JP3565477B2 - Compression refrigerator - Google Patents

Compression refrigerator Download PDF

Info

Publication number
JP3565477B2
JP3565477B2 JP12857398A JP12857398A JP3565477B2 JP 3565477 B2 JP3565477 B2 JP 3565477B2 JP 12857398 A JP12857398 A JP 12857398A JP 12857398 A JP12857398 A JP 12857398A JP 3565477 B2 JP3565477 B2 JP 3565477B2
Authority
JP
Japan
Prior art keywords
refrigerating machine
compressor
machine oil
refrigerant vapor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12857398A
Other languages
Japanese (ja)
Other versions
JPH11325617A (en
Inventor
武 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP12857398A priority Critical patent/JP3565477B2/en
Publication of JPH11325617A publication Critical patent/JPH11325617A/en
Application granted granted Critical
Publication of JP3565477B2 publication Critical patent/JP3565477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧縮式冷凍機に関するものである。
【0002】
【従来の技術】
図3は周知の圧縮式冷凍機の基本構成を示すもので、符号1は圧縮機、2は凝縮器、3は減圧弁、4は蒸発器、5は油分離器、6は減圧弁である。凝縮器2と蒸発器4は空気熱交換器として構成しており、夫々にファン7,8を設置している。符号9は油分離器5から蒸発器4の下流側に至る冷凍機油戻し経路で、前記減圧弁6が設けられている。また符号10,11は夫々高圧冷媒蒸気経路、低圧冷媒蒸気経路である。
【0003】
この圧縮式冷凍機において、圧縮機1を潤滑する冷凍機油は、高圧冷媒蒸気と共に圧縮機1の吐出側を出て油分離器5にて分離され、冷凍機油戻し経路9を通って蒸発器4の下流側に合流し、低圧冷媒蒸気と混合されて圧縮機1の吸込側に還流する。
以上のようにして圧縮式冷凍機では、冷凍機油が圧縮機1内部に保持されるようにサイクルが形成されている。
【0004】
一般に、油分離器5で冷媒と冷凍機油を完全に分離することは不可能であり、冷凍機油の一部は冷媒蒸気に同伴されて凝縮器2へと流れてしまう。そのため、凝縮器2でも冷凍機油が問題なく流れるように、冷凍機油は冷媒に対して溶解性を有するものを選定する場合が多い。即ち、高粘度の冷凍機油と低粘度の冷媒が溶け合えば、冷凍機油の粘度が低下して凝縮器2や、その後の蒸発器4も流れやすくなるため、凝縮器2へと流れた冷凍機油も確実に冷媒と共に圧縮機1に戻すことができる。
【0005】
【発明が解決しようとする課題】
他の各種機器、システムと同様、圧縮式冷凍機においても、効率のより一層の向上が計られているのであるが、従来、冷凍機油は単なる潤滑油として使用しており、効率の向上には利用されていない。
本発明はこのような点に鑑みて創案されたもので、冷凍機油の冷媒に対する溶解性を有効に利用することにより、効率の向上を計ることを目的とするものである。
【0006】
【課題を解決するための手段】
上述した課題を解決するために本発明では、冷媒に対する溶解性を有する冷凍機油を使用した圧縮式冷凍機において、圧縮機下流側に設けた油分離器において分離した高温の冷凍機油を、凝縮器と並設した冷却器において冷却することにより、冷媒に対する溶解性を高くした後、蒸発器下流側において冷媒蒸気と混合し、前記凝縮器および冷却器と並設した吸収器において吸収熱を除去しながら冷媒蒸気を吸収しつつ、圧縮機に前記冷凍機油を戻すようにした圧縮式冷凍機を提案する。
【0007】
以上の構成において、冷却器と吸収器は空気熱交換器として構成することができ、そしてこれらの冷却器と吸収器を、凝縮器を構成する空気熱交換器と並設することを提案する。
【0008】
以上の本発明によれば、油分離器において分離された高温の冷凍機油を冷凍機油戻し経路を経て蒸発器の下流側の低圧冷媒蒸気経路に戻す際、まず冷却器において冷却することにより冷媒に対する溶解性を高くした後、低圧冷媒蒸気経路の冷媒蒸気を混合して、吸収器において吸収熱を除去しながら冷媒蒸気を吸収するので、圧縮機に戻す冷凍機油に、蒸発器の下流側の低圧冷媒蒸気の一部が溶け込み、この一部は液の状態で圧縮機に入るので、その分、圧縮機が圧縮する冷媒蒸気の量が減る。従って圧縮機の所要動力が減り、効率が向上する。
【0009】
【発明の実施の形態】
次に本発明の実施の形態を図を参照して説明する。
図1は本発明を適用した圧縮式冷凍機の実施の形態を示すもので、図2に示す従来の圧縮式冷凍機と同様な構成要素には同一の符号を付して、重複する説明は省略する。
図1に示すように本発明を適用した圧縮式冷凍機では、油分離器5から蒸発器4の下流側に至る冷凍機油戻し経路9において、減圧弁6の上流側に冷却器12を設けると共に下流側に吸収器13を設け、また蒸発器4の下流側から吸収器13の上流側に至る低圧冷媒蒸気経路14を設けている。
そしてこの実施の形態では、冷却器12及び吸収器13は空気熱交換器として構成し、凝縮器2を構成する空気熱交換器と並設している。
【0010】
以上の構成において、圧縮機1の吐出側を出た冷凍機油は冷媒と同程度の高温で油分離器5に入り、ここで高圧冷媒蒸気と分離される。この際、上述したように一部の冷凍機油は高圧冷媒蒸気に同伴されて凝縮器2へと流れる。
油分離器5において分離された高温の冷凍機油は冷凍機油戻し経路9を流れ、まず冷却器12において冷却されて温度が低下し、減圧弁6を経て吸収器13に流入する。この際、吸収器13の上流側において低圧冷媒蒸気経路14からの低圧冷媒蒸気が冷凍機油に混合されて吸収器13に流入する。この際、冷凍機油は冷却器12での冷却により、冷媒に対する溶解性が高くなっているので、冷媒蒸気の一部を吸収して温度上昇する。
吸収器13においては、上述したように冷却器12での冷却により冷媒に対する溶解性が高くなっている冷凍機油が低圧冷媒蒸気を吸収し、この状態で低圧冷媒蒸気経路11に流入する。この際に、この際に吸収器13に発生する吸収熱は外気に放出されるため、冷凍機油に対する冷媒蒸気の吸収が良好に行われる。
こうして低圧冷媒蒸気の一部は、冷凍機油に溶解し、液の状態で圧縮機1の吸込側に入る。
圧縮機1に還流した低圧冷媒蒸気は圧縮されて高温高圧の蒸気となり、また冷凍機油は吐出側に移動しながら圧縮機1の各部の潤滑と冷却に供される。この際、冷凍機油は圧縮後の高温高圧の蒸気と接触して温度が上昇するため、溶解していた冷媒が蒸発し、圧縮された高圧冷媒蒸気と共に圧縮機1の吐出側から出て油分離器5へと向かう。
【0011】
このように、低圧冷媒蒸気経路11の低圧冷媒蒸気の一部は、冷凍機油に溶け込んで液の状態で圧縮機1に入り、圧縮された高圧冷媒蒸気により加熱された冷凍機油から蒸発して、高圧冷媒蒸気と共に圧縮機1を出るので、圧縮機1から出る冷媒蒸気の量に対して、圧縮機が圧縮する冷媒蒸気の量を減らすことができる。これにより、圧縮機1の所要動力が減り、効率が向上する。
【0012】
以上の動作を図2のi−x線図につき説明すると次の通りである。
尚、図において、直線a,b,cは夫々冷媒の飽和蒸気圧,冷媒吸収後の冷凍機油の飽和蒸気圧,圧縮機出の冷凍機油の飽和蒸気圧を示すものである。
またd〜hは各点における下記の夫々の状態を示すものである。
d:圧縮機1を出た冷凍機油 e:冷却器12を出た冷却器油
f:冷凍機油と低圧冷媒蒸気が混合された状態
g:吸収器13出口の冷凍機油
上述した動作は図2において、次のように示される。
(1) 冷凍機油は、冷却器12において冷却されて温度が低下し、この状態はd〜eの変化として示される。
(2) 冷却器12を出た冷凍機油と冷媒蒸気が混合し、冷凍機油が冷媒の一部を吸収すると温度が上昇し、この状態は、e〜fの変化として示される。この場合、fで飽和圧力が蒸発器4の圧力と等しくなる。
(3) 吸収器13においては、冷凍機油が冷媒蒸気を吸収し、この際に発生する吸収熱は外気に放熱される。この状態は、f〜gの変化として示される。
(4) 圧縮機1内で冷凍機油は各部の潤滑や冷却に使用され、温度上昇する。また飽和蒸気圧が凝縮器2の圧力以上となると、冷凍機油に解けていた冷媒が蒸発する。この状態は、g〜dの変化として示され、冷凍機油は、dにおいて高圧の冷媒蒸気と共に圧縮機1から吐出される。
【0013】
ここで、以上に説明した実施の形態では、冷却器12及び吸収器13は減圧弁6の上流側に設けた空気熱交換器として構成し、凝縮器2を構成する空気熱交換器と並設しているため、ファン7を共用することができる。
しかしながら、冷却器12及び吸収器13は、必ずしも空気熱交換器として構成して凝縮器2を構成する空気熱交換器と並設する必要はなく、また冷却器12及び吸収器13自体の構成も適宜である。
【0014】
【発明の効果】
本発明は以上のとおり、冷凍機油の冷媒に対する溶解性を有効に利用することにより、効率の向上を計ることができるという効果がある。
【図面の簡単な説明】
【図1】本発明を適用した圧縮式冷凍機の基本構成の実施の形態を示す系統図である。
【図2】本発明における動作を示すi−x線図である。
【図3】従来の圧縮式冷凍機の基本構成の例を示す系統図である。
【符号の説明】
1 圧縮機
2 凝縮器
3 減圧弁
4 蒸発器
5 油分離器
6 減圧弁
7,8 ファン
9 冷凍機油戻し経路
10 高圧冷媒蒸気経路
11 低圧冷媒蒸気経路
12 冷却器
13 吸収器
14 低圧冷媒蒸気経路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a compression refrigerator.
[0002]
[Prior art]
FIG. 3 shows a basic configuration of a well-known compression refrigerator. Reference numeral 1 denotes a compressor, 2 denotes a condenser, 3 denotes a pressure reducing valve, 4 denotes an evaporator, 5 denotes an oil separator, and 6 denotes a pressure reducing valve. . The condenser 2 and the evaporator 4 are configured as air heat exchangers, and have fans 7 and 8, respectively. Reference numeral 9 denotes a refrigerating machine oil return path extending from the oil separator 5 to the downstream side of the evaporator 4, and the pressure reducing valve 6 is provided. Reference numerals 10 and 11 are a high-pressure refrigerant vapor path and a low-pressure refrigerant vapor path, respectively.
[0003]
In this compression type refrigerator, the refrigerating machine oil for lubricating the compressor 1 exits the discharge side of the compressor 1 together with the high-pressure refrigerant vapor, is separated by the oil separator 5, passes through the refrigerating machine oil return path 9, and passes through the evaporator 4. And is mixed with the low-pressure refrigerant vapor and returned to the suction side of the compressor 1.
As described above, in the compression refrigerator, a cycle is formed such that the refrigerator oil is held inside the compressor 1.
[0004]
Generally, it is impossible to completely separate the refrigerant and the refrigerating machine oil by the oil separator 5, and a part of the refrigerating machine oil flows to the condenser 2 with the refrigerant vapor. Therefore, the refrigerating machine oil is often selected to be soluble in the refrigerant so that the refrigerating machine oil flows through the condenser 2 without any problem. That is, if the high-viscosity refrigerating machine oil and the low-viscosity refrigerant are mixed, the viscosity of the refrigerating machine oil decreases and the condenser 2 and the subsequent evaporator 4 easily flow. Can be reliably returned to the compressor 1 together with the refrigerant.
[0005]
[Problems to be solved by the invention]
Similar to other various devices and systems, compression chillers have been further improved in efficiency.However, conventionally, refrigeration oil has been used only as lubricating oil. Not used.
The present invention has been made in view of such a point, and an object of the present invention is to improve the efficiency by effectively utilizing the solubility of a refrigerating machine oil in a refrigerant.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the present invention, in a compression type refrigerating machine using a refrigerating machine oil having solubility in a refrigerant, a high-temperature refrigerating machine oil separated in an oil separator provided on a downstream side of the compressor is used as a condenser. After cooling in a cooler juxtaposed to increase the solubility of the refrigerant, it is mixed with refrigerant vapor on the downstream side of the evaporator, and the heat absorbed in the absorber juxtaposed with the condenser and the cooler is removed. The present invention proposes a compression refrigerator in which the refrigerating machine oil is returned to the compressor while absorbing the refrigerant vapor .
[0007]
In the above arrangement, it is proposed that the cooler and the absorber can be configured as an air heat exchanger, and that the cooler and the absorber are juxtaposed with the air heat exchanger forming the condenser.
[0008]
According to the present invention described above, when returning the high-temperature refrigerating machine oil separated in the oil separator to the low-pressure refrigerant vapor path downstream of the evaporator via the refrigerating machine oil return path, the refrigerant is first cooled by the cooler to reduce the refrigerant. After increasing the solubility, the refrigerant vapor in the low-pressure refrigerant vapor path is mixed and the refrigerant vapor is absorbed while removing the heat of absorption in the absorber, so the low-pressure refrigerant downstream of the evaporator is supplied to the refrigerating machine oil returned to the compressor. A part of the refrigerant vapor dissolves, and a part of the refrigerant vapor enters the compressor in a liquid state, and accordingly, the amount of the refrigerant vapor compressed by the compressor decreases. Therefore, the required power of the compressor is reduced, and the efficiency is improved.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of a compression refrigerator to which the present invention is applied. Components similar to those of the conventional compression refrigerator shown in FIG. Omitted.
As shown in FIG. 1, in the compression type refrigerator to which the present invention is applied, in the refrigerator oil return path 9 extending from the oil separator 5 to the downstream side of the evaporator 4, a cooler 12 is provided upstream of the pressure reducing valve 6. An absorber 13 is provided on the downstream side, and a low-pressure refrigerant vapor path 14 from the downstream side of the evaporator 4 to the upstream side of the absorber 13 is provided.
In this embodiment, the cooler 12 and the absorber 13 are configured as air heat exchangers, and are arranged side by side with the air heat exchanger configuring the condenser 2.
[0010]
In the above configuration, the refrigerating machine oil that has exited the discharge side of the compressor 1 enters the oil separator 5 at a high temperature similar to that of the refrigerant, where it is separated from the high-pressure refrigerant vapor. At this time, as described above, a part of the refrigerating machine oil flows to the condenser 2 accompanying the high-pressure refrigerant vapor.
The high-temperature refrigerating machine oil separated in the oil separator 5 flows through the refrigerating machine oil return path 9, is first cooled in the cooler 12 to decrease the temperature, and flows into the absorber 13 via the pressure reducing valve 6. At this time, the low-pressure refrigerant vapor from the low-pressure refrigerant vapor path 14 is mixed with the refrigeration oil upstream of the absorber 13 and flows into the absorber 13. At this time, since the refrigerating machine oil has a high solubility in the refrigerant due to the cooling in the cooler 12, a part of the refrigerant vapor is absorbed and the temperature rises.
In the absorber 13, as described above, the refrigerating machine oil having high solubility in the refrigerant due to the cooling in the cooler 12 absorbs the low-pressure refrigerant vapor, and flows into the low-pressure refrigerant vapor path 11 in this state. At this time, the heat of absorption generated in the absorber 13 at this time is released to the outside air, so that the refrigerant vapor is well absorbed by the refrigerating machine oil.
Thus, a part of the low-pressure refrigerant vapor is dissolved in the refrigerating machine oil and enters the suction side of the compressor 1 in a liquid state.
The low-pressure refrigerant vapor returned to the compressor 1 is compressed into high-temperature and high-pressure vapor, and the refrigerating machine oil is used for lubrication and cooling of each part of the compressor 1 while moving to the discharge side. At this time, since the refrigerating machine oil comes into contact with the high-temperature and high-pressure steam after compression and the temperature rises, the dissolved refrigerant evaporates and exits from the discharge side of the compressor 1 together with the compressed high-pressure refrigerant vapor to separate oil. Head to vessel 5.
[0011]
As described above, part of the low-pressure refrigerant vapor in the low-pressure refrigerant vapor path 11 is dissolved in the refrigerant oil and enters the compressor 1 in a liquid state, and evaporates from the refrigerant oil heated by the compressed high-pressure refrigerant vapor, Since the refrigerant exits the compressor 1 together with the high-pressure refrigerant vapor, the amount of refrigerant vapor compressed by the compressor can be reduced with respect to the amount of refrigerant vapor exiting the compressor 1. Thereby, the required power of the compressor 1 is reduced, and the efficiency is improved.
[0012]
The above operation will be described below with reference to the ix diagram of FIG.
In the drawing, straight lines a, b, and c indicate the saturated vapor pressure of the refrigerant, the saturated vapor pressure of the refrigerating machine oil after absorbing the refrigerant, and the saturated vapor pressure of the refrigerating machine oil output from the compressor, respectively.
In addition, d to h indicate the following respective states at each point.
d: refrigerating machine oil leaving the compressor 1 e: cooler oil leaving the cooler 12 f: state in which the refrigerating machine oil and low-pressure refrigerant vapor are mixed g: refrigerating machine oil at the outlet of the absorber 13 The above operation is shown in FIG. , As shown below.
(1) The refrigerating machine oil is cooled in the cooler 12 and its temperature decreases, and this state is shown as a change of d to e.
(2) The refrigerating machine oil leaving the cooler 12 and the refrigerant vapor are mixed, and when the refrigerating machine oil absorbs a part of the refrigerant, the temperature rises, and this state is shown as a change of e to f. In this case, the saturation pressure becomes equal to the pressure of the evaporator 4 at f.
(3) In the absorber 13, the refrigerating machine oil absorbs the refrigerant vapor, and the absorption heat generated at this time is radiated to the outside air. This condition is indicated as a change in f to g.
(4) In the compressor 1, the refrigerating machine oil is used for lubrication and cooling of each part, and the temperature rises. When the saturated vapor pressure becomes equal to or higher than the pressure of the condenser 2, the refrigerant dissolved in the refrigerating machine oil evaporates. This state is shown as a change in g to d, and the refrigerating machine oil is discharged from the compressor 1 together with the high-pressure refrigerant vapor at d.
[0013]
Here, in the embodiment described above, the cooler 12 and the absorber 13 are configured as an air heat exchanger provided on the upstream side of the pressure reducing valve 6, and are provided side by side with the air heat exchanger configuring the condenser 2. Therefore, the fan 7 can be shared.
However, the cooler 12 and the absorber 13 do not necessarily have to be configured as an air heat exchanger and be arranged side by side with the air heat exchanger that configures the condenser 2. It is appropriate.
[0014]
【The invention's effect】
As described above, the present invention has an effect that efficiency can be improved by effectively utilizing the solubility of a refrigerating machine oil in a refrigerant.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a basic configuration of a compression refrigerator to which the present invention is applied.
FIG. 2 is an ix diagram showing an operation in the present invention.
FIG. 3 is a system diagram showing an example of a basic configuration of a conventional compression refrigerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Pressure reducing valve 4 Evaporator 5 Oil separator 6 Pressure reducing valve 7, 8 Fan 9 Refrigerator oil return path 10 High pressure refrigerant vapor path 11 Low pressure refrigerant vapor path 12 Cooler 13 Absorber 14 Low pressure refrigerant vapor path

Claims (1)

冷媒に対する溶解性を有する冷凍機油を使用した圧縮式冷凍機において、圧縮機下流側に設けた油分離器において分離した高温の冷凍機油を、凝縮器と並設した冷却器において冷却することにより、冷媒に対する溶解性を高くした後、蒸発器下流側において冷媒蒸気と混合し、前記凝縮器および冷却器と並設した吸収器において吸収熱を除去しながら冷媒蒸気を吸収しつつ、圧縮機に前記冷凍機油を戻すようにしたことを特徴とする圧縮式冷凍機。In a compression refrigerator using a refrigerator oil having solubility for a refrigerant, a high-temperature refrigerator oil separated in an oil separator provided on the downstream side of the compressor is cooled in a cooler arranged in parallel with the condenser, After increasing the solubility in the refrigerant, the refrigerant is mixed with the refrigerant vapor on the downstream side of the evaporator, and while absorbing the refrigerant vapor while removing the heat of absorption in the absorber provided in parallel with the condenser and the cooler, the compressor passes through the compressor. A compression type refrigerator characterized by returning a refrigerator oil .
JP12857398A 1998-05-12 1998-05-12 Compression refrigerator Expired - Fee Related JP3565477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12857398A JP3565477B2 (en) 1998-05-12 1998-05-12 Compression refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12857398A JP3565477B2 (en) 1998-05-12 1998-05-12 Compression refrigerator

Publications (2)

Publication Number Publication Date
JPH11325617A JPH11325617A (en) 1999-11-26
JP3565477B2 true JP3565477B2 (en) 2004-09-15

Family

ID=14988104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12857398A Expired - Fee Related JP3565477B2 (en) 1998-05-12 1998-05-12 Compression refrigerator

Country Status (1)

Country Link
JP (1) JP3565477B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206815A (en) * 2001-01-09 2002-07-26 Daikin Ind Ltd Freezer device
CN102301189B (en) * 2009-01-27 2013-06-19 三菱电机株式会社 Air Conditioner And Method Of Returning Refrigerating Machine Oil
JP5430598B2 (en) * 2011-03-28 2014-03-05 三菱電機株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JPH11325617A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
US5899091A (en) Refrigeration system with integrated economizer/oil cooler
US6237359B1 (en) Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor
KR20110100905A (en) Chiller
KR101173157B1 (en) Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
EP2592366A2 (en) Non-azeotropic mixed refrigerant cycle and refrigerator equipped therewith
JP3565477B2 (en) Compression refrigerator
CN106052222B (en) A kind of oil cooled large and medium-sized double throttle chilled water unit of water-cooled
KR100886107B1 (en) Heat exchanger
GB2344413A (en) Refrigerators having freezing and cooling compartment evaporators
JP3821577B2 (en) Engine driven compression refrigerator
CN203533948U (en) Compound type evaporative type cooling device having natural cooling function and used for large-scale device
CN112268387B (en) Heat pump system
JP2000180026A (en) Refrigerating unit for refrigerator
KR100805424B1 (en) Condenser having double refrigerant pass and refrigerating plant used the condenser
KR100309011B1 (en) Refrigeration cycle
CN113994150A (en) Chiller system with multiple compressors
JPH11325616A (en) Compression type refrigerator
KR200259324Y1 (en) Refrigeration cycle
CN213480646U (en) Heat pump system
CN112146302B (en) Evaporation cold and hot pump unit
JP2004028375A (en) Refrigerating equipment combined with absorption type and compression type and operating method thereof
JP2004028374A (en) Refrigerating equipment combined with absorption type and compression type
JPH02287059A (en) Refrigeration cycle
KR100455712B1 (en) The jet device for using compressed air of ultra low temperature
KR20240138139A (en) Refrigerant circulation device and refrigerant circulation method for lowering the receiver temperature of the refrigeration cycle system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees