JP3644422B2 - Method for cooling mold and casting - Google Patents

Method for cooling mold and casting Download PDF

Info

Publication number
JP3644422B2
JP3644422B2 JP2001293402A JP2001293402A JP3644422B2 JP 3644422 B2 JP3644422 B2 JP 3644422B2 JP 2001293402 A JP2001293402 A JP 2001293402A JP 2001293402 A JP2001293402 A JP 2001293402A JP 3644422 B2 JP3644422 B2 JP 3644422B2
Authority
JP
Japan
Prior art keywords
mold
cooling
casting
space
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001293402A
Other languages
Japanese (ja)
Other versions
JP2003103342A (en
Inventor
幸一 戸沢
和弘 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001293402A priority Critical patent/JP3644422B2/en
Publication of JP2003103342A publication Critical patent/JP2003103342A/en
Application granted granted Critical
Publication of JP3644422B2 publication Critical patent/JP3644422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷却媒体により鋳物の冷却が行える鋳型および鋳物の冷却方法に関するものである。
【0002】
【従来の技術】
注湯後から解枠までの時間を短縮するために鋳物の冷却速度を速める方法が従来からいくつか提案されている。
【0003】
一つは、鋳型内にパイプを設置し、このパイプ等の内部に冷媒を通過させて鋳物砂の冷却を行う、例えば、特開昭57−103775号公報により提案された図7、8に示す方法がある。
【0004】
これは、型枠110、112と固化した鋳物砂111、113および木型等で作成した鋳物空間104または発泡スチロール等の消失模型からなる鋳型において、鋳物砂111、113内に冷却パイプ130を予め埋設し、図8に示すように溶融金属を注湯し、鋳物が鋳造された後に、冷却パイプ130内に水,空気等の冷却媒体Cを循環させ、鋳物を強制的に冷却するものである。鋳物を均一に冷却することができれば、鋳物の変形を防止することもできる。
【0005】
また、別の方法としては、溶湯を注湯した後の鋳型内に水等の冷却液を注入浸透させ、この冷却液によって鋳物を迅速に冷却するものが、例えば、特開平9−225621号公報により提案されている。注入する冷却液は、鋳物に直接かけるのではなく、鋳物を埋沈させている鋳型に注入し、内部を浸透させ、鋳物砂を通して鋳物の熱を奪うようにする。その際水温の上昇だけでなく、高い蒸発潜熱を利用するようにしている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記前者の従来例では、鋳物の表面から等距離を保ちつつ表面形状に沿うよう多数の冷却パイプ130を形成し万遍なく並べて設置する必要があるため、形状が複雑な鋳物や3次元の自由曲面を持つ鋳物等に対して冷却パイプ130の設置が難しく、結果として鋳物を均一に冷却できず、鋳物完成後の変形が大きくなるという不具合があった。
【0007】
また、型枠110、112内に鋳物砂111、113を充填するに先立ち多数の冷却パイプ130を曲げ加工して型枠内に設置するものであるため、冷却パイプ130の設置に多大な工数がかかるという不具合があった。
【0008】
また、後者の従来例では、冷却液を注入する水管を鋳型内に埋設させるとき、やはり鋳物の表面に沿って均一に水管を配置することが難しく、結果として鋳物を均一に冷却できず、鋳物完成後の変形が大きくなるという不具合があった。
【0009】
そこで本発明は、上記問題点に鑑みてなされたもので、鋳物を均一に冷却できる鋳型および鋳物の冷却方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
第1の発明は、型枠内に鋳物砂を用いて鋳物の成形空間を形成する鋳型に係り、鋳型の少なくとも一部の表面に鋳物の成形空間の形成面からの厚さを略同一にして鋳物砂表面に冷却表面を形成し、前記冷却表面と型枠との間に形成した冷却空間と、前記冷却空間内に均一に充填された充填材と、前記冷却空間内に冷却媒体を循環させて前記冷却表面を冷却する冷却手段とから構成した鋳型において、前記冷却表面は、鋳型の分割面の背面の鋳物砂を切削加工若しくは予め鋳物砂に埋め込んだ成形木型を取外すことで形成され、前記冷却空間は、鋳型を上記背面で覆う蓋部材との間に形成されることを特徴とする。
【0011】
前記冷却表面は、鋳物の全周面に形成することが望ましいが、形状精度を必要とする鋳物の部位を対象とすることが実際的である。
【0012】
前記冷却手段は、冷却媒体を冷却表面に接触させる手段があればよく、鋳型内に冷却表面とともに形成した空間に冷却媒体を注入、循環させることが望ましい。
【0013】
前記型枠は、鋳物砂の周囲を囲む枠体、およびまたは、蓋部材も含めており、これらの型枠と冷却表面との空間部が冷却空間に形成される。
【0014】
第2の発明は、第1の発明において、前記冷却手段は、前記冷却空間内の充填材間の隙間を通して冷却媒体を循環させるものであることを特徴とする。
【0015】
前記充填材は、球形に形成されることが、充填材同士の間に断面積が所定の大きさに規定できる隙間が形成できるため、冷却媒体の通路に用いる際に最適である。
【0017】
の発明は、方法に係り、型枠内に鋳物砂を用いて鋳物の成形空間を鋳型内に形成し、鋳型の少なくとも一部の表面を鋳物の成形空間の形成面からの厚さを同一にして冷却表面に形成し、前記冷却表面を型枠若しくは蓋部材の内面とで閉じた冷却空間に形成し、前記冷却空間に充填部材を充填し、溶湯を鋳物の成形空間に注湯後に、充填部材の隙間を通して冷却媒体を循環させる鋳物の冷却方法において、前記冷却表面は、鋳型の分割面の背面の鋳物砂を切削加工若しくは予め鋳物砂に埋め込んだ成形木型を取外すことで形成し、前記鋳型背面を蓋部材で覆うことで前記冷却表面と蓋部材内面との間に冷却空間を形成することを特徴とする。
【0018】
前記型枠は、鋳物砂の周囲を囲む枠体、およびまたは、蓋部材も含めており、これらの型枠と冷却表面との空間部が冷却空間に形成される。
【0020】
【発明の効果】
したがって、第1および第の発明では、鋳型の少なくとも一部の表面に鋳物の成形空間の形成面からの厚さを同一にして鋳物砂表面の冷却表面と型枠とで冷却空間を形成して、冷却空間内に充填材を充填する一方、冷却媒体を循環させるため、鋳物表面を均一に冷却することができ、鋳物完成後の変形を小さくすることができる。
そして、鋳型の分割面の背面の鋳物砂を切削加工若しくは予め鋳物砂に埋め込んだ成形木型を取外すことで冷却表面を形成しているため、冷却面積を大きく取れ、大型の鋳物でも均一に冷却でき、鋳物完成後の変形を小さくすることができる。
【0021】
しかも、冷却空間内には球形の充填材を充填しているものであるため、鋳物砂および鋳物重量を変形および破損させることなく保持できる。
【0022】
第2の発明では、第1の発明の効果に加えて、冷却空間内の充填材間の隙間を通して冷却媒体を循環させるため、冷却媒体を循環させるための冷却パイプ等の設置が不要であり、鋳型製作時間を大幅に短縮することができる。
【0024】
【発明の実施の形態】
以下、本発明の一実施形態を添付図面に基づいて説明する。図1は、本発明を適用した鋳型の一例の断面図であり、湯口2を持つ上型1、鋳物の成形空間4を備えた下型3、および、下型3下方に固定された蓋部材5とから構成される。
【0025】
前記上型1は、型枠10の内部に充填され固化された鋳物砂11を備え、その下面は下型3との分割面6を形成しており、上下に貫通する湯口2を備え、湯口2の上方開放端には湯口2を拡大して溜まりを形成する湯溜まり7が配置されている。
【0026】
前記下型3は、上型1との分割面6に一部が開口する鋳物の成形空間4を持ち型枠12の内部に充填され固化された鋳物砂13を備え、鋳物の成形空間4は上型1の湯口2と連なって形成されている。前記成形空間4は、消失模型が挿入された状態のものでもよい。
【0027】
前記下型3の鋳物の成形空間4を囲んで鋳物砂13の下側表面は、下型3の蓋部材5との接合面7から上方に窪んだ鋳型表面8(以下、冷却面、冷却表面ともいう)に形成され、冷却表面8は鋳物の成形空間4を形成する形成面9に対し所定の間隔(厚さ)を持つよう形成されている。即ち、鋳物の成形空間4は蓋部材5側のいずれの表面であっても等距離に冷却表面8が存在するよう両者間には一様な肉厚の鋳物砂13が存在する。この鋳物砂13の肉厚は、溶湯の注湯圧力に充分耐えられる鋳物砂13の厚さを必要とする。
【0028】
前記蓋部材5は、前記下型3の枠体12に結合される周縁部14とこの周縁部14を連結して前記下型3の上方へ窪んだ鋳型表面8とで空間部15を形成する蓋部16とから形成され、周縁部14には、冷却媒体Cを前記空間部15に導入する入口17と、前記空間部15内の冷却媒体Cを排出する出口18とが形成されている。
【0029】
前記蓋部材5と下型3の鋳型表面8とで形成される空間部15には、金属製、若しくは、樹脂製からなる球形の充填材19が充填される。充填材19は球形であるため、鋳型表面8の形状が複雑な場合や3次元の自由曲面を持つ場合においても均一の密度で充填することができ、しかも、充填材19同士が充填により接触した状態においても、部分接触状態であり、水や空気などの冷却媒体Cの流通を許容する。また、充填材19の材質としては、鋳型内に注入される溶湯の重量と鋳物砂自身の重量とに耐えられる強度を備えていればどのような材料が選択されてもよい。
【0030】
図示の例は、プレス型を倒立させた状態で鋳造する場合の鋳型を示し、図中下方に連なる部分がプレス面を構成し、プレス面から上方に延びた3本の部材はプレス型の脚部を形成するものであり、この場合において、鋳造後の変形を最小限に止める部分はプレス面であることから、プレス面を形成する鋳物砂13を所定の均一な肉厚に形成したものである。必要であれば、図示しないが、他の部分を形成する鋳物砂13の肉厚も所定の均一な肉厚に形成してもよい。その場合、所定の肉厚に形成された鋳型表面で形成された空間部に、前記と同様球体からなる充填材を充填して、その充填材が充填された空間部に冷却媒体を流通させる入口および出口を形成する。
【0031】
前記下型の鋳物砂に形成する鋳型表面8は、図2、3の工程により製作される。図2は、成形台20上に鋳物砂11、13を充填し固化した上型1および下型3を倒立させて載置した状態を示し、上型1および下型3には鋳物形状の空洞4が形成されているか、若しくは、消失模型を埋設して構成している。
【0032】
図2に示すように下型3の下方(図中上方)から切削工具Tにより鋳物砂13を切削し、鋳型表面8を形成する。この鋳型表面8の形状は、鋳物の形状に鋳物砂13の厚さ分だけ寸法を追加する(鋳物形状の各点の座標位置を鋳物砂の厚さ分だけオフセットさせる)ことで容易にその座標位置を決定することができる。この場合の鋳物砂13の厚さは、前記したように、鋳造時の注湯圧力に耐えられる鋳物砂13の厚さを残存させるよう決定される。
【0033】
鋳型表面8の成形は、上記のように切削工具Tによる成形方法に限られず、予め鋳型表面8を模った表面をもつ木型Mにより形成してもよい。即ち、下型3に鋳物砂13を充填する前に木型Mを下型3に組合わせて型枠12の下方部分とし、鋳物成形用の木型を位置決めして鋳物砂13を充填し固化させ、図2の状態に上型1、下型3を倒立状態で配置し、木型Mを上方へ抜き取るようにしても、上記方法と同様に鋳型表面8を形成することができる。
【0034】
鋳型表面8が形成されたなら、その空隙部分および空間部分15に球形の充填材19を充填してゆき、所定量充填した後、水,空気等の冷却媒体Cを循環させる配管が取付け可能な蓋部材5をその周縁部14を下型3の型枠12に固定することで取付ける。そして、その後も、蓋部材5と鋳型表面8との空間部分15に充填材19を充填してゆく。充填を完了した図3の鋳型は、充填材19が球形であるため、空間部分15内に均一の密度で充填され、空間部分15を形成する鋳型表面8、蓋部材5、および、下型3の型枠12に沿う側壁部に均一に接触している。
【0035】
次いで、蓋部材5も含んで鋳型全体を反転させ、成形台20を取り除くことで、図1の鋳型を構成することができる。
【0036】
上記説明の鋳型への溶湯の注入して鋳物を形成する作用につき、以下に説明する。図1の構成の鋳型は、上型1と下型3が分割面6で接合されて型枠10、12が連結され、また、蓋部材5と下型3の型枠12、周縁部14が連結されて一体に構成され、鋳型表面8と蓋部材5とで形成される空間部15には球形の充填材19が充填され、蓋部材5の周縁部14の入口17、出口18は冷却媒体Cの貯蔵装置に連通されている。
【0037】
上型1の湯溜まり7に溶融金属を注湯すると、溶融金属は湯口2を経由して鋳物空間4内に流入し鋳物空間4を充填する。鋳物空間4が消失模型で形成されている場合には、消失模型を昇華させつつ鋳物空間4に溶融金属が充填される。このとき、鋳物空間4を形成する鋳物砂13、特に、鋳型表面8を形成する鋳物砂13は、前記したように充分な厚さが確保されているために破損することがなく、また、球形の充填材19もこの重量に耐えて破損することがない。
【0038】
注湯完了後に、図4に示すように、蓋部材5の周縁部14の入口17から図示しない貯蔵装置の冷却媒体Cを空間15内に導入し出口18から貯蔵装置に排出して冷却媒体Cを循環させる。空間15内に導入した冷却媒体Cは、充填材19が球形をなしているので、充填材19間に存在する隙間を通過し、空間15内に面している鋳物砂13による鋳型表面8を冷却する。
【0039】
この冷却の状態を、鋳物、鋳物砂、充填材、冷却媒体から、モデル化して鋳物砂厚さと温度の関係を示した図5により詳細に説明する。
【0040】
ここで、鋳物の温度:t1
冷却媒体Cの温度:t2
鋳物砂の表面積:F
熱量が流れる時間:θ
鋳物砂の厚さ:b
鋳物砂の熱伝導率:λ
とすると、鋳物砂を通して流れる熱量Qは、下記(1)式
Q=λ×F×θ×(tl−t2)/b ・・(1)式
により求められる。(1)式を変形すると、下記(2)式
(tl−t2)=(Q×b)/(F×θ×λ) ・・(2)式
が得られる。この(2)式より、鋳物と冷却媒体Cの温度差は鋳物砂の厚さに比例することがわかる。したがって、鋳物砂の厚さを一定にすることで、鋳物の目的とする鋳物形状部分を均一に冷却することができる。
【0041】
図6は、鋳物内の温度差と変形の関係を、比較的単純な鋳物試料Dにより示したものであり、ここで、
鋳物上部の断面積:A1
鋳物下部の断面積:A2
線膨張係数:α
鋳物上下の温度差:△T
鋳物の高さ:H
鋳物の長さ:L
断面2次モーメント:I
とすると、鋳物の変形(反り)Sは、下記の(3)式
S=(A1×A2×α×△T×H×L2)/(8×I×(A1+A2)) ・・(3)式
により得られる。この(3)式より、鋳物の変形は温度差△Tに比例することがわかる。同様に、自由曲面を持つ鋳物においても、温度差△Tと鋳物の変形は比例する。したがって、鋳物を均一に冷却することによって、鋳物の変形を低減することができる。
【0042】
本実施の態様にあっては、下記の効果を奏する。即ち、鋳型の少なくとも一部の表面に鋳物の成形空間4の形成面からの厚さを略同一にして鋳物砂表面に形成した冷却表面8に冷却媒体Cを接触させて鋳物を冷却するため、鋳物表面を均一に冷却することができ、鋳物完成後の変形を小さくすることができる。
【0043】
冷却表面8は型枠12若しくは蓋部材5内面との間で冷却空間15を形成し、この冷却空間15内に球形の充填材19を充填しているものであるため、鋳物砂13および鋳物重量を変形および破損させることなく保持できる。
【0044】
冷却空間15内の充填材19間の隙間を通して冷却媒体Cを循環させるため、冷却媒体Cを循環させるための冷却パイプ等の設置が不要であり、鋳型製作時間を大幅に短縮することができる。
【0045】
鋳型の分割面6の背面の鋳物砂13を切削加工若しくは予め鋳物砂に埋め込んだ成形木型Mを取外すことで冷却表面8を形成しているため、冷却面積を大きく取れ、大型の鋳物でも均一に冷却でき、鋳物完成後の変形を小さくすることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す鋳型の断面図。
【図2】同じく鋳型の製造過程の前段を示す説明図。
【図3】同じく鋳型の製造過程の後段を示す説明図。
【図4】鋳型による鋳造過程を示す説明図。
【図5】鋳物砂の厚さと温度の関係を示す説明図。
【図6】鋳物内の温度差と変形の関係を示す説明図。
【図7】従来技術の鋳型を示す断面図。
【図8】従来技術の鋳型による冷却状態を示す断面図。
【符号の説明】
1 上型
2 湯口
3 下型
4 鋳物の成形空間(鋳物形状の空間)
5 蓋部材
6 分割面
8 鋳型表面(冷却面、冷却表面)
9 鋳物の形成面
10、12 型枠
11、13 鋳物砂
15 空間部(冷却空間)
19 充填材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mold capable of cooling a casting with a cooling medium and a casting cooling method.
[0002]
[Prior art]
Several methods have been proposed in the past to increase the cooling rate of castings in order to shorten the time from pouring to unraveling.
[0003]
One is to install a pipe in a mold, and to cool the foundry sand by passing a refrigerant through the pipe or the like. For example, as shown in FIGS. 7 and 8 proposed in Japanese Patent Laid-Open No. 57-103775. There is a way.
[0004]
This is because the casting pipes 111 and 113 solidified with the molds 110 and 112 and the casting space 104 made of a wooden mold or the like, or a mold made of a disappeared model such as foamed polystyrene, a cooling pipe 130 is embedded in the casting sands 111 and 113 in advance. Then, as shown in FIG. 8, after the molten metal is poured and the casting is cast, a cooling medium C such as water or air is circulated in the cooling pipe 130 to forcibly cool the casting. If the casting can be cooled uniformly, deformation of the casting can be prevented.
[0005]
Another method is to inject and infiltrate a coolant such as water into the mold after pouring the molten metal, and quickly cool the casting with this coolant, for example, Japanese Patent Laid-Open No. 9-225621. Has been proposed. The cooling liquid to be injected is not directly applied to the casting, but is poured into a mold in which the casting is submerged, so that the inside penetrates and the heat of the casting is taken through the casting sand. At that time, not only the rise in water temperature but also high latent heat of vaporization is utilized.
[0006]
[Problems to be solved by the invention]
However, in the former conventional example, since it is necessary to form a large number of cooling pipes 130 so as to follow the surface shape while keeping the same distance from the surface of the casting, it is necessary to install them side by side. It is difficult to install the cooling pipe 130 for a casting having a free curved surface, and as a result, the casting cannot be uniformly cooled, resulting in a large deformation after the casting is completed.
[0007]
In addition, a large number of man-hours are required to install the cooling pipe 130 because a large number of cooling pipes 130 are bent and installed in the mold prior to filling the moldings 110 and 112 with the foundry sand 111 and 113. There was a problem that it took.
[0008]
Further, in the latter conventional example, when the water pipe for injecting the cooling liquid is embedded in the mold, it is still difficult to arrange the water pipe uniformly along the surface of the casting, and as a result, the casting cannot be uniformly cooled, There was a problem that deformation after completion became large.
[0009]
Then, this invention is made | formed in view of the said problem, and it aims at providing the casting_mold | template and the cooling method of a casting which can cool a casting uniformly.
[0010]
[Means for Solving the Problems]
The first invention uses casting sand into the mold relates to a mold for forming a molding space of the casting, and the thickness of the forming surface of the forming space of the casting substantially identical to at least part of the surface of the mold A cooling surface is formed on the casting sand surface, a cooling space formed between the cooling surface and a mold, a filler uniformly filled in the cooling space, and a cooling medium is circulated in the cooling space. In the mold constituted by the cooling means for cooling the cooling surface, the cooling surface is formed by cutting the molding sand on the back surface of the divided surface of the mold or removing the molded wooden mold previously embedded in the molding sand, The cooling space is formed between a lid member that covers the mold with the back surface.
[0011]
The cooling surface is desirably formed on the entire peripheral surface of the casting, but it is practical to target a casting portion that requires shape accuracy.
[0012]
The cooling means may be any means for bringing the cooling medium into contact with the cooling surface, and it is desirable to inject and circulate the cooling medium in a space formed with the cooling surface in the mold.
[0013]
The mold includes a frame surrounding the periphery of the foundry sand and / or a lid member, and a space between the mold and the cooling surface is formed in the cooling space.
[0014]
According to a second invention, in the first invention, the cooling means circulates a cooling medium through a gap between fillers in the cooling space.
[0015]
When the filler is formed in a spherical shape, a gap whose cross-sectional area can be regulated to a predetermined size can be formed between the fillers, which is optimal when used for the passage of the cooling medium.
[0017]
A third invention relates to a method, wherein a casting molding space is formed in a mold by using foundry sand in a mold, and at least a part of the surface of the casting mold has a thickness from a forming surface of the casting molding space. After forming the cooling surface in the same manner, forming the cooling surface in a cooling space closed with the inner surface of the mold or the lid member, filling the cooling space with the filling member, and pouring the molten metal into the casting molding space In the casting cooling method in which the cooling medium is circulated through the gap between the filling members, the cooling surface is formed by cutting the molding sand on the back surface of the divided surface of the mold or by removing the molded wooden mold previously embedded in the casting sand. A cooling space is formed between the cooling surface and the inner surface of the lid member by covering the back surface of the mold with a lid member.
[0018]
The mold includes a frame surrounding the periphery of the foundry sand and / or a lid member, and a space between the mold and the cooling surface is formed in the cooling space.
[0020]
【The invention's effect】
Therefore, in the first and third aspects of the invention, the cooling space is formed by the cooling surface of the casting sand surface and the mold by making the thickness from the forming surface of the casting molding space the same on at least a part of the surface of the mold. Thus, since the cooling medium is filled in the cooling space and the cooling medium is circulated, the casting surface can be uniformly cooled, and deformation after the casting is completed can be reduced.
And because the cooling surface is formed by cutting the molding sand on the back of the mold dividing surface or by removing the molded wooden mold that is pre-embedded in the molding sand, the cooling area can be increased and even large castings can be cooled uniformly. The deformation after the casting is completed can be reduced.
[0021]
Moreover, since the cooling space is filled with the spherical filler, the foundry sand and the foundry weight can be held without being deformed or damaged.
[0022]
In the second invention, in addition to the effect of the first invention, the cooling medium is circulated through the gaps between the fillers in the cooling space, so that installation of a cooling pipe or the like for circulating the cooling medium is unnecessary. Mold production time can be greatly reduced.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of an example of a mold to which the present invention is applied. An upper mold 1 having a gate 2, a lower mold 3 having a casting molding space 4, and a lid member fixed below the lower mold 3. 5.
[0025]
The upper mold 1 includes casting sand 11 filled and solidified in a mold 10, and its lower surface forms a dividing surface 6 with the lower mold 3, and includes a gate 2 penetrating vertically. A hot water reservoir 7 is disposed at the upper open end of 2 to enlarge the water gate 2 and form a reservoir.
[0026]
The lower die 3 has a casting molding space 4 partially opened on the dividing surface 6 with the upper die 1 and has a molding sand 13 filled in the mold frame 12 and solidified, and the casting molding space 4 is It is formed continuously with the gate 2 of the upper mold 1. The molding space 4 may be in a state where a disappearance model is inserted.
[0027]
The lower surface of the molding sand 13 surrounding the molding space 4 of the casting of the lower mold 3 is a mold surface 8 (hereinafter referred to as a cooling surface or a cooling surface) recessed upward from the joint surface 7 with the lid member 5 of the lower mold 3. The cooling surface 8 is formed so as to have a predetermined interval (thickness) with respect to the forming surface 9 that forms the molding space 4 of the casting. That is, the casting molding space 4 has a uniform thick sand 13 between them so that the cooling surface 8 exists at an equal distance on any surface on the lid member 5 side. The thickness of the foundry sand 13 requires a thickness of the foundry sand 13 that can sufficiently withstand the pouring pressure of the molten metal.
[0028]
The lid member 5 forms a space 15 by a peripheral edge 14 coupled to the frame 12 of the lower mold 3 and a mold surface 8 which is connected to the peripheral edge 14 and is recessed upward of the lower mold 3. The peripheral part 14 is formed with an inlet 17 for introducing the cooling medium C into the space part 15 and an outlet 18 for discharging the cooling medium C in the space part 15.
[0029]
A space 15 formed by the lid member 5 and the mold surface 8 of the lower mold 3 is filled with a spherical filler 19 made of metal or resin. Since the filling material 19 is spherical, it can be filled with a uniform density even when the shape of the mold surface 8 is complicated or has a three-dimensional free-form surface, and the filling materials 19 are in contact with each other by filling. Even in the state, it is a partial contact state, and permits the circulation of the cooling medium C such as water or air. Further, as the material of the filler 19, any material may be selected as long as it has a strength capable of withstanding the weight of the molten metal poured into the mold and the weight of the foundry sand itself.
[0030]
The example shown in the figure shows a casting mold when the press mold is cast in an inverted state, and the lower part in the figure forms the press surface, and the three members extending upward from the press surface are the legs of the press mold. In this case, since the portion that minimizes deformation after casting is the press surface, the molding sand 13 forming the press surface is formed to a predetermined uniform thickness. is there. If necessary, although not shown, the thickness of the foundry sand 13 forming other portions may also be formed to a predetermined uniform thickness. In that case, the space part formed on the mold surface having a predetermined thickness is filled with a filler made of a sphere like the above, and the inlet through which the cooling medium flows in the space part filled with the filler. And form an outlet.
[0031]
The mold surface 8 formed on the lower foundry sand is manufactured by the steps shown in FIGS. FIG. 2 shows a state in which the upper mold 1 and the lower mold 3 filled with the foundry sands 11 and 13 and solidified on the molding table 20 are placed upside down, and the upper mold 1 and the lower mold 3 have a casting-shaped cavity. 4 is formed, or the disappearance model is buried.
[0032]
As shown in FIG. 2, the casting sand 13 is cut with a cutting tool T from below the lower mold 3 (upper in the figure) to form a mold surface 8. The shape of the mold surface 8 can be easily adjusted by adding dimensions to the casting shape by the thickness of the casting sand 13 (offset the coordinate position of each point of the casting shape by the thickness of the casting sand). The position can be determined. As described above, the thickness of the foundry sand 13 in this case is determined so as to leave the thickness of the foundry sand 13 that can withstand the pouring pressure during casting.
[0033]
The molding of the mold surface 8 is not limited to the molding method using the cutting tool T as described above, and may be formed by a wooden mold M having a surface imitating the mold surface 8 in advance. That is, before the lower mold 3 is filled with the foundry sand 13, the wooden mold M is combined with the lower mold 3 to form the lower part of the mold 12, the cast molding wooden mold is positioned, and the foundry sand 13 is filled and solidified. Then, even if the upper mold 1 and the lower mold 3 are arranged in an inverted state in the state of FIG. 2 and the wooden mold M is extracted upward, the mold surface 8 can be formed in the same manner as in the above method.
[0034]
When the mold surface 8 is formed, the space portion 15 and the space portion 15 are filled with a spherical filler 19, and after a predetermined amount is filled, a pipe for circulating a cooling medium C such as water or air can be attached. The lid member 5 is attached by fixing the peripheral edge portion 14 to the mold 12 of the lower mold 3. After that, the filler 19 is filled into the space 15 between the lid member 5 and the mold surface 8. The mold of FIG. 3 that has been filled is filled with a uniform density in the space portion 15 because the filler 19 is spherical, and the mold surface 8 that forms the space portion 15, the lid member 5, and the lower mold 3. Are uniformly in contact with the side walls along the mold 12.
[0035]
Next, the mold of FIG. 1 can be configured by inverting the entire mold including the cover member 5 and removing the molding table 20.
[0036]
The effect | action which injects the molten metal to the casting_mold | template of the said description and forms a casting is demonstrated below. 1, the upper mold 1 and the lower mold 3 are joined at the dividing surface 6 to connect the molds 10 and 12, and the lid member 5 and the mold 12 and the peripheral edge 14 of the lower mold 3 are connected to each other. The space 15 formed by being connected and integrally formed by the mold surface 8 and the lid member 5 is filled with a spherical filler 19, and the inlet 17 and outlet 18 of the peripheral edge 14 of the lid member 5 are a cooling medium. C is connected to the storage device.
[0037]
When molten metal is poured into the hot water pool 7 of the upper mold 1, the molten metal flows into the casting space 4 via the gate 2 and fills the casting space 4. When the casting space 4 is formed of a disappearing model, the casting space 4 is filled with molten metal while sublimating the disappearing model. At this time, the foundry sand 13 forming the foundry space 4, particularly the foundry sand 13 forming the mold surface 8, is not damaged because a sufficient thickness is ensured as described above, and is spherical. The filler 19 also withstands this weight and is not damaged.
[0038]
After the pouring is completed, as shown in FIG. 4, the cooling medium C of the storage device (not shown) is introduced into the space 15 from the inlet 17 of the peripheral portion 14 of the lid member 5, and is discharged from the outlet 18 to the storage device. Circulate. The cooling medium C introduced into the space 15 passes through the gaps between the fillers 19 because the filler 19 has a spherical shape, and the mold surface 8 formed by the foundry sand 13 facing the space 15 is removed. Cooling.
[0039]
This cooling state will be described in detail with reference to FIG. 5 which shows the relationship between the casting sand thickness and the temperature by modeling from the casting, the casting sand, the filler, and the cooling medium.
[0040]
Here, the temperature of the casting: t1
Temperature of cooling medium C: t2
Foundry sand surface area: F
Heat flow time: θ
Foundry sand thickness: b
Thermal conductivity of foundry sand: λ
Then, the heat quantity Q flowing through the foundry sand is obtained by the following equation (1) Q = λ × F × θ × (tl−t2) / b (1). When the equation (1) is modified, the following equation (2) (tl-t2) = (Q × b) / (F × θ × λ) (2) is obtained. From this equation (2), it can be seen that the temperature difference between the casting and the cooling medium C is proportional to the thickness of the foundry sand. Therefore, by making the thickness of the foundry sand constant, it is possible to uniformly cool the target cast-shaped portion of the foundry.
[0041]
FIG. 6 shows the relationship between the temperature difference in the casting and the deformation by a relatively simple casting sample D, where
Cross-sectional area of casting upper part: A1
Cross-sectional area of the casting lower part: A2
Linear expansion coefficient: α
Temperature difference between upper and lower castings: △ T
Casting height: H
Casting length: L
Sectional moment of inertia: I
Then, the deformation (warp) S of the casting is expressed by the following equation (3) S = (A1 × A2 × α × ΔT × H × L 2 ) / (8 × I × (A1 + A2)) (3) Obtained by the formula From this equation (3), it can be seen that the deformation of the casting is proportional to the temperature difference ΔT. Similarly, in a casting having a free-form surface, the temperature difference ΔT and the deformation of the casting are proportional. Therefore, deformation of the casting can be reduced by cooling the casting uniformly.
[0042]
In this embodiment, the following effects are obtained. That is, in order to cool the casting by bringing the cooling medium C into contact with the cooling surface 8 formed on the casting sand surface with the thickness from the forming surface of the casting molding space 4 substantially the same as at least a part of the surface of the mold, The casting surface can be uniformly cooled, and deformation after the casting is completed can be reduced.
[0043]
The cooling surface 8 forms a cooling space 15 between the mold 12 or the inner surface of the lid member 5, and the cooling space 15 is filled with a spherical filler 19. Can be held without being deformed or damaged.
[0044]
Since the cooling medium C is circulated through the gaps between the fillers 19 in the cooling space 15, it is not necessary to install a cooling pipe or the like for circulating the cooling medium C, and the mold manufacturing time can be greatly shortened.
[0045]
Since the cooling surface 8 is formed by cutting the molding sand 13 on the back side of the dividing surface 6 of the mold or by removing the molded wooden mold M previously embedded in the molding sand, the cooling area can be increased, and even a large casting is uniform. It is possible to reduce the deformation after the casting is completed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a mold showing an embodiment of the present invention.
FIG. 2 is an explanatory view showing the former stage of the mold manufacturing process.
FIG. 3 is an explanatory view showing the latter stage of the mold manufacturing process.
FIG. 4 is an explanatory view showing a casting process using a mold.
FIG. 5 is an explanatory diagram showing the relationship between the thickness of foundry sand and temperature.
FIG. 6 is an explanatory diagram showing a relationship between a temperature difference in a casting and deformation.
FIG. 7 is a cross-sectional view showing a conventional mold.
FIG. 8 is a cross-sectional view showing a cooling state by a conventional mold.
[Explanation of symbols]
1 Upper mold 2 Sprue 3 Lower mold 4 Casting molding space (casting space)
5 Lid member 6 Dividing surface 8 Mold surface (cooling surface, cooling surface)
9 Casting formation surface 10, 12 Formwork 11, 13 Casting sand 15 Space (cooling space)
19 Filler

Claims (3)

型枠内に鋳物砂を用いて鋳物の成形空間を形成する鋳型に係り
鋳型の少なくとも一部の表面に鋳物の成形空間の形成面からの厚さを略同一にして鋳物砂表面に冷却表面を形成し、前記冷却表面と型枠との間に形成した冷却空間と、
前記冷却空間内に均一に充填された充填材と、
前記冷却空間内に冷却媒体を循環させて前記冷却表面を冷却する冷却手段とから構成した鋳型において、
前記冷却表面は、鋳型の分割面の背面の鋳物砂を切削加工若しくは予め鋳物砂に埋め込んだ成形木型を取外すことで形成され、
前記冷却空間は、鋳型を上記背面で覆う蓋部材との間に形成することを特徴とする鋳型。
It relates to a mold that forms molding space of casting using casting sand in the mold,
A cooling surface is formed on the surface of the casting sand by making the thickness from the forming surface of the casting molding space substantially the same on at least a part of the surface of the mold, and a cooling space formed between the cooling surface and the mold frame,
A filler uniformly filled in the cooling space;
In a mold comprising cooling means for circulating the cooling medium in the cooling space and cooling the cooling surface ,
The cooling surface is formed by cutting the molding sand on the back of the mold dividing surface or by removing a molded wooden mold embedded in the molding sand in advance.
The said cooling space is formed between the lid | cover members which cover a casting_mold | template with the said back surface, The casting_mold | template characterized by the above-mentioned .
前記冷却手段は、前記冷却空間内の充填材間の隙間を通して冷却媒体を循環させるものであることを特徴とする請求項1に記載の鋳型。  2. The mold according to claim 1, wherein the cooling means circulates a cooling medium through a gap between fillers in the cooling space. 型枠内に鋳物砂を用いて鋳物の成形空間を鋳型内に形成し、
鋳型の少なくとも一部の表面を鋳物の成形空間の形成面からの厚さを同一にして冷却表面に形成し、
前記冷却表面を型枠若しくは蓋部材の内面とで閉じた冷却空間に形成し、
前記冷却空間に充填部材を充填し、溶湯を鋳物の成形空間に注湯後に、充填部材の隙間を通して冷却媒体を循環させる鋳物の冷却方法において、
前記冷却表面は、鋳型の分割面の背面の鋳物砂を切削加工若しくは予め鋳物砂に埋め込んだ成形木型を取外すことで形成し、
前記鋳型背面を蓋部材で覆うことで前記冷却表面と蓋部材内面との間に冷却空間を形成することを特徴とする鋳物の冷却方法。
Form molding space in the mold using foundry sand in the mold,
At least a part of the surface of the mold is formed on the cooling surface with the same thickness from the forming surface of the casting molding space,
Forming the cooling surface in a cooling space closed by the inner surface of the mold or the lid member;
Wherein the filling member to the cooling space is filled, after pouring the molten metal into the molding space of the casting, the cooling method of cast product Ru circulates coolant through the gap of the filling member,
The cooling surface is formed by cutting the molding sand on the back side of the divided surface of the mold or removing the molded wooden mold previously embedded in the molding sand,
A casting cooling method , wherein a cooling space is formed between the cooling surface and the inner surface of the lid member by covering the back surface of the mold with a lid member .
JP2001293402A 2001-09-26 2001-09-26 Method for cooling mold and casting Expired - Fee Related JP3644422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001293402A JP3644422B2 (en) 2001-09-26 2001-09-26 Method for cooling mold and casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001293402A JP3644422B2 (en) 2001-09-26 2001-09-26 Method for cooling mold and casting

Publications (2)

Publication Number Publication Date
JP2003103342A JP2003103342A (en) 2003-04-08
JP3644422B2 true JP3644422B2 (en) 2005-04-27

Family

ID=19115198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293402A Expired - Fee Related JP3644422B2 (en) 2001-09-26 2001-09-26 Method for cooling mold and casting

Country Status (1)

Country Link
JP (1) JP3644422B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105798232A (en) * 2016-03-29 2016-07-27 南通超达装备股份有限公司 Mold and casting method of evanescent mold casting part
KR101726148B1 (en) * 2016-04-07 2017-04-11 해원산업(주) Molding sand saving apparatus for casting and casting method thereby

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101109656B1 (en) * 2011-07-19 2012-02-20 임해영 Method for making bell mouth wooden pattern for ship
PL219714B1 (en) * 2011-12-05 2015-06-30 Przedsiębiorstwo Innnowacyjne Odlewnictwa Specodlew Spółka Z Ograniczoną Odpowied Cooling plate
CN107716859B (en) * 2017-12-11 2024-02-13 阜新建兴金属有限公司 Co-tank casting device
US11897028B2 (en) * 2020-08-13 2024-02-13 Qingyou Han Controlled nozzle cooling (CNC) casting
US12048960B2 (en) * 2020-08-13 2024-07-30 Qingyou Han Controlled nozzle cooling (CNC) of sand casting
CN115945638B (en) * 2022-09-15 2024-03-12 南京航空航天大学 Frozen sand mold working platform with embedded cooling system and use method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105798232A (en) * 2016-03-29 2016-07-27 南通超达装备股份有限公司 Mold and casting method of evanescent mold casting part
CN105798232B (en) * 2016-03-29 2018-11-20 南通超达装备股份有限公司 The mold and its casting method of disappearance die casting
KR101726148B1 (en) * 2016-04-07 2017-04-11 해원산업(주) Molding sand saving apparatus for casting and casting method thereby

Also Published As

Publication number Publication date
JP2003103342A (en) 2003-04-08

Similar Documents

Publication Publication Date Title
CN102686334B (en) Casting method and casting device for cast-metal object
JP3644422B2 (en) Method for cooling mold and casting
CN212191148U (en) Thin-wall shell mould casting sand box
JP5747298B2 (en) Manufacturing method of injection mold
JP3946813B2 (en) Molding method to improve sink marks
JP5768705B2 (en) Cylinder for casting cylinder head
CN110153379B (en) One-box two-piece casting process of marine diesel engine cylinder cover casting
CN105636720B (en) Use the forming method of the sand mold of foaming sand, mould and sand mold
US5092390A (en) Method and mold for sand casting varying thickness articles
JP3432181B2 (en) Casting equipment
CA1102995A (en) Mould for casting at low pressure
JPS63101066A (en) Casting method for cooling hole for cast iron made metallic mold
JPH09168856A (en) Method and device for production of die for resin forming
CN210059719U (en) One-box two-piece casting device for marine diesel engine cylinder cover casting
CN220782191U (en) Resin sand manual modeling mould
JP3569243B2 (en) Sand mold for casting
US5234046A (en) Method of eliminating shrinkage porosity defects in the formation of cast molten metal articles using polystyrene chill
JP2004167530A (en) Mold, and method of cooling casting
JPH081275A (en) Manufacture of lost foam pattern
JPS5825942A (en) Injection molding method by integrally molded core
JP5246939B2 (en) Low pressure casting mold
JPH0558820B2 (en)
KR20090116961A (en) Method for casting a cylinder block
JPS6132111B2 (en)
JPH0434987Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees