JP3570147B2 - Epoxy resin composition, prepreg and laminate - Google Patents

Epoxy resin composition, prepreg and laminate Download PDF

Info

Publication number
JP3570147B2
JP3570147B2 JP07813197A JP7813197A JP3570147B2 JP 3570147 B2 JP3570147 B2 JP 3570147B2 JP 07813197 A JP07813197 A JP 07813197A JP 7813197 A JP7813197 A JP 7813197A JP 3570147 B2 JP3570147 B2 JP 3570147B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
molecular weight
epoxy
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07813197A
Other languages
Japanese (ja)
Other versions
JPH10292031A (en
Inventor
広志 山本
神夫 米本
佳秀 澤
英一郎 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP07813197A priority Critical patent/JP3570147B2/en
Publication of JPH10292031A publication Critical patent/JPH10292031A/en
Application granted granted Critical
Publication of JP3570147B2 publication Critical patent/JP3570147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば高周波領域で使用されるプリント配線板に用いられる積層板、この積層板の製造に用いられるプリプレグ、及びこのプリプレグの製造に用いられるエポキシ樹脂組成物に関するものである。
【0002】
【従来の技術】
衛星通信などに用いられるXバンド(8〜12GHz)領域、いわゆる超高周波領域で使用するプリント配線板の製造に用いられる積層板には、広い高周波範囲、温度範囲及び湿度範囲で誘電率及び誘電正接がいずれも一定で、かつ、好ましくは誘電正接が小さいことが望まれており、このような用途にエポキシ樹脂及びポリフェニレンエーテル樹脂(以下、PPEと記す)を含有するエポキシ樹脂組成物を用いた積層板が使用されている。
【0003】
従来、このエポキシ樹脂及びPPEを含有するエポキシ樹脂組成物を用いた積層板としては、エポキシ樹脂とPPEを単に配合したエポキシ樹脂組成物を用いた、エポキシ樹脂とPPEの硬化物が化学的に独立して存在する積層板や、エポキシ樹脂のエポキシ基とPPEの末端水酸基とを反応させることにより、PPEとエポキシ樹脂が架橋した硬化物よりなる積層板が検討されている。
【0004】
これらのうち前者の積層板は、アルカリやクロロホルムに浸漬して耐アルカリ性試験や耐溶剤性試験を行うと、エポキシ樹脂とPPEの結合が不十分なために層間剥離が発生する場合があるという問題があり、また、後者の積層板は、用いたPPEが高分子量の場合、PPEの末端フェノール性水酸基とエポキシ樹脂のエポキシ基との反応性が低く、硬化物中に架橋構造に関与しない未反応のPPEが多量存在するため、層間接着強度が低いという問題や、前者の積層板と同様に耐溶剤性試験を行うと、前者の積層板と比較すると優れるが、依然として層間剥離が発生する場合があるという問題があった。
【0005】
そのため、高分子量のPPEとフェノール性化合物を、過酸化物等の反応開始剤存在下で反応させることにより、用いたPPEの数平均分子量より低分子量の、PPEで変成した変成フェノール生成物を製造し、その変成フェノール生成物とエポキシ樹脂を配合したエポキシ樹脂組成物を用いて、耐溶剤性が優れた積層板を製造することが検討されている。この積層板の場合、変成フェノール生成物のフェノール性水酸基とエポキシ樹脂のエポキシ基との反応により、PPEが硬化物中の架橋構造に取り込まれるため、耐溶剤性が優れると考えられている。
【0006】
しかし、この変成フェノール生成物とエポキシ樹脂を含有するエポキシ樹脂組成物を用いて表面に銅箔等の層を有する積層板を製造した後、半導体チップと接続するために、金線等のボンディングワイヤーを積層板表面の金属箔と接合した場合、加熱時のボンディングワイヤーと金属箔の接着強度の評価において、ボンディングワイヤーと金属箔の接合部が剥がれる場合があり、改良の余地があった。
【0007】
そのため、高周波領域で使用する積層板に要求される特性である、誘電率、誘電正接及びはんだ耐熱性を低下することなしに、その表面に有する金属箔にボンディングワイヤーを接合した場合に、その接合部の接着強度が優れる積層板が求められている。
【0008】
【発明が解決しようとする課題】
本発明は、上記問題点を改善するために成されたもので、その目的とするところは、PPEとフェノール性化合物を反応開始剤の存在下で反応させてなる変成フェノール生成物及びエポキシ樹脂を含有するエポキシ樹脂組成物であって、誘電率、誘電正接及びはんだ耐熱性を低下することなしに、その表面に有する金属箔にボンディングワイヤーを接合した場合に、金属箔とボンディングワイヤーとの接着強度が優れた金属箔張りの積層板が得られるエポキシ樹脂組成物を提供することにある。
【0009】
また、誘電率、誘電正接及びはんだ耐熱性を低下することなしに、その表面に有する金属箔にボンディングワイヤーを接合した場合に、金属箔とボンディングワイヤーとの接着強度が優れた金属箔張りの積層板が得られるプリプレグを提供することにある。
【0010】
また、誘電率、誘電正接及びはんだ耐熱性が優れると共に、その表面に有する金属箔にボンディングワイヤーを接合した場合に、金属箔とボンディングワイヤーとの接着強度が優れた積層板を提供することにある。
【0011】
【課題を解決するための手段】
本発明の請求項1に係るエポキシ樹脂組成物は、数平均分子量が10000〜30000のポリフェニレンエーテル樹脂とフェノール性化合物を反応開始剤の存在下で再分配反応させて、数平均分子量が用いたポリフェニレンエーテル樹脂の数平均分子量の5〜70%になるように反応させた変成フェノール生成物、エポキシ樹脂及びエポキシ樹脂の硬化剤とを含有するエポキシ樹脂組成物において、エポキシ樹脂として、下記式( a )から( c )のいずれかで表される分子内にエポキシ基を3個以上有するエポキシ樹脂を全エポキシ樹脂100重量部中に1〜40重量部含有することを特徴とする。
【0012】
【化4】

Figure 0003570147
【0013】
【化5】
Figure 0003570147
【0014】
【化6】
Figure 0003570147
【0017】
本発明の請求項2に係るエポキシ樹脂組成物は、請求項 1記載のエポキシ樹脂組成物において、変成フェノール生成物の数平均分子量が、1000〜3000であることを特徴とする。
【0020】
本発明の請求項3に係るプリプレグは、請求項1又は請求項2記載のエポキシ樹脂組成物を、基材に含浸乾燥してなる。
【0021】
本発明の請求項4係る積層板は、請求項3記載のプリプレグに金属箔を重ね、加熱・加圧してなる。
【0022】
本発明によると、エポキシ樹脂組成物に、分子内にエポキシ基を3個以上有するエポキシ樹脂を含有するため、その表面に有する金属箔とボンディングワイヤーとの接着強度が優れた積層板が得られる。また、分子内にエポキシ基を3個以上有するエポキシ樹脂は、上記変成フェノール生成物と架橋して両者が架橋構造に取り込まれるため、エポキシ樹脂とPPEとの特性が損なわれず、誘電率、誘電正接及びはんだ耐熱性等も優れた積層板が得られる。
【0023】
【発明の実施の形態】
本発明の請求項1又は請求項2に係るエポキシ樹脂組成物は、数平均分子量が10000〜30000のPPEとフェノール性化合物を反応開始剤の存在下で再分配反応させて、その数平均分子量が用いたPPEの数平均分子量の5〜70%の数平均分子量になるように反応させてなる変成フェノール生成物、エポキシ樹脂及びエポキシ樹脂の硬化剤を、少なくとも含有する。
【0024】
変成フェノール生成物の製造に用いられるPPEは、別名ポリフェニレンオキサイド樹脂とも呼ばれる樹脂であり、その一例としては、ポリ(2,6−ジメチル−1,4−フェニレンオキサイド)が挙げられる。このようなPPEは、例えば、USP4059568号明細書に開示されている方法で合成することができる。
【0025】
変成フェノール生成物の製造に用いられるフェノール性化合物としては、例えば、ビスフェノールA、ビスフェノールF、フェノ−ルノボラック、クレゾールノボラック等が挙げられる。なお、フェノール性水酸基を分子内に2個以上有するフェノール類を用いると好ましい。このフェノール類のフェノール性水酸基数の上限は特に限定するものではないが、分子内に30個以下のものが一般に用いられる。なお、フェノール性化合物の量は、PPE100重量部に対して1〜20重量部が適量であり、反応開始剤と同程度の量が一般的である。
【0026】
変成フェノール生成物の製造に用いられる反応開始剤としては、過酸化ベンゾイル、ジクミルパーオキサイド、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ−t−ブチルパーオキシへキシン−3、2,5−ジメチル−2,5−ジ−t−ブチルパーオキシヘキサン、α,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼンなどの過酸化物があげられる。また過酸化物ではないが、市販の反応開始剤である日本油脂株式会社製の商品名「ビスクミル」(1分半減温度330℃)を使用することもできる。なお、過酸化ベンゾイルを用いると、反応性が優れ好ましい。なお、反応開始剤の量は、PPE100重量部に対して1〜20重量部が適量である。
【0027】
そして変成フェノール生成物を製造する場合には、有機溶媒中で、上記のPPEとフェノール性化合物を反応開始剤の存在下で再分配反応させて、用いたPPEの数平均分子量より低分子量の変成フェノール生成物を製造する。再分配反応の条件としては、例えば、上記のPPEとフェノール性化合物と反応開始剤を撹拌しながら、80〜120℃で10〜100分程度加熱して行う。なお、用いる有機溶媒としては、トルエン、ベンゼン、キシレン等の芳香族炭化水素系溶媒が挙げられる。
【0028】
反応開始剤の存在下で数平均分子量が10000〜30000のPPEとフェノール性化合物を反応させると、先ずPPEがラジカル化されると考えられ、直鎖が切断される再分配反応が進行してPPEが低分子量化し、この低分子量化したPPEでフェノール性化合物が変成される。
【0029】
そして得られる変成フェノール生成物の構造は、低分子化したPPEの一方又は両方の末端部にフェノール性化合物が結合して、PPEの一方又は両末端にフェノール性水酸基を有する構造となると考えられる。そのため、この末端のフェノール性水酸基がエポキシ樹脂のエポキシ基と反応し、PPEとエポキシ樹脂が強固に架橋すると考えられる。
【0030】
なお、再分配反応して得られる変成フェノール生成物の数平均分子量は、用いたPPEの数平均分子量の5〜70%の数平均分子量であることが重要である。70%を越える場合、エポキシ樹脂組成物の粘度が高くなって、基材に含浸するときの含浸性が低下し、得られるプリプレグの樹脂付着量がばらついたり、プリプレグの取り扱い時に樹脂が剥がれて樹脂付着量がばらつき、電気特性のばらつきが発生する場合がある。また、5%未満の場合、得られる積層板の機械的強度や耐熱性が低下する場合がある。
【0031】
なお、数平均分子量が1000〜3000の場合、得られるエポキシ樹脂組成物を基材に含浸するときの含浸性が特に優れ好ましい。なお、変成フェノール生成物の数平均分子量が、用いたPPEの数平均分子量の70%を越える場合、エポキシ樹脂組成物の保存性が低下して粘度が短期間で高くなりやすく、エポキシ樹脂組成物の使用可能な時間が短くなって、生産に支障を来しやすいという問題も発生しやすくなる。
【0032】
なお、用いたPPEが複数の数平均分子量のPPEの混合物の場合には、その混合物の平均値に対して、5〜70%の数平均分子量となるように反応させる。また、得ようとする変成フェノール生成物の数平均分子量の調整は、反応開始剤の量を増やすと数平均分子量が低下する傾向があるため、反応開始剤の量で調整すると調整しやすく好ましい。
【0033】
エポキシ樹脂組成物に含有するエポキシ樹脂には、分子内にエポキシ基を3個以上有するエポキシ樹脂(以下、多官能樹脂と記す)を含有することが重要である。多官能樹脂を含有しない場合は、このエポキシ樹脂組成物を用いて表面に金属箔の層を有する積層板を製造し、ボンディングワイヤーを積層板表面の金属箔と接合した後、ボンディングワイヤーと金属箔との接着強度の評価を行うと、ボンディングワイヤーと金属箔の接合部で剥がれる場合がある。
【0034】
この多官能樹脂としては、上記式(a)で表されるエポキシ樹脂や、上記式(b)で表されるエポキシ樹脂や、下記式(c)で表される一般にノボラック型エポキシ樹脂と呼ばれるエポキシ樹脂等が挙げられる。なお、上記式(a)で表されるエポキシ樹脂、又は、上記式(b)で表されるエポキシ樹脂を用いると、金属箔とボンディングワイヤーとの接着強度が特に優れた積層板が得られ好ましい。
【0035】
【化5】
Figure 0003570147
【0036】
なお、多官能樹脂の分子内のエポキシ基の数は、3個以上であれは特に限定するものではないが、あまり多いとエポキシ樹脂組成物の粘度が高くなって、基材への含浸性が低下するため、3〜30個の範囲のものを使用すると好ましい。なお、上記式(a)で表されるエポキシ樹脂や、上記式(c)で表されるエポキシ樹脂を用いる場合、多官能樹脂100重量部中に、エポキシ基を3個有するエポキシ樹脂を50重量部程度含有すると、基材への含浸性、及び金属箔とボンディングワイヤーとの接着強度を向上させる効果のバランスがよく好ましい。
【0037】
なお、エポキシ樹脂組成物に含有するエポキシ樹脂は、多官能樹脂のみに限定するものではなく、分子内にエポキシ基を2個有するエポキシ樹脂をも含有することにより、多官能樹脂を、全エポキシ樹脂100重量部中に1〜40重量部含有するようにすると、金属箔とボンディングワイヤーとの接着強度が優れると共に、耐熱性が優れた積層板が得られ好ましい。1重量部未満の場合は、金属箔とボンディングワイヤーとの接着強度を向上させる効果が小さく、40重量部を越えると吸湿率が高くなってはんだ耐熱性が低下する場合がある。
【0038】
分子内にエポキシ基を2個有するエポキシ樹脂としては、例えば、ビスフェノ−ルA型エポキシ樹脂、ビスフェノ−ルF型エポキシ樹脂、ビスフェノ−ルS型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、ビフェニル型エポキシ樹脂、及びこれらの樹脂をハロゲン化したエポキシ樹脂等が挙げられ、2種類以上を併用してもよい。なお、分子内にエポキシ基を1個有するエポキシ樹脂をも併用することもできる。
【0039】
エポキシ樹脂組成物に含有するエポキシ樹脂の硬化剤としては、例えばジシアンジアミド、脂肪族ポリアミド等のアミド系硬化剤や、ジアミノジフェニルメタン、メタフェニレンジアミン、アンモニア、トリエチルアミン、ジエチルアミン等のアミン系硬化剤や、ビスフェノールA、ビスフェノールF、フェノールノボラック樹脂、クレゾールノボラック樹脂、p−キシレン−ノボラック樹脂等のフェノール系硬化剤や、酸無水物類等が挙げられ、2種類以上を併用してもよい。
【0040】
なお、エポキシ樹脂組成物には硬化反応を促進するために、硬化促進剤の添加が現実的である。含有することができる硬化促進剤としては、例えば、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール等のイミダゾール類、1,8−ジアザ−ビシクロ[5.4.0]ウンデセン−7、トリエチレンジアミン、ベンジルジメチルアミン等の三級アミン類、トリブチルホスフィン、トリフェニルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩等が挙げられ、2種類以上を併用してもよい。
【0041】
なお、エポキシ樹脂組成物には、必要に応じて無機充填材や、溶剤等を含有することができる。含有することができる無機充填材としては、二酸化チタン系セラミック、チタン酸バリウム系セラミック、チタン酸鉛系セラミック、チタン酸ストロンチウム系セラミック、チタン酸カルシウム系セラミック、チタン酸ビスマス系セラミック、チタン酸マグネシウム系セラミック、ジルコン酸鉛系セラミック等の、誘電率が100以上の無機充填材や、シリカ粉体、ガラス繊維、タルク等が挙げられ、2種類以上を併用してもよい。誘電率が100以上の無機充填材を含有すると、高周波特性が特に優れ好ましい。また、含有することができる溶剤としては、トルエン、キシレン、ベンゼン、ケトン、アルコール類等の有機系溶媒が挙げられる。
【0042】
得られたエポキシ樹脂組成物を、基材に含浸乾燥してプリプレグを製造する。エポキシ樹脂組成物を、基材に含浸乾燥する方法としては特に限定するものではなく、例えばエポキシ樹脂組成物中に基材を浸漬して含浸させた後、加熱して溶剤の除去や、エポキシ樹脂組成物を半硬化させてプリプレグを製造する。基材に含浸する樹脂量は特に限定しないが、乾燥後の樹脂含有量が、プリプレグの重量に対して30〜70重量%となるように含浸すると、特に電気特性が優れた積層板が得られ好ましい。
【0043】
なお、含浸時にエポキシ樹脂組成物を25〜35℃に保つと、基材への含浸性を安定させることができ、積層板の特性を良好にすることができる。また、エポキシ樹脂組成物を含浸後、乾燥するに当たっては、80〜180℃の温度が好ましい。この乾燥が不十分であると、プリプレグ表面部分のみの乾燥に止まり、溶媒が内部に残留する為にプリプレグの表面と内部との間で樹脂の濃度差に起因する歪が生じ、プリプレグ表面に微細なクラックが発生する場合がある。また、過度の乾燥を行うと、プリプレグ表面では乾燥過程で急激な粘度変化が起こるためにプリプレグ表面に筋むらや樹脂垂れが発生し、金属箔とプリプレグとの密着性にばらつきが生じ、その結果金属箔の引き剥がし強さや誘電特性等にばらつきが発生する場合がある。
【0044】
なお、エポキシ樹脂組成物を含浸する基材としては、ガラスクロス、アラミドクロス、ポリエステルクロス、ガラス不織布、アラミド不織布、ポリエステル不織布、パルプ紙、リンター紙等が挙げられる。なお、ガラスクロスを用いると、機械強度が優れた積層板が得られ好ましい。なお、基材の厚みとしては0.04〜0.3mmのものが一般的に使用される。
【0045】
得られたプリプレグの所定枚数と金属箔を重ねて被圧体とし、この被圧体を加熱・加圧して積層板を製造する。金属箔としては、銅箔、アルミニウム箔等が使用され、厚みとしては、0.012〜0.070mmのものが一般的に使用される。なお、銅箔を用いると、電気特性が優れた積層板が得られ好ましい。
【0046】
PPEで変成した変成フェノール生成物とエポキシ樹脂とエポキシ樹脂の硬化剤の架橋反応は、主としてエポキシ樹脂の硬化剤の反応温度に依存するため、エポキシ樹脂の硬化剤の種類に応じて加熱温度、加熱時間を選ぶとよい。また加圧は、得られる積層板中に気泡が残留しない程度の圧力に適宜調整して加圧する。なお一般には、温度150〜300℃、圧力1〜6MPa、時間10〜120分程度の条件で加熱・加圧する。
【0047】
このようにして得られた積層板は、エポキシ樹脂とPPEの特性が損なわれないため、誘電特性等の高周波特性や、はんだ耐熱性、接着強度等が優れると共に、その表面に有する金属箔にボンディングワイヤーを接合した場合に、金属箔とボンディングワイヤーとの接着強度が優れた積層板となる。
【0048】
なお、本発明のエポキシ樹脂組成物の使用形態は、基材に含浸乾燥してプリプレグを製造する形態に限るものではなく、たとえばキャスティング法により基材を含まないシートを作成し、このシートをプリプレグに代用することもできる。このキャステング法による方法は、例えばポリエステルフィルム、ポリイミドフィルムなどの、エポキシ樹脂組成物が含有する溶媒に不溶のシートに、エポキシ樹脂組成物を5〜700μmの厚みに塗布し、乾燥した後シートを剥離して製造したり、エポキシ樹脂組成物を熱溶融して押出成形により製造する。シートに塗布して製造する方法の場合、押出成形の方法と比較すると比較的低温でより容易にシー卜を作ることができ好ましい。なお、エポキシ樹脂組成物を塗布するシートは、離型剤で表面処理したシートを用いると剥離が容易になるため生産性が優れ好ましい。
【0049】
【実施例】
(変成フェノール生成物の調整)
数平均分子量20000のPPE[日本G.E.プラスチック株式会社製、品番640−111]、フェノール性化合物としてビスフェノ−ルA、反応開始剤として過酸化ベンゾイル及び溶剤としてトルエンを表1に示す割合(単位:重量部)で配合し、90℃で60分間攪拌しながら再分配反応させて、液状の変成フェノール生成物(A)〜(G)を得た。この変成フェノール生成物(A)〜(G)をゲル浸透クロマトグラフ[カラム構成:東ソー株式会社製、SuperHM−M(1本)+SuperHM−H(1本)]にて分子量分布を測定し、数平均分子量を求めた。その結果を表1に示す。なお、表1中、分子量比率は、用いたPPEの数平均分子量に対する、得られた変成フェノール生成物の数平均分子量の比率を表す。
【0050】
【表1】
Figure 0003570147
【0051】
(実施例1〜13、比較例1〜5)
変成フェノール生成物(A)〜(G)と、下記6種類のエポキシ樹脂と、エポキシ樹脂の硬化剤としてジアミノジフェニルメタンと、硬化促進剤として2−エチル−4−メチルイミダゾールと、溶剤としてトルエンとを表2及び表3に示す割合(単位:重量部)でセパラブルフラスコに入れ、室温で30分間攪拌して空冷を行い25℃のエポキシ樹脂組成物を得た。
【0052】
なお表2及び表3中、変成フェノール生成物の配合重量は固形分としての重量を表す。また多官能樹脂比率は、全エポキシ樹脂100重量部中の多官能樹脂の重量部を表す。
【0053】
用いたエポキシ樹脂としては、
・エポキシ樹脂ア:上記式(a)で表される多官能樹脂[日本化薬株式会社製、商品名EPPN501H](エポキシ当量164)と、
・エポキシ樹脂イ:上記式(a)で表される多官能樹脂[油化シェルエポキシ株式会社製、商品名エピコート1032](エポキシ当量174)と、
・エポキシ樹脂ウ:上記式(a)で表される多官能樹脂[ダウケミカル株式会社製、商品名TACTIX742](エポキシ当量160)と、
・エポキシ樹脂エ:上記式(c)で表される多官能樹脂[東都化成株式会社製、商品名YDPN−638P](エポキシ当量180)と、
・エポキシ樹脂オ:臭素化ビスフェノールA型エポキシ樹脂[東都化成株式会社製、商品名YDB400](エポキシ当量400)と、
・エポキシ樹脂カ:臭素化ビスフェノールA型エポキシ樹脂[東都化成株式会社製、商品名YDB500](エポキシ当量500)と、を用いた。
【0054】
【表2】
Figure 0003570147
【0055】
【表3】
Figure 0003570147
【0056】
次いで、得られたエポキシ樹脂組成物を室温で24時間保管した後、厚み0.1mmのガラスクロス[旭シュエーベル株式会社製、商品名2116L]に含浸し、140℃で4分間乾燥して樹脂含有率65重量%のプリプレグを得た。
【0057】
得られたプリプレグの両面に18μmの銅箔[日鉱グールドフォイル株式会社製、商品名JTC]を配置して被圧体とし、温度190℃、圧力2MPaの条件で100分加熱・加圧して両面に銅箔が接着された積層板を得た。
【0058】
(実施例14〜21、比較例6〜10)
用いたエポキシ樹脂として、下記のエポキシ樹脂キ〜コを、表4及び表5に示す割合(単位:重量部)で用いてエポキシ樹脂組成物を得たこと以外は、実施例1〜13及び比較例1〜5と同様にして、エポキシ樹脂組成物、プリプレグ及び両面に銅箔が接着された積層板を得た。
【0059】
用いたエポキシ樹脂としては、
・エポキシ樹脂キ:上記式(b)で表される多官能樹脂[油化シェルエポキシ株式会社製、商品名EPON1031](エポキシ当量213)と、
・エポキシ樹脂ク:上記式(b)で表される多官能樹脂[油化シェルエポキシ株式会社製、商品名Epikote1031](エポキシ当量200)と、
・エポキシ樹脂ケ:臭素化ビスフェノールA型エポキシ樹脂[東都化成株式会社製、商品名YDB400](エポキシ当量400)と、
・エポキシ樹脂コ:臭素化ビスフェノールA型エポキシ樹脂[東都化成株式会社製、商品名YDB500](エポキシ当量500)と、を用いた。
【0060】
【表4】
Figure 0003570147
【0061】
【表5】
Figure 0003570147
【0062】
(評価、結果)
得られたエポキシ樹脂組成物の、初期粘度及び保存性を評価した。初期粘度の測定は、B型粘度計を用いて25℃で測定し、500cps以下の場合を良好(○)とし、500cpsを越える場合を不良(×)とした。また、保存性の測定は、25℃で24時間保存した後、初期粘度と同様にして測定及び判定を行った。
【0063】
その結果は表2〜表5に示したように、各実施例及び比較例1,3,5,6,8,10で得られたエポキシ樹脂組成物は初期粘度も小さく、析出現象もなく保存性に優れていたが、数平均分子量17000の変成フェノール生成物(F)を用いた比較例2,4,7及び9は、初期粘度、保存性とも劣ることが確認された。
【0064】
また、得られたプリプレグの、外観、取り扱い性及び含浸性を評価した。外観は、スジ状や垂れた形状の外観不具合部の有無を目視で観察し、無しの場合を良好(○)、有りの場合を不良(×)とした。また、取り扱い性は、プリプレグを180度折り曲げ、樹脂の脱離の有無を目視で観察し、無しの場合を良好(○)、有りの場合を不良(×)とした。また、含浸性は、切断面を1000倍でSEM観察し、内部に気泡が無い場合を良好(○)、わずかに有る場合を△、多数有る場合を不良(×)とした。
【0065】
その結果は表2〜表5に示したように、実施例1〜13及び比較例1,3,5で得られたプリプレグは、比較例2及び4と比較して、また、実施例14〜24及び比較例6,8,10で得られたプリプレグは、比較例7及び9と比較して、外観、取り扱い性及び含浸性が優れることが確認された。
【0066】
また、変成フェノール生成物の数平均分子量が、1000〜3000の範囲内である実施例1〜8及び実施例11〜13は、実施例9,10と比較して、また、実施例14〜21及び実施例24は、実施例22,23と比較して、含浸性が特に優れることが確認された。
【0067】
また、得られた積層板の、誘電率、誘電正接、はんだ耐熱性、銅箔の引きはがし強さ、及び、銅箔とボンディングワイヤーとの接着強度の評価としてワイヤープル強度を測定した。誘電率及び誘電正接の測定は、MIL規格に基づき測定した。はんだ耐熱性及び引きはがし強さは、JIS規格C6481に基づき測定した。
【0068】
ワイヤープル強度は、カイジョー社製のワイヤーボンダー[商品名FB−118A]を用いて、φ30μmの金線[田中貴金属工業株式会社製]を積層板表面の銅箔に接合した後、Dage社製のボンドテスター[商品名BT22]を用いて、温度180℃、ヘッドスピード0.3mm/秒の条件で、金線が剥がれる強度を測定した。
【0069】
その結果は表2〜表5に示したように、実施例1〜13で得られた積層板は、多官能樹脂を含有しない比較例1〜3と比較して、また、実施例14〜24で得られた積層板は、同様の比較例6〜8と比較して、ワイヤープル強度が優れることが確認された。
【0070】
また、実施例1〜13で得られた積層板は、変成フェノール生成物の数平均分子量が用いたPPEの数平均分子量の10〜70%の範囲外である比較例2〜5と比較して、また、実施例14〜24で得られた積層板は、同様の比較例7〜10と比較して、はんだ耐熱性が優れることが確認された。また、各実施例で得られた積層板は、誘電率及び誘電正接も優れていることが確認された。
【0071】
以上の評価結果より、各実施例は、エポキシ樹脂組成物特性、プリプレグ特性、積層板特性の全てが良好であるが、各比較例は少なくとも1つの特性が劣ることが確認された。
【0072】
【発明の効果】
本発明の請求項1に係るエポキシ樹脂組成物を用いると、誘電率、誘電正接及びはんだ耐熱性を低下することなしに、その表面に有する金属箔とボンディングワイヤーを接合した場合に、金属箔とボンディングワイヤーとの接着強度が優れた積層板が得られる。
【0073】
本発明の請求項に係るエポキシ樹脂組成物を用いると、上記の効果に加え、含浸性の優れたプリプレグが得られる。
【0074】
本発明の請求項に係るプリプレグを用いると、誘電率、誘電正接及びはんだ耐熱性を低下することなしに、その表面に有する金属箔とボンディングワイヤーを接合した場合に、金属箔とボンディングワイヤーとの接着強度が優れた積層板が得られる。
【0075】
本発明の請求項に係る積層板は、誘電率、誘電正接及びはんだ耐熱性が優れると共に、その表面に有する金属箔とボンディングワイヤーを接合した場合に、金属箔とボンディングワイヤーとの接着強度が優れた積層板となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to, for example, a laminate used for a printed wiring board used in a high frequency region, a prepreg used for producing the laminate, and an epoxy resin composition used for producing the prepreg.
[0002]
[Prior art]
Laminates used in the manufacture of printed wiring boards used in the X band (8 to 12 GHz) region used for satellite communication and the like, so-called ultra-high frequency regions, have a dielectric constant and a dielectric loss tangent in a wide high frequency range, temperature range and humidity range. Are desired to be constant and preferably have a small dielectric loss tangent. For such applications, lamination using an epoxy resin composition containing an epoxy resin and a polyphenylene ether resin (hereinafter referred to as PPE) is preferred. Boards are used.
[0003]
Conventionally, as a laminated board using an epoxy resin composition containing this epoxy resin and PPE, a cured product of an epoxy resin and a PPE that uses an epoxy resin composition obtained by simply blending an epoxy resin and a PPE is chemically independent. And a laminate made of a cured product of PPE and epoxy resin crosslinked by reacting an epoxy group of an epoxy resin with a terminal hydroxyl group of PPE.
[0004]
Of these, the former laminate is immersed in alkali or chloroform and subjected to an alkali resistance test or a solvent resistance test, which may cause delamination due to insufficient bonding between the epoxy resin and PPE. When the PPE used has a high molecular weight, the reactivity between the terminal phenolic hydroxyl group of the PPE and the epoxy group of the epoxy resin is low, and the unreacted product which does not participate in the crosslinked structure in the cured product. Due to the presence of a large amount of PPE, the problem of low interlayer adhesion strength, and when a solvent resistance test is performed in the same manner as the former laminate, it is superior to the former laminate, but delamination may still occur. There was a problem.
[0005]
Therefore, by reacting a high molecular weight PPE with a phenolic compound in the presence of a reaction initiator such as a peroxide, a modified phenol product modified by PPE having a lower molecular weight than the number average molecular weight of the used PPE is produced. The use of an epoxy resin composition containing the modified phenol product and an epoxy resin to produce a laminate having excellent solvent resistance has been studied. In the case of this laminate, it is considered that PPE is taken into the crosslinked structure in the cured product by the reaction between the phenolic hydroxyl group of the modified phenol product and the epoxy group of the epoxy resin, so that the solvent resistance is excellent.
[0006]
However, after manufacturing a laminate having a layer such as a copper foil on the surface using the epoxy resin composition containing the modified phenol product and the epoxy resin, a bonding wire such as a gold wire is used to connect to a semiconductor chip. When was bonded to the metal foil on the surface of the laminate, the bonding portion between the bonding wire and the metal foil could be peeled off in the evaluation of the bonding strength between the bonding wire and the metal foil during heating, and there was room for improvement.
[0007]
Therefore, when the bonding wire is bonded to the metal foil on its surface without lowering the dielectric constant, dielectric loss tangent, and solder heat resistance, which are the characteristics required for a laminate used in a high frequency region, the bonding is performed. There is a demand for a laminate having excellent adhesive strength at the part.
[0008]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems, and an object thereof is to provide a modified phenol product and an epoxy resin obtained by reacting PPE with a phenolic compound in the presence of a reaction initiator. An epoxy resin composition containing, without lowering the dielectric constant, dielectric loss tangent, and soldering heat resistance, the bonding strength between the metal foil and the bonding wire when the bonding wire is bonded to the metal foil having the surface. The object of the present invention is to provide an epoxy resin composition from which an excellent metal foil-clad laminate can be obtained.
[0009]
Also, when a bonding wire is bonded to a metal foil on its surface without lowering the dielectric constant, dielectric loss tangent, and solder heat resistance, a metal foil-clad laminate having excellent adhesion strength between the metal foil and the bonding wire is provided. It is to provide a prepreg from which a board can be obtained.
[0010]
Another object of the present invention is to provide a laminate having excellent dielectric constant, dielectric loss tangent, and soldering heat resistance, and having excellent bonding strength between a metal foil and a bonding wire when a bonding wire is bonded to a metal foil on the surface thereof. .
[0011]
[Means for Solving the Problems]
The epoxy resin composition according to claim 1 of the present invention is obtained by redistributing a polyphenylene ether resin having a number average molecular weight of 10,000 to 30,000 and a phenolic compound in the presence of a reaction initiator, and using a polyphenylene having a number average molecular weight used. In an epoxy resin composition containing a modified phenol product reacted so as to have a number average molecular weight of 5 to 70% of the ether resin, an epoxy resin and a curing agent for the epoxy resin, the following formula ( a ) is used as the epoxy resin. To ( c ), wherein the epoxy resin having 3 or more epoxy groups in the molecule is contained in an amount of 1 to 40 parts by weight based on 100 parts by weight of the total epoxy resin .
[0012]
Embedded image
Figure 0003570147
[0013]
Embedded image
Figure 0003570147
[0014]
Embedded image
Figure 0003570147
[0017]
The epoxy resin composition according to claim 2 of the present invention, the epoxy resin composition according to claim 1, wherein, modified phenol product has a number average molecular weight, characterized in that it is a 1000-3000.
[0020]
A prepreg according to a third aspect of the present invention is obtained by impregnating and drying a substrate with the epoxy resin composition according to the first or second aspect .
[0021]
The laminate according to a fourth aspect of the present invention is obtained by laminating a metal foil on the prepreg according to the third aspect , and heating and pressing the metal foil.
[0022]
ADVANTAGE OF THE INVENTION According to this invention, since the epoxy resin composition contains the epoxy resin which has three or more epoxy groups in a molecule | numerator, the laminated board excellent in the adhesive strength of the metal foil and bonding wire which have on the surface is obtained. Further, the epoxy resin having three or more epoxy groups in the molecule crosslinks with the modified phenol product and is incorporated into the crosslinked structure, so that the properties of the epoxy resin and the PPE are not impaired, and the dielectric constant and dielectric loss tangent are not changed. A laminate having excellent solder heat resistance and the like can be obtained.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
The epoxy resin composition according to claim 1 or 2 of the present invention has a number average molecular weight of 10,000 to 30,000, and a phenolic compound is redistributed in the presence of a reaction initiator, and the number average molecular weight is It contains at least a modified phenol product, an epoxy resin and a curing agent for the epoxy resin, which are reacted so as to have a number average molecular weight of 5 to 70% of the number average molecular weight of the used PPE.
[0024]
The PPE used for the production of the modified phenol product is a resin also called a polyphenylene oxide resin, and an example of which is poly (2,6-dimethyl-1,4-phenylene oxide). Such PPE can be synthesized, for example, by the method disclosed in US Pat. No. 4,059,568.
[0025]
Examples of the phenolic compound used for producing the modified phenol product include bisphenol A, bisphenol F, phenol novolak, and cresol novolak. Note that it is preferable to use a phenol having two or more phenolic hydroxyl groups in the molecule. The upper limit of the number of phenolic hydroxyl groups in the phenols is not particularly limited, but those having 30 or less in the molecule are generally used. The appropriate amount of the phenolic compound is 1 to 20 parts by weight based on 100 parts by weight of PPE, and is generally the same as the amount of the reaction initiator.
[0026]
Benzoyl peroxide, dicumyl peroxide, t-butylcumyl peroxide, di-t-butylperoxide, 2,5-dimethyl-2,5-dioxane may be used as a reaction initiator for producing the modified phenol product. -T-butylperoxyhexine-3, 2,5-dimethyl-2,5-di-t-butylperoxyhexane, α, α'-bis (t-butylperoxy-m-isopropyl) benzene, etc. Peroxides. Although it is not a peroxide, a commercially available reaction initiator, trade name "Biscumil" (1 minute half-life temperature 330 ° C.) manufactured by NOF Corporation can also be used. The use of benzoyl peroxide is preferred because of its excellent reactivity. The appropriate amount of the reaction initiator is 1 to 20 parts by weight based on 100 parts by weight of PPE.
[0027]
In the case of producing a modified phenol product, the above-mentioned PPE and the phenolic compound are redistributed in an organic solvent in the presence of a reaction initiator, so that the PPE used has a lower molecular weight than the number average molecular weight of the used PPE. Produce a phenol product. The redistribution reaction is performed, for example, by heating the PPE, the phenolic compound, and the reaction initiator at 80 to 120 ° C. for about 10 to 100 minutes with stirring. In addition, as the organic solvent to be used, aromatic hydrocarbon solvents such as toluene, benzene, and xylene are given.
[0028]
When a phenolic compound is reacted with a PPE having a number average molecular weight of 10,000 to 30,000 in the presence of a reaction initiator, it is considered that the PPE is radicalized first, and a redistribution reaction in which a straight chain is cut proceeds to form the PPE. Has a low molecular weight, and the phenolic compound is modified by the low molecular weight PPE.
[0029]
Then, the structure of the resulting modified phenol product is considered to be a structure having a phenolic hydroxyl group at one or both terminals of the PPE by binding a phenolic compound to one or both terminals of the low molecular weight PPE. Therefore, it is considered that this terminal phenolic hydroxyl group reacts with the epoxy group of the epoxy resin, and the PPE and the epoxy resin are strongly crosslinked.
[0030]
It is important that the number average molecular weight of the modified phenol product obtained by the redistribution reaction is 5 to 70% of the number average molecular weight of the PPE used. If it exceeds 70%, the viscosity of the epoxy resin composition increases, the impregnation property when impregnating the base material decreases, the amount of adhered resin of the obtained prepreg varies, or the resin is peeled off when the prepreg is handled and the resin is removed. In some cases, the amount of adhesion varies and the electrical characteristics vary. If it is less than 5%, the mechanical strength and heat resistance of the obtained laminate may decrease.
[0031]
In addition, when the number average molecular weight is 1,000 to 3,000, the impregnating property when the obtained epoxy resin composition is impregnated into the base material is particularly excellent and preferable. If the number average molecular weight of the modified phenol product exceeds 70% of the number average molecular weight of the PPE used, the storage stability of the epoxy resin composition is reduced and the viscosity tends to increase in a short period of time. The possible time is shortened, and the problem that production is likely to be hindered is likely to occur.
[0032]
When the PPE used is a mixture of a plurality of PPEs having a number average molecular weight, the reaction is performed so that the number average molecular weight is 5 to 70% with respect to the average value of the mixture. In addition, the number average molecular weight of the modified phenol product to be obtained is preferably adjusted with the amount of the reaction initiator since the number average molecular weight tends to decrease when the amount of the reaction initiator is increased.
[0033]
It is important that the epoxy resin contained in the epoxy resin composition contains an epoxy resin having three or more epoxy groups in a molecule (hereinafter, referred to as a polyfunctional resin). When a polyfunctional resin is not contained, a laminate having a metal foil layer on the surface is manufactured using this epoxy resin composition, and a bonding wire is bonded to the metal foil on the laminate surface. When the evaluation of the bonding strength with the bonding wire is performed, the bonding wire and the metal foil may be peeled off at the joint.
[0034]
Examples of the polyfunctional resin include an epoxy resin represented by the above formula (a), an epoxy resin represented by the above formula (b), and an epoxy resin generally represented by the following formula (c) which is called a novolak type epoxy resin. Resins. In addition, when the epoxy resin represented by the above formula (a) or the epoxy resin represented by the above formula (b) is used, a laminate having particularly excellent adhesion strength between the metal foil and the bonding wire can be obtained, which is preferable. .
[0035]
Embedded image
Figure 0003570147
[0036]
The number of epoxy groups in the molecule of the polyfunctional resin is not particularly limited as long as it is three or more. However, if the number is too large, the viscosity of the epoxy resin composition becomes high, and the impregnation property to the base material becomes poor. It is preferable to use one in the range of 3 to 30 because it decreases. When the epoxy resin represented by the formula (a) or the epoxy resin represented by the formula (c) is used, 50 parts by weight of the epoxy resin having three epoxy groups per 100 parts by weight of the polyfunctional resin. When the content is about part, the balance between the impregnation property of the base material and the effect of improving the bonding strength between the metal foil and the bonding wire is preferable.
[0037]
In addition, the epoxy resin contained in the epoxy resin composition is not limited to the polyfunctional resin alone, but also includes an epoxy resin having two epoxy groups in a molecule, thereby making the polyfunctional resin an all epoxy resin. When the content is 1 to 40 parts by weight per 100 parts by weight, a laminate having excellent heat resistance as well as excellent adhesive strength between the metal foil and the bonding wire is preferable. If the amount is less than 1 part by weight, the effect of improving the bonding strength between the metal foil and the bonding wire is small, and if it exceeds 40 parts by weight, the moisture absorption rate is increased and the solder heat resistance may be reduced.
[0038]
Examples of the epoxy resin having two epoxy groups in the molecule include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, hydantoin type epoxy resin, and alicyclic epoxy resin. And biphenyl-type epoxy resins, and epoxy resins obtained by halogenating these resins. Two or more of these resins may be used in combination. In addition, an epoxy resin having one epoxy group in the molecule may be used in combination.
[0039]
As the curing agent for the epoxy resin contained in the epoxy resin composition, for example, amide-based curing agents such as dicyandiamide and aliphatic polyamide, amine-based curing agents such as diaminodiphenylmethane, metaphenylenediamine, ammonia, triethylamine, diethylamine, and bisphenol A, bisphenol F, phenol novolak resin, cresol novolak resin, phenolic curing agents such as p-xylene-novolak resin, and acid anhydrides, and the like, and two or more kinds may be used in combination.
[0040]
In addition, it is realistic to add a curing accelerator to the epoxy resin composition in order to accelerate the curing reaction. Examples of the curing accelerator that can be contained include imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenylimidazole, and 1,8-diaza-bicyclo [5.4.0]. Tertiary amines such as undecene-7, triethylenediamine and benzyldimethylamine; organic phosphines such as tributylphosphine and triphenylphosphine; and tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate and triphenylphosphinetetraphenylborate. And two or more of them may be used in combination.
[0041]
The epoxy resin composition may contain an inorganic filler, a solvent, and the like, if necessary. As inorganic fillers that can be contained, titanium dioxide-based ceramics, barium titanate-based ceramics, lead titanate-based ceramics, strontium titanate-based ceramics, calcium titanate-based ceramics, bismuth titanate-based ceramics, magnesium titanate-based ceramics Examples include inorganic fillers having a dielectric constant of 100 or more, such as ceramics and lead zirconate-based ceramics, silica powder, glass fiber, and talc. Two or more kinds may be used in combination. When an inorganic filler having a dielectric constant of 100 or more is contained, high-frequency characteristics are particularly excellent and are preferable. Examples of the solvent that can be contained include organic solvents such as toluene, xylene, benzene, ketone, and alcohols.
[0042]
The obtained epoxy resin composition is impregnated and dried on a substrate to produce a prepreg. The method for impregnating and drying the epoxy resin composition on the base material is not particularly limited. For example, after the base material is immersed in the epoxy resin composition and impregnated, the solvent is removed by heating, or the epoxy resin is removed. The composition is semi-cured to produce a prepreg. The amount of resin impregnated in the base material is not particularly limited, but if the resin content after drying is impregnated so as to be 30 to 70% by weight with respect to the weight of the prepreg, a laminate having particularly excellent electrical properties can be obtained. preferable.
[0043]
In addition, when the epoxy resin composition is kept at 25 to 35 ° C. during the impregnation, the impregnation property to the base material can be stabilized, and the characteristics of the laminate can be improved. In addition, when the epoxy resin composition is impregnated and dried, the temperature is preferably from 80 to 180 ° C. If the drying is insufficient, only the surface of the prepreg will be dried, and the solvent will remain inside, causing distortion due to the difference in resin concentration between the surface and the inside of the prepreg. Cracks may occur. Also, if excessive drying is performed, the viscosity of the prepreg surface changes rapidly during the drying process, causing uneven streaks and resin dripping on the prepreg surface, resulting in uneven adhesion between the metal foil and the prepreg, and as a result, Variations may occur in the peel strength, dielectric properties, and the like of the metal foil.
[0044]
The substrate impregnated with the epoxy resin composition includes glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, pulp paper, linter paper, and the like. In addition, it is preferable to use a glass cloth because a laminated plate having excellent mechanical strength can be obtained. In addition, as a thickness of the base material, a thickness of 0.04 to 0.3 mm is generally used.
[0045]
A predetermined number of the obtained prepregs and a metal foil are overlapped to form a pressure body, and the pressure body is heated and pressed to produce a laminate. As the metal foil, a copper foil, an aluminum foil, or the like is used, and a thickness of 0.012 to 0.070 mm is generally used. In addition, it is preferable to use a copper foil because a laminate having excellent electric characteristics can be obtained.
[0046]
Since the crosslinking reaction between the modified phenol product modified by PPE, the epoxy resin, and the curing agent for the epoxy resin mainly depends on the reaction temperature of the curing agent for the epoxy resin, the heating temperature and the heating are determined according to the type of the curing agent for the epoxy resin. Choose a time. The pressure is appropriately adjusted to a pressure at which no air bubbles remain in the obtained laminate, and the pressure is applied. In general, heating and pressurization are performed at a temperature of 150 to 300 ° C., a pressure of 1 to 6 MPa, and a time of about 10 to 120 minutes.
[0047]
The laminate thus obtained does not impair the properties of the epoxy resin and PPE, so it has excellent high-frequency properties such as dielectric properties, solder heat resistance, adhesive strength, etc., and is bonded to the metal foil on its surface. When the wires are joined, a laminate having excellent adhesion strength between the metal foil and the bonding wires is obtained.
[0048]
The use form of the epoxy resin composition of the present invention is not limited to a form in which a base material is impregnated and dried to produce a prepreg.For example, a sheet containing no base material is prepared by a casting method, and this sheet is prepreg-prepared. Can be substituted. The method according to the casting method is, for example, to apply the epoxy resin composition to a sheet insoluble in a solvent containing the epoxy resin composition, such as a polyester film and a polyimide film, to a thickness of 5 to 700 μm, and after drying, peel off the sheet. Or by hot-melting the epoxy resin composition and extrusion molding. In the case of the method of manufacturing by applying to a sheet, the sheet can be easily formed at a relatively low temperature as compared with the extrusion molding method, which is preferable. Note that the sheet to which the epoxy resin composition is applied is preferably excellent in productivity because the use of a sheet surface-treated with a release agent facilitates peeling.
[0049]
【Example】
(Preparation of modified phenol product)
PPE having a number average molecular weight of 20,000 [G. E. FIG. Plastics Co., Ltd., product number 640-111], bisphenol A as a phenolic compound, benzoyl peroxide as a reaction initiator, and toluene as a solvent at a ratio shown in Table 1 (unit: parts by weight), and mixed at 90 ° C. A redistribution reaction was performed with stirring for 60 minutes to obtain liquid modified phenol products (A) to (G). The denatured phenol products (A) to (G) were subjected to gel permeation chromatography [column configuration: Super HM-M (1) + Super HM-H (1), manufactured by Tosoh Corporation] to measure the molecular weight distribution. The average molecular weight was determined. Table 1 shows the results. In Table 1, the molecular weight ratio indicates the ratio of the number average molecular weight of the obtained modified phenol product to the number average molecular weight of the used PPE.
[0050]
[Table 1]
Figure 0003570147
[0051]
(Examples 1 to 13, Comparative Examples 1 to 5)
Modified phenol products (A) to (G), the following six types of epoxy resins, diaminodiphenylmethane as a curing agent for the epoxy resin, 2-ethyl-4-methylimidazole as a curing accelerator, and toluene as a solvent. The mixture was placed in a separable flask at the ratio (unit: parts by weight) shown in Tables 2 and 3, and stirred at room temperature for 30 minutes to air-cool to obtain an epoxy resin composition at 25 ° C.
[0052]
In Tables 2 and 3, the blended weight of the modified phenol product represents the weight as a solid content. In addition, the polyfunctional resin ratio indicates parts by weight of the polyfunctional resin in 100 parts by weight of the total epoxy resin.
[0053]
As the epoxy resin used,
Epoxy resin a: a polyfunctional resin represented by the above formula (a) [trade name: EPPN501H, manufactured by Nippon Kayaku Co., Ltd.] (epoxy equivalent: 164);
Epoxy resin A: a polyfunctional resin represented by the above formula (a) [trade name: Epicoat 1032, manufactured by Yuka Shell Epoxy Co., Ltd. (epoxy equivalent: 174);
Epoxy resin c: a polyfunctional resin represented by the above formula (a) [trade name TACTIX742 manufactured by Dow Chemical Co., Ltd.] (epoxy equivalent: 160);
-Epoxy resin d: a polyfunctional resin represented by the above formula (c) [YDPN-638P, manufactured by Toto Kasei Co., Ltd.] (epoxy equivalent 180);
-Epoxy resin e: brominated bisphenol A type epoxy resin [manufactured by Toto Kasei Co., Ltd., trade name YDB400] (epoxy equivalent 400),
Epoxy resin: A brominated bisphenol A type epoxy resin [trade name: YDB500, manufactured by Toto Kasei Co., Ltd.] (epoxy equivalent: 500) was used.
[0054]
[Table 2]
Figure 0003570147
[0055]
[Table 3]
Figure 0003570147
[0056]
Next, the obtained epoxy resin composition is stored at room temperature for 24 hours, then impregnated with a 0.1 mm thick glass cloth [manufactured by Asahi Schwebel Co., Ltd., 2116L], and dried at 140 ° C. for 4 minutes to contain the resin. A prepreg having a ratio of 65% by weight was obtained.
[0057]
An 18 μm copper foil [manufactured by Nippon Gould Foil Co., Ltd., trade name: JTC] is placed on both sides of the obtained prepreg to form a pressure body, and heated and pressed at a temperature of 190 ° C. and a pressure of 2 MPa for 100 minutes to apply pressure to both sides. A laminate having a copper foil bonded thereto was obtained.
[0058]
(Examples 14 to 21, Comparative Examples 6 to 10)
Examples 1 to 13 and Comparative Examples except that the following epoxy resins were used as epoxy resins in the ratios (unit: parts by weight) shown in Tables 4 and 5 to obtain epoxy resin compositions. In the same manner as in Examples 1 to 5, an epoxy resin composition, a prepreg, and a laminate having a copper foil bonded to both surfaces were obtained.
[0059]
As the epoxy resin used,
Epoxy resin: a polyfunctional resin represented by the above formula (b) [trade name EPON1031 manufactured by Yuka Shell Epoxy Co., Ltd.] (epoxy equivalent 213);
-Epoxy resin: a polyfunctional resin represented by the above formula (b) [Epikote 1031 (trade name, manufactured by Yuka Shell Epoxy Co., Ltd.) (epoxy equivalent: 200);
-Epoxy resin: brominated bisphenol A type epoxy resin (trade name: YDB400, manufactured by Toto Kasei Co., Ltd.) (epoxy equivalent: 400)
Epoxy resin: A brominated bisphenol A type epoxy resin (trade name: YDB500, manufactured by Toto Kasei Co., Ltd.) (epoxy equivalent: 500) was used.
[0060]
[Table 4]
Figure 0003570147
[0061]
[Table 5]
Figure 0003570147
[0062]
(Evaluation results)
The initial viscosity and storage stability of the obtained epoxy resin composition were evaluated. The initial viscosity was measured at 25 ° C. using a B-type viscometer. When the viscosity was 500 cps or less, it was evaluated as good (○), and when it exceeded 500 cps, it was evaluated as poor (x). The storage stability was measured and determined in the same manner as the initial viscosity after storing at 25 ° C. for 24 hours.
[0063]
As shown in Tables 2 to 5, the epoxy resin compositions obtained in each of Examples and Comparative Examples 1, 3, 5, 6, 8, and 10 had a low initial viscosity and were stored without a precipitation phenomenon. It was confirmed that Comparative Examples 2, 4, 7, and 9 using the modified phenol product (F) having a number-average molecular weight of 17000 were inferior in both initial viscosity and storage stability.
[0064]
The appearance, handleability and impregnation of the obtained prepreg were evaluated. The appearance was visually observed for the presence or absence of a streak-like or sagging appearance defect, and the absence was evaluated as good ((), and the existence was evaluated as poor (x). The handling property was determined by bending the prepreg by 180 degrees, visually observing the presence or absence of resin detachment, and determining good (無 し) when no resin was present and poor (x) when present. The impregnating property was observed by a SEM observation of the cut surface at a magnification of 1000 times. The case where there was no air bubble inside was good (に), the case where there was a small amount was Δ, and the case where there were many bubbles was bad (×).
[0065]
As a result, as shown in Tables 2 to 5, the prepregs obtained in Examples 1 to 13 and Comparative Examples 1, 3, and 5 were compared with Comparative Examples 2 and 4, and Examples 14 to 24 and the prepregs obtained in Comparative Examples 6, 8, and 10 were confirmed to be superior in appearance, handleability, and impregnation to Comparative Examples 7 and 9.
[0066]
In addition, Examples 1 to 8 and Examples 11 to 13 in which the number average molecular weight of the modified phenol product is in the range of 1000 to 3000 are compared with Examples 9 and 10, and Examples 14 to 21 and In Example 24, it was confirmed that the impregnation property was particularly excellent as compared with Examples 22 and 23.
[0067]
The obtained laminate was measured for dielectric constant, dielectric loss tangent, solder heat resistance, peel strength of copper foil, and wire pull strength as an evaluation of the adhesive strength between the copper foil and the bonding wire. The dielectric constant and the dielectric loss tangent were measured based on the MIL standard. Solder heat resistance and peel strength were measured based on JIS standard C6481.
[0068]
The wire pull strength was measured using a wire bonder (trade name: FB-118A, manufactured by Kaijo Co., Ltd.) and bonding a 30-μm-diameter gold wire (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) to the copper foil on the surface of the laminated plate. Using a bond tester [trade name: BT22], the strength at which the gold wire was peeled was measured at a temperature of 180 ° C. and a head speed of 0.3 mm / sec.
[0069]
As a result, as shown in Tables 2 to 5, the laminates obtained in Examples 1 to 13 were compared with Comparative Examples 1 to 3 containing no polyfunctional resin, and in Examples 14 to 24. It was confirmed that the laminate obtained in Example 1 had an excellent wire-pull strength as compared with Comparative Examples 6 to 8.
[0070]
Further, the laminates obtained in Examples 1 to 13 were compared with Comparative Examples 2 to 5 in which the number average molecular weight of the modified phenol product was out of the range of 10 to 70% of the number average molecular weight of the used PPE. It was confirmed that the laminates obtained in Examples 14 to 24 had better solder heat resistance than Comparative Examples 7 to 10. Further, it was confirmed that the laminates obtained in each of the examples were also excellent in dielectric constant and dielectric loss tangent.
[0071]
From the above evaluation results, it was confirmed that the epoxy resin composition properties, the prepreg properties, and the laminate properties were all good in each example, but at least one property was inferior in each comparative example.
[0072]
【The invention's effect】
When the epoxy resin composition according to claim 1 of the present invention is used, without lowering the dielectric constant, the dielectric loss tangent, and the soldering heat resistance, when the metal foil having the surface and the bonding wire are joined, the metal foil and A laminate having excellent bonding strength with the bonding wire can be obtained.
[0073]
When the epoxy resin composition according to claim 2 of the present invention is used, a prepreg excellent in impregnation property in addition to the above effects can be obtained.
[0074]
When the prepreg according to claim 3 of the present invention is used, without lowering the dielectric constant, the dielectric loss tangent and the soldering heat resistance, when the metal foil and the bonding wire having the surface are joined, the metal foil and the bonding wire A laminate having excellent adhesive strength can be obtained.
[0075]
The laminate according to claim 4 of the present invention has excellent dielectric constant, dielectric loss tangent, and soldering heat resistance, and when a metal foil and a bonding wire on its surface are bonded, the bonding strength between the metal foil and the bonding wire is improved. It becomes an excellent laminate.

Claims (4)

数平均分子量が10000〜30000のポリフェニレンエーテル樹脂とフェノール性化合物を反応開始剤の存在下で再分配反応させて、数平均分子量が用いたポリフェニレンエーテル樹脂の数平均分子量の5〜70%になるように反応させた変成フェノール生成物、エポキシ樹脂及びエポキシ樹脂の硬化剤とを含有するエポキシ樹脂組成物において、エポキシ樹脂として、下記式( a )から( c )のいずれかで表される分子内にエポキシ基を3個以上有するエポキシ樹脂を全エポキシ樹脂100重量部中に1〜40重量部含有することを特徴とするエポキシ樹脂組成物。
Figure 0003570147
Figure 0003570147
Figure 0003570147
A polyphenylene ether resin having a number average molecular weight of 10,000 to 30,000 and a phenolic compound are redistributed in the presence of a reaction initiator so that the number average molecular weight becomes 5 to 70% of the number average molecular weight of the used polyphenylene ether resin. An epoxy resin composition containing a modified phenol product reacted with the above, an epoxy resin and a curing agent for the epoxy resin, wherein the epoxy resin is contained in a molecule represented by any of the following formulas ( a ) to ( c ): An epoxy resin composition comprising 1 to 40 parts by weight of an epoxy resin having three or more epoxy groups per 100 parts by weight of all epoxy resins .
Figure 0003570147
Figure 0003570147
Figure 0003570147
変成フェノール生成物の数平均分子量が、1000〜3000であることを特徴とする請求項1に記載のエポキシ樹脂組成物。Modified phenol product has a number average molecular weight of the epoxy resin composition according to claim 1, characterized in that 1000 to 3000. 請求項1又は請求項2記載のエポキシ樹脂組成物を、基材に含浸乾燥してなるプリプレグ。 A prepreg obtained by impregnating and drying a substrate with the epoxy resin composition according to claim 1 or 2 . 請求項3記載のプリプレグに金属箔を重ね、加熱・加圧してなる金属箔張り積層板。 A metal foil-clad laminate obtained by laminating a metal foil on the prepreg according to claim 3 and heating and pressing.
JP07813197A 1997-02-24 1997-03-28 Epoxy resin composition, prepreg and laminate Expired - Lifetime JP3570147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07813197A JP3570147B2 (en) 1997-02-24 1997-03-28 Epoxy resin composition, prepreg and laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3878797 1997-02-24
JP9-38787 1997-02-24
JP07813197A JP3570147B2 (en) 1997-02-24 1997-03-28 Epoxy resin composition, prepreg and laminate

Publications (2)

Publication Number Publication Date
JPH10292031A JPH10292031A (en) 1998-11-04
JP3570147B2 true JP3570147B2 (en) 2004-09-29

Family

ID=26378072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07813197A Expired - Lifetime JP3570147B2 (en) 1997-02-24 1997-03-28 Epoxy resin composition, prepreg and laminate

Country Status (1)

Country Link
JP (1) JP3570147B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1275674B1 (en) * 2000-04-21 2007-04-04 Mitsubishi Rayon Co., Ltd. Epoxy resin composition and prepreg made with the epoxy resin composition
JP4583563B2 (en) * 2000-08-29 2010-11-17 三菱レイヨン株式会社 Tubular body made of fiber reinforced resin
WO2010104191A1 (en) * 2009-03-09 2010-09-16 Panasonic Electric Works Co., Ltd. Transparent film
KR101987310B1 (en) * 2013-12-16 2019-06-10 삼성전기주식회사 Insulating resin composition for printed circuit board and products manufactured by using the same
JP6472408B2 (en) * 2016-04-15 2019-02-20 南亞塑膠工業股▲分▼有限公司 Polyphenylene ether-modified phenolbenzaldehyde polyfunctional epoxy resin and use thereof

Also Published As

Publication number Publication date
JPH10292031A (en) 1998-11-04

Similar Documents

Publication Publication Date Title
JP5648677B2 (en) Primer, resin-coated conductor foil, laminate, and method for producing laminate
US20090126974A1 (en) Manufacturing Process for a Prepreg with a Carrier, Prepreg with a Carrier, Manufacturing Process for a Thin Double-Sided Plate, Thin Double-Sided Plate and Manufacturing Process for a Multilayer-Printed Circuit Board
JP7351912B2 (en) Adhesive compositions, thermosetting adhesive sheets and printed wiring boards
KR20080044175A (en) Adhesive composition, and adhesive sheet and coverlay film using same
JP2003141933A (en) Resin composition for electric insulation, insulation material for electronic material, and their manufacturing method
JP3570148B2 (en) Epoxy resin composition, prepreg and laminate
JP2002212262A (en) Resin composition for electric insulation, insulating material and manufacturing method thereof
JPH1112456A (en) Resin composition, prepreg, and laminate
JP3570147B2 (en) Epoxy resin composition, prepreg and laminate
JP3570159B2 (en) Epoxy resin composition, prepreg and laminate
JP3570158B2 (en) Epoxy resin composition, prepreg and laminate
JP2001261791A (en) Epoxy resin composition, prepreg and laminated plate
JPH10212336A (en) Epoxy resin composition, prepreg prepared by using this composition and laminate prepared by using this prepreg
JP3339301B2 (en) Epoxy resin composition, prepreg using this resin composition, and laminate using this prepreg
JP3265984B2 (en) Epoxy resin composition, prepreg using this resin composition, and laminate using this prepreg
JP2001278957A (en) Epoxy resin composition, prepreg and laminated plate
JP3570146B2 (en) Epoxy resin composition, adhesive sheet and laminate
JP2001261929A (en) Epoxy resin composition, prepreg and laminated plate
JP2004292825A (en) Resin composition, prepreg and laminate
JPH09143247A (en) Resin composition for laminate, prepreg and laminate
JPH08130368A (en) Adhesive agent composition used for printed wiring board and base material formed by use thereof for printed wiring board
JP2000104038A (en) Composition for adhesive sheet, adhesive sheet, adhesive sheet with metal foil and laminated sheet
JP2002053646A (en) Epoxy resin composition, prepreg and insulation board
JPH11260865A (en) Tape with adhesive for tab and substrate for connecting semiconductor integrated circuit and semiconductor device
JPS63297483A (en) Adhesive composition for flexible printed circuit board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

EXPY Cancellation because of completion of term