雰囲気の温度を必ずしも反映しない。従って、第2関係による出力補正を行う際には、測定室21sの外部に配置され、被検出雰囲気の温度を反映した主温度センサ50の温度に基づくことが好ましい。   On the other hand, in this case, the temperature near the heating resistor 110 (in the measurement chamber 21s) does not necessarily reflect the temperature of the atmosphere to be detected. Therefore, when performing output correction according to the second relationship, it is preferable to be based on the temperature of the main temperature sensor 50 that is disposed outside the measurement chamber 21s and reflects the temperature of the detected atmosphere.

図9は、マイクロコンピュータ(のCPU、以下、単に「CPU」と称する)3aによる、被検出雰囲気中の水素ガス(可燃性ガス)濃度の算出及び補正処理のフローを示す。
CPUは、第2温度センサ130から測定室21s内の温度を取得し(ステップS2)、さらに発熱抵抗体110の端子間電圧を取得する(ステップ4)。次に、CPUは、マイクロコンピュータ3aのROM(以下、単に「ROM」と称する)に格納された第1関係テーブル3aから、測定室21s内の温度に応じた第1関係を参照し、上記端子間電圧に基づいて水素ガス濃度を算出する(ステップS6)。第1関係テーブル3aに基づき、ステップS6で算出された水素ガス濃度が、特許請求の範囲の「ガス濃度算出値」に相当する。
なお、この実施形態では、いくつかの温度(例えば、30℃と80℃)における発熱抵抗体110の端子間電圧と水素ガス濃度との間の第1関係が、第1関係テーブル3aに格納されている。第1関係は、いくつかの温度毎に、端子間電圧と水素ガス濃度を対応付けたテーブルであってもよく、又、例えば温度と端子間電圧を変数とする所定の数式であってもよい。
FIG. 9 shows a flow of a process for calculating and correcting the hydrogen gas (combustible gas) concentration in the atmosphere to be detected by the microcomputer (CPU; hereinafter referred to simply as “CPU”) 3a.
The CPU acquires the temperature in the measurement chamber 21s from the second temperature sensor 130 (step S2), and further acquires the voltage between the terminals of the heating resistor 110 (step 4). Next, the CPU refers to the first relationship according to the temperature in the measurement chamber 21 s from the first relationship table 3 a stored in the ROM (hereinafter simply referred to as “ROM”) of the microcomputer 3 a, and the terminal A hydrogen gas concentration is calculated based on the inter-voltage (step S6). Based on the first relationship table 3a, the hydrogen gas concentration calculated in step S6 corresponds to the “gas concentration calculation value” in the claims.
In this embodiment, the first relationship between the terminal voltage of the heating resistor 110 and the hydrogen gas concentration at several temperatures (for example, 30 ° C. and 80 ° C.) is stored in the first relationship table 3a. ing. The first relationship may be a table in which the inter-terminal voltage and the hydrogen gas concentration are associated with each other for several temperatures, or may be a predetermined mathematical expression having the temperature and the inter-terminal voltage as variables, for example. .

次に、CPUは、主温度センサ50から被検出雰囲気の温度を取得する(ステップS8)。次に、CPUは、ROMに格納された第2関係テーブル3aを参照し、被検出雰囲気の温度に基づいてガス濃度算出値を補正する(ステップS10)。
なお、この実施形態では、第2関係は、いくつかの温度毎に、基準温度(-10℃)に対するガス濃度算出値の変化率を対応付けたテーブルであり、この変化率をステップS6で算出されたガス濃度算出値に乗ずることにより、補正値が得られる。第2関係を、例えば温度を変数とする所定の数式としてもよい。
さらに、CPUは、ステップS10で補正したガス濃度算出値を、ガス濃度信号として外部に出力する(ステップS12)。
Next, the CPU acquires the temperature of the detected atmosphere from the main temperature sensor 50 (step S8). Next, the CPU refers to the second relation table 3a stored in the ROM, and corrects the calculated gas concentration based on the temperature of the detected atmosphere (step S10).
In this embodiment, the second relation is a table in which the change rate of the gas concentration calculated value with respect to the reference temperature (−10 ° C.) is associated with each temperature, and this change rate is calculated in step S6. A correction value is obtained by multiplying the calculated gas concentration value. For example, the second relationship may be a predetermined mathematical formula using temperature as a variable.
Further, the CPU outputs the calculated gas concentration value corrected in step S10 to the outside as a gas concentration signal (step S12).

なお、この実施形態では、被検出雰囲気の温度と、可燃性ガス検出装置1の出力(端子間電圧を水素ガス濃度に換算した値)との関係を第2関係としているが、被検出雰囲気の温度と、発熱抵抗体110の端子間電圧との関係を第2関係としてもよい。この場合、CPUは、ステップS4で端子間電圧を取得すると、被検出雰囲気の温度に基づいて第2関係テーブル3a(但し、温度に対する端子間電圧の変化率のテーブル)を参照し、ステップS4の端子間電圧を補正する。そして、補正された端子間電圧に基づいて第1関係テーブル3aを参照し、上記ステップS6と同様に、ガス濃度算出値を算出し、この値をそのままガス濃度信号として外部に出力する。   In this embodiment, the relationship between the temperature of the atmosphere to be detected and the output of the combustible gas detector 1 (the value obtained by converting the voltage between the terminals into the hydrogen gas concentration) is the second relationship. The relationship between the temperature and the voltage between the terminals of the heating resistor 110 may be the second relationship. In this case, when the CPU acquires the inter-terminal voltage in step S4, the CPU refers to the second relation table 3a (however, a table of the rate of change of the inter-terminal voltage with respect to the temperature) based on the temperature of the atmosphere to be detected. Correct the voltage between terminals. Then, referring to the first relation table 3a based on the corrected inter-terminal voltage, a gas concentration calculation value is calculated as in step S6, and this value is output to the outside as it is as a gas concentration signal.

本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。
例えば、上記実施形態においては、主温度センサ50と第2温度センサ130の2個の温度センサ(温度検出手段)を設けたが、いずれか1つの温度センサのみを設け、この温度センサの温度に基づいて第2関係から補正を行ってもよい。但し、上述のように、結露防止のために発熱抵抗体110近傍の温度と被検出雰囲気の温度とが異なる場合には、主温度センサ50と第2温度センサ130の2個の温度センサを設けると、可燃性ガスの検出精度が向上する。
It goes without saying that the present invention is not limited to the above-described embodiment, but extends to various modifications and equivalents included in the spirit and scope of the present invention.
For example, in the above embodiment, the two temperature sensors (temperature detection means) of the main temperature sensor 50 and the second temperature sensor 130 are provided, but only one of the temperature sensors is provided, and the temperature of this temperature sensor is adjusted. Based on this, the correction may be performed from the second relationship. However, as described above, when the temperature in the vicinity of the heating resistor 110 and the temperature of the detected atmosphere are different in order to prevent condensation, two temperature sensors, the main temperature sensor 50 and the second temperature sensor 130, are provided. And the detection accuracy of combustible gas improves.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.

図1〜図4に示した可燃性ガス検出装置1を製造した。この可燃性ガス検出装置1を用い、以下の測定条件で、水素ガス濃度が既知のいくつかのモデルガスを測定した。
測定条件
ガス組成:H2=0,2,4%、Air=bal.
ガス温度と湿度:25℃-0%RH, 20℃-90%RH(2.1%H2O), 52℃-90%RH(12.1%H2O), 66℃-90%RH(23.2%H2O)
ガス流量:5L/min
The combustible gas detection device 1 shown in FIGS. 1 to 4 was manufactured. Using this combustible gas detector 1, several model gases with known hydrogen gas concentrations were measured under the following measurement conditions.
Measurement conditions Gas composition: H 2 = 0,2,4%, Air = bal.
Gas Temperature and humidity: 25 ℃ -0% RH, 20 ℃ -90% RH (2.1% H 2 O), 52 ℃ -90% RH (12.1% H 2 O), 66 ℃ -90% RH (23.2% H 2 O)
Gas flow rate: 5L / min

図10は、ステップS10の補正処理を行わなかったときの、可燃性ガス検出装置1の出力(ガス濃度算出値)と、モデルガス中の水素濃度(既知の値)との関係を示す。モデルガスの温度(つまり絶対湿度)が変化すると、同じ水素濃度であってもセンサ出力(ガス濃度算出値)が変動し、絶対湿度の影響を受けていることがわかる。
一方、図11は、ステップS10の補正処理を行ったときの、可燃性ガス検出装置1の出力(ガス濃度算出値)と、モデルガス中の水素濃度(既知の値)との関係を示す。モデルガスの温度(つまり絶対湿度)が変化しても、同じ水素濃度であればセンサ出力(ガス濃度算出値)はほぼ同一であり、絶対湿度の影響を補正できることがわかる。
FIG. 10 shows the relationship between the output (gas concentration calculation value) of the combustible gas detection device 1 and the hydrogen concentration (known value) in the model gas when the correction process in step S10 is not performed. It can be seen that when the temperature of the model gas (that is, absolute humidity) changes, the sensor output (gas concentration calculation value) fluctuates even when the hydrogen concentration is the same, and is affected by the absolute humidity.
On the other hand, FIG. 11 shows the relationship between the output (gas concentration calculation value) of the combustible gas detection device 1 and the hydrogen concentration (known value) in the model gas when the correction process of step S10 is performed. It can be seen that even if the temperature of the model gas (that is, absolute humidity) changes, the sensor output (gas concentration calculation value) is almost the same if the hydrogen concentration is the same, and the influence of absolute humidity can be corrected.

1 可燃性ガス検出装置
3 制御部(ガス検出部)
3a マイクロコンピュータ(濃度算出手段、主温度検出手段、補正手段)
11 ケーシング部材
21s 測定室
50 主温度センサ(主温度検出手段)
60 結露防止ヒータ
110 発熱抵抗体
130 第2温度センサ(第2温度検出手段)
1 Combustible gas detection device 3 Control unit (gas detection unit)
3a Microcomputer (concentration calculation means, main temperature detection means, correction means)
11 Casing member 21s Measurement chamber 50 Main temperature sensor (main temperature detection means)
60 Condensation prevention heater 110 Heating resistor 130 Second temperature sensor (second temperature detection means)

Claims (4)

安定した相対湿度環境下における被検出雰囲気に連通し可燃性ガス検出装置に形成された測定室内に曝され、前記被検出雰囲気中の可燃性ガスの濃度に応じて温度が変化する1つの発熱抵抗体と、
前記測定室内に配置されて該測定室内の温度を検出する第2温度検出手段と、
前記発熱抵抗体が所定温度に保たれるよう該発熱抵抗体を通電制御し、このときの該発熱抵抗体の端子間電圧を検出するガス検出部と、
前記第2温度検出手段によって検出された温度に対応した前記可燃性ガスの濃度と前記端子間電圧との間の第1関係に基づき、前記端子間電圧から前記被検出雰囲気内の前記可燃性ガスの濃度をガス濃度算出値として算出する濃度算出手段と、
前記第2温度検出手段と別体であって前記被検出雰囲気の温度を検出する主温度検出手段と、
前記ガス濃度算出値又は前記端子間電圧と、前記主温度検出手段によって検出された前記被検出雰囲気の温度との間の第2関係に基づき、前記主温度検出手段によって検出された温度から前記ガス濃度算出値又は前記端子間電圧を補正する補正手段と、
を備えた可燃性ガス検出装置。
Exposed to a stable relative humidity in the measuring chamber formed combustible gas detector communicates with the atmosphere to be detected under the one where the temperature varies depending on the concentration of the flammable gas in the atmosphere to be detected fever A resistor,
A second temperature detecting means arranged in the measurement chamber for detecting the temperature in the measurement chamber;
A gas detection unit that controls energization of the heating resistor so that the heating resistor is maintained at a predetermined temperature, and detects a voltage between terminals of the heating resistor at this time;
Based on the first relationship between the concentration of the combustible gas corresponding to the temperature detected by the second temperature detection means and the voltage between the terminals, the combustible gas in the detected atmosphere from the voltage between the terminals. Concentration calculating means for calculating the concentration of gas as a gas concentration calculated value;
A main temperature detection means that is separate from the second temperature detection means and detects the temperature of the detected atmosphere;
A voltage between the gas concentration calculated value or the terminal, the main temperature detected by the detecting means based on said second relationship between the temperature of the atmosphere to be detected, the gas from the temperature detected by the main temperature detecting means Correction means for correcting the concentration calculation value or the inter-terminal voltage;
A combustible gas detection device.
前記発熱抵抗体の結露を防止する結露防止ヒータをさらに備えた請求項1記載の可燃性ガス検出装置。   The combustible gas detection device according to claim 1, further comprising a dew condensation prevention heater for preventing dew condensation on the heating resistor. 記主温度検出手段は前記測定室の外に配置され請求項1又は2記載の可燃性ガス検出装置。 Before SL main temperature detector combustible gas detector of claim 1 or 2, wherein Ru is disposed outside of said measuring chamber. 前記測定室を形成すると共に、前記測定室の外側に前記主温度検出手段を取り付けるための主温度検出手段取付部を一体に形成してなるケーシング部材をさらに備えた請求項3記載の可燃性ガス検出装置。   The combustible gas according to claim 3, further comprising a casing member that forms the measurement chamber and integrally forms a main temperature detection means attachment portion for attaching the main temperature detection means to the outside of the measurement chamber. Detection device.
JP2009116311A 2009-05-13 2009-05-13 Combustible gas detector Active JP5373474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116311A JP5373474B2 (en) 2009-05-13 2009-05-13 Combustible gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116311A JP5373474B2 (en) 2009-05-13 2009-05-13 Combustible gas detector

Publications (2)

Publication Number Publication Date
JP2010266265A JP2010266265A (en) 2010-11-25
JP5373474B2 true JP5373474B2 (en) 2013-12-18

Family

ID=43363373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116311A Active JP5373474B2 (en) 2009-05-13 2009-05-13 Combustible gas detector

Country Status (1)

Country Link
JP (1) JP5373474B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041830A1 (en) * 2012-09-12 2014-03-20 光明理化学工業株式会社 Method for measuring gas concentration
JP5412006B1 (en) * 2012-09-12 2014-02-12 光明理化学工業株式会社 Gas concentration measurement method
JP6255162B2 (en) * 2013-03-27 2017-12-27 日本特殊陶業株式会社 Manufacturing method of gas sensor
JP6140500B2 (en) * 2013-03-27 2017-05-31 日本特殊陶業株式会社 Gas sensor
JP6511747B2 (en) * 2014-08-29 2019-05-15 Tdk株式会社 Gas detector
JP6379873B2 (en) * 2014-08-29 2018-08-29 Tdk株式会社 Gas detector
JP6631049B2 (en) * 2015-06-24 2020-01-15 Tdk株式会社 Gas detector
JP6973995B2 (en) * 2016-07-07 2021-12-01 日本特殊陶業株式会社 Ceramic heater
JP6879684B2 (en) * 2016-07-08 2021-06-02 三菱重工業株式会社 Hydrogen concentration measuring device
JP7183093B2 (en) * 2019-03-25 2022-12-05 株式会社チノー gas calibration device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850109A (en) * 1994-08-08 1996-02-20 Yamatake Honeywell Co Ltd Gas analyzing method
JPH08184575A (en) * 1994-12-29 1996-07-16 Tokin Corp Humidity sensor
JP3833559B2 (en) * 2002-03-29 2006-10-11 本田技研工業株式会社 Control device for gas sensor with built-in heater
JP2007248356A (en) * 2006-03-17 2007-09-27 Ngk Spark Plug Co Ltd Flammable gas detector and flammable gas detecting method
JP4897354B2 (en) * 2006-05-22 2012-03-14 日本特殊陶業株式会社 Gas detector
JP4885748B2 (en) * 2007-01-23 2012-02-29 日本特殊陶業株式会社 Combustible gas detector
JP4960136B2 (en) * 2007-04-19 2012-06-27 日本特殊陶業株式会社 Gas detection device and gas detection method
JP2009092587A (en) * 2007-10-11 2009-04-30 Honda Motor Co Ltd Device for controlling gas sensor having built-in heater

Also Published As

Publication number Publication date
JP2010266265A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5373474B2 (en) Combustible gas detector
JP4897354B2 (en) Gas detector
JP4885748B2 (en) Combustible gas detector
US7635091B2 (en) Humidity sensor formed on a ceramic substrate in association with heating components
JP4820528B2 (en) Catalyst sensor
US20060201247A1 (en) Relative humidity sensor enclosed with formed heating element
JP2007248356A (en) Flammable gas detector and flammable gas detecting method
JP5214651B2 (en) Gas sensor element, gas sensor and gas sensor control system
JP6344101B2 (en) Gas detector
JP4639117B2 (en) Contact combustion type gas sensor
JP5436147B2 (en) Contact combustion type gas sensor
JP4960136B2 (en) Gas detection device and gas detection method
JP2018194409A (en) Heat-conduction type gas sensor
US8826725B2 (en) Gas detector
JP5166202B2 (en) Gas detector
JP2011180042A (en) Device for control of gas sensor, and control system of gas sensor
JP2007327806A (en) Catalytic combustion type gas sensor, and gas detector
JP5091078B2 (en) Combustible gas detector
JP5021400B2 (en) Combustible gas detector
JP2019053028A (en) Gas sensor
JP5102172B2 (en) Gas detector
JP2013160523A (en) Gas detector ans driving method thereof
JP4662199B2 (en) Humidity detector
JP3570666B2 (en) Gas sensor, method for correcting measured value of gas sensor, and pressure sensor unit
JP2015152523A (en) gas detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130919

R150 Certificate of patent or registration of utility model

Ref document number: 5373474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250