JP2003275846A - Sand mold for casting - Google Patents

Sand mold for casting

Info

Publication number
JP2003275846A
JP2003275846A JP2002077804A JP2002077804A JP2003275846A JP 2003275846 A JP2003275846 A JP 2003275846A JP 2002077804 A JP2002077804 A JP 2002077804A JP 2002077804 A JP2002077804 A JP 2002077804A JP 2003275846 A JP2003275846 A JP 2003275846A
Authority
JP
Japan
Prior art keywords
mold
sand
casting
sand mold
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002077804A
Other languages
Japanese (ja)
Inventor
Hiroshi Uesugi
浩 植杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAKIN KK
Nakakin Co Ltd
Original Assignee
NAKAKIN KK
Nakakin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAKIN KK, Nakakin Co Ltd filed Critical NAKAKIN KK
Priority to JP2002077804A priority Critical patent/JP2003275846A/en
Publication of JP2003275846A publication Critical patent/JP2003275846A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sand mold for casting which has light weight and obtains a cast product having high precision of the shape and the dimension and can efficiently manufacture in small consumption of the molding sand at a low cost. <P>SOLUTION: At least one of sand mold members 1-3 is composed of a laminated molding material laminatedly formed in order as binding hardened layers by irradiating the molding sand layer with laser beam into each layer when a three-dimensional model is sliced in parallel into plurality of layers. Then, hollow parts 10, 20A, 20C, 30, having non-pouring spaces in the, sand mold members 1-3, are formed and gas venting holes communicating with the outer part of the mold from the hollow parts 10, 20A, 20C, 30, are arranged. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアルミ鋳造品等の金
属鋳造品の製造に用いる鋳造用砂型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sand mold for casting used for producing metal castings such as aluminum castings.

【0002】[0002]

【従来技術とその課題】砂型鋳造においては、旧来よ
り、製品形態の木型を製作し、この木型を配置した型枠
内に型砂を充填して硬化させ、該木型を外して得られる
砂型を鋳型とし、その内部に金属溶湯を注入し、冷却固
化後に砂型を分解して鋳造品を取り出すという手法が採
用されている。しかして、鋳造方式には、鋳型上面の湯
口から溶湯を型内部へ注入するグラビティ方式と、上方
に開口した注湯口を有する保持炉の上に鋳型を載置し、
この保持炉内に圧力を加えることによって内部の溶湯を
前記注湯口から鋳型下面の湯口を通して型内部へ注入す
るロープレッシャー方式とがあるが、いずれにおいても
型内部での溶湯の冷却凝固に伴う体積収縮を生じるた
め、この収縮体積分を補うために押湯が一般的に設けら
れる。また、グラビティ方式に適用する鋳型では、湯口
が上方に開口していることから、該湯口についても押湯
を兼用させる場合が多い。
2. Description of the Related Art In sand mold casting, conventionally, a product type wooden mold is manufactured, the mold sand in which the wooden mold is arranged is filled with mold sand and hardened, and the wooden mold is removed. A method has been adopted in which a sand mold is used as a mold, a molten metal is poured into the mold, and after cooling and solidification, the sand mold is disassembled and a cast product is taken out. Then, in the casting method, the gravity method of injecting the molten metal into the inside of the mold from the gate on the upper surface of the mold, and placing the mold on a holding furnace having a pouring port opened above,
There is a low pressure system in which the molten metal inside is poured into the mold from the pouring port through the pouring port on the lower surface of the mold by applying pressure to this holding furnace, but in any case, the volume due to the cooling and solidification of the molten metal inside the mold Because of contraction, risers are commonly provided to supplement this contraction volume. Further, in the mold applied to the gravity method, since the sprue is opened upward, the sprue is often used also as the feeder.

【0003】例えば、図10に示す砂型は、図9で示す
自動車エンジン用のアルミ合金製エアーサージタンクT
のグラビティ方式による鋳造に使用されるものであり、
上型61及び下型62と、エアーサージタンクTの内部
空間を構成する中子63とからなっている。しかして、
上型61に設けられた湯口61a,61bは、押湯兼用
であり、押湯としての溶湯体積の確保と位置エネルギー
による押湯圧を得るために、上下に長く、且つ入口側つ
まり上側へ拡径した形態に設定されている。64は上型
61に設けられたエアー抜き孔、ALは注湯されたアル
ミ合金である。なお、図示を省略しているが、この場合
の上型61には、湯口61a,61bとは別に、エアー
サージタンクTのタンク構成部51に対応して押湯が設
けられており、この押湯も上側へ拡径した形態をなして
いる。
For example, the sand mold shown in FIG. 10 is an aluminum alloy air surge tank T for an automobile engine shown in FIG.
It is used for casting by the gravity method of
It is composed of an upper mold 61 and a lower mold 62, and a core 63 forming an internal space of the air surge tank T. Then,
The gates 61a and 61b provided on the upper die 61 are also used as feeders, and are long in the vertical direction and expand to the inlet side, that is, the upper side in order to secure the molten metal volume as the feeder and to obtain the feeder pressure by the potential energy. It is set in a diametrical form. Reference numeral 64 is an air vent hole provided in the upper mold 61, and AL is a poured aluminum alloy. Although not shown, the upper die 61 in this case is provided with a feeder corresponding to the tank constituent portion 51 of the air surge tank T, in addition to the sprues 61a and 61b. The hot water also has a shape that expands to the upper side.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来より鋳
造用砂型は、木型から製作する際の加工コスト面等よ
り、外形を鋳造対象物の形状に関係なく単純な矩形箱型
にするのが一般的であるが、このために強度等の鋳造機
能上からは不必要な肉部が多く、それだけ重量が大きく
なって取り扱いに多大な労力及びエネルギーを要すると
共に、型製作に用いる型砂の量も多くなるという問題が
あった。とりわけ、押湯を兼用する湯口や押湯を上下に
長く設定した上型では、上下厚みが大きくなるから、重
量及び型砂消費量が増大することになる。
By the way, conventionally, the sand mold for casting has a simple rectangular box shape irrespective of the shape of the object to be cast, in view of the processing cost when manufacturing it from a wooden mold. Although it is general, because of this, there are many unnecessary meat parts from the viewpoint of casting functions such as strength, the weight is so large that it requires a great deal of labor and energy for handling, and the amount of mold sand used for mold manufacturing is also large. There was a problem that it would increase. In particular, in the case of a spout that also serves as a feeder and an upper die in which the feeder is set to be long in the vertical direction, the vertical thickness becomes large, so that the weight and the sand consumption of the mold increase.

【0005】一方、鋳造においては、注湯時の鋳型の歪
みにより、鋳型が割れたり、鋳造品の形状及び寸法精度
が低下することから、この歪みを抑えることが肝要であ
るが、鋳型全体の熱容量が大きいほど、注湯時の注湯空
間近傍と離れた部位との温度差が大きくなるため、熱膨
張度合の違いによる歪みが発生し易くなる。特に中子を
用いた鋳造では、例えば太い部分と細い部分との径差が
大きい中子や、前記エアーサージタンクTの鋳造に用い
る中子63のように体積の大きい塊状部(タンク構成
部)に軸状部(管構成部)が繋がったもの等、中子が部
位による熱容量の差の大きい形態である場合、中子自体
の破損や鋳造品の肉厚の不均一化を招き易いという難点
があった。
On the other hand, in casting, distortion of the casting mold during pouring may cause cracking of the casting mold or deterioration of the shape and dimensional accuracy of the cast product. The larger the heat capacity, the larger the temperature difference between the vicinity of the pouring space and the distant portion at the time of pouring, so that distortion due to the difference in the degree of thermal expansion easily occurs. Particularly in casting using a core, for example, a core having a large diameter difference between a thick portion and a thin portion, or a bulky portion (tank constituent portion) having a large volume such as the core 63 used for casting the air surge tank T. When the core has a large difference in heat capacity depending on the part, such as the one in which the shaft-shaped part (tube structure part) is connected to the core, it is easy to cause damage to the core itself and uneven thickness of the cast product. was there.

【0006】本発明は、上述の情況に鑑み、鋳造用砂型
として、軽量化が容易であり、且つ形状及び寸法精度の
高い鋳造品が得られ、しかも型砂消費量が少なく低コス
トで能率よく製作できるものを提供することを目的とし
ている。
[0006] In view of the above situation, the present invention is a casting sand mold, which is easy to reduce in weight, can obtain a casting product with high shape and dimensional accuracy, and can be manufactured efficiently at low cost with low sand consumption. It is intended to provide you with what you can.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明に係る鋳造用砂型は、図面の参照符
号を付して示せば、少なくとも一つの砂型部材1〜3
が、その三次元モデルを多数層に平行スライスした際の
各層を、型砂S層へのレーザービームLの照射による結
着硬化層P1 〜Pnとして順次に積層形成した積層造形
物Mからなり、この砂型部材1〜3に非注湯空間となる
中空部10,20A〜20C,30が形成されると共
に、、該中空部10,20A〜20C,30より鋳型外
部へ通じる通気孔4,5が設けられてなる構成としてい
る。
In order to achieve the above object, a sand mold for casting according to the invention of claim 1 is provided with at least one sand mold member 1 to 3 if indicated by reference numerals in the drawings.
However, each layer when the three-dimensional model is sliced in parallel into a number of layers is formed by a layered product M which is sequentially layered as binding hardening layers P 1 to Pn by irradiating the mold sand S layer with the laser beam L, Hollow portions 10, 20A to 20C, 30 serving as non-pouring spaces are formed in the sand mold members 1 to 3, and vent holes 4 and 5 communicating from the hollow portions 10, 20A to 20C, 30 to the outside of the mold are formed. It is configured to be provided.

【0008】上記構成の鋳造用砂型では、砂型部材1〜
3に中空部10,20A〜20C,30を有することか
ら、それだけ軽量になると共に型砂消費量も低減し、ま
た熱容量の減少によって注湯時の砂型部材1〜3の全体
としての温度差が小さくなるため、歪みが発生しにくく
なる。しかして、中空部10,20A〜20C,30内
の空気は通気孔4,5を介して出入り可能であるから、
注湯前後の温度変化に伴う膨張・収縮による鋳型への影
響はない。また、砂型部材1〜3は、レーザービームL
の熱によって結着硬化させた砂の薄層を積層一体化した
3次元造形物であるから、その製作時に中空部10,2
0A〜20C,30を自在に設定できると共に、造形後
の中空部10,20A〜20C,30を満たしている未
硬化砂Sを通気孔4から容易に排出除去できる。
In the sand mold for casting having the above construction, the sand mold members 1 to
Since 3 has hollow portions 10, 20A to 20C and 30, the weight of the sand mold member is reduced and the consumption of the mold sand is reduced, and the temperature difference of the entire sand mold members 1 to 3 at the time of pouring is small due to the reduction of the heat capacity. Therefore, distortion is less likely to occur. Then, since the air in the hollow portions 10, 20A to 20C, 30 can enter and exit through the ventilation holes 4, 5,
There is no effect on the mold due to expansion and contraction due to temperature changes before and after pouring. Further, the sand mold members 1 to 3 are the laser beams L.
Since it is a three-dimensional model in which thin layers of sand that have been bound and hardened by the heat of are laminated and integrated, the hollow parts 10, 2
It is possible to freely set 0A to 20C, 30 and easily discharge and remove the uncured sand S filling the hollow portions 10, 20A to 20C, 30 after modeling from the ventilation hole 4.

【0009】請求項2の発明は、上記請求項1の鋳造用
砂型において、前記中空部10,20A〜20C,30
の周囲の肉厚が20mm以上に設定されてなる構成とし
ている。この場合、砂型部材1〜3は、中空部10,2
0A〜20C,30を有していても、鋳型としての充分
な強度が確保される。
According to a second aspect of the present invention, in the casting sand mold of the first aspect, the hollow portions 10, 20A to 20C, 30 are provided.
The thickness of the circumference is set to 20 mm or more. In this case, the sand mold members 1 to 3 are hollow parts 10 and 2
Even if it has 0A to 20C and 30, sufficient strength as a mold is secured.

【0010】請求項3の発明は、上記請求項1又は2の
鋳造用砂型において、前記砂型部材が上方に開口した湯
口6A,6B又は/及び押湯口7を備える上型1である
ものとしている。この場合、上型1は、湯口6A,6B
又は/及び押湯口7の形成によって上下厚みが大きくな
らざるを得ないが、中空部10によって重量を少なくで
きる。
According to a third aspect of the present invention, in the sand mold for casting according to the first or second aspect, the sand mold member is an upper mold 1 having gates 6A, 6B or / and feeders 7 which are open upward. . In this case, the upper mold 1 has the sprues 6A and 6B.
Or / and the vertical thickness must be increased by forming the feeder port 7, but the hollow portion 10 can reduce the weight.

【0011】請求項4の発明は、上記請求項1又は2の
鋳造用砂型において、前記砂型部材が中子3である構成
としている。この場合、中子3は、例えば太い部分と細
い部分との径差が大きい軸形や、体積の大きい塊状部に
軸状部が繋がった形など、外形的には部位による大きさ
が異なる形態であっても、中空部30によって全体の肉
厚を平均化できるから、部位による熱容量の差が小さく
なり、注湯時に全体が均一な温度になるために歪みを生
じない。
According to a fourth aspect of the invention, in the sand mold for casting according to the first or second aspect, the sand mold member is the core 3. In this case, the core 3 has a shape in which the size varies depending on the parts, such as a shaft shape in which the diameter difference between the thick portion and the thin portion is large, or a shape in which the shaft portion is connected to a large volume lump portion. However, since the entire wall thickness can be averaged by the hollow portion 30, the difference in heat capacity between the portions becomes small, and the entire portion has a uniform temperature during pouring, so that no distortion occurs.

【0012】[0012]

【発明の実施の形態】以下、本発明に係る鋳造用砂型の
一実施例について、図面を参照して具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a sand mold for casting according to the present invention will be specifically described below with reference to the drawings.

【0013】図1に示す鋳造用砂型は、既述した図9で
示す自動車エンジン用のアルミ合金製エアーサージタン
クTのグラビティ方式による鋳造に使用されるものであ
り、上型1及び下型2と、該エアーサージタンクTの内
部空間を構成する中子3とからなっている。そして、こ
れら上型1及び下型2と中子3は、いずれも型砂を造形
材料とした積層造形法にて製作されている。
The casting sand mold shown in FIG. 1 is used for casting the aluminum alloy air surge tank T for an automobile engine shown in FIG. 9 by the gravity method, and includes an upper mold 1 and a lower mold 2. And a core 3 forming an internal space of the air surge tank T. The upper mold 1, the lower mold 2, and the core 3 are all manufactured by a layered molding method using molding sand as a molding material.

【0014】鋳造対象のエアーサージタンクTは、図示
省略した分岐管付きマニホールド部材に連結して密閉タ
ンク部とする横長の開放したタンク構成部51と、この
タンク51の中央部に連通するJ字形の曲管部52とか
らなり、タンク部51の開口周縁には連結用突縁部51
aを有すると共に、曲管部52の先端外周にはエンジン
のスロットルポートへ接続するための角形フランジ部5
2aを有し、またタンク51と曲管部52との間を繋ぐ
補強板部53を備えている。
The air surge tank T to be cast is a J-shaped tank which communicates with the central portion of the tank 51 and a horizontally long open tank component 51 which is connected to a manifold member with a branch pipe (not shown) to form a closed tank. And a projecting edge portion 51 for connection on the periphery of the opening of the tank portion 51.
and a square flange portion 5 for connecting to the throttle port of the engine on the outer periphery of the tip of the curved pipe portion 52.
2a, and a reinforcing plate portion 53 that connects the tank 51 and the curved pipe portion 52.

【0015】中子3は、このエアーサージタンクTの内
側形状に対応して、タンク空間形成部3aと曲管空間形
成部3bが一体化した略τ形をなし、タンク空間形成部
3aの全幅にわたる略長方形の巾木31と、曲管空間形
成部3bより延出する短軸型の巾木32とを有するが、
図4に示すように内部が中空部30になっており、この
中空部30によって全体が略等しい肉厚に設定されてい
る。そして、巾木32の端面には、該中空部30に通じ
る通気口30aが設けられている。
Corresponding to the inner shape of the air surge tank T, the core 3 has a substantially τ shape in which the tank space forming portion 3a and the curved pipe space forming portion 3b are integrated, and the entire width of the tank space forming portion 3a. It has a substantially rectangular baseboard 31 and a short-axis type baseboard 32 extending from the curved pipe space forming portion 3b.
As shown in FIG. 4, the inside is a hollow portion 30, and the hollow portion 30 sets the entire thickness to a substantially equal thickness. A vent 30a communicating with the hollow portion 30 is provided on the end surface of the skirting board 32.

【0016】上型1は、いずれも上方に開放した2つの
湯口6A,6Bと3連の押湯口7及びエアー抜き孔8を
備える共に、図7,8に示すように、下面側に、中子3
の上半部を収めて且つ型空間を構成する凹所11と、中
子3の巾木31,32に対応する巾木受け部11a、1
1bと、下型2の各嵌合用突起23(図1,図8参照)
に適嵌する嵌合用凹部12とを有している。なお、湯口
6A,6Bの内空間は押湯兼用として上下に長く且つ上
側へ拡径した形態に設定されており、湯口6Aは下型2
の油道をなす弧状凹所22(図1,図7参照)に連通す
ると共に、湯口6Bは組込み時の中子3の巾木32に面
する湯道に連通している。また、3連の押湯口7は、上
側へ幅広となり、型空間におけるエアーサージタンクT
のタンク構成部51に対応する位置に連通している。
The upper mold 1 is provided with two sprue gates 6A and 6B which are open upward, three riser spouts 7 and an air vent hole 8, and, as shown in FIGS. Child 3
The recess 11 that houses the upper half of the core and constitutes the mold space, and the baseboard receiving portions 11a and 1a corresponding to the baseboards 31 and 32 of the core 3.
1b and each fitting protrusion 23 of the lower mold 2 (see FIGS. 1 and 8)
It has a fitting recess 12 that fits properly. The inner spaces of the sprues 6A and 6B are set to have a shape that is long in the vertical direction and has a diameter that is expanded upward so as to also serve as a feeder.
And the sprue 6B communicates with the runner facing the skirting board 32 of the core 3 when assembled. Further, the triple riser gates 7 are widened to the upper side, and the air surge tank T in the mold space
And communicates with a position corresponding to the tank constituent part 51.

【0017】しかして、図2及び図7,8に示すよう
に、上型1の内部には中空部10が形成されている。こ
の中空部10は、型空間となる凹所11及び巾木受け部
11a,11b、湯口6A,6B、押湯口7、エアー抜
き孔8に対し、肉部13によって隔絶した非注湯空間を
構成しており、周壁部1aの複数箇所に設けた通気孔4
によって型外部と連通している。
Therefore, as shown in FIGS. 2 and 7 and 8, a hollow portion 10 is formed inside the upper mold 1. The hollow portion 10 constitutes a non-pouring space separated by a meat portion 13 with respect to a recess 11 serving as a mold space, baseboard receiving portions 11a and 11b, sprues 6A and 6B, riser spout 7, and air vent hole 8. And the ventilation holes 4 provided at a plurality of locations on the peripheral wall portion 1a.
Communicates with the outside of the mold.

【0018】下型2は、上面側に、中子3の下半部を収
めて且つ型空間を構成する凹所21、中子3の巾木3
1,32に対応する巾木受け部21a,21b、湯口7
Aに連通する湯道を構成する弧状凹所22、上型1との
位置決めを行うための截頭円錐形の嵌合用突起23,2
3、凹所21と弧状凹所22との間を結ぶせきとなる小
凹部24,24、巾木受け部21bの端面から型周縁に
至る溝部25が形成されている。
The lower mold 2 has, on the upper surface thereof, a recess 21 for accommodating the lower half of the core 3 and forming a mold space, and a baseboard 3 of the core 3.
Baseboard receiving portions 21a and 21b corresponding to 1 and 32, the sprue 7
The arc-shaped recess 22 that constitutes the runner communicating with A, and the truncated conical projections 23 and 2 for positioning with the upper mold 1
3, small recesses 24, 24 that serve as a weir connecting the recess 21 and the arc-shaped recess 22, and a groove 25 extending from the end surface of the skirting board receiving portion 21b to the mold peripheral edge are formed.

【0019】また、図3及び図7,8に示すように、下
型2の内部には、凹所21及び巾木受け部21a,21
bと弧状凹所22の形成部分を外れた3つの領域に、上
型1の中空部10と同様に非注湯空間となる中空部20
A,20B,20Cが形成されている。しかして、これ
ら中空部20A,20B,20Cは、それぞれ周壁部2
aに設けた通気孔4によって型外部と連通している。
Further, as shown in FIGS. 3 and 7 and 8, inside the lower mold 2, a recess 21 and baseboard receiving portions 21a, 21 are provided.
The hollow portion 20 serving as a non-pouring space, like the hollow portion 10 of the upper mold 1, is provided in three regions outside the portion where b and the arcuate recess 22 are formed.
A, 20B and 20C are formed. Then, these hollow portions 20A, 20B and 20C are respectively provided with the peripheral wall portion 2
The vent hole 4 provided in a communicates with the outside of the mold.

【0020】上型1及び下型2と中子3を前記の積層造
形法にて製作するには、まずコンピュター上で設計モデ
ルを厚さ150〜250μm程度の多数層P1 〜Pnに
平行スライスした時の各断面パターンのデータを作成
し、このデータを積層造形装置のコントローラーに入力
し、該造形装置によって自動的に前記のスライスした各
層を造形材料の型砂S(図2,3参照)によって最下層
1 から順次一層ずつ積層形成する。なお、この型砂S
には、一般的に砂粒子の表面にバインダーとして熱硬化
性樹脂成分(例えばフェノール樹脂の如き主剤樹脂とヘ
キサメチレンテトラミンの如き硬化剤との混合物)を被
覆したレジンコーテッドサンドが用いられる。
In order to manufacture the upper mold 1 and the lower mold 2 and the core 3 by the above-mentioned additive manufacturing method, first, a design model is sliced in parallel on a computer into a number of layers P 1 to Pn having a thickness of 150 to 250 μm. Data of each cross-section pattern at the time of doing is created, this data is input to the controller of the additive manufacturing apparatus, and the sliced layers are automatically generated by the modeling apparatus by the molding sand S (see FIGS. 2 and 3) of the molding material. Layers are formed one by one from the bottom layer P 1 . In addition, this mold sand S
In general, a resin coated sand in which the surface of sand particles is coated with a thermosetting resin component (for example, a mixture of a main resin such as phenol resin and a curing agent such as hexamethylenetetramine) as a binder is used.

【0021】図2及び図3は積層造形装置の一例を示す
概略縦断側面図である。積層造形は、図2に示すよう
に、箱型の造形枠41内に配置した昇降台42上にべー
スプレート43を載置し、リコーター44の水平移動に
よって型砂Sを前記平行スライスした一層分の厚みでべ
ースプレート43上に載せ、この型砂S層の表面にレー
ザービームLを最下層P1 の断面パターンに沿って照射
する。これにより、型砂Sの粒子表面の熱硬化性樹脂成
分がレーザービームLの熱によって溶融して硬化反応
し、隣接する砂粒子同士が硬化した樹脂を介して結着
し、照射域全体が一体に結着硬化した型砂Sの薄層より
なる2次元パターンの第一層(最下層)P1 を形成する
ことになる。次いで昇降台42を前記一層分の厚みだけ
下降させ、新たに型砂Sを該一層分に相当する厚みで載
せ、同様にレーザービームLを照射して第二層P2 に対
応する結着硬化層を形成し、以降同様にして順次一層分
ずつ昇降台2を下降させて型砂Sの供給とレーザービー
ムLの照射を繰り返すことにより、最終的に図6に示す
ように前記平行スライスした全ての層P1 〜Pn を積層
一体化した積層造形物Mを形成する。なお、図6では積
層造形物Mとして上型1を示した。
2 and 3 are schematic vertical cross-sectional side views showing an example of the additive manufacturing apparatus. In the layered modeling, as shown in FIG. 2, a base plate 43 is placed on an elevating table 42 arranged in a box-shaped modeling frame 41, and a horizontal movement of a recoater 44 causes one layer of the mold sand S to be parallel sliced. It is placed on the base plate 43 with a thickness, and the surface of this mold sand S layer is irradiated with the laser beam L along the sectional pattern of the lowermost layer P 1 . As a result, the thermosetting resin component on the particle surface of the mold sand S is melted by the heat of the laser beam L and undergoes a hardening reaction, and adjacent sand particles are bound to each other through the hardened resin, and the entire irradiation area is integrated. A first layer (bottom layer) P 1 having a two-dimensional pattern formed of a thin layer of the binding and hardening mold sand S is formed. Then, the elevating table 42 is lowered by the thickness of the one layer, and the mold sand S is newly placed with a thickness corresponding to the one layer, and the laser beam L is irradiated in the same manner to bind and harden the layer corresponding to the second layer P 2. After that, by successively lowering the elevating table 2 one layer at a time and repeating the supply of the mold sand S and the irradiation of the laser beam L in the same manner, all the layers sliced in parallel are finally obtained as shown in FIG. A layered product M in which P 1 to P n are laminated and integrated is formed. In FIG. 6, the upper mold 1 is shown as the layered product M.

【0022】かくして積層造形が終了すれば、造形枠4
1ごと昇降台42から取り外し、未硬化の型砂Sを除去
して形成された積層造形物Mを取り出す。このとき、上
型1の中空部10、下型2の中空部20A〜20C、中
子3の中空部30には、いずれも未硬化の型砂Sが充填
しているが、この未硬化の型砂Sは非常に流動性の高い
ものであるから、上下型1,2では通気孔4から、また
中子3では通気口30aから流出させて除去できる。な
お、リコーター44は、その移動ストロークの両端にお
いて上方に配置した材料供給装置47より型砂Sの供給
を受け、下端のスリット状開口部44aより型砂Sを流
出させながら水平移動することにより、1回の水平移動
で一つの型砂S層を形成するようになっている。70は
炭酸ガスレーザーの如きレーザ発振器、71はレーザー
ビームLの照射方向を制御するXYスキャナーである。
When the layered molding is completed in this way, the molding frame 4
The whole one is removed from the lift table 42, and the uncured mold sand S is removed to take out the layered product M formed. At this time, the hollow part 10 of the upper mold 1, the hollow parts 20A to 20C of the lower mold 2, and the hollow part 30 of the core 3 are all filled with uncured mold sand S. Since S has a very high fluidity, it can be removed by flowing it out from the ventilation hole 4 in the upper and lower molds 1 and 2, and from the ventilation hole 30a in the core 3. The recoater 44 receives the mold sand S from the material supply device 47 arranged at both ends of the moving stroke, and horizontally moves while allowing the mold sand S to flow out from the slit-shaped opening 44a at the lower end. One mold sand S layer is formed by horizontal movement. Reference numeral 70 is a laser oscillator such as a carbon dioxide gas laser, and 71 is an XY scanner for controlling the irradiation direction of the laser beam L.

【0023】得られた積層造形物Mは、砂粒子を結着し
ている熱硬化性樹脂成分にある程度の未反応部を残して
強度的に弱いため、通常では、まずガスバーナーで表面
を炙って表層部を硬くした上で、ポストキュアとして加
熱炉等で所定時間の加熱処理を施すことにより、該樹脂
成分を完全硬化させる。
The obtained layered product M is weak in strength, leaving some unreacted parts in the thermosetting resin component binding the sand particles, and therefore the surface is usually first rubbed with a gas burner. Then, the surface layer portion is hardened, and the resin component is completely cured by performing a post-cure heat treatment in a heating furnace or the like for a predetermined time.

【0024】かくして得られた積層造形品の上下型1,
2と中子3は、図7及び図8に示すように組み付けて鋳
型を構成し、湯口6A,6Bよりアルミニウム合金の溶
湯ALを型空間へ流し込むと共に、押湯口7にも溶湯A
Lを供給し、該溶湯ALを冷却硬化させる。なお、図7
に示すように、下型2の上面に設けた溝部25は、内端
が組み付けた中子3の通気口30aに臨んでおり、上型
1の嵌合によって中子3の中空部30から鋳型外部へ通
じる通気孔5を構成する。しかして、溶湯ALの注湯に
より、上型1の中空部10内、下型2の中空部20A〜
20C内、中子3の中空部30内の空気が昇温して膨張
するが、この膨張に伴う体積増加分は通気孔4,5から
鋳型外へ排出され、また冷却に伴う体積減少分も通気孔
4,5からの外気の流入によって補われることになり、
中空部10、20A〜20C、30の内圧変動で鋳型が
破損するような懸念はない。
The upper and lower molds 1 of the layered product thus obtained
The core 2 and the core 3 are assembled as shown in FIGS. 7 and 8 to form a mold, and the molten metal AL of the aluminum alloy is poured into the mold space through the gates 6A and 6B, and the molten metal A is also supplied to the feeder port 7.
L is supplied and the molten metal AL is cooled and hardened. Note that FIG.
As shown in FIG. 3, the groove portion 25 provided on the upper surface of the lower mold 2 faces the ventilation hole 30a of the core 3 whose inner end is assembled, and when the upper mold 1 is fitted, the groove 25 is removed from the hollow portion 30 of the core 3. A ventilation hole 5 communicating with the outside is formed. Then, by pouring the molten metal AL, the inside of the hollow portion 10 of the upper mold 1 and the hollow portions 20A of the lower mold 2
The air in the hollow portion 30 of the core 3 in 20C rises in temperature and expands. The volume increase due to this expansion is discharged from the vent holes 4 and 5 to the outside of the mold, and the volume decrease due to cooling is also increased. It will be supplemented by the inflow of outside air from the vent holes 4 and 5,
There is no concern that the mold will be damaged by the internal pressure fluctuations of the hollow portions 10, 20A to 20C, 30.

【0025】なお、溶湯ALは冷却硬化に伴って体積が
収縮するが、この収縮による不足分は押湯兼用の湯口6
A,6Bと押湯口7に満たされた溶湯ALが自重で型空
間へ入り込むことによって補充される。かくして、溶湯
ALの冷却硬化が完了すれば、鋳型を分解させて鋳造品
のインテークサージタンクTを取り出す。なお、中子3
は振動を与えて砂粒に分解させることにより、該鋳造品
の中空部内から簡単に除去できる。
The molten metal AL shrinks in volume as it cools and hardens.
A, 6B and the molten metal AL filled in the feeder 7 are replenished by entering into the mold space by their own weight. Thus, when the cooling and hardening of the molten metal AL is completed, the mold is disassembled and the intake surge tank T of the cast product is taken out. In addition, core 3
Can be easily removed from the hollow portion of the cast product by applying vibration to decompose it into sand particles.

【0026】上記構成の鋳造用砂型にあっては、上下型
1,2及び中子3がいずれも中空部10、20A〜20
C、30を有することから、見掛けの大きさの割りには
非常に軽量であり、その取り扱いに要する労力及びエネ
ルギーが著しく軽減される上、上下型1,2及び中子3
は熱容量の減少によって注湯時の全体としての温度差が
小さくなるため、歪みが発生しにくくなる。とりわけ、
中子3は、体積の大きいタンク空間形成部3aに太さの
変化する曲がり軸状の管空間形成部3bが一体化した形
態であり、中実の場合には顕著な歪みを生じ易いが、中
空部30によって全体の肉厚が平均化しており、部位に
よる熱容量の差が殆どないから、注湯時に全体が均一な
温度になるために歪みを生じない。従って、得られる鋳
造品のインテークサージタンクTは、タンク51及び曲
管部52の肉厚が均一で形状及び寸法精度の高いものと
なり、また注湯時の歪みに起因した上下型1,2及び中
子3の割れも生じない。
In the sand mold for casting having the above construction, the upper and lower molds 1 and 2 and the core 3 are all hollow portions 10 and 20A to 20.
Since it has C and 30, it is extremely light in weight for its apparent size, and the labor and energy required for its handling are significantly reduced, and the upper and lower molds 1, 2 and the core 3
Since the decrease in the heat capacity reduces the overall temperature difference during pouring, distortion is less likely to occur. Above all,
The core 3 has a shape in which a tube space forming portion 3b having a curved shaft shape of varying thickness is integrated with a tank space forming portion 3a having a large volume. Since the entire wall thickness is averaged by the hollow portion 30 and there is almost no difference in heat capacity between the portions, the whole is brought to a uniform temperature during pouring, so that no distortion occurs. Therefore, the intake surge tank T of the obtained cast product has a uniform wall thickness of the tank 51 and the curved pipe portion 52 and has high shape and dimensional accuracy, and the upper and lower molds 1, 2 and 3 due to distortion at the time of pouring. The core 3 does not crack.

【0027】一方、中空部10、20A〜20C、30
から排除した型砂Sは造形に再利用できるから、鋳型製
作に要する型砂消費量も少なくなり、それだけ材料コス
トが低減されると共に、省資源に貢献できる。また、こ
の鋳造用砂型は、レーザービームの熱によって結着硬化
させた砂の薄層を積層一体化して3次元造形物を得る積
層造形法にて製作されるから、その製作において従来の
ように型砂を充填する型枠ならびに製品の木型が不要で
あり、極めて能率よく短時間で製作可能であり、しかも
中空部10、20A〜20C、30の分だけレーザービ
ームLにて硬化させる面積が減少し、それだけ各硬化層
の形成に要する時間が短くなるため、積層造形としても
製造能率が向上する。
On the other hand, hollow portions 10, 20A to 20C, 30
Since the mold sand S removed from the above can be reused for molding, the mold sand consumption required for the mold production is reduced, the material cost is reduced accordingly, and resource saving can be contributed. In addition, since this sand mold for casting is manufactured by a layered manufacturing method in which thin layers of sand that have been binding and hardened by the heat of a laser beam are laminated and integrated to obtain a three-dimensional modeled object, the conventional manufacturing method is used. A mold for filling with mold sand and a wooden mold for the product are not required, and it can be manufactured extremely efficiently in a short time, and the area to be hardened by the laser beam L is reduced by the amount of the hollow portions 10, 20A to 20C, 30. However, since the time required to form each cured layer is shortened by that much, the manufacturing efficiency is improved even in the case of additive manufacturing.

【0028】上記実施例では自動車エンジン用のアルミ
合金製エアーサージタンクTの鋳造に使用される鋳造用
砂型を例示したが、本発明は様々な形態の鋳造品を得る
ための鋳造用砂型全般に適用できることは言うまでもな
い。従って、各砂型部材における中空部の形状や大き
さ、通気孔の位置は、型空間(注湯空間)の形態、当該
砂型部材の厚さ、必要強度等に応じて適宜設定すればよ
い。しかして、鋳造用砂型としての一般的な強度を確保
するには、中空部の周囲の肉厚を20mm以上に設定す
ればよい。なお、鋳造品の形状によって異なるが、この
ような中空部を設けることにより、砂型は最大40%程
度まで重量を低減可能となる。
In the above-mentioned embodiment, the sand mold for casting used for casting the aluminum alloy air surge tank T for automobile engine is exemplified. However, the present invention is applicable to all sand molds for casting to obtain cast products in various forms. It goes without saying that it can be applied. Therefore, the shape and size of the hollow portion and the position of the ventilation hole in each sand mold member may be appropriately set according to the form of the mold space (pouring space), the thickness of the sand mold member, the required strength, and the like. Therefore, in order to secure general strength as a sand mold for casting, the wall thickness around the hollow portion may be set to 20 mm or more. Although it depends on the shape of the cast product, the sand mold can reduce the weight up to about 40% by providing such a hollow portion.

【0029】適用する鋳型としては、中子のないもの
や、3個以上に多分割された砂型部材からなるものも包
含される。また、上記実施例の砂型はグラビティ方式の
鋳造に用いるものであるが、本発明はロープレッシャー
方式の鋳造に用いる砂型にも適用可能である。しかし
て、積層造形法では型抜きが不要であるから、中子を上
型又は下型に一体化した砂型や、非分割型つまり内部に
型空間を備えた一体物の砂型も製作可能であり、これら
にも本発明を適用できる。更に、本発明の鋳造用砂型
は、鋳造品の大きさや形状に応じ、湯口及び押湯口の数
と配置構成を種々設定できると共に、湯口が押湯を兼用
しない構成、押湯兼用の湯口のみで押湯口がない構成も
採用可能である。
The molds to be applied include those without cores and those composed of sand-shaped members which are multi-divided into three or more pieces. Further, although the sand mold of the above-mentioned embodiment is used for the gravity type casting, the present invention is also applicable to the sand mold used for the low pressure type casting. However, in the additive manufacturing method, there is no need for die cutting, so it is possible to manufacture a sand mold in which the core is integrated with the upper mold or the lower mold, or a non-divided mold, that is, a sand mold with an internal mold space. The present invention can also be applied to these. Further, according to the size and shape of the casting, the casting sand mold of the present invention can have various settings of the number and arrangement of the sprue and the sprue, and the sprue does not also serve as the riser, and only the sprue serving as the riser is used. It is also possible to adopt a configuration without a feeder.

【0030】[0030]

【発明の効果】請求項1の発明によれば、鋳造用砂型と
して、少なくとも一つの砂型部材が非注湯空間となる中
空部を有し、この中空部から鋳型外部へ通じる通気孔が
設けられていることから、見掛けの大きさの割りには非
常に軽量であり、その取り扱いに要する労力及びエネル
ギーが著しく軽減される上、歪みが発生しにくく、肉厚
が均一で形状及び寸法精度の高い鋳造品が得られると共
に、注湯時の歪みに起因した割れを生じにくく、また型
製作に用いる型砂の量も減って省資源に貢献でき、且つ
低コストで能率よく製作できるものが提供される。
According to the invention of claim 1, as a sand mold for casting, at least one sand mold member has a hollow portion serving as a non-pouring space, and a ventilation hole communicating from the hollow portion to the outside of the mold is provided. Therefore, it is extremely lightweight for its apparent size, the labor and energy required for its handling are significantly reduced, distortion is unlikely to occur, the wall thickness is uniform, and the shape and dimensional accuracy are high. It is possible to obtain a cast product, to prevent cracks due to distortion during pouring, to reduce the amount of mold sand used for mold manufacturing, to contribute to resource saving, and to provide a product that can be manufactured efficiently at low cost. .

【0031】請求項2の発明によれば、上記の鋳造用砂
型として、前記中空部の周囲が一定以上の肉厚を有する
ことから、鋳型としての充分な強度を備えるものが提供
される。
According to the second aspect of the present invention, there is provided the above-mentioned sand mold for casting, which has sufficient strength as a mold since the circumference of the hollow portion has a certain thickness or more.

【0032】請求項3の発明によれば、上記の鋳造用砂
型において、上型が上方に開口した湯口又は/及び押湯
口を備えて上下厚みの大きくても軽量なものとなる。
According to the invention of claim 3, in the above-mentioned sand mold for casting, the upper mold is provided with the gate or / and the feeder port which is opened upward, and is lightweight even if the vertical thickness is large.

【0033】請求項4の発明によれば、上記の鋳造用砂
型において、中子が中空部を有することから、外形的に
は部位による大きさが異なる形態であっても注湯時に歪
みを生じにくく、もって管壁等の厚み精度の高い鋳造品
が得られる。
According to the invention of claim 4, in the above-mentioned sand mold for casting, since the core has a hollow portion, distortion occurs at the time of pouring even if the external shape has different sizes depending on the parts. It is difficult to obtain a cast product with high thickness accuracy such as a pipe wall.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る鋳造用砂型の分解斜
視図。
FIG. 1 is an exploded perspective view of a sand mold for casting according to an embodiment of the present invention.

【図2】 同鋳造用砂型における上型の横断平面図。FIG. 2 is a cross-sectional plan view of an upper mold in the same sand mold for casting.

【図3】 同鋳造用砂型における下型の横断平面図。FIG. 3 is a cross-sectional plan view of a lower mold in the sand mold for casting.

【図4】 同鋳造用砂型における中子の横断平面図。FIG. 4 is a cross-sectional plan view of a core in the sand mold for casting.

【図5】 同鋳造用砂型の積層造形法による製作の初期
段階を示す概略縦断側面図。
FIG. 5 is a schematic vertical sectional side view showing an initial stage of manufacturing the sand mold for casting by the additive manufacturing method.

【図6】 同積層造形法による製作の最終段階を示す概
略縦断側面図。
FIG. 6 is a schematic vertical sectional side view showing a final stage of manufacturing by the additive manufacturing method.

【図7】 同鋳造用砂型による鋳造状態を示す湯口位置
での縦断面図。
FIG. 7 is a vertical cross-sectional view at a sprue position showing a casting state by the casting sand mold.

【図8】 同鋳造状態を示す押湯口位置での縦断面図。FIG. 8 is a vertical cross-sectional view showing the casting state at a feeder port position.

【図9】 同鋳造用砂型による鋳造品であるインテーク
サージタンクの斜視図。
FIG. 9 is a perspective view of an intake surge tank which is a casting product of the sand mold for casting.

【図10】 従来の鋳造用砂型による鋳造状態を示す縦
断面図。
FIG. 10 is a vertical cross-sectional view showing a state of casting by a conventional sand mold for casting.

【符号の説明】[Explanation of symbols]

1 上型(砂型部材) 10 中空部 2 下型 20A〜20C 中空部 3 中子 30 中空部 4,5 通気孔 6A,6B 湯口 7 押湯口 8 エアー抜き孔 M 積層造形物 L レーザービーム P1 〜Pn 結着硬化層 S 型砂1 Upper mold (sand mold member) 10 Hollow part 2 Lower molds 20A to 20C Hollow part 3 Core 30 Hollow part 4,5 Vent holes 6A, 6B Gate 7 Feeder 8 Air vent M Laminated object L Laser beam P 1 ~ Pn Binder hardened layer S type sand

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一つの砂型部材が、その三次
元モデルを多数層に平行スライスした際の各層を、型砂
層へのレーザービームの照射による結着硬化層として順
次に積層形成した積層造形物からなり、この砂型部材に
非注湯空間となる中空部が形成されると共に、該中空部
より鋳型外部へ通じる通気孔が設けられてなる鋳造用砂
型。
1. A laminate-molded article in which at least one sand mold member is formed by sequentially slicing a three-dimensional model into a number of layers in parallel as a binding hardening layer formed by irradiating a laser beam on the mold sand layer. A sand mold for casting, which comprises a hollow part which is a non-pouring space and which is provided with a vent hole which communicates with the outside of the mold from the hollow part.
【請求項2】 前記中空部の周囲の肉厚が20mm以上
に設定されてなる請求項1記載の鋳造用砂型。
2. The sand mold for casting according to claim 1, wherein the wall thickness around the hollow portion is set to 20 mm or more.
【請求項3】 前記砂型部材が上方に開口した湯口又は
/及び押湯口を備える上型である請求項1又は2に記載
の鋳造用砂型。
3. The casting sand mold according to claim 1 or 2, wherein the sand mold member is an upper mold having a gate or / and a feeder port opened upward.
【請求項4】 前記砂型部材が中子である請求項1〜3
のいずれかに記載の鋳造用砂型。
4. The sand-shaped member is a core.
The sand mold for casting according to any one of 1.
JP2002077804A 2002-03-20 2002-03-20 Sand mold for casting Pending JP2003275846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002077804A JP2003275846A (en) 2002-03-20 2002-03-20 Sand mold for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002077804A JP2003275846A (en) 2002-03-20 2002-03-20 Sand mold for casting

Publications (1)

Publication Number Publication Date
JP2003275846A true JP2003275846A (en) 2003-09-30

Family

ID=29205840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002077804A Pending JP2003275846A (en) 2002-03-20 2002-03-20 Sand mold for casting

Country Status (1)

Country Link
JP (1) JP2003275846A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267551A (en) * 2007-04-24 2008-11-06 Kayaba Ind Co Ltd Cylinder housing
US20130168035A1 (en) * 2011-12-28 2013-07-04 F. Andrew Nibouar Method and system for manufacturing railcar coupler locks
JP2014018834A (en) * 2012-07-19 2014-02-03 Koiwai Co Ltd Sand mold and casting method using the same
JP2015189035A (en) * 2014-03-27 2015-11-02 シーメット株式会社 Three-dimensional shaped object and method of producing three-dimensional shaped object
CN108515144A (en) * 2018-05-21 2018-09-11 共享装备股份有限公司 Reduce placer iron than process
CN114749625A (en) * 2022-04-21 2022-07-15 重庆江增船舶重工有限公司 3D printing sand mold and molding method for bearing shell of supercharger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267551A (en) * 2007-04-24 2008-11-06 Kayaba Ind Co Ltd Cylinder housing
US20130168035A1 (en) * 2011-12-28 2013-07-04 F. Andrew Nibouar Method and system for manufacturing railcar coupler locks
JP2014018834A (en) * 2012-07-19 2014-02-03 Koiwai Co Ltd Sand mold and casting method using the same
JP2015189035A (en) * 2014-03-27 2015-11-02 シーメット株式会社 Three-dimensional shaped object and method of producing three-dimensional shaped object
CN108515144A (en) * 2018-05-21 2018-09-11 共享装备股份有限公司 Reduce placer iron than process
CN114749625A (en) * 2022-04-21 2022-07-15 重庆江增船舶重工有限公司 3D printing sand mold and molding method for bearing shell of supercharger

Similar Documents

Publication Publication Date Title
AU2009351005B2 (en) Adaptive production method for mould
JP6559495B2 (en) Manufacturing method of casting using lost wax method
WO2014101326A1 (en) Molding sand spraying and curing additive manufacturing method
JPH08252826A (en) Structural part manufacture, and mold manufacture
JPH0747443A (en) Lost wax casting method
JP2003001368A (en) Method for lamination-shaping and lamination-shaped article
JP2003275846A (en) Sand mold for casting
EP2764934B1 (en) Method for manufacturing an element of a plurality of casting mold elements and casting method for manufacturing and system for casting a 3-dimensional object
US20210031257A1 (en) Method for producing a casting mold for filling with melt and casting mold
JP4145539B2 (en) Sand mold for casting
JP4262742B2 (en) template
JP2009050917A (en) Gypsum mold
JP3569243B2 (en) Sand mold for casting
JP5747298B2 (en) Manufacturing method of injection mold
WO2016075844A1 (en) Mold
CN112191803A (en) Manufacturing method of large cylindrical steel ingot die casting
US20160151834A1 (en) System and Method for Manufacturing Railcar Yokes
JP2003326337A (en) Mold for producing casting by using holding material and method for making mold
CN105364008A (en) Evaporative pattern casting process
TWI695747B (en) Precision casting process capable of accelerating heat dissipation of concave part of shell mold
CN113600745B (en) Method for casting product under negative pressure by utilizing photocuring rapid-forming lost foam
JP2023049242A (en) Mold, method for producing the same and casting method
JPS58151936A (en) Construction of core for casting
JP2002346696A (en) Molding flask
JPH0839574A (en) Production of hollow plastic articles

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050128

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080227

A521 Written amendment

Effective date: 20080428

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080926