JP3540614B2 - Method for producing niobium carbide - Google Patents

Method for producing niobium carbide Download PDF

Info

Publication number
JP3540614B2
JP3540614B2 JP21533598A JP21533598A JP3540614B2 JP 3540614 B2 JP3540614 B2 JP 3540614B2 JP 21533598 A JP21533598 A JP 21533598A JP 21533598 A JP21533598 A JP 21533598A JP 3540614 B2 JP3540614 B2 JP 3540614B2
Authority
JP
Japan
Prior art keywords
carbonization
furnace
niobium carbide
carbon
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21533598A
Other languages
Japanese (ja)
Other versions
JP2000044243A (en
Inventor
阪 浩 通 井
本 司 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP21533598A priority Critical patent/JP3540614B2/en
Publication of JP2000044243A publication Critical patent/JP2000044243A/en
Application granted granted Critical
Publication of JP3540614B2 publication Critical patent/JP3540614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、炭化ニオブの製造方法に関する。
【0002】
【従来の技術】
炭化ニオブの製法は、図1に示す通りである。まず酸化ニオブとカーボンをボールミルで混合し、これをプレスで成形して小さな団鉱にする。次いでこれを炭化炉に入れて1400〜1600℃に加熱すれば、下記の反応式(1)により炭化ニオブができる。
Nb+7C→2NbC+5CO …(1)
【0003】
この炭化の方法には2つの方法があって、水素雰囲気中で炭化する水素炉法と、真空で行なう真空炉法とである。
水素炉法に用いられる水素炉は、図2に示すように、アルミナの炉心管にモリブデン線を巻き、これに電流を通して加熱する。炉心管は気密な鉄のケースに収められ、炉心管の周囲にアルミナ粉末が保温材としてつめられている。原料はカーボンボートに入れられ、一方より逐次挿入し他方より押し出される。水素の流れはボートの流れと逆方向で、入口から排出される。
【0004】
一方、真空炉法に用いられる真空炉は、図3に示すように、原料を黒鉛ルツボに入れ、ルツボの外側のコイルに高周波電流を流し、ルツボの表面に流れる誘導電流により加熱する。真空炉は真空ポンプに連結し、雰囲気を真空に保つと同時に発生するガスも排出する。
【0005】
得られた炭化ニオブは、クラッシャーで粗砕し、さらにボールミルで粉砕して、微粒の炭化ニオブにする。
【0006】
上記した従来の炭化ニオブの製造においては、次のような問題点がある。すなわち、水素炉法では、量産スケールにおいて炭化不充分であり、炭化ニオブ中に残存する酸素や遊離カーボンが多い。また炭化反応では、上記反応式(1)に示すようにCOガスが発生し、真空炉の場合はこれにより粉末原料であるNb2 5 が吹き上がり、操業が難しくなり、製造歩留りが悪くなる。
【0007】
【発明が解決しようとする課題】
本発明の目的は、低酸素でかつ低遊離カーボンの高品質の炭化ニオブを歩留り良く製造する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、炭化は不充分であるがガスの吹き上りのない水素炉法と、炭化は充分であるがガスの吹き上りのある真空炉法の各々の特長を活かして炭化ニオブの製造をすることに着目し、一次炭化は水素炉法、二次炭化は真空炉法で行うことにより本発明に至った。
【0009】
本発明は下記の事項をその特徴としている。
(1) 酸化ニオブとカーボンを混合し、水素炉で所定の温度で一次炭化を行い、得られた炭化物の酸素と遊離カーボンの量を測定し、次いでこの測定結果に基づいてカーボン量を調整して一次炭化物にカーボンを添加し、次いで真空炭化炉で所定の温度で二次炭化を行うことを特徴とする炭化ニオブの製造方法。
(2) 一次炭化の処理温度が1400〜1800℃であり、二次炭化の処理温度が1800〜2000℃であることを特徴とする前記(1)の炭化ニオブの製造方法。
【0010】
【発明の実施の形態】
本発明法による炭化ニオブの製造では、秤量、混合、一次炭化、調合、二次炭化、粗粉砕、微粉砕、篩分の各工程からなる。
秤量工程では、原料であるNb2 5 およびCが各々所定量ずつ台秤等で秤量される。
混合工程では、秤量済みのNb2 5 とCがバーチカルミキサー等で均一にまざるように混合される。
【0011】
一次炭化工程では、混合された原料はボートに充填され、図2に示すように、水素雰囲気水素炉に、一定時間間隔で炉内に装入される。炉内はボード装入口の他端の取出側より一定流量の水素ガスが炉内に吹込まれており、水素還元雰囲気に維持されている。炉内では(1400〜1800℃の温度範囲でNb2 5 とCが反応し一次炭化が行われる。1400℃未満では一次炭化が不十分となり、炭化ニオブ中の遊離カーボン、酸素量が多くなる。また、炉内温度が1800℃を超えることは、炉の構造、材質上から困難である。
【0012】
調合工程では、一次炭化終了後の炭化ニオブのボード毎の品質を平均化させるために、ヘンセルミキサー等で攪拌混合される。攪拌混合品のサンプルが採取され、遊離カーボン、酸素量が分析測定される。反応に必要なカーボン量が不足する場合にはカーボンが補給添加され、攪拌混合される。
【0013】
二次炭化工程では、調合工程を経た炭化ニオブがるつぼに充填され、図3に示すように、真空炭化炉に装入される。炉内は真空状態に維持され、1800〜2000℃の温度に保持され、一次炭化工程で残留した遊離カーボンおよび酸素を低減させるために二次炭化が行われる。炉内温度が1800℃未満では炭化不十分で遊離カーボンおよび酸素の低減効果がうすく、2000℃超では炭化ニオブ粉末の凝結が始まり、エネルギー的にも無駄となる。
【0014】
粗粉砕工程では、二次炭化終了の炭化ニオブがるつぼから取り出され、次工程の微粉砕工程で受入れ可能な大きさにジョークラッシャ等で、炭化タンタルの塊が粗粉砕される。
微粉砕工程では、粗粉砕された炭化ニオブが、所望粒子径になるように、ボールミル等に装入され、微粉砕される。
篩分工程では、微粉砕された炭化ニオブが振動篩等に供給され、所望粒径以上のものが分別除去される。
【0015】
【実施例】
以下に、本発明を実施例および比較例によりさらに説明する。
実施例1
Nb2 5 70kg、C 22kgを台秤で秤量後バーチカルミキサーで5分間攪拌混合し、混合品をカーボン製ボードに充填(1kg/本)し、3時間に2本の割合で抵抗加熱式水素炉に供給し、1550℃の温度で14時間滞溜させ一次炭化を行った。
【0016】
一次炭化終了品の分析値はT−C 11.40%、F−C 0.5%、O 0.7%であった。分析値よりカーボンの追加添加は必要ないことがわかった。得られた一次炭化品55kgをボートよりヘンセルミキサーに移し調合を行った後、カーボン製るつぼに充填し、高周波誘導加熱式の真空炉に装入した。1950℃で6時間炉内に保持し、冷却後るつぼを取り出し、るつぼから取り出した炭化ニオブをショークラッシャで2cm以下に粗粉砕後、20φ〜50φの鉄ボール230kgを充填した500φ×600のステンレス製ボールミルに55kg装入し5時間微粉砕を行った。その後150meshの振動篩で篩分けて150mesh以下の製品54kgを得た。
【0017】
製品歩留りは98%で、得られた炭化タンタルの製品品質はT−C 11.30%、F−C 0.1%、O 0.25%であり、超硬工具用材料として求められている品質(F−C<0.2%、O<0.3%)を十分に満足していた。
【0018】
比較例1
Nb2 5 70kg、C 22kgを秤量後バーチカルミキサーで攪拌混合し、カーボン製ボードに充填(1kg/本)して水素雰囲気の水素炉で1650℃で14時間炭化処理を行い、得られた炭化ニオブをボールミルで5時間粉砕し150meshの振動篩で篩分けて炭化ニオブ製品55kgを得た。
【0019】
製品歩留は98%、製品品質はF−C 0.3、O 0.55%であり、超硬工具用材料として求められている品質要求値を越えていた。
【0020】
比較例2
Nb2 5 70kg、C 22kgを秤量後バーチカルミキサーで攪拌混合し、カーボン製るつぼに充填して真空炭化炉で1950℃で8時間炭化処理を行った。炭化終了後炉内よりるつぼを取り出したが、炭化ニオブがるつぼ外に、一部流出し、炉内および真空ポンプ系へ飛散していた。るつぼより炭化ニオブを取り出し、ジョークラッシャで粗粉砕し、次いでボールミルで5時間微粉砕し、150meshの振動篩で篩分けて製品50kgを得た。
【0021】
得られた製品の品質は、F−C 0.2%、O 0.4%であり、超硬工具用材料として求められている品質要求値から外れており、製品歩留も90%と悪かった。
【0022】
【発明の効果】
本発明によれば、水素炉法による一次炭化および真空炉法による二次炭化を行うので、低酸素、低遊離カーボンの高品質の炭化ニオブを歩留り良く製造できる。
【図面の簡単な説明】
【図1】従来の炭化ニオブの製造工程図である。
【図2】水素炉の構造を説明する図である。
【図3】真空炭化炉の構造を説明する図である。
【図4】本発明法による炭化ニオブの製造工程図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing niobium carbide.
[0002]
[Prior art]
The method for producing niobium carbide is as shown in FIG. First, niobium oxide and carbon are mixed by a ball mill, and this is formed by pressing into small briquettes. Next, this is placed in a carbonization furnace and heated to 1400 to 1600 ° C., whereby niobium carbide is formed by the following reaction formula (1).
Nb 2 O 5 + 7C → 2NbC + 5CO (1)
[0003]
There are two methods for this carbonization, a hydrogen furnace method of carbonizing in a hydrogen atmosphere and a vacuum furnace method of performing vacuum.
As shown in FIG. 2, in a hydrogen furnace used in the hydrogen furnace method, a molybdenum wire is wound around a furnace tube made of alumina, and an electric current is passed through the tube. The core tube is housed in an air-tight iron case, and alumina powder is filled around the core tube as a heat insulator. The raw materials are put into a carbon boat, sequentially inserted from one side, and extruded from the other side. The flow of hydrogen is discharged from the inlet in the opposite direction to the flow of the boat.
[0004]
On the other hand, in a vacuum furnace used in the vacuum furnace method, as shown in FIG. 3, a raw material is put into a graphite crucible, a high-frequency current is passed through a coil outside the crucible, and the crucible is heated by an induced current flowing on the surface. The vacuum furnace is connected to a vacuum pump, and discharges generated gas while maintaining the atmosphere in a vacuum.
[0005]
The obtained niobium carbide is crushed by a crusher and further crushed by a ball mill to obtain fine niobium carbide.
[0006]
The above-mentioned conventional production of niobium carbide has the following problems. That is, in the hydrogen furnace method, carbonization is insufficient on a mass production scale, and a large amount of oxygen and free carbon remain in niobium carbide. In the carbonization reaction, CO gas is generated as shown in the above reaction formula (1). In the case of a vacuum furnace, Nb 2 O 5 as a powder raw material is blown up, which makes the operation difficult and the production yield deteriorates. .
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing high-quality niobium carbide having low oxygen and low free carbon with good yield.
[0008]
[Means for Solving the Problems]
The present inventors have proposed the production of niobium carbide by utilizing the features of the hydrogen furnace method in which carbonization is insufficient but no gas is blown up and the vacuum furnace method in which carbonization is sufficient but gas is blown up. The primary carbonization is performed by a hydrogen furnace method, and the secondary carbonization is performed by a vacuum furnace method.
[0009]
The present invention has the following features.
(1) Niobium oxide and carbon are mixed, primary carbonization is performed at a predetermined temperature in a hydrogen furnace, the amount of oxygen and free carbon in the obtained carbide is measured, and then the amount of carbon is adjusted based on the measurement result. Carbon is added to the primary carbide by means of a primary carbide, and then secondary carbonization is performed at a predetermined temperature in a vacuum carbonization furnace.
(2) The method for producing niobium carbide according to the above (1), wherein the processing temperature of the primary carbonization is 1400 to 1800 ° C, and the processing temperature of the secondary carbonization is 1800 to 2000 ° C.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The production of niobium carbide according to the method of the present invention comprises the steps of weighing, mixing, primary carbonization, blending, secondary carbonization, coarse pulverization, fine pulverization, and sieving.
In the weighing step, Nb 2 O 5 and C, which are raw materials, are each weighed by a predetermined amount by a platform scale or the like.
In the mixing step, Nb 2 O 5 and C, which have been weighed, are mixed uniformly by a vertical mixer or the like.
[0011]
In the primary carbonization step, the mixed raw materials are filled in a boat and charged into a hydrogen atmosphere hydrogen furnace at regular time intervals, as shown in FIG. In the furnace, a constant flow rate of hydrogen gas is blown into the furnace from the outlet side at the other end of the board loading port, and is maintained in a hydrogen reducing atmosphere. In the furnace, Nb 2 O 5 and C react with each other in the temperature range of 1400 to 1800 ° C. to perform primary carbonization. If the temperature is less than 1400 ° C., primary carbonization becomes insufficient and the amount of free carbon and oxygen in niobium carbide increases. Further, it is difficult for the furnace temperature to exceed 1800 ° C. in view of the structure and material of the furnace.
[0012]
In the blending step, niobium carbide after the primary carbonization is stirred and mixed with a Hensel mixer or the like in order to average the quality of each board. A sample of the agitated mixture is taken and the amount of free carbon and oxygen is analyzed and measured. When the amount of carbon required for the reaction is insufficient, carbon is supplementarily added and stirred and mixed.
[0013]
In the secondary carbonization step, niobium carbide that has undergone the blending step is filled in a crucible and charged into a vacuum carbonization furnace as shown in FIG. The inside of the furnace is maintained in a vacuum state, maintained at a temperature of 1800 to 2000 ° C., and subjected to secondary carbonization to reduce free carbon and oxygen remaining in the primary carbonization step. If the temperature in the furnace is lower than 1800 ° C., carbonization is insufficient and the effect of reducing free carbon and oxygen is weak. If the temperature is higher than 2000 ° C., coagulation of niobium carbide powder starts and energy is wasted.
[0014]
In the coarse pulverization step, niobium carbide after the secondary carbonization is taken out of the crucible, and a lump of tantalum carbide is coarsely pulverized by a jaw crusher or the like into a size acceptable in the subsequent fine pulverization step.
In the fine pulverization step, the roughly pulverized niobium carbide is charged into a ball mill or the like so as to have a desired particle size, and finely pulverized.
In the sieving process, finely pulverized niobium carbide is supplied to a vibrating sieve or the like, and those having a desired particle size or more are separated and removed.
[0015]
【Example】
Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples.
Example 1
After weighing 70 kg of Nb 2 O 5 and 22 kg of C on a platform scale, stirring and mixing with a vertical mixer for 5 minutes, filling the mixture into a carbon board (1 kg / piece), and using a resistance heating type hydrogen furnace at a rate of 2 pieces per 3 hours And kept at a temperature of 1550 ° C. for 14 hours to perform primary carbonization.
[0016]
The analytical values of the primary carbonized product were 11.40% for TC, 0.5% for FC, and 0.7% for O. The analysis results showed that no additional carbon was needed. After 55 kg of the obtained primary carbonized product was transferred from a boat to a Hensell mixer and blended, it was charged into a carbon crucible and charged in a high-frequency induction heating vacuum furnace. Held in 6 hours oven at 1950 ° C., taken out after cooling the crucible, after coarsely crushed into 2cm below niobium carbide taken out from the crucible in the show crusher, 500 phi × filled with iron balls 230kg of 20 phi to 50 phi 600 An L stainless steel ball mill was charged with 55 kg and pulverized for 5 hours. Thereafter, the product was sieved with a 150-mesh vibrating sieve to obtain 54 kg of a product of 150 mesh or less.
[0017]
The product yield is 98%, and the product quality of the obtained tantalum carbide is T-C 11.30%, F-C 0.1%, O 0.25%, and is required as a material for carbide tools. The quality (FC <0.2%, O <0.3%) was sufficiently satisfied.
[0018]
Comparative Example 1
After weighing 70 kg of Nb 2 O 5 and 22 kg of C, the mixture was stirred and mixed by a vertical mixer, filled in a carbon board (1 kg / piece), and carbonized at 1650 ° C. for 14 hours in a hydrogen furnace in a hydrogen atmosphere to obtain carbonized carbon. Niobium was crushed with a ball mill for 5 hours and sieved with a 150 mesh vibrating sieve to obtain 55 kg of a niobium carbide product.
[0019]
The product yield was 98%, and the product quality was 0.3 F-C and 0.55% O, which exceeded the quality requirement values required for materials for carbide tools.
[0020]
Comparative Example 2
After weighing 70 kg of Nb 2 O 5 and 22 kg of C, the mixture was stirred and mixed with a vertical mixer, filled in a carbon crucible, and carbonized at 1950 ° C. for 8 hours in a vacuum carbonizing furnace. After the carbonization was completed, the crucible was taken out of the furnace, but part of the niobium carbide flowed out of the crucible and scattered into the furnace and the vacuum pump system. Niobium carbide was taken out of the crucible, coarsely ground with a jaw crusher, finely ground with a ball mill for 5 hours, and sieved with a 150 mesh vibrating sieve to obtain 50 kg of a product.
[0021]
The quality of the obtained product is 0.2% of FC and 0.4% of O, which is out of the quality requirement value required as a material for a carbide tool, and the product yield is as poor as 90%. Was.
[0022]
【The invention's effect】
According to the present invention, since primary carbonization by the hydrogen furnace method and secondary carbonization by the vacuum furnace method are performed, high-quality niobium carbide of low oxygen and low free carbon can be produced with high yield.
[Brief description of the drawings]
FIG. 1 is a manufacturing process diagram of a conventional niobium carbide.
FIG. 2 is a diagram illustrating the structure of a hydrogen furnace.
FIG. 3 is a diagram illustrating the structure of a vacuum carbonization furnace.
FIG. 4 is a manufacturing process diagram of niobium carbide according to the method of the present invention.

Claims (2)

酸化ニオブとカーボンを混合し、水素炉で所定の温度で一次炭化を行い、得られた炭化物の酸素と遊離カーボンの量を測定し、次いでその測定結果に基づいてカーボン量を調整して一次炭化物にカーボンを添加し、次いで真空炭化炉で所定の温度で二次炭化を行うことを特徴とする炭化ニオブの製造方法。Mix niobium oxide and carbon, perform primary carbonization at a predetermined temperature in a hydrogen furnace, measure the amount of oxygen and free carbon in the obtained carbide, and then adjust the amount of carbon based on the measurement results to adjust the primary carbide. A method for producing niobium carbide, characterized in that carbon is added to the mixture and then secondary carbonization is performed at a predetermined temperature in a vacuum carbonization furnace. 一次炭化の処理温度が1400〜1800℃であり、二次炭化の処理温度が1800〜2000℃であることを特徴とする請求項1に記載の炭化ニオブの製造方法。The method for producing niobium carbide according to claim 1, wherein the treatment temperature of the primary carbonization is 1400 to 1800C and the treatment temperature of the secondary carbonization is 1800 to 2000C.
JP21533598A 1998-07-30 1998-07-30 Method for producing niobium carbide Expired - Lifetime JP3540614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21533598A JP3540614B2 (en) 1998-07-30 1998-07-30 Method for producing niobium carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21533598A JP3540614B2 (en) 1998-07-30 1998-07-30 Method for producing niobium carbide

Publications (2)

Publication Number Publication Date
JP2000044243A JP2000044243A (en) 2000-02-15
JP3540614B2 true JP3540614B2 (en) 2004-07-07

Family

ID=16670602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21533598A Expired - Lifetime JP3540614B2 (en) 1998-07-30 1998-07-30 Method for producing niobium carbide

Country Status (1)

Country Link
JP (1) JP3540614B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001774A1 (en) * 2006-06-26 2008-01-03 Mitsui Mining & Smelting Co., Ltd. Process for production of niobium oxides and niobium monoxide
EP2128087A4 (en) 2007-03-26 2013-12-11 Jfe Mineral Co Ltd Process for production of transition metal carbides and/or double carbides
CN112777597A (en) * 2021-03-23 2021-05-11 上海简巨医学生物工程有限公司 Niobium carbide nano material and preparation method thereof

Also Published As

Publication number Publication date
JP2000044243A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
US8048822B2 (en) Method for making silicon-containing products
US4117096A (en) Process for producing powder of β-type silicon carbide
CN107585768B (en) Method for preparing superfine tungsten carbide powder by oxidation-reduction method
US1814719A (en) Ductile thorium and method of making the same
JP3566553B2 (en) Method for producing tantalum carbide
JP3540614B2 (en) Method for producing niobium carbide
CN108080654B (en) A kind of production technology of ultra-fine flake type mesohigh tantalum powder
CN107867690B (en) A kind of high temperature base WC powder and its preparation method and application
CN107973299A (en) A kind of production system and its production technology of high temperature base WC powder
JPS6242878B2 (en)
US2849275A (en) Production of refractory metal carbides
CN106573775A (en) Novel process and product
CN111751311B (en) Preparation method of graphite material for oxygen-nitrogen-hydrogen analyzer
JPH10194711A (en) Highly filling boron nitride powder and its production
JP2008031016A (en) Tantalum carbide powder, tantalum carbide-niobium composite powder and their production method
JPH07165408A (en) Production of electrically conductive silicon carbide fine powder and sintered compact
JP4023711B2 (en) Method for producing high purity fine tungsten carbide powder without the need for a grinding step
JP3439604B2 (en) Method for producing silicon nitride
JPH06216414A (en) Manufacture of thermoelectric conversion material
JPH11193425A (en) Method for regenerating powder for sintered hard alloy chip and method for regenerating sintered hard alloy chip
CN108018453A (en) A kind of W/B4C heterogeneous composite materials and smelting preparation method
KR970001524B1 (en) Process for the preparation of silicon carbide powder
JPH05279002A (en) Production of al nitride powder
JPS58213606A (en) Preparation of titanium nitride powder
JP2002193607A (en) Method of producing high purity trichromium dicarbide

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term