JP3569243B2 - Sand mold for casting - Google Patents

Sand mold for casting Download PDF

Info

Publication number
JP3569243B2
JP3569243B2 JP2001260697A JP2001260697A JP3569243B2 JP 3569243 B2 JP3569243 B2 JP 3569243B2 JP 2001260697 A JP2001260697 A JP 2001260697A JP 2001260697 A JP2001260697 A JP 2001260697A JP 3569243 B2 JP3569243 B2 JP 3569243B2
Authority
JP
Japan
Prior art keywords
mold
sand
casting
sand mold
feeder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001260697A
Other languages
Japanese (ja)
Other versions
JP2003071543A (en
Inventor
浩 植杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakakin Co Ltd
Original Assignee
Nakakin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakakin Co Ltd filed Critical Nakakin Co Ltd
Priority to JP2001260697A priority Critical patent/JP3569243B2/en
Publication of JP2003071543A publication Critical patent/JP2003071543A/en
Application granted granted Critical
Publication of JP3569243B2 publication Critical patent/JP3569243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はアルミ鋳造品等の金属鋳造品の製造に用いる鋳造用砂型に関する。
【0002】
【従来技術とその課題】
砂型鋳造においては、旧来より、製品形態の木型を製作し、この木型を配置した型枠内に型砂を充填して硬化させ、該木型を外して得られる砂型を鋳型とし、その内部に金属溶湯を注入し、冷却固化後に砂型を分解して鋳造品を取り出すという手法が採用されている。しかして、鋳造方式には、鋳型上面の湯口から溶湯を型内部へ注入するグラビティ方式と、上方に開口した注湯口を有する保持炉の上に鋳型を載置し、この保持炉内に圧力を加えることによんて内部の溶湯を前記注湯口から鋳型下面の湯口を通して型内部へ注入するロープレッシャー方式とがあるが、いずれにおいても型内部での溶湯の冷却凝固に伴う体積収縮を生じるため、この収縮体積分を補うために鋳型の上面側に押湯が一般的に設けられる。また、グラビティ方式に適用する鋳型では、湯口が上方に開口していることから、該湯口についても押湯を兼用させる場合が多い。
【0003】
例えば、図6に示す砂型は、図5で示す自動車エンジン用のアルミ合金製エアーサージタンクTのグラビティ方式による鋳造に使用されるものであり、上型11及び下型12と、エアーサージタンクTの内部空間を構成する中子13とからなっている。しかして、上型11に設けられた湯口11a,11bは、押湯兼用であり、押湯としての溶湯体積の確保と位置エネルギーによる押湯圧を得るために、上下に長く、且つ入口側つまり上側へ拡径した形態に設定されている。14は上型11に設けられたエアー抜き孔、20は注湯されたアルミ合金である。なお、図示を省略しているが、この場合の上型11には、湯口11a,11bとは別に、エアーサージタンクTのタンク構成部21に対応して押湯が設けられており、この押湯も上側へ拡径した形態をなしている。
【0004】
【発明が解決しようとする課題】
このように従来の鋳造用砂型においては、押湯を兼用する湯口や押湯を上下に長く設定するために上型の上下厚みが大きくなり、それだけ上型ひいては鋳型全体の重量が増大し、その取り扱いに大きな労力及びエネルギーを要することになり、また型製作に用いる型砂の量も多くなるという問題があった。
【0005】
なお、鋳型の軽量化のために湯口や押湯の部分を凸状にし、他の領域の上下厚みを薄くすることも不可能ではないが、この場合には型砂を充填する型枠の蓋側を凹凸のある特殊な形状にする必要があり、その加工に手間と時間を要して鋳型製作のコストが却って高く付くことになる。また、従来の鋳型製作においては、やはり加工コスト面より型砂を充填する型枠を単純な箱型にするのが普通であり、このために鋳型の平面外形が鋳造対象物の形状に関係なく矩形になる結果、鋳型には強度等の鋳造機能上からは不必要な肉部による余分な重量が加わると共に、それだけ型砂が無駄に消費されることになる。
【0006】
本発明は、上述の情況に鑑み、鋳造用砂型として、軽量化及びコンパクト化が容易であり、しかも低コストで能率よく製作できるものを提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明に係る鋳造用砂型は、図面の参照符号を付して示せば、上方に開口した湯口4A,4Bを備える砂型部材1が、その三次元モデルを多数層に平行スライスした際の各層P1 〜Pnを、型砂S層へのレーザービームLの照射による結着硬化層として順次に積層形成した積層造形物Mからなり、前記の上方に開口した湯口4A,4Bの上部が縦筒をなして当該砂型部材1の本体部10上面10aより上方へ突出状に一体形成され、この湯口4A,4Bの内空間が押湯兼用として上側へ拡径すると共に、前記縦筒40の頂部の外径が基部の外径よりも大きく設定され、前記砂型部材1は、鋳造対象物の形状に対応して余剰部を除くことによって平面外形が非矩形をなすものとしている。
【0008】
上記構成の鋳造用砂型では、湯口4A,4Bの上部が砂型部材1の本体部10上面10aより上方へ突出しているから、該湯口が砂型部材の上面に開口した従来構成に対し、砂型部材1は前記突出した分だけ本体部10の上下厚さが薄くなって軽量化されることになる。しかして、特にグラビティ方式の鋳造に適用する砂型において、湯口4A,4Bを押湯兼用等のために上下に長く設定する場合には、前記突出による本体部10の薄肉化によって大幅な重量軽減を行える。なお、この砂型部材1は、レーザービームの熱によって結着硬化させた砂の薄層を積層一体化して3次元造形物を得る積層造形法にて得られるものであるから、その製作において従来のように型砂を充填する型枠が不要であり、湯口4A,4Bの上部が突出状になった複雑な形状であっても極めて能率よく製作可能である。また、湯口4A,4Bの内空間の上側へ拡径した形態に対応して縦筒40も上側へ拡径し、もって該縦筒40全体を必要限度で略一定の肉厚にすることにより、砂型部材1をより軽量化できることになる。しかして、このように湯口4A,4Bの縦筒40を上側へ拡径した形態に設定することは、型抜きの必要がない前記の積層造形法の採用によって初めて可能である。更に、砂型部材1は、強度等の鋳造機能上から不必要な肉部が除かれ、それだけ軽量化されたものとなる。
【0011】
【発明の実施の形態】
以下、本発明に係る鋳造用砂型の一実施例について、図面を参照して具体的に説明する。
【0012】
図1に示す鋳造用砂型は、既述した図5で示す自動車エンジン用のアルミ合金製エアーサージタンクTのグラビティ方式による鋳造に使用されるものであり、上型1及び下型2と、該エアーサージタンクTの内部空間を構成する中子3とからなっている。そして、これら上型1及び下型2と中子3は、いずれも型砂を造形材料とした積層造形法にて製作されている。
【0013】
鋳造対象のエアーサージタンクTは、図示省略した分岐管付きマニホールド部材に連結して密閉タンク部とする横長の開放したタンク構成部21と、このタンク21の中央部に連通するJ字形の曲管部22とからなり、タンク部21の開口周縁には連結用突縁部21aを有すると共に、曲管部22の先端外周にはエンジンのスロットルポートへ接続するための角形フランジ部22aを有し、またタンク21と曲管部22との間を繋ぐ補強板部23を備えている。
【0014】
中子3は、このエアーサージタンクTの内側形状に対応して、タンク空間部3aと曲管空間部3bが一体化した略τ形をなし、タンク空間部3aの全幅にわたる略長方形の巾木31と、曲管空間部3bより延出する短軸型の巾木32とを有している。
【0015】
上型1は、いずれも上方に開放した2つの湯口4A,4Bと3連の押湯口5及びエアー抜き孔6を備えている。しかして、湯口4A,4B及びエアー抜き孔6の上部側は、上型1の偏平な本体部10の上面10aから上方へ突出した縦筒40,60を構成すると共に、3連の押湯口5の上部側も、本体部10の上面10aから上方へ突出した横長の凸部50を構成している。
【0016】
湯口4A,4Bの内空間は、図4に示すように、押湯兼用として上下に長く且つ上側へ拡径した形態に設定されている。これに対応して、各縦筒40も上方へ拡径した形状をなし、その頂部40aの外径が基部40bの外径よりも大きくなっており、もって縦筒40の全体が略一定の肉厚を有している。また、3連の押湯口5の凸部50も、上側へ幅広となる内空間の形状に対応して、頂部の外幅が基部の外幅よりも大きくなっている。
【0017】
下型2の上面側には、中子3の下半部を収めて且つ型空間を構成する凹所7と、湯口4Aに連通する湯道を構成する弧状凹所8と、上型との位置決めを行うための截頭円錐形の嵌合用突起9a,9aとが形成されている。凹所7における7a,7bは中子3の巾木31,32に対応する巾木受け部、凹所7と弧状凹所8との間を結ぶ小凹部8a,8aは湯道から型空間へのせきをなしている。しかして、図4,5に示すように、上型1の下面側には、下型2の凹所7に対向して、中子3の上半部を収めて且つ型空間を構成する凹所を備えると共に、各嵌合用突起9aに適嵌する嵌合用凹部9bを有している。なお、湯口4Bは上型1側で中子3の巾木32に面する湯道に連通し、また3連の押湯口5は型空間におけるエアーサージタンクTのタンク構成部21に対応する位置に連通している。
【0018】
また、本実施例における上型1及び下型2の平面外形は、鋳造品のインテークサージタンクTの曲管部22の形状に対応して、図1の仮想線で示すように矩形とした場合に型空間から離れて余剰になる3箇所の領域Zを予め除いておくことにより、非矩形をなすように設計されている。
【0019】
上型1及び下型2と中子3を前記の積層造形法にて製作するには、まずコンピュター上で設計モデルを厚さ150〜250μm程度の多数層P〜Pnに平行スライスした時の各断面パターンのデータを作成し、このデータを積層造形装置のコントローラーに入力し、該造形装置によって自動的に前記のスライスした各層を造形材料の型砂S(図2,3参照)によって最下層Pから順次一層ずつ積層形成する。なお、この型砂Sには、一般的に砂粒子の表面にバインダーとして熱硬化性樹脂成分(例えばフェノール樹脂の如き主剤樹脂とヘキサメチレンテトラミンの如き硬化剤との混合物)を被覆したレジンコーテッドサンドが用いられる。
【0020】
図2及び図3は積層造形装置の一例を示す概略縦断側面図である。積層造形は、図2に示すように、箱型の造形枠41内に配置した昇降台42上にべースプレート43を載置し、リコーター44の水平移動によって型砂Sを前記平行スライスした一層分の厚みでべースプレート43上に載せ、この型砂S層の表面にレーザービームLを最下層Pの断面パターンに沿って照射する。これにより、型砂Sの粒子表面の熱硬化性樹脂成分がレーザービームLの熱によって溶融して硬化反応し、隣接する砂粒子同士が硬化した樹脂を介して結着し、照射域全体が一体に結着硬化した型砂Sの薄層よりなる2次元パターンの第一層(最下層)Pを形成することになる。次いで昇降台42を前記一層分の厚みだけ下降させ、新たに型砂Sを該一層分に相当する厚みで載せ、同様にレーザービームLを照射して第二層Pに対応する結着硬化層を形成し、以降同様にして順次一層分ずつ昇降台2を下降させて型砂Sの供給とレーザービームLの照射を繰り返すことにより、最終的に図3に示すように前記平行スライスした全ての層P〜Pを積層一体化した積層造形物Mを形成する。なお、図3では積層造形物Mとして上型1を示した。
【0021】
かくして積層造形が終了すれば、造形枠41の内側に突設したストッパー41aでペースプレート43を係止し、造形枠41ごと昇降台42から取り外し、未硬化の型砂Sを除去して形成された積層造形物Mを取り出す。なお、リコーター44は、その移動ストロークの両端において上方に配置した材料供給装置47より型砂Sの供給を受け、下端のスリット状開口部44aより型砂Sを流出させながら水平移動することにより、1回の水平移動で一つの型砂S層を形成するようになっている。70は炭酸ガスレーザーの如きレーザ発振器、71はレーザービームLの照射方向を制御するXYスキャナーである。
【0022】
得られた積層造形物Mは、砂粒子を結着している熱硬化性樹脂成分にある程度の未反応部を残すため、通常ではポストキュアとして加熱炉等で所定時間の加熱処理を施すことにより、該樹脂成分を完全硬化させる。
【0023】
かくして得られた積層造形品の上下型1,2と中子3は、図4及び図5に示すように組み付けて鋳型を構成し、湯口4A,4Bよりアルミニウム合金の溶湯20を型空間へ流し込むと共に、押湯口5にも溶湯20を供給し、該溶湯20を冷却硬化させる。この溶湯20の冷却硬化に伴って体積が収縮するが、この収縮による不足分は押湯兼用の湯口4A,4Bと押湯口5に満たされた溶湯20が自重で型空間へ入り込むことによって補充される。かくして、溶湯20の冷却硬化が完了すれば、鋳型を分解させて鋳造品のインテークサージタンクTを取り出す。なお、中子3は振動を与えて砂粒に分解させることにより、該鋳造品の中空部内から簡単に除去できる。
【0024】
上記構成の鋳造用砂型では、上型1の湯口4A,4Bは押湯兼用として上下に長く設定されているが、これら湯口4A,4Bの上部側が本体部10より上方へ突出した縦筒40に構成され、また押湯口5の上部側も同様に凸部50にて構成されることから、これら湯口4A,4B及び押湯口5が本体部10の上面に開口した構造つまり図6で示す従来構造の上型11に比べて本体部10の上下厚さは格段に薄くなり、しかも縦筒40及び凸部50についても湯口4A,4B及び押湯口5の上方へ拡がる空間形態に対応して基部側を細くし、もって肉厚を強度上の必要限度に抑えており、更に上下型1,2共に鋳造品の形状に対応して余剰の領域Zを除いた非矩形の平面外形としている。
【0025】
従って、この鋳造用砂型は、前記従来構成の鋳造用砂型(図6参照)に比較して大幅に軽量化しており、その取り扱いに要する労力及びエネルギーが著しく軽減され、また型製作に用いる型砂の量も少なくて済み、省資源に貢献できる。なお、一般的に砂型は30mm程度の肉厚があれば、充分に鋳造に耐えるとされている。
【0026】
また、この鋳造用砂型は、レーザービームの熱によって結着硬化させた砂の薄層を積層一体化して3次元造形物を得る積層造形法にて製作されるから、その製作において従来のように型砂を充填する型枠ならびに製品の木型が不要であり、湯口4A,4Bや押湯口5が本体部10より突出した形状であるにも関わらず、極めて能率よく短時間で製作可能である。しかも、この積層造形法では、造形品の型抜きが不必要であるから、湯口4A,4Bの縦筒40や押湯口5の凸部50が上方へ拡がった外形であっても、全く支障なく製作可能である。
【0027】
上記実施例では自動車エンジン用のアルミ合金製エアーサージタンクTの鋳造に使用される鋳造用砂型を例示したが、本発明は様々な形態の鋳造品を得るための鋳造用砂型全般に適用できることは言うまでもなく、中子のないものや、3個以上に多分割された砂型部材からなるものにも適用可能である。また、上記実施例の砂型はグラビティ方式の鋳造に用いるものであるが、本発明はロープレッシャー方式の鋳造に用いる砂型にも適用可能である。しかして、この後者の鋳造方式に用いる砂型は、湯口が下面に開口しているため、本発明では上方に開口した押湯口を備えるものが適用対象となる。
【0028】
また、積層造形法では前記のように型抜きが不要であるから、中子を上型又は下型に一体化した砂型や、非分割型つまり内部に型空間を備えた一体物の砂型も製作可能であり、これらにも本発明を適用できる。更に、本発明の鋳造用砂型は、鋳造品の大きさや形状に応じ、湯口及び押湯口の数と配置構成を種々設定できると共に、湯口が押湯を兼用しない構成、押湯兼用の湯口のみで押湯口がない構成も採用可能である。
【0029】
【発明の効果】
請求項1の発明によれば、鋳造用砂型として、上方に開口した湯口の上部が砂型部材の本体部上面より上方へ突出していることから、該湯口が砂型部材の上面に開口した従来構成に比較して格段に軽量であり、特にグラビティ方式の鋳造に用いる砂型の湯口を押湯兼用等のために上下に長く設定する場合には大幅な重量軽減が可能であり、その取り扱いに要する労力及びエネルギーが著しく軽減され、また型製作に用いる型砂の量も減って省資源に貢献できる上、低コストで能率よく製作できるものが提供される。そして、この鋳造用砂型では、上方に開口した湯口の上部が縦筒をなし、この縦筒の頂部の外径が基部の外径よりも大きく設定されていることから、該縦筒全体を必要限度で略一定の肉厚として、砂型部材の重量をより軽減できる。しかも、砂型部材の平面外形が鋳造対象物の形状に対応して余剰部を除いた非矩形をなすことから、該砂型部材がより軽量化されたものとなる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る鋳造用砂型の分解斜視図。
【図2】同鋳造用砂型の積層造形法による製作の初期段階を示す概略縦断側面図。
【図3】同積層造形法による製作の最終段階を示す概略縦断側面図。
【図4】同鋳造用砂型による鋳造状態を示す湯口位置での縦断面図。
【図5】同鋳造状態を示す押湯口位置での縦断面図。
【図6】同鋳造用砂型による鋳造品であるインテークサージタンクの斜視図。
【図7】従来の鋳造用砂型による鋳造状態を示す縦断面図。
【符号の説明】
1 上型(砂型部材)
10 本体部
10a 上面
2 下型
3 中子
4A,4B 湯口
40 縦筒
40a 頂部
40b 基部
5 押湯口
50 凸部
6 エアー抜き孔
60 縦筒
M 積層造形物
L レーザービーム
〜Pn 平行スライスした層
S 型砂
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a casting sand mold used for manufacturing a metal casting such as an aluminum casting.
[0002]
[Prior art and its problems]
In sand mold casting, a wooden mold in the form of a product has been manufactured from the past, a mold in which the wooden mold is placed is filled with mold sand and hardened, and the sand mold obtained by removing the wooden mold is used as a mold, and the inside thereof is used as a mold. In this method, a molten metal is poured into a mold, and after cooling and solidifying, a sand mold is decomposed to take out a casting. In the casting method, a gravity method in which molten metal is injected into the mold from a gate on the upper surface of the mold, and a mold placed on a holding furnace having a pouring port opened upward, and a pressure is applied in the holding furnace. There is a low pressure method in which the molten metal inside is poured from the pouring port to the inside of the mold through the sprue on the lower surface of the mold, but in any case, volume shrinkage accompanying cooling and solidification of the molten metal inside the mold occurs. A feeder is generally provided on the upper surface side of the mold to compensate for the contraction volume. Further, in the mold applied to the gravity method, since the gate is opened upward, the gate is often used also as the feeder.
[0003]
For example, the sand mold shown in FIG. 6 is used for casting the aluminum alloy air surge tank T for an automobile engine shown in FIG. 5 by the gravity method, and the upper mold 11 and the lower mold 12 and the air surge tank T are used. And a core 13 which constitutes the internal space. The gates 11a and 11b provided in the upper mold 11 are also used as a feeder, and are vertically longer and inlet-side in order to secure a molten metal volume as a feeder and obtain a feeder pressure by potential energy. The diameter is set to be increased toward the upper side. 14 is an air vent hole provided in the upper mold 11, and 20 is a poured aluminum alloy. Although not shown, the upper die 11 is provided with a feeder corresponding to the tank component 21 of the air surge tank T separately from the gates 11a and 11b. The hot water also has a form that is expanded upward.
[0004]
[Problems to be solved by the invention]
As described above, in the conventional casting sand mold, the upper and lower thicknesses of the upper mold are increased in order to set the gate and the feeder which also serve as the feeder vertically longer, so that the weight of the upper mold and thus the entire mold is increased. There is a problem that a large amount of labor and energy are required for handling, and the amount of molding sand used for molding is increased.
[0005]
In order to reduce the weight of the mold, it is not impossible to make the gate and riser portions convex and reduce the thickness of the other areas in the vertical direction, but in this case the lid side of the mold to be filled with mold sand Needs to be formed into a special shape with irregularities, and the processing requires time and labor, and the cost of mold production is rather high. Also, in the conventional mold production, it is usual to form the mold for filling the mold sand into a simple box shape from the viewpoint of processing cost, so that the plane outer shape of the mold is rectangular regardless of the shape of the casting object. As a result, unnecessary weight is added to the mold due to unnecessary portions in terms of casting function such as strength, and the mold sand is wasted.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a casting sand mold that can be easily reduced in weight and size, and can be manufactured efficiently at low cost.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a sand mold for casting according to the first aspect of the present invention has a three-dimensional sand mold member 1 provided with gates 4A and 4B opened upward, as indicated by reference numerals in the drawings. Each of the layers P 1 to Pn when the model is sliced in parallel into a plurality of layers is formed of a layered product M in which layers are sequentially formed as a bond-hardened layer by irradiating a laser beam L to the mold sand S layer, and the upper layer is opened above The upper portions of the spouts 4A, 4B are formed into a vertical cylinder and are integrally formed so as to protrude upward from the upper surface 10a of the main body portion 10 of the sand mold member 1 , and the inner space of the spouts 4A, 4B is expanded upward as a feeder. The outer diameter of the top portion of the vertical cylinder 40 is set to be larger than the outer diameter of the base portion, and the sand mold member 1 has a non-rectangular planar outer shape by removing a surplus portion corresponding to the shape of the casting object. It shall be.
[0008]
In the casting sand mold having the above-described configuration, the upper portions of the gates 4A and 4B protrude above the upper surface 10a of the main body 10 of the sand mold member 1. Therefore , the sand mold member is different from the conventional configuration in which the gate is opened on the upper surface of the sand mold member. In 1, the vertical thickness of the main body 10 is reduced by the amount of the protrusion, and the weight is reduced. Thus, in the case of a sand mold applied to the gravity type casting, particularly when the gates 4A and 4B are set to be vertically long so as to serve as a feeder, the weight of the main body 10 can be significantly reduced by the thinning of the main body 10 due to the protrusion. I can do it. The sand mold member 1 is obtained by a lamination molding method in which a thin layer of sand bound and hardened by the heat of a laser beam is laminated and integrated to obtain a three-dimensional molded article. as it is unnecessary to mold to fill the mold sand, even complex shape top sprue 4A, 4 B becomes protrude is very efficiently be manufactured. In addition, the vertical cylinder 40 also expands upward in accordance with the form in which the inner diameter of the sprues 4A and 4B expands upward, so that the entire vertical cylinder 40 has a substantially constant wall thickness as much as necessary. The sand mold member 1 can be further reduced in weight. The setting of the vertical cylinders 40 of the gates 4A and 4B in such a manner that the diameter thereof is increased upward is possible only by adopting the above-described additive manufacturing method which does not require die cutting. Further, the sand mold member 1 is unnecessary in terms of casting function such as strength and the like, and unnecessary portions are removed, so that the weight is reduced accordingly.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a sand mold for casting according to the present invention will be specifically described with reference to the drawings.
[0012]
The casting sand mold shown in FIG. 1 is used for casting the aluminum alloy air surge tank T for an automobile engine shown in FIG. 5 by the gravity method as described above, and includes an upper mold 1 and a lower mold 2. The air surge tank T is composed of a core 3 constituting an internal space. Each of the upper mold 1, the lower mold 2 and the core 3 is manufactured by a layered molding method using a mold sand as a molding material.
[0013]
The air surge tank T to be cast includes a horizontally long open tank component 21 which is connected to a manifold member with a branch pipe (not shown) to form a closed tank, and a J-shaped curved pipe communicating with the center of the tank 21. And a connecting flange 21a at the periphery of the opening of the tank 21 and a square flange 22a at the outer periphery of the distal end of the curved tube 22 for connection to the throttle port of the engine. Further, a reinforcing plate portion 23 connecting between the tank 21 and the curved tube portion 22 is provided.
[0014]
The core 3 has a substantially τ shape in which the tank space 3a and the curved tube space 3b are integrated, corresponding to the inner shape of the air surge tank T, and is a substantially rectangular baseboard extending over the entire width of the tank space 3a. 31 and a short-axis type baseboard 32 extending from the curved pipe space 3b.
[0015]
The upper die 1 is provided with two gates 4A and 4B which are open upward, a triple feeder 5 and an air vent hole 6. The upper portions of the gates 4A, 4B and the air vent hole 6 constitute vertical cylinders 40, 60 projecting upward from the upper surface 10a of the flat main body 10 of the upper die 1, and the triple feed gate 5 is provided. Also forms a horizontally long convex part 50 protruding upward from the upper surface 10a of the main body part 10.
[0016]
As shown in FIG. 4, the inner spaces of the gates 4A and 4B are set to be vertically long and have a diameter that is increased upward as a feeder. Correspondingly, each of the vertical cylinders 40 also has a shape whose diameter is increased upward, and the outer diameter of the top 40a is larger than the outer diameter of the base 40b, so that the entire vertical cylinder 40 has a substantially constant thickness. Have a thickness. Also, the convex portion 50 of the triple feeder 5 also has an outer width at the top that is larger than the outer width at the base, corresponding to the shape of the inner space that widens upward.
[0017]
On the upper surface side of the lower mold 2, a recess 7 that accommodates the lower half of the core 3 and forms a mold space, an arc-shaped recess 8 that forms a runner communicating with the gate 4 </ b> A, and an upper mold Truncated conical fitting projections 9a, 9a for positioning are formed. 7a and 7b in the recess 7 are baseboard receiving portions corresponding to the baseboards 31 and 32 of the core 3, and small recesses 8a and 8a connecting the recess 7 and the arc-shaped recess 8 are provided from the runner to the mold space. I'm coughing. As shown in FIGS. 4 and 5, the lower surface of the upper die 1 is opposed to the recess 7 of the lower die 2 so as to receive the upper half of the core 3 and form a die space. And a fitting recess 9b that fits properly with each fitting projection 9a. The spout 4B communicates with the runner facing the baseboard 32 of the core 3 on the upper mold 1 side, and the three feeders 5 are located at positions corresponding to the tank components 21 of the air surge tank T in the mold space. Is in communication with
[0018]
In addition, the planar outer shapes of the upper mold 1 and the lower mold 2 in the present embodiment are rectangular as shown by the imaginary line in FIG. 1 corresponding to the shape of the curved pipe portion 22 of the intake surge tank T as a casting. It is designed so as to form a non-rectangular shape by previously removing three extra regions Z away from the mold space.
[0019]
The upper mold 1 and lower mold 2 and the core 3 to be manufactured by a lamination molding method of above, when the parallel sliced into many layers P 1 to PN having a thickness of about 150~250μm design models initially on Konpyuta The data of each cross-sectional pattern is created, and this data is input to the controller of the additive manufacturing apparatus, and the sliced layers are automatically converted by the modeling apparatus into the lowermost layer P by the molding material S (see FIGS. 2 and 3). The layers are sequentially formed one by one from one. The mold sand S generally includes a resin-coated sand in which the surface of sand particles is coated with a thermosetting resin component (for example, a mixture of a main resin such as a phenol resin and a hardening agent such as hexamethylenetetramine) as a binder. Used.
[0020]
2 and 3 are schematic longitudinal sectional side views showing an example of the additive manufacturing apparatus. In the additive manufacturing, as shown in FIG. 2, a base plate 43 is placed on an elevating table 42 arranged in a box-shaped modeling frame 41, and the horizontal movement of the recoater 44 cuts the mold sand S by the parallel slice. placed on base thick Supureto 43, it irradiates the laser beam L on the surface of this type sand S layer along section pattern of the bottom layer P 1. As a result, the thermosetting resin component on the particle surface of the mold sand S is melted by the heat of the laser beam L and undergoes a curing reaction, and adjacent sand particles are bound via the cured resin, and the entire irradiation area is integrally formed. first layer of a two-dimensional pattern consisting of a thin layer of the binder cured mold sand S will form a (lowermost layer) P 1. Then the elevating base 42 is lowered by the thickness of the one layer, newly loaded mold sand S in a thickness corresponding to one layer said similarly binder cured layer corresponding to the second layer P 2 is irradiated with a laser beam L Then, in the same manner, the supply of the mold sand S and the irradiation of the laser beam L are repeated by sequentially lowering the elevating table 2 by one layer at a time, so that all the layers in the parallel slice are finally formed as shown in FIG. A laminated object M in which P 1 to P n are laminated and integrated is formed. In FIG. 3, the upper mold 1 is shown as the layered product M.
[0021]
Thus, when the lamination molding is completed, the pace plate 43 is locked by the stopper 41a projecting inside the molding frame 41, the molding frame 41 is removed from the elevating table 42, and the uncured mold sand S is removed. Take out the layered product M. The recoater 44 receives the supply of the mold sand S from the material supply device 47 disposed at both ends of the movement stroke, and horizontally moves while flowing the mold sand S from the slit-like opening 44a at the lower end, so that the recoater 44 moves once. Is formed to form one mold sand S layer. 70 is a laser oscillator such as a carbon dioxide laser, and 71 is an XY scanner for controlling the irradiation direction of the laser beam L.
[0022]
In order to leave a certain amount of unreacted portion in the thermosetting resin component binding the sand particles, the obtained layered product M is usually subjected to a heat treatment for a predetermined period of time in a heating furnace or the like as post cure. Then, the resin component is completely cured.
[0023]
The upper and lower molds 1 and 2 and the core 3 of the laminate molded article thus obtained are assembled as shown in FIGS. 4 and 5 to form a mold, and the molten aluminum alloy 20 is poured into the mold space from the gates 4A and 4B. At the same time, the molten metal 20 is also supplied to the feeder port 5, and the molten metal 20 is cooled and hardened. The volume shrinks due to the cooling and hardening of the molten metal 20, but the shortage due to the shrinkage is replenished by the molten metal 20 filled in the gates 4A and 4B also serving as the riser and the riser 5 entering the mold space by its own weight. You. Thus, when the cooling and hardening of the molten metal 20 is completed, the mold is disassembled and the intake surge tank T of the casting is taken out. The core 3 can be easily removed from the hollow portion of the casting by vibrating and breaking it down into sand particles.
[0024]
In the casting sand mold having the above-described configuration, the gates 4A and 4B of the upper mold 1 are set to be vertically long so as to serve also as a feeder. Also, since the upper side of the feeder 5 is also formed by the convex portion 50, the gates 4A and 4B and the feeder 5 are opened on the upper surface of the main body 10, that is, the conventional structure shown in FIG. The vertical thickness of the main body 10 is much thinner than that of the upper die 11, and the vertical cylinder 40 and the convex portion 50 also correspond to the space form expanding above the gates 4A, 4B and the feeder gate 5 on the base side. The upper and lower dies 1 and 2 both have a non-rectangular planar outer shape excluding an extra region Z corresponding to the shape of the cast product.
[0025]
Accordingly, the casting sand mold is significantly lighter in weight than the conventional casting sand mold (see FIG. 6), and the labor and energy required for handling the casting sand mold are significantly reduced. The amount is small and can contribute to resource saving. Generally, it is said that a sand mold having a thickness of about 30 mm can sufficiently withstand casting.
[0026]
In addition, since this sand mold for casting is manufactured by a lamination molding method of obtaining a three-dimensional molded object by laminating and integrating a thin layer of sand that has been bound and hardened by the heat of a laser beam, a conventional method is used for the production. A mold for filling the mold sand and a wooden mold for the product are not required, and the spouts 4A and 4B and the feeder spout 5 can be manufactured extremely efficiently and in a short time even though they have a shape protruding from the main body 10. In addition, in the additive manufacturing method, since it is not necessary to remove the molded product, even if the vertical cylinders 40 of the gates 4A and 4B and the convex portion 50 of the feeder gate 5 are upwardly expanded, there is no problem at all. Can be manufactured.
[0027]
In the above embodiment, a casting sand mold used for casting an aluminum alloy air surge tank T for an automobile engine is exemplified. However, the present invention can be applied to all casting sand molds for obtaining castings of various forms. Needless to say, the present invention is also applicable to those without a core and those made of a sand mold member divided into three or more pieces. Although the sand mold of the above embodiment is used for gravity casting, the present invention can also be applied to a sand mold used for low pressure casting. The sand mold used in the latter casting method has a sprue opening on the lower surface. Therefore, in the present invention, a sand mold having an upwardly opening sprue is applicable.
[0028]
In addition, since the mold making is unnecessary in the additive manufacturing method as described above, a sand mold in which the core is integrated into the upper mold or the lower mold, or a non-divided mold, that is, an integral sand mold having a mold space inside is also manufactured. It is possible, and the present invention can be applied to these. Furthermore, according to the casting sand mold of the present invention, the number and arrangement of the gate and the feeder can be variously set according to the size and shape of the cast product, and the configuration in which the gate does not also serve as the feeder, and only the feeder and the feeder are used. A configuration without a feeder can also be employed.
[0029]
【The invention's effect】
According to the present invention, as casting sand mold, since the upper opening the hot water inlet upwardly protrudes upward from the body portion upper surface of the sand mold member, prior 該湯port is opened to the upper surface of the sand mold member construction It is much lighter than, especially when the length of a sand mold used for gravity casting is set up and down for dual use as a feeder, etc. In addition, energy is significantly reduced, the amount of mold sand used for mold production is reduced, which contributes to resource saving, and a product that can be produced efficiently at low cost is provided. In this casting sand mold, the upper part of the gate opening upward forms a vertical cylinder, and the outer diameter of the top of the vertical cylinder is set to be larger than the outer diameter of the base. The thickness of the sand mold member can be further reduced by making the thickness substantially constant at the limit. Moreover, since the planar outer shape of the sand mold member is non-rectangular except for the surplus portion corresponding to the shape of the casting object, the sand mold member is further reduced in weight.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a sand mold for casting according to one embodiment of the present invention.
FIG. 2 is a schematic vertical sectional side view showing an initial stage of manufacturing the sand mold for casting by an additive manufacturing method.
FIG. 3 is a schematic vertical sectional side view showing a final stage of production by the additive manufacturing method.
FIG. 4 is a longitudinal sectional view at a gate position showing a casting state by the casting sand mold.
FIG. 5 is a vertical sectional view at the position of the feeder, showing the same casting state.
FIG. 6 is a perspective view of an intake surge tank which is a casting using the same casting sand mold.
FIG. 7 is a longitudinal sectional view showing a casting state using a conventional sand mold for casting.
[Explanation of symbols]
1 upper mold (sand mold member)
DESCRIPTION OF SYMBOLS 10 Main body part 10a Upper surface 2 Lower mold 3 Core 4A, 4B Gate 40 Vertical cylinder 40a Top 40b Base 5 Feeder 50 Convex part 6 Air vent hole 60 Vertical cylinder M Layered object L Laser beam P1-Pn Parallel sliced layer S type sand

Claims (1)

上方に開口した湯口を備える砂型部材が、その三次元モデルを多数層に平行スライスした際の各層を、型砂層へのレーザービームの照射による結着硬化層として順次に積層形成した積層造形物からなり、前記の上方に開口した湯口の上部が縦筒をなして当該砂型部材の本体部上面より上方へ突出状に一体形成され、
この湯口の内空間が押湯兼用として上側へ拡径すると共に、前記縦筒の頂部の外径が基部の外径よりも大きく設定され、
前記砂型部材は、鋳造対象物の形状に対応して余剰部を除くことによって平面外形が非矩形をなす鋳造用砂型。
Sand mold member comprising a hot water outlet which is open upwardly, the layers at the time of parallel slices the three-dimensional model in multiple layers, the laminate shaped article according sequentially laminated as the binder cured layer by irradiation with a laser beam to the type sand made, it is integrally formed on the protruded upper part of the hot water port opening upward of the can form a vertical tube upwardly from the body portion upper surface of the sand mold member,
The inner space of this gate is expanded upward as a feeder, and the outer diameter of the top of the vertical cylinder is set to be larger than the outer diameter of the base,
A sand mold for casting, wherein the sand mold member has a non-rectangular planar outer shape by removing a surplus portion corresponding to the shape of the casting object .
JP2001260697A 2001-08-30 2001-08-30 Sand mold for casting Expired - Fee Related JP3569243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001260697A JP3569243B2 (en) 2001-08-30 2001-08-30 Sand mold for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001260697A JP3569243B2 (en) 2001-08-30 2001-08-30 Sand mold for casting

Publications (2)

Publication Number Publication Date
JP2003071543A JP2003071543A (en) 2003-03-11
JP3569243B2 true JP3569243B2 (en) 2004-09-22

Family

ID=19087859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001260697A Expired - Fee Related JP3569243B2 (en) 2001-08-30 2001-08-30 Sand mold for casting

Country Status (1)

Country Link
JP (1) JP3569243B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101780537B (en) * 2009-12-28 2011-09-07 山东蒙凌工程机械股份有限公司 Method for casting low-alloy cast steel automobile axle housing through V-process technology

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100763474B1 (en) * 2007-06-01 2007-10-04 박창준 Chair with posture correction and traction massage function
CN103949586A (en) * 2014-05-22 2014-07-30 贵阳百德铸造有限公司 Universal bottom mold for pouring precoated sand mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101780537B (en) * 2009-12-28 2011-09-07 山东蒙凌工程机械股份有限公司 Method for casting low-alloy cast steel automobile axle housing through V-process technology

Also Published As

Publication number Publication date
JP2003071543A (en) 2003-03-11

Similar Documents

Publication Publication Date Title
US10661333B2 (en) Casting method using combined 3D printed shell mold and the combined shell mold used in the method
CN105382206B (en) A kind of gear case body casting mold and its forming method
CN101406932B (en) Precision-investment casting method
KR20130099881A (en) Additive fabrication technologies for creating molds for die components
CN107716855B (en) Forming method for sand mold self-adaptive gradient printing
WO2011017864A1 (en) Adaptive production method for mould
JP6440139B2 (en) Manufacturing method of three-dimensional structure
KR102300955B1 (en) A casting mold applied conformal cooling cores
JP2003001368A (en) Method for lamination-shaping and lamination-shaped article
JP3569243B2 (en) Sand mold for casting
EP2764934B1 (en) Method for manufacturing an element of a plurality of casting mold elements and casting method for manufacturing and system for casting a 3-dimensional object
JP4262742B2 (en) template
JP4145539B2 (en) Sand mold for casting
JP2009050917A (en) Gypsum mold
JP2003275846A (en) Sand mold for casting
CN108994251B (en) The casting technique of complex-shaped surface mould electric machine casing
JP3644422B2 (en) Method for cooling mold and casting
US8602083B2 (en) Method of composite casting of a one-piece cast tool
JP6607557B2 (en) Additive molding mold and injection molding method using the mold
WO2016089730A1 (en) System and method for manufacturing railcar yokes
CN112191803A (en) Manufacturing method of large cylindrical steel ingot die casting
KR20210120371A (en) method for cooling cores of 3D printing using RCS material
JP2002346696A (en) Molding flask
US20080105398A1 (en) Article For Multiple Core Stacking And Method Thereof
CN109228080A (en) A kind of two-plate mold of the moulding by casting for layer high molecule composite sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees