JPH0850109A - Gas analyzing method - Google Patents

Gas analyzing method

Info

Publication number
JPH0850109A
JPH0850109A JP18592594A JP18592594A JPH0850109A JP H0850109 A JPH0850109 A JP H0850109A JP 18592594 A JP18592594 A JP 18592594A JP 18592594 A JP18592594 A JP 18592594A JP H0850109 A JPH0850109 A JP H0850109A
Authority
JP
Japan
Prior art keywords
gas
heat
sample gas
thermal conductivity
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18592594A
Other languages
Japanese (ja)
Inventor
Hiroyuki Muto
裕行 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP18592594A priority Critical patent/JPH0850109A/en
Publication of JPH0850109A publication Critical patent/JPH0850109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To enable continuous analysis of respective components by analyzing the respective components from the obtained partial pressures by using a specific formula denoting the relationship between the heat conductivity of a sample gas that has been measured when a heat generating resistor is driven at a constant temperature, and the heat conductivities and the partial pressures of the respective components of the sample gas, and by analyzing the respective components from the obtained partial pressures. CONSTITUTION:The measured heat conductivity of gas passing through the feeding passage arranged in a resistance body TCD 1 is expressed by the formula lambda=lXXCx+lambdayXCy+lambdazXCz, and it is obtained by the product of the heat conductivities of the constituent components and the partial pressures of the components. Where, lambdax is the heat conductivity of gas x, lambday the heat conductivity of gas y, lambdaz the heat conductivity of gas z, Cx the partial pressure of gas x, Cy the partial pressure of gas y, and Cz the partial pressure of gas z. While changing the temperature of the TCD 1 at three points, for instance, T1 to T3, the heat conductivities are measured, and since the lambdaT1, lambdaT2, lambdaT3 are physical constants being determined by the temperature, by solving these simultaneous equations, the component ratios of Cx, Cy, Cz are determined, and the respective concentrations can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱伝導率の差により
ガス分析を行うガス分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas analysis method for performing gas analysis based on a difference in thermal conductivity.

【0002】[0002]

【従来の技術】ガス濃度を測定するガス分析装置として
熱伝導式ガス分析計があり、たとえば、水素ガスの分析
に用いられている。図1は、定温度駆動とした熱伝導式
ガス分析計の要部概略構成を示す構成図である。
2. Description of the Related Art As a gas analyzer for measuring gas concentration, there is a heat conduction type gas analyzer, which is used, for example, for analysis of hydrogen gas. FIG. 1 is a configuration diagram showing a schematic configuration of a main part of a heat conduction type gas analyzer driven at a constant temperature.

【0003】図1において、1は試料ガスの給送通路に
配置された測温抵抗体(TCD)、R1,R2,R3は
抵抗、3は比較器、5は熱伝導率算出部、6は濃度導出
部、7は試料ガスに含まれる測定対象ガスおよび共存ガ
スの種類に応じ分析計全体として共通に定められる検量
線が複数種類格納されているROMであり、TCD1,
抵抗R1,R2,R3により恒温槽8内でホイートスト
ンブリッジが組まれている。なお、試料ガスとしては、
たとえば測定対象ガスとしてH2 ガス、共存ガスとして
2 ガスを含むガスである。
In FIG. 1, 1 is a resistance temperature detector (TCD) arranged in a sample gas supply passage, R1, R2 and R3 are resistors, 3 is a comparator, 5 is a thermal conductivity calculating section, and 6 is The concentration derivation unit 7 is a ROM that stores a plurality of types of calibration curves that are commonly determined for the entire analyzer according to the types of measurement target gas and coexisting gas contained in the sample gas.
A Wheatstone bridge is assembled in the constant temperature bath 8 by the resistors R1, R2 and R3. As the sample gas,
For example, it is a gas containing H 2 gas as a measurement target gas and N 2 gas as a coexisting gas.

【0004】この、定温度駆動の熱伝導式ガス分析計で
は、試料ガスがTCD1に給送され、その熱伝導率に比
例した熱を奪う。これにより、常に一定温度にしておこ
うとするTCD1の発熱温度TRhが変化し、その抵抗値
Rhが変化する。抵抗R1とTCD1との接続点に生ず
る電圧は出力電圧vとして比較器3の反転入力へ、抵抗
R3とR2との接続点に生ずる電圧は比較器3の反転入
力へ与えられる。これにより、TCD1の温度変化が、
出力電圧vの変化Δvとして検出される。
In this constant temperature driven heat conduction type gas analyzer, the sample gas is fed to the TCD 1 and takes away heat in proportion to its heat conductivity. As a result, the heat generation temperature T Rh of the TCD 1 which is always kept constant changes, and the resistance value Rh thereof changes. The voltage generated at the connection point between the resistors R1 and TCD1 is supplied to the inverting input of the comparator 3 as the output voltage v, and the voltage generated at the connection point between the resistors R3 and R2 is supplied to the inverting input of the comparator 3. As a result, the temperature change of TCD1
It is detected as a change Δv in the output voltage v.

【0005】比較器3は、この検出した出力電圧vの変
化Δvに基づいて、TCD1へ流れる電流iを制御し、
TCD1の抵抗値Rhを一定(Rh=(R1×R2)/
R3)に保つ。これにより、出力電圧vが変化し、TC
D1の発熱温度TRhが一定に保たれる。TCD1の発熱
温度TRhが一定に保たれることは、下記(1)式を見て
も分かる。すなわち、TCD1は白金薄膜抵抗体であ
り、その抵抗値Rhは(1)式で示され、TCD1の抵
抗値Rhを一定に制御すれば、同時に発熱温度TRhも一
定に保たれる。
The comparator 3 controls the current i flowing to the TCD 1 based on the detected change Δv in the output voltage v,
The resistance value Rh of TCD1 is constant (Rh = (R1 × R2) /
Keep on R3). As a result, the output voltage v changes and TC
The heat generation temperature TRh of D1 is kept constant. It can be seen from the following equation (1) that the heat generation temperature T Rh of TCD1 is kept constant. That, TCD 1 is a platinum thin-film resistor, the resistance value Rh is indicated by (1), by controlling a constant resistance value Rh of the TCD 1, is also kept constant at the same time heating temperature T Rh.

【0006】 Rh=Rh20{1+α20・(TRh−20)+β20・(TRh−20)2 } ・・・(1) なお、(1)式において、Rh20は20℃におけるTC
D1の抵抗値(Ω)、α20は20℃におけるTCD1の
1次抵抗温度係数、β20は20℃におけるTCD1の2
次抵抗温度係数である。
Rh = Rh 20 {1 + α 20 · (T Rh −20) + β 20 · (T Rh −20) 2 } (1) In the formula (1), Rh 20 is TC at 20 ° C.
Resistance value of D1 (Ω), α 20 is the primary temperature coefficient of resistance of TCD1 at 20 ° C, β 20 is 2 of TCD1 at 20 ° C.
Next is the temperature coefficient of resistance.

【0007】ここで、TCD1から周囲に伝わる熱量Q
T は、下記(2)式で示される。なお、(2)式におい
て、QG は熱伝導により試料ガスに伝わる熱量、QS
TCD1を構築するダイヤフラム(シリコン)および抵
抗パターンを通してシリコン台座に伝わる熱量、QC
対流(強制対流および自然対流)により伝わる熱量、Q
R は輻射により伝わる熱量である。
Here, the heat quantity Q transmitted from TCD1 to the surroundings
T is represented by the following equation (2). In equation (2), Q G is the amount of heat transferred to the sample gas by heat conduction, Q S is the amount of heat transferred to the silicon pedestal through the diaphragm (silicon) and the resistance pattern that make up TCD1, and Q C is convection (forced convection and natural convection). Heat quantity transferred by convection), Q
R is the amount of heat transferred by radiation.

【0008】 QT =QG +QS +QC +QR ・・・(2)Q T = Q G + Q S + Q C + Q R (2)

【0009】そして、(2)式における熱量QT は、さ
らに、下記(3)式として表現される。なお、この式に
おいて、TRR2 は恒温槽8の温度(℃)、λmは試料ガ
スの熱伝導率(w/k・m)、Gは装置定数(m)、λ
siはダイヤフラムおよび抵抗パターンの熱伝導率(w/
k・m)、GS はダイヤフラムおよび抵抗パターンにお
ける装置定数(m)である。
The heat quantity Q T in the equation (2) is further expressed as the following equation (3). In this equation, T RR2 is the temperature (° C.) of the constant temperature bath 8, λm is the thermal conductivity (w / k · m) of the sample gas, G is the device constant (m), and λ.
si is the thermal conductivity (w /
k · m) and G S are device constants (m) in the diaphragm and the resistance pattern.

【0010】 QT =(TRh−TRR2 )・λm・G+(TRh−TRR2 )・λsi・GS +QC +QR ・・・(3)Q T = (T Rh −T RR2 ) · λm · G + (T Rh −T RR2 ) · λ si · G S + Q C + Q R (3)

【0011】この(3)式において、GおよびGS はガ
ス組成によって変化せず、QC ,QR はQG ,QS に比
べて十分小さな値(または一定値)であり、λsiも一定
と考えられる。また、TRh,TRR2 は一定にコントロー
ルされるので、上記(3)式はA,Bを固有の装置定数
(運転状態を含めた形状係数)として、下記(4)式で
示され、一方で下記(5)式でも示すことができる。
In this equation (3), G and G S do not change depending on the gas composition, Q C and Q R are sufficiently smaller values (or constant values) than Q G and Q S , and λ si is also It is considered to be constant. Further, since T Rh and T RR2 are controlled to be constant, the above equation (3) is represented by the following equation (4), where A and B are unique device constants (shape factors including operating conditions). Can also be expressed by the following equation (5).

【0012】QT =A・λm+B ・・・(4)Q T = A · λm + B (4)

【0013】 QT =i2 ・Rh=v2 /Rh ・・・(5)Q T = i 2 · Rh = v 2 / Rh (5)

【0014】そして、QT =A・λm+B=v2 /Rh
であるので、試料ガスの熱伝導率λmは下記(6)式で
表されるものとなる。
Then, Q T = A · λm + B = v 2 / Rh
Therefore, the thermal conductivity λm of the sample gas is expressed by the following equation (6).

【0015】 λm=(v2 /Rh−B)/A ・・・(6)Λm = (v 2 / Rh−B) / A (6)

【0016】ここで、固有の装置定数A,Bが分かれ
ば、出力電圧vを上記(6)式に代入することにより、
試料ガスの熱伝導率λmを求めることができる。そこ
で、この熱伝導式ガス分析計においては、上記(6)式
を演算式として熱伝導率算出部5へ設定する一方、この
演算式における固有の装置定数A,Bを次のようにして
定めている。
Here, if the unique device constants A and B are known, the output voltage v is substituted into the above equation (6) to obtain
The thermal conductivity λm of the sample gas can be obtained. Therefore, in this heat conduction type gas analyzer, the above equation (6) is set in the heat conductivity calculating section 5 as an arithmetic expression, while the device constants A and B unique to this arithmetic expression are determined as follows. ing.

【0017】すなわち、まず、熱伝導率が既知の第1の
校正ガス(例えば、100%N2 ガス)をTCD1へ給
送して出力電圧v(vN2)を測定する。次に、熱伝導率
が既知の第2の校正ガス(例えば、100%H2 ガス)
をTCD1へ給送して出力電圧v(vH2)を測定する。
そして、この測定した出力電圧vN2,vH2を下記(7)
式および(8)式に代入して固有の装置定数A,Bを求
め、この求めた装置定数A,Bを熱伝導率算出部5にお
ける演算式中の装置定数A,Bとして設定している。
That is, first, a first calibration gas having a known thermal conductivity (for example, 100% N 2 gas) is fed to the TCD 1 to measure the output voltage v (v N2 ). Next, a second calibration gas having a known thermal conductivity (for example, 100% H 2 gas)
To TCD1 to measure the output voltage v (v H2 ).
Then, the measured output voltages v N2 and v H2 are given in (7) below.
The device constants A and B unique to each other are obtained by substituting the equations and the formula (8), and the obtained device constants A and B are set as the device constants A and B in the arithmetic expression in the thermal conductivity calculation unit 5. .

【0018】 A=(vN2 2 −vH2 2 )/{Rh・(λN2−λH2)} ・・・(7) B=(vN2 2・λH2−vH2 2・λN2)/{Rh・(λH2−λN2)}・・・(8) なお、(7),(8)式において、λN2は100%N2
ガスの(TRh+TRR2)/2における熱伝導率(w/k
・m)、λH2は100%H2 ガスの(TRh+TRR 2 )/
2における熱伝導率(w/k・m)である。
A = (v N2 2 −v H2 2 ) / {Rh · (λ N2 −λ H2 )} (7) B = (v N2 2 · λ H2 −v H2 2 · λ N2 ) / {Rh · (λ H2 −λ N2 )} (8) In equations (7) and (8), λ N2 is 100% N 2
Thermal conductivity (w / k) of gas at (T Rh + T RR2 ) / 2
・ M), λ H2 is (T Rh + T RR 2 ) / of 100% H 2 gas
2 is the thermal conductivity (w / km) of 2.

【0019】また、上記(7)式および(8)式は、A
・λm+B=v2 /Rhを変形して得られるv2 =Rh
・A・λm+Rh・BにvN2,λN2、およびvH2,λH2
を代入して得られる下記(9)および(10)式の連立
方程式を解いて得られるものである。
The above equations (7) and (8) are
・ V 2 = Rh obtained by transforming λm + B = v 2 / Rh
・ V N2 , λ N2 , and v H2 , λ H2 in A ・ λm + Rh ・ B
It is obtained by solving the simultaneous equations of the following equations (9) and (10) obtained by substituting

【0020】 vN2 2 =Rh・A・λN2+Rh・B ・・・(9) vH2 2 =Rh・A・λH2+Rh・B ・・・(10)V N2 2 = Rh · A · λ N2 + Rh · B (9) v H2 2 = Rh · A · λ H2 + Rh · B (10)

【0021】一方、ROM7には、試料ガスに含まれる
測定対象ガスおよび共存ガスの種類に応じ、分析計全体
として共通に定められる検量線が複数種類格納されてい
る。たとえば、測定対象ガスをH2 とし、共存ガスをN
2 としたときの試料ガスの熱伝導率λmに対する、H2
ガスの濃度を示す検量線が格納されている。また、加え
て、測定対象ガスをH2 とし、共存ガスをCH4 とした
ときの試料ガスの熱伝導率λmに対する、H2 ガスの濃
度を示す検量線(CH4 −H2 検量線)や、測定対象ガ
スをH2 とし、共存ガスをCO2 としたときの試料ガス
の熱伝導率λmに対する、H2 ガスの濃度を示す検量線
(CO2 −H2 検量線)など、多種類の検量線が格納さ
れている。
On the other hand, the ROM 7 stores a plurality of types of calibration curves that are commonly set for the analyzer as a whole according to the types of measurement target gas and coexisting gas contained in the sample gas. For example, the gas to be measured is H 2 and the coexisting gas is N 2.
For the thermal conductivity λm of the sample gas when formed into a 2, H 2
A calibration curve showing the gas concentration is stored. In addition, a calibration curve (CH 4 -H 2 calibration curve) showing the concentration of H 2 gas with respect to the thermal conductivity λm of the sample gas when the measurement target gas is H 2 and the coexisting gas is CH 4 and , A calibration curve (CO 2 -H 2 calibration curve) showing the concentration of H 2 gas with respect to the thermal conductivity λm of the sample gas when H 2 is the measurement gas and CO 2 is the coexisting gas. The calibration curve is stored.

【0022】これら、検量線は、物理データとしてすで
に求められているものもあるが、求められていない場合
には実測のうえ作成する。また、この熱伝導式ガス分析
計において、濃度導出部6は、試料ガスの構成に応じ、
ROM7に格納されている検量線の中から所要の検量線
を読み出す。たとえば、測定対象ガスをH2 とし共存ガ
スをN2 とすれば、外部からの指定に応じ、N2 −H2
検量線を読み出す。そして、この読み出したN2 −H2
検量線を参照として、熱伝導率算出部5にて算出された
試料ガスの熱伝導率λmに基づき、試料ガスに含まれる
2 ガスの濃度を求め、この濃度を測定濃度値として出
力する。
Some of these calibration curves have already been obtained as physical data, but if they have not been obtained, they are created after actual measurement. Further, in this heat conduction type gas analyzer, the concentration derivation unit 6
A required calibration curve is read out from the calibration curves stored in the ROM 7. For example, if the gas to be measured is H 2 and the coexisting gas is N 2 , N 2 —H 2
Read the calibration curve. Then, the read N 2 -H 2
The concentration of H 2 gas contained in the sample gas is calculated based on the thermal conductivity λm of the sample gas calculated by the thermal conductivity calculator 5 with reference to the calibration curve, and this concentration is output as the measured concentration value.

【0023】[0023]

【発明が解決しようとする課題】従来は以上のように構
成されていたので、2成分からなるガス組成中の1成分
の変化を測定するのが基本であり、1つの熱伝導式ガス
分析計で複数成分の分析を行うことができないという問
題があった。
Since the conventional structure is as described above, it is basically necessary to measure the change of one component in the gas composition consisting of two components, and one heat conduction type gas analyzer is used. However, there was a problem that multiple components could not be analyzed.

【0024】この発明は、以上のような問題点を解消す
るためになされたものであり、熱伝導式ガス分析計を用
いて、複数成分から構成された試料ガスの構成するそれ
ぞれの成分毎に分析定できるようにすることを目的とす
る。
The present invention has been made in order to solve the above problems, and uses a heat conduction type gas analyzer for each component of a sample gas composed of a plurality of components. The purpose is to be able to analyze.

【0025】[0025]

【課題を解決するための手段】この発明のガス分析方法
は、試料ガスを構成する各成分の数だけ設定温度を変化
させて発熱抵抗体を定温度駆動したときに測定したその
試料ガスの熱伝導率と、試料ガスを構成する各成分の熱
伝導率およびそれらの分圧との関係を示す関係式を、そ
の変化させた設定温度それぞれに生成し、この生成した
関係式を連立して解くことで各成分の分圧を求め、これ
ら分圧より各成分の分析を行うことを特徴とする。
The gas analysis method of the present invention is a method for measuring the heat of a sample gas, which is measured when the heating resistor is driven at a constant temperature by changing the set temperature by the number of each component constituting the sample gas. A relational expression showing the relation between the conductivity, the thermal conductivity of each component constituting the sample gas and their partial pressures is generated for each of the changed set temperatures, and the generated relational expressions are solved simultaneously. Thus, the partial pressure of each component is obtained, and each component is analyzed from these partial pressures.

【0026】[0026]

【作用】試料ガスの熱伝導率は各成分のそれぞれの熱伝
導率と分圧の積の和に等しく、熱伝導率は各成分に固有
の値であらかじめ分かっているので、試料ガスの熱伝導
率が測定により得られれば、各成分の分圧だけが未知数
となる。
[Function] The thermal conductivity of the sample gas is equal to the sum of the products of the thermal conductivity and the partial pressure of each component, and the thermal conductivity is known in advance as a value unique to each component. If the rate is obtained by measurement, only the partial pressure of each component becomes an unknown.

【0027】[0027]

【実施例】以下この発明の1実施例を説明する。ここで
は3成分からなる試料ガスの測定について述べる図1に
示した熱伝導式ガス分析計において、測温抵抗体(TC
D)1が配置された給送通路を通過するガスの測定され
る熱伝導率λは、一方で、以下の(11)式で示すよう
に、構成成分の熱伝導率とその成分の分圧の積で求めら
れる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below. Here, in the heat conduction type gas analyzer shown in FIG. 1 which describes the measurement of the sample gas composed of three components, the resistance temperature detector (TC
D) The measured thermal conductivity λ of the gas passing through the feed passage in which 1 is arranged is, on the other hand, the thermal conductivity of the constituent component and the partial pressure of the component as shown in the following equation (11). It is calculated by the product of

【0028】 λ=λx×Cx+λy×Cy+λz×Cz・・・(11) なお、(11)式において、λは混合ガスの熱伝導率、
λxはガスxの熱伝導率、λyはガスyの熱伝導率、λ
zはガスzの熱伝導率、Cxはガスxの分圧、Cyはガ
スyの分圧、Czはガスzの分圧である。
Λ = λx × Cx + λy × Cy + λz × Cz (11) In the equation (11), λ is the thermal conductivity of the mixed gas,
λx is the thermal conductivity of gas x, λy is the thermal conductivity of gas y, λ
z is the thermal conductivity of the gas z, Cx is the partial pressure of the gas x, Cy is the partial pressure of the gas y, and Cz is the partial pressure of the gas z.

【0029】ここで、図1におけるTCD1の温度をT
1,T2,T3と3点変化させて熱伝導率を測定する
と、それぞれの温度において、以下の(12),(1
3),(14)式に示すように、連立方程式をたてるこ
とができる。
Here, the temperature of TCD1 in FIG.
1, T2, T3 are changed at three points to measure the thermal conductivity. At each temperature, the following (12), (1
As shown in equations 3) and (14), simultaneous equations can be created.

【0030】 λT1=λxT1×Cx+λyT1×Cy+λzT1×Cz・・・(12) λT2=λxT2×Cx+λyT2×Cy+λzT2×Cz・・・(13) λT3=λxT3×Cx+λyT3×Cy+λzT3×Cz・・・(14)Λ T1 = λx T1 × Cx + λy T1 × Cy + λz T1 × Cz ... (12) λ T2 = λx T2 × Cx + λy T2 × Cy + λz T2 × Cz (13) λ T3 = λx T3 × Cx + λy T3 × Cy + λz T3 x Cz (14)

【0031】ここで、λxT1,λyT1,λzT1,λ
T2,λyT2,λzT2,λxT3,λyT3,λzT3は温度
により決まる物理的な定数(既知)である。この定数を
上記(12),(13)、(14)式に当てはめて、こ
れらの連立方程式を解けば、Cx,Cy,Czの成分比
が分かり、それぞれの濃度を求めることができる。
Here, λx T1 , λy T1 , λz T1 , λ
x T2 , λy T2 , λz T2 , λx T3 , λy T3 , and λz T3 are physical constants (known) determined by temperature. By applying these constants to the equations (12), (13), and (14) and solving these simultaneous equations, the component ratios of Cx, Cy, and Cz can be known, and the respective concentrations can be obtained.

【0032】なお、上記実施例では、試料ガスが3成分
からなる場合について説明したが、これに限るものでは
ない。4成分や5成分からなるガスの測定であっても、
同様であり、たとえば、5成分からなる試料ガスの測定
では、TCD1の温度を5点変化させて熱伝導率を測定
して5つの方程式をたて、これを解くようにすればよ
い。また、TCD1の温度のを非常に短い時間で変化さ
せるようにして測定すれば、ほぼ連続的な多成分のガス
分析が可能となる。
In the above embodiment, the case where the sample gas is composed of three components has been described, but the present invention is not limited to this. Even when measuring a gas consisting of four or five components,
The same is true, for example, in the measurement of a sample gas consisting of five components, the temperature of TCD1 is changed at five points, the thermal conductivity is measured, five equations are set, and this can be solved. Further, if the temperature of TCD1 is measured while being changed in a very short time, it is possible to perform a substantially continuous multi-component gas analysis.

【0033】[0033]

【発明の効果】以上説明したように、この発明によれ
ば、定温度駆動とした熱伝導式ガス分析計の測温抵抗体
の設定温度を変化させて、それぞれの温度における試料
ガスの熱伝導率を測定することで得られる、試料ガスを
構成する各成分の熱伝導率と分圧との連立方程式をたて
て、これを解くことで各成分の分圧を求めるようにし
た。このため、1つの熱伝導式ガス分析計による3成分
以上の試料ガスの測定で、それら各成分の分析ができる
という効果がある。
As described above, according to the present invention, the set temperature of the resistance temperature detector of the heat conduction type gas analyzer driven at a constant temperature is changed and the heat conduction of the sample gas at each temperature is changed. The partial pressure of each component was obtained by establishing a simultaneous equation of the thermal conductivity and the partial pressure of each component constituting the sample gas, which was obtained by measuring the rate. Therefore, there is an effect that each of the components can be analyzed by measuring the sample gas of three or more components with one heat conduction type gas analyzer.

【図面の簡単な説明】[Brief description of drawings]

【図1】 定温度駆動とした熱伝導式ガス分析計の要部
概略構成を示す構成図である。
FIG. 1 is a configuration diagram showing a schematic configuration of a main part of a heat conduction type gas analyzer driven at a constant temperature.

【符号の説明】[Explanation of symbols]

1…測温抵抗体(TCD)、R1,R2,R3…抵抗、
3…比較器、5…熱伝導率算出部、6…濃度導出部、7
…ROM、8…恒温槽。
1 ... Resistance temperature detector (TCD), R1, R2, R3 ... Resistance,
3 ... Comparator, 5 ... Thermal conductivity calculation unit, 6 ... Concentration derivation unit, 7
... ROM, 8 ... Constant temperature bath.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 所定の設定温度に定温度駆動された発熱
抵抗体に接触して流れる試料ガスを、前記発熱抵抗体か
ら奪われる熱量により前記試料ガスの熱伝導率を測定す
ることで前記試料ガスの分析を行う熱伝導式のガス分析
装置において、 前記試料ガスを構成する各成分の数だけ設定温度を変化
させて前記発熱抵抗体を定温度駆動したときに測定した
前記試料ガスの熱伝導率と、前記試料ガスを構成する各
成分の熱伝導率およびそれらの分圧との関係を示す関係
式を、その変化させた設定温度それぞれに生成し、 この生成した関係式を連立して解くことで前記各成分の
分圧を求め、 前記分圧より前記各成分の分析を行うことを特徴とする
ガス分析方法。
1. A sample gas flowing in contact with a heating resistor that is driven at a constant temperature at a predetermined set temperature, by measuring the thermal conductivity of the sample gas by the amount of heat taken from the heating resistor. In a heat conduction type gas analyzer for analyzing a gas, the heat conduction of the sample gas measured when the heating resistor is driven at a constant temperature by changing the set temperature by the number of each component constituting the sample gas. A relational expression showing the relationship between the rate, the thermal conductivity of each component constituting the sample gas, and their partial pressures is generated for each of the changed set temperatures, and the generated relational expressions are solved simultaneously. The partial pressure of each said component is calculated | required by this, and each said component is analyzed from the said partial pressure, The gas analysis method characterized by the above-mentioned.
JP18592594A 1994-08-08 1994-08-08 Gas analyzing method Pending JPH0850109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18592594A JPH0850109A (en) 1994-08-08 1994-08-08 Gas analyzing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18592594A JPH0850109A (en) 1994-08-08 1994-08-08 Gas analyzing method

Publications (1)

Publication Number Publication Date
JPH0850109A true JPH0850109A (en) 1996-02-20

Family

ID=16179279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18592594A Pending JPH0850109A (en) 1994-08-08 1994-08-08 Gas analyzing method

Country Status (1)

Country Link
JP (1) JPH0850109A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019823A (en) * 1996-06-28 1998-01-23 Mitsuteru Kimura Temperature control circuit of thermal humidity sensor
WO2000065343A1 (en) * 1999-04-22 2000-11-02 Lattice Intellectual Property Ltd. Measurement of fluid concentrations
WO2004106909A1 (en) * 2003-05-29 2004-12-09 Matsushita Electric Industrial Co., Ltd. Gas sensor, fuel cell system employing it, and automobile
JP2007192629A (en) * 2006-01-18 2007-08-02 Ricoh Co Ltd Heater control circuit and apparatus for measuring thermal conductivity
WO2010038285A1 (en) * 2008-10-01 2010-04-08 株式会社山武 Calorific value computation formula generation system, calorific value computation formula generation method, calorific value computation system, and calorific value computation method
JP2010266265A (en) * 2009-05-13 2010-11-25 Ngk Spark Plug Co Ltd Combustible gas detector
JP2011203050A (en) * 2010-03-25 2011-10-13 Yamatake Corp Calorific value calculation formula creation system, method of creating calorific value calculation formula, calorific value measurement system, and method of measuring calorific value
JP2011209047A (en) * 2010-03-29 2011-10-20 Yamatake Corp System and method for creating heat value calculation formula, and system and method for measuring heat value
JP2011209008A (en) * 2010-03-29 2011-10-20 Yamatake Corp System and method for preparing calorific-value calculation formula, calorific-value measuring system, and calorific-value measurement method
JP4868604B2 (en) * 2005-09-27 2012-02-01 株式会社山武 Thermal conductivity measuring device, gas component ratio measuring device
US8888361B2 (en) 2011-05-09 2014-11-18 Azbil Corporation Calorific value measuring system and calorific value measuring method
US9188557B2 (en) 2012-03-27 2015-11-17 Azbil Corporation Calorific value measuring system and calorific value measuring method
JP2016170161A (en) * 2015-03-12 2016-09-23 Tdk株式会社 Thermal conductivity gas sensor
JP2018205105A (en) * 2017-06-05 2018-12-27 Tdk株式会社 Gas sensor and detection method of gas concentration

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019823A (en) * 1996-06-28 1998-01-23 Mitsuteru Kimura Temperature control circuit of thermal humidity sensor
WO2000065343A1 (en) * 1999-04-22 2000-11-02 Lattice Intellectual Property Ltd. Measurement of fluid concentrations
JP2002543385A (en) * 1999-04-22 2002-12-17 ラティス インテレクチュアル プロパティー リミテッド Measurement of liquid concentration
WO2004106909A1 (en) * 2003-05-29 2004-12-09 Matsushita Electric Industrial Co., Ltd. Gas sensor, fuel cell system employing it, and automobile
JP2004354210A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Gas sensor, fuel cell system using same, and automobile using same
US7058518B2 (en) 2003-05-29 2006-06-06 Matsushita Electric Industrial Co., Ltd. Gas sensor, fuel cell system therewith, and automobile therewith
JP4868604B2 (en) * 2005-09-27 2012-02-01 株式会社山武 Thermal conductivity measuring device, gas component ratio measuring device
JP2007192629A (en) * 2006-01-18 2007-08-02 Ricoh Co Ltd Heater control circuit and apparatus for measuring thermal conductivity
WO2010038285A1 (en) * 2008-10-01 2010-04-08 株式会社山武 Calorific value computation formula generation system, calorific value computation formula generation method, calorific value computation system, and calorific value computation method
CN102165309A (en) * 2008-10-01 2011-08-24 株式会社山武 Calorific value computation formula generation system, calorific value computation formula generation method, calorific value computation system, and calorific value computation method
JP5075986B2 (en) * 2008-10-01 2012-11-21 アズビル株式会社 Calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value calculation system, and calorific value calculation method
JP2010266265A (en) * 2009-05-13 2010-11-25 Ngk Spark Plug Co Ltd Combustible gas detector
JP2011203050A (en) * 2010-03-25 2011-10-13 Yamatake Corp Calorific value calculation formula creation system, method of creating calorific value calculation formula, calorific value measurement system, and method of measuring calorific value
JP2011209008A (en) * 2010-03-29 2011-10-20 Yamatake Corp System and method for preparing calorific-value calculation formula, calorific-value measuring system, and calorific-value measurement method
JP2011209047A (en) * 2010-03-29 2011-10-20 Yamatake Corp System and method for creating heat value calculation formula, and system and method for measuring heat value
US8888361B2 (en) 2011-05-09 2014-11-18 Azbil Corporation Calorific value measuring system and calorific value measuring method
US9188557B2 (en) 2012-03-27 2015-11-17 Azbil Corporation Calorific value measuring system and calorific value measuring method
JP2016170161A (en) * 2015-03-12 2016-09-23 Tdk株式会社 Thermal conductivity gas sensor
JP2018205105A (en) * 2017-06-05 2018-12-27 Tdk株式会社 Gas sensor and detection method of gas concentration

Similar Documents

Publication Publication Date Title
US4164862A (en) Multicomponent thermal conductivity analyzer
US7926323B2 (en) Thermal conductivity measuring method and apparatus, and gas component ratio measuring apparatus
JPH0850109A (en) Gas analyzing method
JP5534193B2 (en) Temperature diffusivity measurement system and flow rate measurement system
US6450024B1 (en) Flow sensing device
US3791936A (en) Method and apparatus for monitoring the total combustibles and oxygen content of a gas
JPWO2010038285A1 (en) Calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value calculation system, and calorific value calculation method
US5494826A (en) Microcalorimeter sensor for the measurement of heat content of natural gas
JP5335722B2 (en) Calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value measurement system, and calorific value measurement method
JP5389501B2 (en) Calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value calculation system, and calorific value calculation method
EP2369337A2 (en) Calorific value calculation formula creation system, method of creating calorific value calculation formula, calorific value measurement system, and method of measuring calorific value
JP3136553B2 (en) Calorimeter
US6371147B1 (en) Evaluation and regulation of the thermal power of a flow of combustible gas; characterization of a thermal mass flowmeter
JP3055941B2 (en) Method and apparatus for measuring calorific value of combustible gas and Wobbe index of natural gas
JP3114137B2 (en) Thermal conductivity gas concentration analyzer
EP3812753B1 (en) Determination of gas-specific parameters from heat transfer in the temperature jump regime
de Matos et al. Gas mass-flow meters: Principles and applications
JP5690003B2 (en) Specific heat capacity measurement system and flow rate measurement system
US2256395A (en) Gas analysis apparatus
Alexandrov Estimation of the uncertainty for an isothermal precision gas calorimeters
RU2745082C1 (en) Gas analyzer
JP4868604B2 (en) Thermal conductivity measuring device, gas component ratio measuring device
JP5344958B2 (en) Calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value calculation system, and calorific value calculation method
JP3243596B2 (en) Oxygen analyzer
SU1741036A1 (en) Device for determination of thermal conductivity of materials