JP3570094B2 - Surface emitting semiconductor laser, method of manufacturing the same, and wavelength variable method - Google Patents

Surface emitting semiconductor laser, method of manufacturing the same, and wavelength variable method Download PDF

Info

Publication number
JP3570094B2
JP3570094B2 JP18022696A JP18022696A JP3570094B2 JP 3570094 B2 JP3570094 B2 JP 3570094B2 JP 18022696 A JP18022696 A JP 18022696A JP 18022696 A JP18022696 A JP 18022696A JP 3570094 B2 JP3570094 B2 JP 3570094B2
Authority
JP
Japan
Prior art keywords
layer
surface emitting
magnetic field
dielectric multilayer
tuning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18022696A
Other languages
Japanese (ja)
Other versions
JPH1027943A (en
Inventor
孝二 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18022696A priority Critical patent/JP3570094B2/en
Publication of JPH1027943A publication Critical patent/JPH1027943A/en
Application granted granted Critical
Publication of JP3570094B2 publication Critical patent/JP3570094B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は波長可変面発光半導体レーザに関する。
近年, 光インタコネクション, 並列光リンクのためのキーデバイスである面発光レーザの研究が盛んになっている。垂直共振器面発光レーザは次のような利点をもっている。
【0002】
(1) 共振器体積が小さいので極低しきい値動作が可能
(2) 共振器長が短いので単一モード動作が容易
(3)ビーム広がりがストライプレーザに比べて狭いので光ファイバとの結合が容易
(4)ウェーハの状態での検査が可能であり,構造上へき開面が不要
【0003】
【従来の技術】
図6は垂直共振器面発光レーザの代表的な従来例を示す。
図において, 1は一導電型半導体基板, 2は一導電型半導体多層膜反射鏡, 3は微小共振器, 4は誘電体多層膜反射鏡, 5は無反射コーティング膜, 6は電流狭窄層, 7, 8 は電極である。
【0004】
多層膜反射鏡 2, 4 は屈折率差の大きい材料を交互に積層したもので,その反射率が99%を越えるように作製されている。この理由は共振器長が短いので共振器損が大きくなるからである。
【0005】
垂直共振器面発光レーザは他の光機能デバイスとの積層集積化が可能であり,波長可変機能を付加することができる。
垂直共振器面発光レーザの波長可変方法としては次の方法によるものがある。
【0006】
(1) 温度を制御 (ペルチェ効果)
(2) キャリア注入によるプラズマ効果
(3)電界印加による屈折率変化
(4)外部ミラーの機械的な駆動
【0007】
【発明が解決しようとする課題】
上記(1) の温度制御や(2) のキャリアの注入による方法は電流をデバイスに注入するため, 抵抗発熱や光の吸収の問題がある。
【0008】
また,上記(3)の電界による屈折率変化を用いる方法では, 広範囲のチューニングを行うためには, 高い電圧を印加しなければならないのが現状である。
また,(4)の外部ミラーを機械的に動かす方法では, マイクロメータを手動で動かすものや,静電引力を用いて動かすものがあり,前者では装置が大型化し,後者では(3)の場合と同様にチューニング電圧が高くなってしまうという問題がある。
【0009】
本発明は, 面発光レーザを小消費電力で波長をチューニングできることを目的とする。
【0010】
【課題を解決するための手段】
上記課題の解決は,
1)一導電型半導体基板上に, 一導電型半導体多層膜反射鏡, 一導電型半導体層, 活性層, 反対導電型半導体層, レーザ電極, 誘電体多層膜反射鏡, 該誘電体多層膜反射鏡の駆動用ストライプ及び該駆動用ストライプの両端に接続される波長チューニング電極がこの順に積層され,該反対導電型半導体層と該誘電体多層膜反射鏡との間に空洞が形成されてなる面発光半導体レーザ,あるいは
2)前記1記載の面発光半導体レーザを磁場中で発振させ,前記駆動用ストライプに電流を流すことにより,前記誘電体多層膜反射鏡に力を加えて機械的に動かす波長可変方法,あるいは
3)前記1記載の面発光半導体レーザを磁場中で発振させ,該磁場を一定に保ち,前記駆動用ストライプに流す電流量を変えてチューニング量を変える波長可変方法,あるいは
4)前記1記載の面発光半導体レーザを磁場中で発振させ,前記駆動用ストライプに流す電流量を一定に保ち,該磁場の強度を変えてチューニング量を変える波長可変方法,あるいは
5)一導電型半導体基板上に,少なくとも一導電型半導体多層膜反射鏡, 一導電型半導体層, 活性層, 反対導電型半導体層及び空洞形成のための犠牲層をこの順に積層する工程と,次いで,該犠牲層の一部を残してエッチング除去する工程と,次いで,該基板上に該犠牲層を覆って誘電体多層膜鏡とその駆動用ストライプ及びチューニング電極を積層する工程と,次いで,該犠牲層をエッチング除去して空洞を形成する工程とを含む面発光半導体レーザの製造方法によって達成される。
【0011】
本発明は,面発光レーザを一定の磁場中, あるいは可変磁場中で駆動し,外部ミラーに密着して形成された導電性のストライプに電流を流して,ローレンツ (Lorentz) 力により外部ミラーを機械的に駆動することにより波長チューニングを行う。
【0012】
図1に本発明の原理図を示す。
図において, 7は一導電型半導体基板, 8は一導電型半導体多層膜反射鏡, 9は一導電型半導体層, 10は活性層, 11は反対導電型半導体層, 12は誘電体多層膜反射鏡, 13はレーザ電極, 14は誘電体多層膜反射鏡の駆動用金属ストライプ及びチューニング電極である。
【0013】
図2は図1のA−B 断面図で, 15は電流狭窄層である。
波長可変を実現するためには, この構造の面発光レーザを図1,2中のベクトルBの方向の磁場中で駆動する。金属ストライプ14に矢印(A) の方向に電流を流すと, フレミングの左手の法則により誘電体多層膜反射鏡12に下向きの力が加わって共振波長が短波になる。又,逆に, 金属ストライプ14に矢印(B) の方向に電流を流すと, フレミングの左手の法則により誘電体多層膜反射鏡12に上向きの力が加わって共振波長が長波になる。
【0014】
あるいは,金属ストライプ14に流す電流を一定にして, 磁場Bの向きを変えることにより誘電体多層膜反射鏡12に働く力の方向,すなわちチューニングの方向を変えることができる。
【0015】
上記のように,本発明によればローレンツ力によって外部ミラーを機械的に動かして波長をチューニングするので,吸収の影響はなく,しかも波長チューニングは金属ストライプ14に電流を流すことにより行うので低電圧チューニングが可能である。従って,小消費電力でチューニングを行うことができる。
【0016】
【発明の実施の形態】
本発明を0.98μm帯の面発光レーザに適用する例を図3,4を用いて製造プロセスとともに説明する。
【0017】
図3(A) 〜(C) ,図4(D),(E) は本発明の実施の形態の説明図である。
この例の結晶成長は有機金属気相成長(MOCVD) 法で行い, 一単体素子の寸法は 300μm角とする。
【0018】
図3(A) において,n型(n−)GaAs基板上に,
n−AlAs/GaAs(いずれも膜厚はλ/4) 25.5ペアからなる半導体多層膜反射鏡 8, n側クラッド層 9の
n−AlGa1−x As層(x=0.53,厚さ1047.5Å, 不純物濃度 5×1017cm−3),
活性層10として,
スペーサ層の真性(i−)AlGa1−x As層(x=0.53,厚さ 300Å),
バリア層のi−GaAs層 (厚さ 100Å),
歪み量子井戸のi−InGa1−y As層(y=0.2,厚さ80Å)
バリア層のi−GaAs層 (厚さ 100Å),
スペーサ層のi−AlGa1−x As層(x=0.53,厚さ 300Å),
n側クラッド層11の
p−AlGa1−x As層(x=0.53,厚さ1047.5Å, 不純物濃度 5×1017cm−3),
コンタクト層のi−GaAs層 (厚さ 200Å)21,
犠牲層22のi−InGaAs層 (厚さ9800Å) の順に成長する。
【0019】
図3(B) において,気相成長(CVD) 法により, この基板上に二酸化シリコン (SiO)膜23を1000Åの厚さに積層し,単体デバイスとなる部分の中心に30μm角の正方形にSiO膜をパターニングする。パターニングされたSiO膜22をマスクにして最上層のi−InGaP 層22を塩酸でエッチングした後, その状態で亜鉛(Zn)を熱拡散する。p型拡散層24が形成される。
【0020】
図3(C) において,SiOマスク22の中心に厚さ 5μm, 直径 5μmのレジストパターン25を付けて, エネルギー 150 KeV, ドーズ量 5×1014cm−2でプロトンを注入して電流狭窄層15を形成する。
【0021】
次いで,レジストマスク及びSiOマスクを除去し,再び基板上にSiO膜を積層し,p側電極 (図1の符号13)用の窓をパターニングして開口し,チタン(Ti)/白金(Pt)の順に蒸着し, その上に金(Au)のパッドを形成する。
【0022】
次いで, 金パッドをマスクにしてTi/PtとSiOを反応性イオンエッチング (RIE) をより用いて除去し,i−InGaP 層22が完全に露出するようにする。
図4(D) において,p側に誘電体多層膜反射鏡12を形成する。p側に図5(A) に示されるレジストパターン 1を形成し,SiO/Si(いずれも膜厚はλ/4) を 5ペア蒸着する。その上にさらにレジストを塗布し,図5(B) に示されるレジストパターン 2を形成して誘電体多層膜反射鏡12の駆動電極とストライプ14になるTi/Pt/Auを順に蒸着し, リフトオフを行う。
【0023】
図4(E) において,i−InGaP 層22を塩酸で完全にエッチング除去して, 半導体層 8〜21と誘電体多層膜反射鏡12の間にギャップ (空洞) 23を形成して素子が完成する。この素子は, 半導体層と誘電体多層膜鏡の間のギャップ及び半導体クラッド層, 活性層で2波長共振器 (共振器長が発振波長の2倍の共振器)が形成されている。
【0024】
図5(A),(B) は製造工程に用いられるレジストパターンの平面図である。
図5(A) はレジストパターン 1で, 誘電体多層膜反射鏡12を形成用のマスクであり,図5(B) はレジストパターン 2で,誘電体多層膜反射鏡12の駆動電極とストライプ14を形成するマスクである。図の斜線部はマスクの遮蔽部を示す。
【0025】
次に,面発光レーザを0.1 T の磁場中で駆動させ,チューニング電極に300 mA (この際の電圧は0.1 V)の電流を流すと,誘電体多層膜反射鏡が150 nm移動し,150 nmのチューニングを行うことができた。この際, 磁場を変化させても,あるいはチューニング電極に流す電流を変化させてもローレンツ力は変化し, その結果誘電体多層膜反射鏡の変位量を変えることができる。
【0026】
【発明の効果】
本発明によれば,面発光レーザにおいて,小消費電力でチューニングできるようになる。
【図面の簡単な説明】
【図1】本発明の原理説明図(1)
【図2】本発明の原理説明図(2)
【図3】本発明の実施の形態の説明図(1)
【図4】本発明の実施の形態の説明図(2)
【図5】製造工程に用いられるレジストパターンの平面図
【図6】従来例の説明図
【符号の説明】
7 一導電型半導体基板
8 一導電型半導体多層膜反射鏡
9 一導電型半導体層
10 活性層
11 反対導電型半導体層
12 誘電体多層膜反射鏡
13 レーザ電極
14 誘電体多層膜反射鏡の駆動用金属ストライプ及びチューニング電極
22 犠牲層
23 空洞
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wavelength tunable surface emitting semiconductor laser.
In recent years, research on surface emitting lasers, which are key devices for optical interconnection and parallel optical links, has been active. The vertical cavity surface emitting laser has the following advantages.
[0002]
(1) Ultra-low threshold operation is possible because the cavity volume is small. (2) Single mode operation is easy because the cavity length is short. (3) Coupling with an optical fiber because the beam spread is narrower than that of a stripe laser. (4) Inspection in the wafer state is possible, and no cleaved surface is required on the structure.
[Prior art]
FIG. 6 shows a typical conventional example of a vertical cavity surface emitting laser.
In the figure, 1 is a one-conductivity type semiconductor substrate, 2 is a one-conductivity type semiconductor multilayer reflector, 3 is a microresonator, 4 is a dielectric multilayer reflector, 5 is an antireflection coating film, 6 is a current confinement layer, Reference numerals 7 and 8 denote electrodes.
[0004]
The multilayer mirrors 2, 4 are made by alternately laminating materials having a large difference in refractive index, and are manufactured so that the reflectance exceeds 99%. The reason is that the resonator length is short and the resonator loss increases.
[0005]
The vertical cavity surface emitting laser can be stacked and integrated with other optical functional devices, and can add a wavelength variable function.
The following method is available as a method for changing the wavelength of the vertical cavity surface emitting laser.
[0006]
(1) Temperature control (Peltier effect)
(2) Plasma effect by carrier injection (3) Refractive index change by application of electric field (4) Mechanical driving of external mirror
[Problems to be solved by the invention]
The above methods (1) of controlling the temperature and (2) of the method using carrier injection have problems of resistance heating and light absorption because current is injected into the device.
[0008]
Also, in the method using the refractive index change due to the electric field described in (3) above, a high voltage must be applied in order to perform tuning over a wide range.
In the method of (4), in which the external mirror is moved mechanically, there are a method in which the micrometer is moved manually and a method in which the external mirror is moved by using electrostatic attraction. Similarly, there is a problem that the tuning voltage becomes high.
[0009]
An object of the present invention is to tune the wavelength of a surface emitting laser with low power consumption.
[0010]
[Means for Solving the Problems]
The solution to the above problems is
1) One conductive type semiconductor multilayer mirror, one conductive type semiconductor layer, active layer, opposite conductive type semiconductor layer, laser electrode, dielectric multilayer reflective mirror, dielectric multilayer reflective surface A mirror driving stripe and wavelength tuning electrodes connected to both ends of the driving stripe are laminated in this order, and a surface in which a cavity is formed between the opposite conductive semiconductor layer and the dielectric multilayer reflector. 2) a wavelength at which the surface emitting semiconductor laser according to 1) is oscillated in a magnetic field and a current is applied to the driving stripe to apply a force to the dielectric multilayer mirror to mechanically move the mirror. A variable method, or 3) oscillating the surface emitting semiconductor laser described in 1 above in a magnetic field, keeping the magnetic field constant, and changing the amount of current flowing through the driving stripe to change the tuning amount. Or 4) a wavelength tunable method of oscillating the surface emitting semiconductor laser described in 1 above in a magnetic field, keeping the amount of current flowing through the driving stripe constant, and changing the amount of tuning by changing the intensity of the magnetic field, or 5). A) stacking on the one-conductivity-type semiconductor substrate at least one one-conductivity-type semiconductor multilayer mirror, one-conductivity-type semiconductor layer, an active layer, an opposite-conductivity-type semiconductor layer, and a sacrificial layer for forming a cavity; Etching a part of the sacrificial layer while leaving it, and then laminating a dielectric multilayer mirror and its driving stripe and tuning electrode on the substrate so as to cover the sacrificial layer; Forming a cavity by etching off the sacrificial layer.
[0011]
According to the present invention, a surface emitting laser is driven in a constant magnetic field or in a variable magnetic field, a current flows through a conductive stripe formed in close contact with the external mirror, and the external mirror is mechanically driven by Lorentz force. The wavelength tuning is performed by driving in a dynamic manner.
[0012]
FIG. 1 shows a principle diagram of the present invention.
In the figure, 7 is a semiconductor substrate of one conductivity type, 8 is a mirror of a semiconductor multilayer film of one conductivity type, 9 is a semiconductor layer of one conductivity type, 10 is an active layer, 11 is a semiconductor layer of the opposite conductivity type, and 12 is a reflection of a dielectric multilayer film. Reference numeral 13 denotes a laser electrode, and 14 denotes a metal stripe for driving the dielectric multilayer film reflecting mirror and a tuning electrode.
[0013]
FIG. 2 is a cross-sectional view taken along a line AB in FIG. 1, and 15 is a current confinement layer.
In order to realize variable wavelength, the surface emitting laser having this structure is driven in a magnetic field in the direction of the vector B in FIGS. When a current is applied to the metal stripe 14 in the direction of the arrow (A), a downward force is applied to the dielectric multilayer mirror 12 by the Fleming's left-hand rule, so that the resonance wavelength becomes shorter. Conversely, when an electric current is applied to the metal stripe 14 in the direction of the arrow (B), an upward force is applied to the dielectric multilayer mirror 12 according to Fleming's left-hand rule, and the resonance wavelength becomes a long wave.
[0014]
Alternatively, by changing the direction of the magnetic field B while keeping the current flowing through the metal stripe 14 constant, it is possible to change the direction of the force acting on the dielectric multilayer mirror 12, that is, the direction of tuning.
[0015]
As described above, according to the present invention, the wavelength is tuned by mechanically moving the external mirror by the Lorentz force, so that there is no influence of absorption. Moreover, since the wavelength tuning is performed by passing a current through the metal stripe 14, a low voltage is applied. Tuning is possible. Therefore, tuning can be performed with low power consumption.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
An example in which the present invention is applied to a surface emitting laser in the 0.98 μm band will be described with reference to FIGS.
[0017]
3 (A) to 3 (C), 4 (D) and 4 (E) are explanatory views of the embodiment of the present invention.
The crystal growth in this example is performed by metal organic chemical vapor deposition (MOCVD), and the size of a single device is 300 μm square.
[0018]
In FIG. 3A, on an n-type (n−) GaAs substrate,
n-AlAs / GaAs (both have a thickness of λ / 4) 25.5 pairs of semiconductor multilayer reflector 8, n-cladding layer 9 of n-Al x Ga 1-x As layer (x = 0.53) , Thickness 1047.5Å, impurity concentration 5 × 10 17 cm −3 ),
As the active layer 10,
Intrinsic (i-) Al x Ga 1-x As layer of spacer layer (x = 0.53, thickness 300 °),
I-GaAs layer of barrier layer (thickness: 100 mm),
I-In y Ga 1-y As layer of strained quantum well (y = 0.2, thickness 80 °)
I-GaAs layer of barrier layer (thickness: 100 mm),
An i-Al x Ga 1-x As layer of a spacer layer (x = 0.53, thickness 300 °),
p-Al x Ga 1-x As layer of the n-side cladding layer 11 (x = 0.53, thickness 1047.5A, impurity concentration 5 × 10 17 cm -3),
I-GaAs layer of contact layer (thickness 200 mm) 21,
The sacrifice layer 22 is grown in the order of the i-InGaAs layer (thickness 9800Å).
[0019]
In FIG. 3 (B), a silicon dioxide (SiO 2 ) film 23 is laminated on this substrate to a thickness of 1000 ° by a vapor phase epitaxy (CVD) method. The SiO 2 film is patterned. After etching the uppermost i-InGaP layer 22 with hydrochloric acid using the patterned SiO 2 film 22 as a mask, zinc (Zn) is thermally diffused in that state. A p-type diffusion layer 24 is formed.
[0020]
In FIG. 3C, a resist pattern 25 having a thickness of 5 μm and a diameter of 5 μm is provided at the center of the SiO 2 mask 22, and protons are implanted at an energy of 150 KeV and a dose of 5 × 10 14 cm −2 to form a current confinement layer. 15 are formed.
[0021]
Next, the resist mask and the SiO 2 mask are removed, an SiO 2 film is again laminated on the substrate, a window for a p-side electrode (reference numeral 13 in FIG. 1) is patterned and opened, and titanium (Ti) / platinum ( Pt) is deposited in this order, and a gold (Au) pad is formed thereon.
[0022]
Next, using the gold pad as a mask, Ti / Pt and SiO 2 are removed by reactive ion etching (RIE) so that the i-InGaP layer 22 is completely exposed.
In FIG. 4D, a dielectric multilayer film reflecting mirror 12 is formed on the p-side. A resist pattern 1 shown in FIG. 5A is formed on the p-side, and five pairs of SiO 2 / Si (each having a film thickness of λ / 4) are vapor-deposited. A resist is further applied thereon to form a resist pattern 2 shown in FIG. 5 (B), and a drive electrode of the dielectric multilayer mirror 12 and Ti / Pt / Au to become a stripe 14 are sequentially deposited, and lift-off is performed. I do.
[0023]
In FIG. 4E, the i-InGaP layer 22 is completely removed by etching with hydrochloric acid to form a gap (cavity) 23 between the semiconductor layers 8 to 21 and the dielectric multilayer mirror 12, thereby completing the device. I do. In this device, a two-wavelength resonator (resonator whose resonator length is twice the oscillation wavelength) is formed by the gap between the semiconductor layer and the dielectric multilayer mirror, the semiconductor cladding layer, and the active layer.
[0024]
5A and 5B are plan views of a resist pattern used in a manufacturing process.
FIG. 5A shows a resist pattern 1 which is a mask for forming the dielectric multilayer reflector 12, and FIG. 5B shows a resist pattern 2 which shows the drive electrodes of the dielectric multilayer reflector 12 and the stripes 14. Is a mask that forms The hatched portions in the figure indicate the shielding portions of the mask.
[0025]
Next, when the surface emitting laser is driven in a magnetic field of 0.1 T and a current of 300 mA (the voltage at this time is 0.1 V) is passed through the tuning electrode, the dielectric multilayer film reflecting mirror moves by 150 nm. As a result, a tuning of 150 nm could be performed. At this time, the Lorentz force changes even if the magnetic field or the current flowing through the tuning electrode is changed, and as a result, the displacement of the dielectric multilayer mirror can be changed.
[0026]
【The invention's effect】
According to the present invention, tuning can be performed with low power consumption in a surface emitting laser.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the principle of the present invention (1).
FIG. 2 is a diagram (2) for explaining the principle of the present invention.
FIG. 3 is an explanatory diagram (1) of the embodiment of the present invention.
FIG. 4 is an explanatory diagram (2) of the embodiment of the present invention.
FIG. 5 is a plan view of a resist pattern used in a manufacturing process. FIG. 6 is an explanatory view of a conventional example.
7 One-conductivity-type semiconductor substrate 8 One-conductivity-type semiconductor multilayer reflector 9 One-conductivity-type semiconductor layer 10 Active layer 11 Opposite-conductivity-type semiconductor layer 12 Dielectric multilayer reflector 13 Laser electrode 14 For driving dielectric multilayer reflector Metal stripe and tuning electrode 22 Sacrificial layer 23 Cavity

Claims (5)

一導電型半導体基板上に, 一導電型半導体多層膜反射鏡, 一導電型半導体層, 活性層, 反対導電型半導体層, レーザ電極, 誘電体多層膜反射鏡, 該誘電体多層膜反射鏡の駆動用ストライプ及び該駆動用ストライプの両端に接続される波長チューニング電極がこの順に積層され,該反対導電型半導体層と該誘電体多層膜反射鏡との間に空洞が形成されてなることを特徴とする面発光半導体レーザ。On one conductivity type semiconductor substrate, one conductivity type semiconductor multilayer reflector, one conductivity type semiconductor layer, active layer, opposite conductivity type semiconductor layer, laser electrode, dielectric multilayer reflector, A driving stripe and wavelength tuning electrodes connected to both ends of the driving stripe are laminated in this order, and a cavity is formed between the opposite conductive type semiconductor layer and the dielectric multilayer mirror. Surface emitting semiconductor laser. 請求項1記載の面発光半導体レーザを磁場中で発振させ,前記駆動用ストライプに電流を流すことにより,前記誘電体多層膜反射鏡に力を加えてこれを機械的に動かすことを特徴とする波長可変方法。2. The surface emitting semiconductor laser according to claim 1, oscillated in a magnetic field, and a current is applied to the driving stripe to apply a force to the dielectric multilayer mirror to mechanically move the mirror. Tunable method. 請求項1記載の面発光半導体レーザを磁場中で発振させ,該磁場を一定に保ち,前記駆動用ストライプに流す電流量を変えてチューニング量を変えることを特徴とする波長可変方法。A wavelength tuning method, wherein the surface emitting semiconductor laser according to claim 1 is oscillated in a magnetic field, the magnetic field is kept constant, and a tuning amount is changed by changing an amount of current flowing through the driving stripe. 請求項1記載の面発光半導体レーザを磁場中で発振させ,前記駆動用ストライプに流す電流量を一定に保ち,該磁場の強度を変えてチューニング量を変えることを特徴とする波長可変方法。2. A wavelength tuning method, wherein the surface emitting semiconductor laser according to claim 1 is oscillated in a magnetic field, the amount of current flowing through the driving stripe is kept constant, and the tuning amount is changed by changing the intensity of the magnetic field. 一導電型半導体基板上に,少なくとも一導電型半導体多層膜反射鏡, 一導電型半導体層, 活性層, 反対導電型半導体層及び空洞形成のための犠牲層をこの順に積層する工程と,
次いで,該犠牲層の一部を残してエッチング除去する工程と,
次いで,該基板上に該犠牲層を覆って誘電体多層膜鏡とその駆動用ストライプ及びチューニング電極を積層する工程と,
次いで,該犠牲層をエッチング除去して空洞を形成する工程
とを含むことを特徴とする面発光半導体レーザの製造方法。
Stacking at least one semiconductor multilayer reflector, one semiconductor layer, an active layer, an opposite semiconductor layer, and a sacrificial layer for forming a cavity on a semiconductor substrate of one conductivity type in this order;
Next, a step of etching and removing a part of the sacrificial layer,
Next, a step of laminating a dielectric multilayer mirror, a driving stripe thereof, and tuning electrodes on the substrate so as to cover the sacrificial layer;
Forming a cavity by removing the sacrificial layer by etching.
JP18022696A 1996-07-10 1996-07-10 Surface emitting semiconductor laser, method of manufacturing the same, and wavelength variable method Expired - Lifetime JP3570094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18022696A JP3570094B2 (en) 1996-07-10 1996-07-10 Surface emitting semiconductor laser, method of manufacturing the same, and wavelength variable method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18022696A JP3570094B2 (en) 1996-07-10 1996-07-10 Surface emitting semiconductor laser, method of manufacturing the same, and wavelength variable method

Publications (2)

Publication Number Publication Date
JPH1027943A JPH1027943A (en) 1998-01-27
JP3570094B2 true JP3570094B2 (en) 2004-09-29

Family

ID=16079596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18022696A Expired - Lifetime JP3570094B2 (en) 1996-07-10 1996-07-10 Surface emitting semiconductor laser, method of manufacturing the same, and wavelength variable method

Country Status (1)

Country Link
JP (1) JP3570094B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087903A (en) * 2002-08-28 2004-03-18 Yokogawa Electric Corp Surface-emitting laser
JP4830358B2 (en) * 2005-06-14 2011-12-07 富士ゼロックス株式会社 Manufacturing method of surface emitting laser
JP5092559B2 (en) * 2007-06-11 2012-12-05 日本電気株式会社 Surface emitting laser
CA2879528C (en) * 2012-07-27 2021-01-05 Thorlabs, Inc. Mems-tunable short cavity laser
EP2775574A3 (en) * 2013-03-07 2014-11-05 Canon Kabushiki Kaisha Surface emitting laser and optical coherence tomography apparatus equipped with surface emitting laser
JP6608202B2 (en) * 2015-07-13 2019-11-20 キヤノン株式会社 Surface emitting laser, information acquisition device, and imaging device
JP6608203B2 (en) * 2015-07-13 2019-11-20 キヤノン株式会社 Surface emitting laser, information acquisition device, and imaging device

Also Published As

Publication number Publication date
JPH1027943A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
JP4027393B2 (en) Surface emitting laser
JP4833665B2 (en) Manufacturing method of photonic crystal semiconductor device
US7697588B2 (en) Structure having photonic crystal and surface-emitting laser using the same
JP4034513B2 (en) Surface emitting laser device, optical module using the same, and optical system
JP2004146833A (en) Electrically pumped vertical cavity surface-emitting laser(vcsel) having a plurality of active regions
JPH11243257A (en) Vertical cavity surface-emitting laser having individual optical current guide
US5363393A (en) Surface emitting semiconductor laser
JP3551718B2 (en) Surface emitting semiconductor laser
JP4829119B2 (en) Monolithic optical pumping VCSEL with laterally mounted edge emitters
JP2007294789A (en) Semiconductor laser device
JP3570094B2 (en) Surface emitting semiconductor laser, method of manufacturing the same, and wavelength variable method
JP2002223033A (en) Optical element and optical system
JP2004031925A (en) N-type semiconductor distributed bragg reflector, plane emission semiconductor laser device, plane emission laser array, plane emission laser module optical interconnection system, and optical communication system
JP2008103483A (en) Semiconductor light-emitting element and its manufacturing method
KR101466703B1 (en) Wideband tunable vertical-cavity surface-emitting laser
JP2004235339A (en) Semiconductor laser
JP7490719B2 (en) Photon source and method for making a photon source
JP2955250B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3911665B2 (en) Polarization control surface type semiconductor laser and driving method thereof
JP2875929B2 (en) Semiconductor laser device and method of manufacturing the same
KR101240342B1 (en) Tunable vertical-cavity surface-emitting laser and fabricating method the same
Chase II High Contrast Grating VCSELs: Properties and Implementation on Indium Phosphide-based VCSELs
JPH06334256A (en) Formation of semiconductor light reflective layer
JPH08340146A (en) Surface emitting type semiconductor laser
JPH04316387A (en) Surface light emitting laser

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

EXPY Cancellation because of completion of term