JP3566553B2 - Method for producing tantalum carbide - Google Patents

Method for producing tantalum carbide Download PDF

Info

Publication number
JP3566553B2
JP3566553B2 JP21570498A JP21570498A JP3566553B2 JP 3566553 B2 JP3566553 B2 JP 3566553B2 JP 21570498 A JP21570498 A JP 21570498A JP 21570498 A JP21570498 A JP 21570498A JP 3566553 B2 JP3566553 B2 JP 3566553B2
Authority
JP
Japan
Prior art keywords
carbonization
tantalum carbide
furnace
carbon
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21570498A
Other languages
Japanese (ja)
Other versions
JP2000044222A (en
Inventor
阪 浩 通 井
本 司 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP21570498A priority Critical patent/JP3566553B2/en
Publication of JP2000044222A publication Critical patent/JP2000044222A/en
Application granted granted Critical
Publication of JP3566553B2 publication Critical patent/JP3566553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バイト、チップ、カッター、ドリル、ダイスなどの超硬切削工具材料の品質改善、性能向上のために利用される炭化タンタルの製造に関する。
【0002】
【従来の技術】
炭化タンタル製造の原料としては、以前金属タンタル粉末が使用されたこともあったが、金属タンタル粉末が比較的高価なため、現在はタンタル酸化物が使用されている。
【0003】
炭化タンタルの製法は、図1に示す通りであり、まず酸化タンタルとカーボンをボールミルで混合し、これをプレスで成形して小さな団鉱にする。次にこれを炭化炉に入れて1400〜1800℃に加熱すれば、下記の反応式(1)により炭化タンタルができる。
Ta+7C→2TaC+5CO …(1)
この炭化の方法には2つの方法があって、水素雰囲気中で炭化する水素炉法と、真空で行なう真空炉法とである。
【0004】
水素炉法で用いられる水素炉は、図2に示すように、アルミナの炉心管にモリブデン線を巻き、これに電流を通して加熱する。炉心管は気密な鉄のケースに収められ、炉心管の周囲にアルミナ粉末が保温材としてつめられている。原料はカーボンボートに入れられ、一方より逐次挿入し他方より押し出される。水素の流れはボートの流れと逆方向で、入口から排出される。
【0005】
一方、真空炉法で用いられる真空炉は、図3に示すように、原料を黒鉛ルツボに入れ、ルツボの外側のコイルに高周波電流を流し、ルツボの表面に流れる誘導電流により加熱する。真空炉は真空ポンプに連結し、雰囲気を真空に保つと同時に発生するガスも排出する。
【0006】
得られた炭化タンタルは、クラッシャーで粗砕し、さらにボールミルで粉砕して、微粒の炭化タンタルにする。
【0007】
上記した従来の炭化タンタルの製造においては次のような問題点がある。すなわち、水素炉法では量産スケールにおいて炭化不充分であり、炭化タンタル中に残存する酸素や遊離カーボンが多い。また炭化反応では上記反応式(1)に示すようにCOガスが発生し、真空炉を使用した場合はこれにより粉末原料であるTaが吹き上がり、操業が難しくなり、製造歩留りが悪くなる。
【0008】
【発明が解決しようとする課題】
本発明の目的は、低酸素でかつ低遊離カーボンの高品質の炭化タンタルを歩留り良く製造する方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、炭化は不充分であるがガスの吹き上りのない水素炉法と、炭化は充分であるがガスの吹き上りのある真空炉法の各々の特長を活かして炭化タンタルを製造することに着目し、一次炭化は水素炉法、二次炭化は真空炉法で行うことにより本発明に至った。
【0010】
本発明は、下記の事項をその特徴としている。
(1) 酸化タンタルとカーボンを混合し、水素炉で所定の温度で一次炭化を行い、得られた炭化物の酸素と遊離カーボンの量を測定し、次いでこの測定結果に基づいてカーボン量を調整して一次炭化物にカーボンを添加し、次いで真空炭化炉で所定の温度で二時炭化を行うことを特徴とする炭化タンタルの製造法。
(2) 一次炭化の処理温度が1400〜1800℃、二次炭化の処理温度が1800〜2000℃であることを特徴とする前記(1)の炭化タンタルの製造法。
【0011】
【発明の実施の形態】
本発明法による炭化タンタルは、秤量、混合、一次炭化、調合、二次炭化、粗粉砕、微粉砕および、篩分の各工程を経て製造される。
秤量工程では、原料であるTaおよびCが各々所定量ずつ台秤等で秤量される。
混合工程では、秤量済みのTaとCがバーチカルミキサー等で均一に混るように混合される。
【0012】
一次炭化工程では、混合された原料がボートに充填され、図2に示すような、水素雰囲気の水素炉に一定時間間隔で炉内に装入される。水素炉内にはボード装入口の他端の取出側より一定流量の水素ガスが吹込まれており、水素還元雰囲気に維持されている。炉内では1400〜1800℃の温度範囲で、TaとCが反応し一次炭化が行われる。加熱温度が1400℃未満では一次炭化が不十分となり、炭化タンタル中の遊離カーボン、酸素量が多くなる。また、炉内温度が1800℃を超えることは、炉の構造、材質上から困難である。
【0013】
調合工程では、一次炭化終了後の炭化タンタルのボード毎の品質を平均化させるために、ヘンセルミキサー等で撹拌混合される。撹拌混合品のサンプルが採取され、遊離カーボン、酸素量が分析測定される。反応に必要なカーボン量が不足する場合にはカーボンが補給添加され、撹拌混合される。
【0014】
二次炭化工程では、調合工程を経た炭化タンタルがるつぼに充填され、図3に示すように、真空炭化炉に装入される。炉内は真空状態に維持され、1800℃〜2000℃の温度に保持され、一次炭化工程で残留した遊離カーボンおよび酸素を低減させるために二次炭化が行われる。炉内温度が1800℃未満では炭化不十分で遊離カーボンおよび酸素の低減効果がうすく、2000℃超では炭化タンタル粉末の凝結が始まり、エネルギー的にも無駄となる。
【0015】
粗粉砕工程では、二次炭化終了後の炭化タンタルがるつぼから取り出され、次工程の微粉砕工程で受入れ可能な大きさにジョークラッシャ等により、炭化タンタルの塊が粗粉砕される。
微粉砕工程では、粗粉砕された炭化タンタルが、所望粒子径になるように、ボールミル等に装入され、微粉砕される。
篩分工程では、微粉砕された炭化タンタルが振動篩等に供給され、所望粒径以上のものが分別除去される。
【0016】
【実施例】
以下に、本発明を実施例と比較例によりさらに説明する。
実施例1
Ta 138Kg、C 26Kgを台秤で秤量後、バーチカルミキサーで5分間撹拌混合し、混合品をカーボン製ボードに充填(2Kg/本)し、3時間に2本の割合で抵抗加熱式水素炉に供給し、1650℃の温度で14時間滞留させ一次炭化を行った。
【0017】
一次炭化終了品の分析値はT−C6.4%、F−C0.3%、O0.8%であった。分析値より不足カーボン量を算定し、一次炭化物120Kgに対しカーボン120gを追加しヘンセルミキサーで撹拌調合し、調合品をカーボン製るつぼに充填(100Kg/本)し、高周波誘導加熱式の真空炉に装入した。
1950℃で5時間炉内に保持し、冷却後るつぼを取り出し、るつぼから取り出した炭化タンタルをショークラッシャで2cm以下に粗粉砕後、20φ〜50φの鉄ボール230Kgを充填した500φ×600Lのステンレス製ボールミルに100Kg装入し、20時間微粉砕を行った。
その後150meshの振動篩で篩分けて150mesh以下の製品118Kgを得た。
【0018】
製品歩留は98%であった。炭化タンタルの製品品質は、T−C 6.25%、F−C 0.02%、O 0.25%であり、超硬工具用材料として求められている品質(F−C <0.2%、O <0.3%)を十分に満足していた。
【0019】
比較例1
Ta 138Kg、C 26Kgを秤量後、バーチカルミキサーで撹拌混合し、カーボン製ボードに充填(2Kg/本)して水素雰囲気の水素炉で1650℃で28時間炭化処理を行い、得られた炭化タンタルをボールミルで粉砕し、150meshの振動篩で篩分けて炭化タンタル製品120Kgを得た。
【0020】
製品歩留は98%、製品品質はF−C 0.25%、O 0.55%であり、超硬工具用材料として求められている品質規格から外れていた。
【0021】
比較例2
Ta 138Kg、C 26Kgを秤量後、バーチカルミキサーで撹拌混合し、カーボン製るつぼに充填(100Kg/本)して真空炭素炉で1950℃で15時間炭化処理を行った。
炭化終了後炉内よりるつぼを取り出したが、炭化タンタルがるつぼ外に、一部流出し、炉内および真空ポンプ系へ飛散していた。
るつぼより炭化タンタルを取り出し、ジョークラッシャで粗粉砕し、次いでボールミルで微粉砕し、150meshの振動篩で篩分けて製品105Kgを得た。
【0022】
製品品質はF−C 0.2%、O 0.4%であり、超硬工具用材料として求められている品質規格のうち酸素の値がオーバーしており、製品歩留も90%と悪かった。
【0023】
【発明の効果】
本発明によれば、水素炉法による一次炭化および真空炉法による二次炭化を行うので、低酸素、低遊離カーボンの高品質の炭化タンタルを歩留り良く製造できる。
【図面の簡単な説明】
【図1】従来の炭化タンタルの製造工程図である。
【図2】水素炉の構造を説明する図である。
【図3】真空炭化炉の構造を説明する図である。
【図4】本発明法による炭化タンタルの製造工程図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the production of tantalum carbide used for improving the quality and performance of carbide cutting tool materials such as cutting tools, inserts, cutters, drills and dies.
[0002]
[Prior art]
As a raw material for producing tantalum carbide, metal tantalum powder has been used before, but tantalum oxide is currently used because metal tantalum powder is relatively expensive.
[0003]
The method of producing tantalum carbide is as shown in FIG. 1. First, tantalum oxide and carbon are mixed by a ball mill, and the mixture is formed into small briquettes by pressing. Next, this is put into a carbonization furnace and heated to 1400 to 1800 ° C., and tantalum carbide is formed by the following reaction formula (1).
Ta 2 O 5 + 7C → 2TaC + 5CO (1)
There are two methods for this carbonization, a hydrogen furnace method of carbonizing in a hydrogen atmosphere and a vacuum furnace method of performing vacuum.
[0004]
In the hydrogen furnace used in the hydrogen furnace method, as shown in FIG. 2, a molybdenum wire is wound around an alumina furnace tube, and an electric current is passed through the tube to heat the tube. The core tube is housed in an air-tight iron case, and alumina powder is filled around the core tube as a heat insulator. The raw materials are put into a carbon boat, sequentially inserted from one side, and extruded from the other side. The flow of hydrogen is discharged from the inlet in the opposite direction to the flow of the boat.
[0005]
On the other hand, in the vacuum furnace used in the vacuum furnace method, as shown in FIG. 3, a raw material is put into a graphite crucible, a high-frequency current is passed through a coil outside the crucible, and the crucible is heated by an induced current flowing on the surface of the crucible. The vacuum furnace is connected to a vacuum pump, and discharges generated gas while maintaining the atmosphere in a vacuum.
[0006]
The obtained tantalum carbide is coarsely crushed by a crusher and further crushed by a ball mill to obtain fine tantalum carbide.
[0007]
There are the following problems in the production of the above-mentioned conventional tantalum carbide. That is, in the hydrogen furnace method, carbonization is insufficient on a mass production scale, and a large amount of oxygen and free carbon remain in tantalum carbide. Further, in the carbonization reaction, CO gas is generated as shown in the above reaction formula (1), and when a vacuum furnace is used, Ta 2 O 5 as a powder raw material is blown up, which makes the operation difficult and the production yield is poor. Become.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing high-quality tantalum carbide having low oxygen and low free carbon with good yield.
[0009]
[Means for Solving the Problems]
The present inventors produce tantalum carbide by utilizing the features of the hydrogen furnace method in which carbonization is insufficient but no gas is blown up and the vacuum furnace method in which carbonization is sufficient but gas is blown up. The present invention was achieved by performing primary carbonization by a hydrogen furnace method and performing secondary carbonization by a vacuum furnace method.
[0010]
The present invention has the following features.
(1) Mix tantalum oxide and carbon, perform primary carbonization at a predetermined temperature in a hydrogen furnace, measure the amount of oxygen and free carbon in the obtained carbide, and then adjust the amount of carbon based on the measurement results. A method for producing tantalum carbide by adding carbon to primary carbides and then performing carbonization twice at a predetermined temperature in a vacuum carbonization furnace.
(2) The method for producing tantalum carbide according to the above (1), wherein the treatment temperature for primary carbonization is 1400 to 1800 ° C, and the treatment temperature for secondary carbonization is 1800 to 2000 ° C.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The tantalum carbide according to the method of the present invention is produced through weighing, mixing, primary carbonization, blending, secondary carbonization, coarse pulverization, fine pulverization, and sieving.
In the weighing step, Ta 2 O 5 and C, which are raw materials, are each weighed by a predetermined amount by a platform weigher or the like.
In the mixing step, the weighed Ta 2 O 5 and C are mixed by a vertical mixer or the like so as to be uniformly mixed.
[0012]
In the primary carbonization step, the mixed raw materials are charged into a boat and charged into a hydrogen furnace in a hydrogen atmosphere at regular intervals as shown in FIG. A constant flow rate of hydrogen gas is blown into the hydrogen furnace from the outlet at the other end of the board loading port, and is maintained in a hydrogen reducing atmosphere. In the furnace, Ta 2 O 5 and C react in a temperature range of 1400 to 1800 ° C. to perform primary carbonization. When the heating temperature is lower than 1400 ° C., primary carbonization becomes insufficient, and the amount of free carbon and oxygen in tantalum carbide increases. Further, it is difficult for the furnace temperature to exceed 1800 ° C. in view of the structure and the material of the furnace.
[0013]
In the blending step, tantalum carbide after primary carbonization is stirred and mixed with a Hensel mixer or the like in order to average the quality of each board. A sample of the agitated mixture is taken and the free carbon and oxygen content are analyzed and measured. When the amount of carbon required for the reaction is insufficient, carbon is supplementarily added and stirred and mixed.
[0014]
In the secondary carbonization step, the crucible is filled with tantalum carbide that has undergone the blending step, and is charged into a vacuum carbonization furnace as shown in FIG. The inside of the furnace is maintained in a vacuum state, maintained at a temperature of 1800 ° C. to 2000 ° C., and subjected to secondary carbonization to reduce free carbon and oxygen remaining in the primary carbonization step. If the furnace temperature is lower than 1800 ° C., the carbonization is insufficient and the effect of reducing free carbon and oxygen is weak. If the temperature is higher than 2000 ° C., the tantalum carbide powder starts to condense, and energy is wasted.
[0015]
In the coarse grinding step, the tantalum carbide after the secondary carbonization is taken out from the crucible, and the lump of tantalum carbide is coarsely ground by a jaw crusher or the like into a size acceptable in the subsequent fine grinding step.
In the fine pulverizing step, the coarsely pulverized tantalum carbide is charged into a ball mill or the like so as to have a desired particle size and finely pulverized.
In the sieving step, finely pulverized tantalum carbide is supplied to a vibrating sieve or the like, and those having a desired particle size or more are separated and removed.
[0016]
【Example】
Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples.
Example 1
After weighing 138 Kg of Ta 2 O 5 and 26 Kg of C on a platform scale, stirring and mixing the mixture with a vertical mixer for 5 minutes, filling the mixture into a carbon board (2 Kg / piece), and using a resistance heating type hydrogen at a rate of 2 pieces per 3 hours. The mixture was supplied to a furnace and kept at a temperature of 1650 ° C. for 14 hours to perform primary carbonization.
[0017]
The analysis values of the primary carbonized product were T-C 6.4%, F-C 0.3%, and O 0.8%. The amount of carbon deficiency was calculated from the analysis value, 120 g of carbon was added to 120 kg of primary carbide, and the mixture was stirred and mixed with a Hensel mixer. The prepared product was filled in a carbon crucible (100 kg / piece), and a high-frequency induction heating vacuum furnace was used. Was charged.
Hold in a furnace at 1950 ° C. for 5 hours, take out the crucible after cooling, coarsely pulverize the tantalum carbide taken out of the crucible to 2 cm or less with a show crusher, and then fill 500 kg × 600 L stainless steel filled with 230 kg of iron balls of 20φ to 50φ. 100 kg was charged into a ball mill and pulverized for 20 hours.
Thereafter, the resultant was sieved with a 150-mesh vibrating sieve to obtain 118 kg of a product of 150 mesh or less.
[0018]
The product yield was 98%. The product quality of tantalum carbide is T-C 6.25%, F-C 0.02%, and O 0.25%, and the quality (FC <0.2 %, O <0.3%).
[0019]
Comparative Example 1
After weighing 138 Kg of Ta 2 O 5 and 26 Kg of C, the mixture was stirred and mixed with a vertical mixer, filled into a carbon board (2 Kg / piece), and carbonized at 1650 ° C. for 28 hours in a hydrogen furnace in a hydrogen atmosphere to obtain. The tantalum carbide was pulverized with a ball mill and sieved with a 150 mesh vibrating sieve to obtain 120 kg of a tantalum carbide product.
[0020]
The product yield was 98%, and the product quality was 0.25% for FC and 0.55% for O, deviating from the quality standards required for materials for carbide tools.
[0021]
Comparative Example 2
After weighing 138 kg of Ta 2 O 5 and 26 kg of C 2 , the mixture was stirred and mixed with a vertical mixer, filled in a carbon crucible (100 kg / piece), and carbonized at 1950 ° C. for 15 hours in a vacuum carbon furnace.
After the carbonization was completed, the crucible was taken out of the furnace, but a part of the tantalum carbide flowed out of the crucible and scattered into the furnace and the vacuum pump system.
Tantalum carbide was taken out of the crucible, coarsely pulverized with a jaw crusher, finely pulverized with a ball mill, and sieved with a 150 mesh vibrating sieve to obtain 105 kg of a product.
[0022]
The product quality is 0.2% of FC and 0.4% of O. The oxygen value exceeds the quality standard required for the material for carbide tools, and the product yield is as poor as 90%. Was.
[0023]
【The invention's effect】
According to the present invention, since the primary carbonization by the hydrogen furnace method and the secondary carbonization by the vacuum furnace method are performed, high-quality tantalum carbide having low oxygen and low free carbon can be produced with high yield.
[Brief description of the drawings]
FIG. 1 is a manufacturing process diagram of a conventional tantalum carbide.
FIG. 2 is a diagram illustrating the structure of a hydrogen furnace.
FIG. 3 is a diagram illustrating the structure of a vacuum carbonization furnace.
FIG. 4 is a manufacturing process diagram of tantalum carbide according to the method of the present invention.

Claims (2)

酸化タンタルとカーボンを混合し、水素炉で所定の温度で一次炭化を行い、得られた炭化物の酸素と遊離カーボンの量を測定し、次いでこの測定結果に基づいてカーボン量を調整して一次炭化物にカーボンを添加し、次いで真空炭化炉で所定の温度で二時炭化を行うことを特徴とする炭化タンタルの製造法。Mix tantalum oxide and carbon, perform primary carbonization at a predetermined temperature in a hydrogen furnace, measure the amount of oxygen and free carbon in the obtained carbide, and then adjust the amount of carbon based on the measurement results to adjust the primary carbide. A method for producing tantalum carbide, characterized in that carbon is added to the mixture and carbonization is performed twice at a predetermined temperature in a vacuum carbonization furnace. 一次炭化の処理温度が1400〜1800℃、二次炭化の処理温度が1800〜2000℃であることを特徴とする請求項1に記載の炭化タンタルの製造法。The method for producing tantalum carbide according to claim 1, wherein the treatment temperature of the primary carbonization is 1400 to 1800C and the treatment temperature of the secondary carbonization is 1800 to 2000C.
JP21570498A 1998-07-30 1998-07-30 Method for producing tantalum carbide Expired - Lifetime JP3566553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21570498A JP3566553B2 (en) 1998-07-30 1998-07-30 Method for producing tantalum carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21570498A JP3566553B2 (en) 1998-07-30 1998-07-30 Method for producing tantalum carbide

Publications (2)

Publication Number Publication Date
JP2000044222A JP2000044222A (en) 2000-02-15
JP3566553B2 true JP3566553B2 (en) 2004-09-15

Family

ID=16676788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21570498A Expired - Lifetime JP3566553B2 (en) 1998-07-30 1998-07-30 Method for producing tantalum carbide

Country Status (1)

Country Link
JP (1) JP3566553B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070059501A1 (en) 2003-08-01 2007-03-15 The New Industry Research Organization Tantalum carbide, method for producing tantalum carbide, tantalum carbide wiring and tantalum carbide electrode
CN100457612C (en) * 2006-12-31 2009-02-04 株洲硬质合金集团有限公司 Method for preparing fine grains of tantalum carbide
CN102225764B (en) * 2011-05-25 2013-02-13 山东理工大学 Preparation method of tantalum carbide powder
RU2559284C2 (en) * 2013-12-25 2015-08-10 Акционерное общество "Государственный Ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (АО "ГНИИХТЭОС") Method of obtaining nano-sized tantalum carbide by thermal transformation of pentakis-(dimethylamino)tantalum
CN114853018B (en) * 2022-04-13 2024-03-26 广东先导稀材股份有限公司 Preparation method of tantalum carbide powder
CN115849379A (en) * 2022-12-06 2023-03-28 株洲昊坤硬质材料有限公司 Method for preparing fine-particle tantalum carbide

Also Published As

Publication number Publication date
JP2000044222A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
CN100486740C (en) Direct reduction carbonization manufacture method for tungsten carbide or tungsten carbide-cobalt ultrafine particle powder
CN107585768B (en) Method for preparing superfine tungsten carbide powder by oxidation-reduction method
US20130004407A1 (en) Method for preparing ultrafine tungsten carbide powder
JP3566553B2 (en) Method for producing tantalum carbide
JP2020023406A (en) Method of producing high purity silicon nitride powder
CN107973299B (en) Production system and production process of high-temperature-base WC powder
CN107867690B (en) A kind of high temperature base WC powder and its preparation method and application
JP3540614B2 (en) Method for producing niobium carbide
CN103183347A (en) Preparation method of crude tungsten carbide powder
US2849275A (en) Production of refractory metal carbides
JPH10194711A (en) Highly filling boron nitride powder and its production
JP2008031016A (en) Tantalum carbide powder, tantalum carbide-niobium composite powder and their production method
JPH08333107A (en) Production of powder of titanium carbide nitride
EP3378845A1 (en) Zirconium boride and method for producing same
CN114920560A (en) LaB 6 Powder and method for producing sintered body thereof
CN107867691A (en) A kind of preparation method and application of high-quality coarse-grained WC powder
JP2003112977A (en) Method for producing high purity silicon nitride powder
JP2958851B2 (en) Method for producing fine chromium carbide
JP4023711B2 (en) Method for producing high purity fine tungsten carbide powder without the need for a grinding step
EP0887308B1 (en) Process for preparing aluminum nitride
JP3439604B2 (en) Method for producing silicon nitride
JPH11193425A (en) Method for regenerating powder for sintered hard alloy chip and method for regenerating sintered hard alloy chip
JPH06216414A (en) Manufacture of thermoelectric conversion material
CN101298696A (en) Method for preparing single crystal granule tungsten carbide
JPH05279002A (en) Production of al nitride powder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term