JP3564210B2 - 共焦点光学装置 - Google Patents
共焦点光学装置 Download PDFInfo
- Publication number
- JP3564210B2 JP3564210B2 JP24765895A JP24765895A JP3564210B2 JP 3564210 B2 JP3564210 B2 JP 3564210B2 JP 24765895 A JP24765895 A JP 24765895A JP 24765895 A JP24765895 A JP 24765895A JP 3564210 B2 JP3564210 B2 JP 3564210B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- hologram
- array
- photodetector
- aperture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
- Microscoopes, Condenser (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Holo Graphy (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は共焦点光学系を応用した3次元形状計測装置に関し、特にホログラムを利用した共焦点光学装置に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
物体の形状を測定する技術としては、例えば特開平4−265918号公報に示すように、共焦点光学系を2次元的に配置したものがあり、図20にその構成を示す。
【0003】
図20において、光源1の光はレンズ2、3を介して平行光となりピンホールアレイPH1に入射される。ピンホールアレイPH1は、ピンホールがマトリックス状に配設されたものである。ピンホールアレイPH1を通過した光はハーフミラー4を透過し、開口絞りによってテレセントリック系を構成するレンズ5a、5bによって集光され、被計測物体7に投光される。被計測物体7はZ軸方向に変位可能な移動ステージ8上に載置されている。被計測物体7で反射された光はレンズ5a、5bで集光され、ハーフミラー4で反射され、ピンホールアレイPH1と共役な位置に結像する。この結像位置にピンホールアレイPH2を配設し、ピンホールを通過する光を、光検出器アレイ9の各光検出器で検出する。
【0004】
かかる従来構成によれば、移動ステージ8をZ方向に変位させながら、光検出器9の個々の出力を別々にサンプリングし、各々の光検出器の出力が最大になったときのZ方向位置を物体7の表面位置として検出することができる。
【0005】
しかしながら、上記従来装置には以下のような問題点がある。
【0006】
(1)精度の高い共焦点効果を得るためには、ピンホールアレイPH1およびPH 2をお互いのピンホールのピッチが正確に合うように例えばサブミクロンの精度で精密に作成し、それらをハーフミラー4を挟んで共役な位置に前記 精度で精密に位置決めし、かつこれらを固定維持する必要がある。特にハ ーフミラー4は通常プリズム型が使用されるが、共焦点ユニットの光源の 焦点位置(ピンホールアレイPH1)と受光の焦点(ピンホールアレイPH 2)のハーフミラー4に対する距離は共焦点ユニット毎に違ったものになるので、前記位置決め精度を満足させるために、精度の高いプリズム型ハーフミラーを製作する必要がある。
(2)光線がプリズム型ハーフミラー4を通過する際の収差を考慮して対物レン ズ5の設計を行う必要がある。プリズム型ハーフミラー4の収差は、このプリズム型ハーフミラー4の辺長に相当する厚みを持った平板ガラスの収 差に相当するため、非常に大きく、この大きな収差を考慮した対物レンズ 5の設計は非常に難しいものとなる。
(3)プリズム型ハーフミラー4は立方体領域を必要とするため、対物レンズ5 aから光源の焦点までの距離及び対物レンズ5aから受光の焦点までの距 離はハーフミラー4の立方体の辺長より小さくすることはできず、小型軽 量化に限界がある。また、焦点距離の短い対物レンズを使用して計測に必 要な光学的開口率を得たい場合に非常に不利となる。
(4)ピンホールアレイPH1に入射する光源光はピンホール以外の部分は透過しないので、光の利用効率が悪く、光源光の数%しか利用できない。したがって、十分な検出光量を得るために時間がかかり、ひいては物体の形状を 測定する時間を短縮するのに限界がある。
などの問題がある。
【0007】
そこで、特開平1−503493号公報においては、上記問題点(1)〜(3)を解決すべく、光源の焦点位置と受光の焦点を同一ピンホールによって構成するようにしており、その構成を図21に示す。
【0008】
図21において、S偏光の平行光は偏光ハーフミラー11で反射されて、ピンホール基板12に入射される。ピンホール基板12は、円盤にピンホールを螺旋状に配置したニポウ型(Nipkow)ディスクであり、入射平行光を複数の点光源光に変換する。ピンホール基板12はモータ13によって回転されるようになっている。
【0009】
ピンホール基板12を通過した光は開口絞り15によってテレセントリック系を構成したレンズ14a、14bによって集光されるとともに、1/4波長板16によって円偏光に変換されて被計測物体7に投光される。被計測物体7はZ方向に移動可能な移動ステージ8上に載置されている。被計測物体7で反射された光は1/4波長板16によってP偏光に変換されると共に、レンズ14a,14bによって集光されてピンホール基板12の同じピンホールを通過する。ピンホール基板12を通過した光は、偏光ハーフミラー11を透過し、P偏光を通過させる偏光版18を透過することにより接眼レンズ17を介して肉眼で観察される。被計測物体7のX−Y方向の走査はモータ13によってピンホール基板12を回転させることにより行う。
【0010】
この図21に示す装置は光学顕微鏡に関する技術であるので、肉眼観察を前提にしている。従って、この図21に示す構成によって先の図20に示したような光センサによる3次元計測を行うためには、接眼レンズ17の結像位置に光検出器アレイを配置すると共に、ニポウ型ディスクのピンホール基板12を先の図20に示したようなピンホールマトリックスアレイに置換すればよい。
【0011】
かかる装置においては、光源の焦点と受光の焦点が同一のピンホールによって構成されるために、先の項目(1)〜(3)で示したような問題は解消されるが、依然として以下のような問題が残る。
【0012】
(a)ピンホールアレイと光検出器アレイとの関係において、偏光ハーフミラー による収差、接眼レンズによる結像収差を考慮して、ピンホールアレイの 各ピンホールと光検出器アレイの各光検出器とを1対1に精度良く位置合 わせする必要がある。
(b)ピンホールアレイ(ピンホール基板12)に入射する光源光はピンホール 以外の部分は透過しないので、光の利用効率が悪く、光源光の数%しか利 用できない。したがって、十分な検出光量を得るために時間がかかり、ひ いては物体の形状を測定する時間を短縮するのに限界がある。すなわち、 上記(4)の問題は全く改善されない。
【0013】
又、図21の装置固有の問題点として、次のようなものが挙げられる。
(c)ピンホール基板12に入射する光源光はピンホール以外の部分では反射し てしまうので、ピンホール基板12の反射率を、前記偏向特性を利用した り、あるいはピンホール基板12自体を光軸に対してオフセットしたりす るなどを対策を行って反射光が観察されないようにすることが必要となる 。すなわちこれは、ピンホール基板の背後から光を投射して点光源を作り 、同一のピンホールによって受光する共焦点光学系によるところの問題で あり、この反射光は観測信号のS/N比を悪化させるので、十分な対策が 必要となる。
【0014】
さらに、前記図20または図21に示す装置においては、形状計測時間を更に高速化するためには移動ステージ8を更に高速移動させる必要があるが、移動ステージ8は計測対象を載置しなくてはいけないので、その高速移動には限界がある。すなわち、例えば、非常に重く大きな計測対象や、非常に繊細な構造を有するために高速変位による慣性力に耐えられない計測対象等は、高速移動ステージによる移動が困難となる。
【0015】
この問題を解決するための手法として、計測対象7を固定して計測器自体をZ方向に移動変位させることが考えられる。しかし、計測器を高速変位させるためには、計測器自体が小型軽量でかつその構造が堅牢で高速変位による慣性力に耐えられなくてはならない。ところが、上記従来技術では、高速移動用の対策がなされていないために、高速移動した場合、共焦点光学系がくずれるなどの問題が発生する可能性がある。
【0016】
この発明はこのような実情に鑑みてなされたもので、装置の小型軽量化を図ると共に、3次元形状計測を高速に精度よくなし得、かつ各部の位置合わせを容易にでき、さらに光源光の利用効率を向上させるようにした共焦点光学装置を提供することを目的とする。
【0017】
【課題を解決するための手段および作用】
請求項1に対応する第1発明では、開口と、所定の検査点上に配設される被計測物体と、前記開口位置を第1の集光位置とし、前記検査点位置を第2の集光位置とするよう光を導光する光学手段と、ホログラムの参照光用の光源と、前記開口と検査点との間の所定位置に配設され、前記光源からの光を参照光として前記開口から出射される点光源光がこの所定位置を通過する際の光と等価な光を再生するホログラムと、前記開口を挟んで前記光学手段と反対側に配設され、前記開口を通過した光を検出する光検出器とを具え、前記被計測物体で散乱された前記ホログラム再生光を前記ホログラム、光学手段及び開口を介して前記光検出器に入射するようにしたことを特徴とする。前記ホログラムは、実質的に、従来装置における点光源アレイ(ピンホール)とハーフミラーの役割を兼ねる光学部品として機能する。
【0018】
すなわち、第1発明では、ホログラムに参照光を入射することにより、前記開口から出射される点光源からの光と等価な光を再生し、この再生光を直接あるいは前記光学手段を介して被計測物体上に集光する。被計測物体で散乱した光は光学手段、ホログラムを介することにより開口に集光された後この開口を通過し、光検出器で検出される。
【0019】
請求項2に対応する第2発明では、2次元配置された複数の開口を有する開口アレイと、所定の検査面上に配設される被計測物体と、前記開口アレイ位置を第1の集光位置とし、前記検査面位置を第2の集光位置とするよう光を導光する光学手段と、ホログラムの参照光用の光源と、前記開口アレイと検査面との間の所定位置に配設され、前記光源からの光を参照光として前記開口アレイの各開口から出射される各点光源光がこの所定位置を通過する際の光と等価な光を再生するホログラムと、前記開口アレイを挟んで前記光学手段と反対側に配設され、前記開口アレイの各開口を通過した光を検出する複数の光検出器を有する光検出器アレイとを具え、前記被計測物体で散乱された前記ホログラム再生光を前記ホログラム、光学手段および開口アレイを介して前記光検出器アレイの各光検出器に入射するようにしたことを特徴とする。
【0020】
係る第2発明によれば、ホログラムに参照光を入射することにより、前記開口アレイの各開口から出射される点光源からの光と等価な光を再生し、この再生光を直接あるいは前記光学手段を介して被計測物体上に集光する。被計測物体で散乱した光は光学手段、ホログラムを介することにより開口アレイの各開口に集光された後各開口を通過し、光検出器アレイの各光検出器で検出される。
【0021】
請求項4に対応する第3発明では、2次元配置された複数の開口を有する開口アレイと、所定の検査面上に配設される光透過性を有する被計測物体と、前記開口アレイ位置を第1の集光位置とし、前記検査面位置を第2の集光位置とするよう光を導光する光学手段と、ホログラムの参照光用の光源と、前記検査面上の被計測物体を挟んで前記光学手段と反対側の所定位置に配設され、前記光源からの光を参照光として前記開口アレイの各開口から出射される点光源光が前記所定位置を通過する際の光と逆向きの光と等価な光を再生するホログラムと、前記開口アレイを挟んで前記光学手段と反対側に配設され、前記開口アレイの各開口を通過した光を検出する複数の光検出器を有する光検出器アレイとを具え、前記被計測物体を透過した前記ホログラム再生光を前記光学手段および開口アレイを介して前記光検出器アレイの各光検出器に入射するようにしたことを特徴とする。
【0022】
係る第3発明によれば、ホログラムは前記検査面上の被計測物体を挟んで前記光学手段と反対側の所定位置に配設される。即ち第3発明では、ホログラムに参照光を入射することにより、前記開口アレイの各開口から出射される点光源光が前記所定位置を通過する際の光と逆向きの光と等価な光を再生し、この再生光を前記被計測物体を透過させる。被計測物体を透過した光は光学手段を介することにより開口アレイの各開口に集光された後各開口を通過し、光検出器アレイの各光検出器で検出される。
【0023】
請求項10に対応する第4発明では、複数の光検出器を2次元配置した光検出器アレイと、 所定の検査面上に配設される被計測物体と、前記光検出器アレイの各光検出器位置を第1の集光位置とし、前記検査面位置を第2の集光位置とするよう光を導光する光学手段と、ホログラムの参照光用の光源と、前記光検出器アレイと光学手段との間に配設され、前記光源からの光を参照光として前記光検出器アレイの各光検出器位置から出射される点光源光と等価な光を再生するホログラムとを具え、前記再生されたホログラム再生光を前記光学手段を介して被計測物体に照射するとともに、該被計測物体で散乱されたホログラム再生光を前記光学手段およびホログラムを介して前記光検出器アレイの各光検出器に入射するようにしている。
【0024】
かかる第4発明では開口アレイを省略するようにしている。すなわちこの第4発明では、光検出器アレイの各光検出器の位置にあたかも点光源があるようなホログラム露光を行う。したがって、再生されたホログラム再生光は前記光学手段を介して被計測物体に照射される。そして、被計測物体で散乱されたホログラム再生光は前記光学手段およびホログラムを介して前記光検出器アレイの各光検出器に入射される。
【0025】
請求項12に対応する第5発明の光学装置では、複数の開口が2次元配置された開口アレイと、この開口アレイ下に積層されるガラス基板と、このガラス基板下に積層され、参照光が入射されると前記開口アレイの各開口から出射される点光源光と等価な光を再生するホログラムとを具え、前記開口アレイとホログラムによってピンホールの作用をなすようにしたことを特徴としている。
【0026】
かかる第5発明では、ホログラムによって開口アレイの各開口に点光源が位置しているのと等価な光を再生する。したがって、この場合、点光源光を発生させるためには開口アレイを必要とはしない。開口アレイは、例えば、ホログラム再生光が被計測物体で反射された後の光を受光するために用いられる。すなわち、このピンホール機能を有する光学装置では、発光作用はホログラムで行い、受光作用を開口アレイで行う。
【0027】
【発明の実施の形態】
以下この発明の実施例を添付図面に従って詳細に説明する。
【0028】
図1はこの発明の第1実施例を示すもので、7は被計測物体、8はZ方向に移動可能な移動ステージ、9は複数の光検出器がマトリックス状に配置された光検出器アレイ、PHは複数のピンホールがマトリックス状に配置されたピンホールアレイ、14a,14bは対物レンズ、15は開口絞り、20はホログラム、21は参照光用光源、22,23はレンズ、30は光検出器の出力に基づいて被計測物体7の3次元計測を行う3次元計測部、40は移動ステージ8の移動制御を行う移動制御部である。レンズ14a,14bは、開口絞り15によって謂ゆるテレセントリック光学系を形成する。
【0029】
かかる構成において、ホログラム20は点光源光の発生手段として用いられるもので、光源21からの参照光が入射されることによって、あたかもピンホールアレイPHの各ピンホールから光が出射したような光を再生する。
【0030】
したがって、光源1からレンズ22、23を介して参照光がホログラム20に入射されると、ピンホールアレイPHの各ピンホールに点光源が存在するのと等価な光がホログラム20によって再生される。そして、該再生された光はレンズ14bによって移動ステージ8上の被計測物体7上に結像される。なお、図1では、便宜上1つのピンホールから出射した光を示しているが、実際は全てのピンホールから光が出射したのと等価な複数の点像が検査面上に結像される。
【0031】
被計測物体7で反射された光はレンズ14b、ホログラム20、開口絞り15を介してレンズ14aに入射され、レンズ14aによってピンホールアレイPHの各ピンホール位置に結像される。光検出器アレイの9の各光検出器はピンホールアレイPHの各ピンホールに対応する位置に配されており、各ピンホールを通過した光の受光強度を検出する。
【0032】
光検出器アレイ9の各光検出器の出力は3次元計測部30に入力されており、3次元計測部30では移動制御部40の制御による移動ステージ8のZ方向への移動に伴って光検出器アレイ9の個々の検出器の出力を順次サンプリングし、各々の出力が最大になったときのZ方向位置を被計測物体7の表面位置として検出する。
【0033】
ここで、ホログラム20に対する参照光の入射角度Φとしては、ホログラム20で反射または透過した光が直接またはレンズ14b,開口絞り15等を介して被計測物体7の検査面あるいは前記光検出器アレイ9の検出面に入射されないようにできるだけ小さくしたほうが望ましい。しかし、入射角度Φを小さくし過ぎるとホログラム媒質中に入る光が少なくなって満足な光量の点光源を再生および露光することができなくなるので、これら両方の条件が満足されるように入射角度Φを設定するようにする。なお、入射角度Φを小さくするということは、テレセントリック系の各光学部品14a、14b,15の間隔を詰めて配置することができ、より装置を小型化できるという利点も持つ。
【0034】
なお、図1において、ホログラム20は破線で示す位置*1(ピンホールアレイPHとレンズ14aの間)、または*2の位置(レンズ14bと検査面の間)に配置するようにしてもよい。さらにこのホログラム20は、レンズ14aと開口絞り15の間に配置するようにしてもよい。すなわち、ホログラム20は、ピンホールアレイPHと検査面の間であれば、光路中のどのに配置してもよい。
【0035】
図2は、ホログラム20を露光する際の構成を示すもので、ピンホールアレイPH、レンズ14a、開口絞り15、光源21、およびレンズ22,23として図1と同じものを用い、且つこれらを図1と同じ位置関係に配置する。
【0036】
この状態で、光源21から参照光をホログラム20に入射するとともに、平行光を物体光としてピンホールアレイPHに入射する。この結果、ピンホールアレイに形成された複数の点光源像がレンズ14aによって平行光になった状態でホログラム20に入射され、記録される。この場合は、参照光と物体光がホログラム20の片側から入射されるので、ホログラム20は透過型となる。
【0037】
ホログラム20の回折効率を例えば50%とすれば、参照光の50%が被計測物体7に照射され、物体7からの反射光の約50%がホログラム20を透過して光検出器アレイ9に入射されることになり、光源光の利用効率を従来より格段に向上させることができる。
【0038】
ホログラム20の材質としては、銀塩感光材、ポリマー感光材などを用いることができるが、特にポリマー材の場合は、ホログラム露光後に紫外線照射や加熱により回折効率の調整や定着が可能であるので、露光したホログラム20を図2の装置から取り外すことなく定着が可能であり、その後のホログラム20とピンホールアレイPHとの位置合わせが不要になる。
【0039】
以上のようにしてホログラムの露光が終了すると、ピンホールアレイPHの各ピンホールに各光検出器の開口が合うように光検出器アレイ9を設置する。そして、先のホログラム露光の際にレンズ14bが未設置の場合は、レンズ14bを設置して光学系が完成する。
【0040】
なお、ホログラム20を図示実線で示す位置に配置する場合には、露光の際はレンズ14bは不要である。しかし、破線位置*2にホログラム20を配置する場合には、露光の際もレンズ14bを配置する。また、破線位置*1にホログラム20を配置する場合には、露光の際、レンズ14a,14bは不要である。
【0041】
図3は、ホログラム露光時の光の利用率を向上するためと、点光源の開口数NAを所定の値に設定するために、ピンホールアレイPHの前面にマイクロレンズアレイ24を設置した状態を示すもので、この状態でホログラム露光を行うようにする。マイクロレンズアレイ24のレンズピッチはピンホールアレイPHの開口ピッチと同じとする。
【0042】
図4はこの発明の第2実施例を示すもので、この場合はホログラム20として反射型ホログラムを用いるようにしている。すなわち、この場合は、ホログラム20を挟んでピンホールアレイPHの反対側から参照光をホログラム20に入射するようにしている。なお、この図4に示すタイプにおいても、破線位置*1,*2にホログラムを配置するようにしてもよい。勿論、この実施例においても、ホログラム20は、先の第1実施例と同様、ピンホールアレイPHの各ピンホールに点光源が存在するのと等価な光を再生する。
【0043】
また、この図の実施例では、ピンホールアレイPHの各ピンホールを通過する光を接眼レンズ17を介して1対1で光検出器アレイ9の各光検出器に結像するようにしている。この場合、ピンホールアレイPHのピンホールのピッチと光検出器アレイ9の光検出器のピッチは同一である必要はなく、接眼レンズ17の倍率に対応して各々のピッチを設定すればよい。
【0044】
図5はこの発明の第3実施例を示すものであり、この第3実施例は先の図4の変形例であり、図4の実施例において、ホログラム20を破線位置*1に配置した場合の特殊な例である。この第3実施例においては、図4の接眼レンズ17を削除すると共に、光検出器アレイ9、ピンホールアレイPHおよびホログラム20を、図6に示すように、平板状の積層構造として、一体的に構成している。以下、この一体化部分を積層構造ユニット50という。
【0045】
すなわち、積層構造ユニット50は、図6に示すように、ホログラム20、透明光学基板(ガラス基板)25、偏光板26、ガラス基板27、ピンホールアレイPH、光ファイバー28、光検出器アレイ9を有し、これらの積層構造となっている。
【0046】
かかる図6に示す構成において、ホログラム20とピンホールアレイPHとは近接した位置関係にあるので、ホログラム20を透過する参照光がピンホールアレイPHを介して光検出器アレイ9の検出面に入射される可能性がある。また、ホログラムの特性によっては、散乱光や副次回折光が再生されるので、同様にこれらの光がピンホールアレイPHを介して光検出器アレイ9の検出面に入射される可能性がある。
【0047】
これらを防止するために、ガラス基板25と27の間に偏光板26を配設するとともに、参照光を偏光板26によって遮断される側の直線偏光とするようにしている。
【0048】
図5、図6に示す構成においては、ホログラム20によって再生された点光源光は1/4波長板29の作用によって円偏光に変換されると共に、テレセントリック光学系レンズ14a、14bによって被計測物体7の検査面上に結像する。被計測物体7で反射された光は、前記同様にして、レンズ14b,1/4波長板29、レンズ14aを介してピンホールアレイPHのピンホールで結像する。なお、この際、被計測物体7で反射された円偏光は1/4波長板29の作用により参照光と垂直な方向の直線偏光となるため、偏光板26を通過することができる。ピンホールに入射した光は光ファイバー束28を介して光検出器アレイ9の各光検出器に入射される。
【0049】
かかる第3実施例においては、光検出器アレイ9、ピンホールアレイPHおよびホログラム20を平面上に積層して一体構成としているので、小型軽量且つ堅牢な共焦点光学ユニットを実現できる。
【0050】
また、この第3実施例では、参照光を所定の入射角を持つ平行光としかつ上記積層構造ユニット50をX−Y方向に移動可能なように構成すれば、ピンホールとピンホールの間の部分に対応する位置の3次元計測を行うこともできる。
【0051】
さらにこの第3実施例では、ホログラム20が、その再生する点光源の距離がホログラムに近い、謂ゆるイメージホログラムであるため、参照光の入射角度選択性が高い。すなわち、参照光の空間コヒーレンスや角度の許容度が大きいので、空間コヒーレンスの低い光源を採用することができ、光源の位置ズレに対しても許容度の高い構成となる。
【0052】
図7は上記積層構造ユニット50のホログラム20を露光する際の構成を示すもので、まず、ガラス基板27の片面にピンホールアレイマスクPHを形成すると共に、ガラス基板25の片面にホログラム材20を塗布する。そして、この状態でピンホールアレイPH側から平行光を入射すると共に、ホログラム20側から参照光を入射することにより、ピンホールアレイPHから出射される光をホログラム20に記録する。但し、この際、平行光と参照光との直線偏光の方向が異なれば露光ができないので、これら双方の光は共に偏光板26を透過する方向の直線偏光にする。勿論、ホログラムを再生する時の参照光は、前述したように、偏光板26を透過してピンホールに入射されないように、偏光板26で吸収される方向の直線偏光とする。
【0053】
なお、上記積層構造ユニットのホログラム20を露光する際、図8に示すように、マイクロレンズを24を配置することにより、光の利用率を向上させるとともに、点光源の開口数NAを所望の値に設定するようにしてもよい。
【0054】
図9は上記積層構造ユニット50の変形例を示すもので、この場合は光ファイバー28とピンホールアレイPHの間にマイクロレンズアレイ24を配置するようにしている。
【0055】
図10も上記積層構造ユニットの変形例を示すもので、この場合は光検出器アレイ9とピンホールアレイPHの間に平板型のマイクロレンズアレイ24を配置するようにしている。この場合は、平板型マイクロレンズアレイ24と光検出器アレイ9との間に充分な密着性が得られるので、光ファイバー28を省略するようにしている。
【0056】
図11はこの発明の第4実施例を示すもので、この場合はホログラム20として、USP4643515号に示されるような、エッジイルミネイテッドホログラムを用いるようにしており、参照光はホログラム20のガラス基板の側面から入射させることができる。図12は、図11の積層構造ユニット70の詳細構成を示すもので、エッジイルミネイテッドホログラム20、ガラス基板29、ピンホールアレイPH、光ファイバー28および光検出器アレイ9から構成されている。
【0057】
この第4実施例においては、参照光がホログラム側面から入射される点のみが他の実施例と異なり、それ以外は先の実施例と全く同様に動作する。なお、この実施例においても、ホログラム20を図示破線位置*1,*2,*3に配置するようにしてもよい。
【0058】
かかる第4実施例においては、参照光をホログラムのガラス基板の側面から入射させることができるので、共焦点光学装置をさらに小型化できる。すなわち、テレセントリック系のレンズ14a,14bは、収差などの特性を改善するために通常は多群、複数枚構成になっているが、先の図1,図4に示した構成において、参照光のホログラムによる反射光や透過光が直接これらのレンズや開口絞りに入射されないようにするためには、これらテレセントリック系の各光学部品をある程度の間隔を持って配置する必要がある。これに対し、上記エッジイルミネイテッドホログラムを用いた場合は、ホログラムでの反射光や透過光の角度が非常に浅いので、上記テレセントリック系の各光学部品の間隔を詰めて配置することができ、より装置を小型化することが可能になる。
【0059】
また、上記図12の積層構造ユニット70においては、参照光のホログラム20への入射角が浅いので、その反射光は通常はピンホールPHに入射されない。また、仮に、該反射光がピンホールに向かったとしても、ピンホール側のガラス界面への入射角度が浅いので、臨界角となった光は全反射し、ピンホールには入射されない。よって、ホログラム20の散乱光や副次回折光の影響が少なければ、先の図6や図9に示した実施例を用いた偏光板26が不要になるという利点も持つ。
【0060】
図22は、図12の積層構造ユニット70の変形であり、反射型エッジイルミネイテッドホログラムになっている。ホログラム20を透過する参照光、あるいはホログラムの散乱光、副次回折光を遮断するために偏光板26を配している。さらに1/4波長板16も積層構造としてガラスCに密着させ、一体化している。
【0061】
これら積層構造ユニット70において、ホログラム20は透過型あるいは反射型であるが、参照光がエバネッセント波によるエッジイルミネイテッドホログラムにしてもよい。
【0062】
また、上記積層構造ユニットにおいて、積層する部品の間に光学マッチングのための屈折液を充填し、不要な反射、屈折を防止することが有効である。
【0063】
また、図6、図12の各積層構造ユニットにおいて、ピンホールアレイPHと光検出器アレイ9との間に適当な密着度、すなわち隣接ピンホールからの迷光が光検出器に入射されない密着性が得られるのであれば、光ファイバー28を省略するようにしてもよい。
【0064】
図13はこの発明の第5実施例を示すもので、この場合は先の図21に示した構成に本発明を適用するようにしている。
【0065】
この図13の実施例においては、先の図21に示した構成に対し、前記と同様の作用をなすホログラム20をガラス基板41を挟んでニポウ型(Nipkow)ピンホール基板12の下に配すると共に、ピンホール基板12の回転中心軸上に拡散球面波を発生する点光源を42を配置し、この光源42から参照光をホログラム20に入射するようにしている。ピンホール基板12の回転中心軸上に配置される点光源42を得るために、光をレンズ43によって集光して、ピンホール44を通過させるようにしており、ピンホール44はピンホール基板12の回転中心軸上に配置する。
【0066】
このように、拡散球面波の光源42をピンホール基板12の回転軸に配置するようにしてるので、ホログラムが回転されたとしても、ホログラム20の同じ半径距離を有する各位置では常に同じ入射角度を持つ球面波が入射されることになり、ホログラムからの再生光が回転によって変化することはない。
【0067】
かかる構成においては、ホログラム20に直線偏光を有する拡散球面波の参照光が入射されると、ホログラム20は、前記同様、ニポウ型(Nipkow)ピンホール基板12の各ピンホールに点光源が存在するのと等価な光を再生する。該再生された光は1/4波長板16によって円偏光に変換されると共に、レンズ14a,開口絞り15およびレンズ14bによるテレセントリック光学系によって移動ステージ8上の被計測物体7上に結像される。被計測物体7で反射された光は1/4波長板16によってその偏光面を90゜回転されると共に、レンズ14a,14bによって集光されてピンホール基板12の同じピンホールを通過する。ピンホール基板12を通過した光は、偏光板18を介して接眼レンズ17に入射され、接眼レンズ17によって光検出器アレイ9の光検出器上に結像される。なお、偏光板18は、参照光のホログラム20での透過光、散乱光、副次回折光がピンホール基板12の各ピンホールを介して光検出器アレイ9に入射されないように設けられたもので、参照光の偏光方向は偏光板12で吸収されるように設定されている。
【0068】
かかる実施例によれば、先の図21に示した従来構成に比べ、光源(参照光)の利用率が格段に向上すると共に、偏光ハーフミラー11(図21)による収差も考慮する必要がなくなる。さらに、従来構成のように、ピンホール基板12の背後から光を投射して点光源を作り同一のピンホール基板の背後で受光するのではなく、ピンホール基板を通過した光と等価な点光源をホログラムによって作り出すので、ピンホール基板12の反射光による観測信号のS/N比の悪化がない。
【0069】
図14および図15は、それぞれ図13の実施例で用いるホログラム20を露光する際の構成を示すもので、図14はホログラム20の基板全体を一括で露光する場合を示し、図15は分割露光する場合を示している。
【0070】
図14においては、ニポウ型ピンホール基板12、ガラス基板41およびホログラム20を積層した状態で、回転軸上の適宜位置に配した点光源42から球面波を参照光としてホログラム20に一括照射すると共に、平行光を物体光としてピンホールに一括照射することにより、ホログラム20を一括露光するようにしている。
【0071】
図15においては、ニポウ型ピンホール基板12、ガラス基板41およびホログラム20を積層した状態で、回転軸上の適宜位置に配した点光源42から球面波を参照光としてホログラム20の一部領域に照射すると共に、この一部領域に対し平行物体光を照射することにより、ホログラムの一部領域を露光する。次に、基板全体を回転させることにより露光位置を変え、同様の露光処理を実行する。このようにして、何回かに分けてホログラムを露光する。なお、部分露光の際、未露光領域および既に露光を終了した領域は、マスクで覆って露光しないようにすることが必要である。
【0072】
図16は上記図13に示した第5実施例の変形例であり、ホログラム20をニポウ型ピンホール基板12から離して配置することにより、参照光のホログラム20での透過光がピンホール基板12のピンホールに入射されてこれが光検出器で観測されたり、あるいは参照光がピンホール基板12のピンホール以外の所で反射されてこれらピンホールを通過して光検出器で観測されたりすることを防止し、これにより先の図13の実施例における1/4波長板16、偏光板18を省略するようにしている。勿論、図16において、参照光は直線偏光にする必要はなく、またホログラム20の回転軸とピンホールアレイ12の回転軸は共通であり、これらは完全に同期して回転する。
【0073】
なお、上記図16の実施例では、ピンホール基板12とホログラム20を共通の回転軸に固定するようにしたが、これらピンホール基板12とホログラム20を共通の円筒に配設するようにしてもよい。
【0074】
図17〜図19はこの発明の第6実施例を示すもので、透過型の共焦点光学装置に本発明を適用するようにしている。図17は、3次元計測時の構成を示すもので、図18はホログラム露光時の構成を示すものである。
【0075】
ホログラム露光の際は、図18に示すように、ピンホールアレイPH、レンズ14a,14bおよびホログラム20を図17と同一位置関係に配置すると共に、ピンホールアレイPHに物体光を照射し、さらにホログラム20に対し参照光を入射する。これにより、ピンホールアレイPHの各ピンホール位置に配した点光源像がレンズ14a,14bを介してホログラム20に入射された光を、参照光によってホログラム20に記録する。
【0076】
そして、3次元計測の際は、図17に示すように、検査面に被計測物体7を配置するとともに、ホログラム露光時の参照光と共役な光、すなわち参照光と逆の方向に伝搬する光を、参照光としてホログラム20に入射する。この参照光によってホログラム20は、図17に示すように、検査面で焦点を結び、かつピンホールアレイPHでも焦点を結ぶ光、すなわち記録時と逆の方向に進む光を再生する。
【0077】
したがって、検査面に置かれた被計測物体はホログラム20の再生光により照射され、その透過光がピンホールアレイPHを介して光検出器アレイ9に入射されので、その入射光を光検出器で観察する。なお、この実施例において、図19に示すように、ホログラム20と検査面の間にリレーレンズ45を配置するようにしてもよい。
【0078】
この実施例によれば、光源をホログラムに置換することにより顕著な小型軽量化がなされ、かつ従来装置で必要な投光側のピンホール、結像レンズおよびそれらの位置合わせが不要となる。また、光源光の利用率も格段に向上する。
【0079】
図23はこの発明の更に別の実施例を示すものであり、この実施例ではピンホールアレイPHを削除し、その位置にガラス基板25を配設している。また、ホログラム20、ガラス基板25、および光検出器アレイ9を平板状の積層構造として、一体的に構成している。
【0080】
この実施例において、ホログラム20の露光の際は、例えば、光検出器アレイ9の位置にピンホールアレイ(光検出器アレイの各光検出器の位置とピンホールアレイの各ピンホールの位置が1対1に対応している)を配置した状態で例えば図3に示すような平行光をピンホールアレイに入射し、この状態で参照光をホログラムに入射することにより、光検出器アレイ9の各光検出器の位置にあたかも点光源があるような露光を行う。
【0081】
したがって、この図23に示す実施例においては、参照光がホログラム20に入射されると、光検出器アレイ9の各光検出器の位置に点光源が存在するのと等価な光がホログラム20によって再生され、該再生された光はレンズ14a、開口絞り15、レンズ14bを介して移動ステージ8上の被計測物体7上に結像される。被計測物体7で反射された光はレンズ14b、開口絞り15、レンズ14a、ホログラム20、ガラス基板25を介して光検出器アレイの9の各光検出器位置で結像される。
【0082】
図24は、先の図7に示した積層構造ユニット50から偏光板26を削除した積層構造ユニット80を示すもので、また先の図13に示した積層構造ユニット(ニポウ型ピンホール基板12、ガラス基板41、ホログラム20)にも対応するもので、この積層構造ユニット80は先の各実施例で示した各積層構造ユニットの最も基本的の構成である。
【0083】
この積層構造ユニット80は、基本的にはピンホールと同じ作用をなすものであるが、発光作用はホログラム20によって行い、受光作用をピンホールアレイPHによって行っている。すなわち、点光源光は、ピンホールに光を照射することにより発生させるのではなく、ホログラム20によってこれと等価な光を再生する。
【0084】
この積層構造ユニット80によれば、ホログラム20を用いて点光源光を発生させているので、前述したように、光の利用効率を従来に比べ格段に向上させるとともに、ピンホールアレイPHに入射する光源光(図20の光源1の光)がピンホール以外の部分で反射して光検出器アレイ9(図1参照)に入射されるのを好適に防止することが可能になる。
【0085】
なお、上記各実施例においては、Z方向の移動走査を行うべく移動ステージ8を設け、被計測物体7をZ方向に移動可能な構成としたが、共焦点光学装置全体をZ方向に移動可能なように構成するようにしてもよく、あるいはテレセントリック光学系の対物レンズ14a,14bをZ方向に移動可能なように構成してもよい。また、テレセントリック光学系においては、その倍率は等倍、拡大、縮小の何れでもよい。
【0086】
また、上記各実施例で用いたピンホールアレイは不要な反射を防止する目的で遮光部分の反射率が低いことが望ましく、例えばCr2O3/Cr/Cr2O3の3層膜が好適である。
【0087】
また、上記各実施例で用いたピンホールアレイの開口径と開口のピッチは他の共焦点光学系におけるパラメータと同様に、例えば開口ピッチが開口径の10倍以上にするのが十分な共焦点効果を得るために適している。また、開口径の大きさは他の共焦点光学系におけるパラメータと同様にテレセントリック光学系の対物レンズ14a,14bの回折限界を考慮して決定すればよい。
【0088】
また、上記各実施例で用いたホログラム20は、ホログラム材をガラス基板に塗布したものを用いるようにしてもよい。この場合、ホログラム面あるいはガラス基板面での光の多重反射を防ぐ目的でホログラムガラス基板を光軸に対して斜めになるように配置するようにしてもよい。
【0089】
また、上記各実施例で用いたホログラム20は、ホログラム材をテレセントリック光学系の対物レンズ14aあるいは14bに塗布し、レンズ自体をホログラム基板としてもよい。
【0090】
また、上記各実施例における光検出器アレイ9としては、MOS型あるいはCCD型のエリアセンサが好適である。
【0091】
また、各実施例において、参照光、物体光は平行光である必要はなく、拡散光でもよい。特に、上記図1,図4,図5,図11,図17に示す実施例においては、参照光として平行面光線を用いるようにしたが、走査型のスリット光を用いるようにしてもよい。
【0092】
また、上記各実施例において、ホログラム再生時の参照光はホログラム20の再生に必要な空間、時間コヒーレンスをもった電磁波なら何れのコヒーレンスをもった電磁波でもよい。例えば、上記図4、図5、図13、図16に示したような反射型ホログラムを採用する場合、反射型ホログラムの波長選択性から参照光は時間コヒーレンス(単色性)の低い参照光を採用することができる。また、上記図5、図12、図13に示したようにイメージホログラムを採用する場合、イメージホログラムの角度選択性から空間コヒーレンスの低い参照光光源を採用できる。したがって、参照光用光源としては、空間、時間コヒーレンスともに高いレーザ、空間、時間コヒーレンスともに低い水銀灯やタングステンランプ、その他LED、スーパールミネッセントダイオード、レーザダイオードなどから、ホログラム特性にあわせて必要な空間、時間コヒーレンス、波長をもつ光源を選択するようにすればよい。
【0093】
さらに、上記図1、図4、図12、図16、図17に示す実施例において、設計上、ホログラム20を透過する参照光またはホログラム20の散乱光や副次回折光が光検出器アレイ9の検査面に入射される可能性があるときには、他の実施例と同様、偏光板および1/4波長板を採用すればよい。また、これら偏光板および1/4波長板の配設位置は任意であり、偏光板はピンホールアレイPHと光検出器アレイ9の間に配設するようにしてもよいし、ホログラム20とピンホールアレイPHの間に配置するようにしてもよい。1/4波長板はホログラム20と検査面の間であれば何処に配置してもよい。
【0094】
また、図23に示した、ピンホールアレイを省略した積層構造ユニット50を他の図1、図2、図4、図5、図11、図13、図16、図17に示した実施例に適用するようにしてもよい。
【0095】
さらに、上記各実施例において、被計測物体で反射された光を検出するのではなく、被計測物体に投射された光によって被計測物体自身が発生する蛍光を検出するようにしてもよい。この際、蛍光の波長以外の光を遮断する目的で、蛍光の波長を透過するバンドパスフィルタをピンホールアレイPHと光検出器アレイ9の間、あるいはホログラム20とピンホールアレイPHの間に配置するようにしてもよい。
【0096】
また、共焦点光学系の各構成要素はー例を示したもので、上記実施例に示したものと同一の機能を達成できるものであれば、他の構成を採用するようにしてもよい。
【0097】
【発明の効果】
以上説明したようにこの発明によれば、ホログラムによって点光源光と等価な光を再生し、ホログラムを点光源アレイおよびハーフミラーとして機能させるようにしたので、点光源用のピンホールアレイと受光用のピンホールアレイとの位置合わせが不要になる。またホログラムにはハーフミラーのような厚さがないので、光学的収差や対物レンズとの位置的な干渉が非常に少なくなる。
【0098】
また、ホログラムの回折効率は任意に設定できるので、これを例えば50%程度に設定すれば、従来のピンホール方式にくらべて光源光の利用効率が格段に向上する。また、ピンホールアレイに入射する光源光がピンホール以外の部分で反射して観察されていた従来の不具合を確実に防止することができる。
【0099】
また、光検出器アレイ、開口アレイ、ホログラムを平面上に積層して一体構成とするようにすれば、小型、軽量かつ堅牢な共焦点光学ユニットを実現でき、高速移動走査にも耐えられる。また、ホログラムは光検出器アレイと検査面の間に配設すればよいので、設計の自由度が非常に大きくなる。
【図面の簡単な説明】
【図1】この発明の第1実施例を示す図。
【図2】第1実施例のホログラムを露光する際の構成を示す図。
【図3】ピンホールアレイの前面にマイクロレンズアレイを配置した図。
【図4】この発明の第2実施例を示す図。
【図5】この発明の第3実施例を示す図。
【図6】第3実施例の積層構造ユニットの詳細構成を示す図。
【図7】上記積層構造ユニットの製造法を説明する図。
【図8】上記積層構造ユニットの他の製造法を説明する図。
【図9】上記積層構造ユニットの他の例を示す図。
【図10】上記積層構造ユニットの更に別の例を示す図。
【図11】この発明の第4実施例を示す図。
【図12】第4実施例に用いられる積層構造ユニットの詳細を示す図。
【図13】この発明の第5実施例を示す図。
【図14】第5実施例に用いられるホログラムの露光手法を説明する図。
【図15】第5実施例に用いられるホログラムの他の露光法を説明する図。
【図16】第5実施例の変形例を示す図。
【図17】この発明の第6実施例を示す図。
【図18】第6実施例に用いられるホログラムの露光法を示す図。
【図19】第6実施例の変形例を示す図。
【図20】従来技術を示す図。
【図21】他の従来技術を示す図。
【図22】積層構造ユニットの他の例を示す図。
【図23】この発明の更に別の実施例を示す図。
【図24】積層構造ユニットの他の例を示す図。
【符号の説明】
PH…ピンホールアレイ
4…ハーフミラー
5…レンズ
6…開口絞り
7…被計測物体
8…移動ステージ
9…光検出器アレイ
14…レンズ
15…開口絞り
20…ホログラム
24…マイクロレンズアレイ
30…3次元計測部
40…移動制御部
50…積層構造ユニット
【発明の属する技術分野】
この発明は共焦点光学系を応用した3次元形状計測装置に関し、特にホログラムを利用した共焦点光学装置に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
物体の形状を測定する技術としては、例えば特開平4−265918号公報に示すように、共焦点光学系を2次元的に配置したものがあり、図20にその構成を示す。
【0003】
図20において、光源1の光はレンズ2、3を介して平行光となりピンホールアレイPH1に入射される。ピンホールアレイPH1は、ピンホールがマトリックス状に配設されたものである。ピンホールアレイPH1を通過した光はハーフミラー4を透過し、開口絞りによってテレセントリック系を構成するレンズ5a、5bによって集光され、被計測物体7に投光される。被計測物体7はZ軸方向に変位可能な移動ステージ8上に載置されている。被計測物体7で反射された光はレンズ5a、5bで集光され、ハーフミラー4で反射され、ピンホールアレイPH1と共役な位置に結像する。この結像位置にピンホールアレイPH2を配設し、ピンホールを通過する光を、光検出器アレイ9の各光検出器で検出する。
【0004】
かかる従来構成によれば、移動ステージ8をZ方向に変位させながら、光検出器9の個々の出力を別々にサンプリングし、各々の光検出器の出力が最大になったときのZ方向位置を物体7の表面位置として検出することができる。
【0005】
しかしながら、上記従来装置には以下のような問題点がある。
【0006】
(1)精度の高い共焦点効果を得るためには、ピンホールアレイPH1およびPH 2をお互いのピンホールのピッチが正確に合うように例えばサブミクロンの精度で精密に作成し、それらをハーフミラー4を挟んで共役な位置に前記 精度で精密に位置決めし、かつこれらを固定維持する必要がある。特にハ ーフミラー4は通常プリズム型が使用されるが、共焦点ユニットの光源の 焦点位置(ピンホールアレイPH1)と受光の焦点(ピンホールアレイPH 2)のハーフミラー4に対する距離は共焦点ユニット毎に違ったものになるので、前記位置決め精度を満足させるために、精度の高いプリズム型ハーフミラーを製作する必要がある。
(2)光線がプリズム型ハーフミラー4を通過する際の収差を考慮して対物レン ズ5の設計を行う必要がある。プリズム型ハーフミラー4の収差は、このプリズム型ハーフミラー4の辺長に相当する厚みを持った平板ガラスの収 差に相当するため、非常に大きく、この大きな収差を考慮した対物レンズ 5の設計は非常に難しいものとなる。
(3)プリズム型ハーフミラー4は立方体領域を必要とするため、対物レンズ5 aから光源の焦点までの距離及び対物レンズ5aから受光の焦点までの距 離はハーフミラー4の立方体の辺長より小さくすることはできず、小型軽 量化に限界がある。また、焦点距離の短い対物レンズを使用して計測に必 要な光学的開口率を得たい場合に非常に不利となる。
(4)ピンホールアレイPH1に入射する光源光はピンホール以外の部分は透過しないので、光の利用効率が悪く、光源光の数%しか利用できない。したがって、十分な検出光量を得るために時間がかかり、ひいては物体の形状を 測定する時間を短縮するのに限界がある。
などの問題がある。
【0007】
そこで、特開平1−503493号公報においては、上記問題点(1)〜(3)を解決すべく、光源の焦点位置と受光の焦点を同一ピンホールによって構成するようにしており、その構成を図21に示す。
【0008】
図21において、S偏光の平行光は偏光ハーフミラー11で反射されて、ピンホール基板12に入射される。ピンホール基板12は、円盤にピンホールを螺旋状に配置したニポウ型(Nipkow)ディスクであり、入射平行光を複数の点光源光に変換する。ピンホール基板12はモータ13によって回転されるようになっている。
【0009】
ピンホール基板12を通過した光は開口絞り15によってテレセントリック系を構成したレンズ14a、14bによって集光されるとともに、1/4波長板16によって円偏光に変換されて被計測物体7に投光される。被計測物体7はZ方向に移動可能な移動ステージ8上に載置されている。被計測物体7で反射された光は1/4波長板16によってP偏光に変換されると共に、レンズ14a,14bによって集光されてピンホール基板12の同じピンホールを通過する。ピンホール基板12を通過した光は、偏光ハーフミラー11を透過し、P偏光を通過させる偏光版18を透過することにより接眼レンズ17を介して肉眼で観察される。被計測物体7のX−Y方向の走査はモータ13によってピンホール基板12を回転させることにより行う。
【0010】
この図21に示す装置は光学顕微鏡に関する技術であるので、肉眼観察を前提にしている。従って、この図21に示す構成によって先の図20に示したような光センサによる3次元計測を行うためには、接眼レンズ17の結像位置に光検出器アレイを配置すると共に、ニポウ型ディスクのピンホール基板12を先の図20に示したようなピンホールマトリックスアレイに置換すればよい。
【0011】
かかる装置においては、光源の焦点と受光の焦点が同一のピンホールによって構成されるために、先の項目(1)〜(3)で示したような問題は解消されるが、依然として以下のような問題が残る。
【0012】
(a)ピンホールアレイと光検出器アレイとの関係において、偏光ハーフミラー による収差、接眼レンズによる結像収差を考慮して、ピンホールアレイの 各ピンホールと光検出器アレイの各光検出器とを1対1に精度良く位置合 わせする必要がある。
(b)ピンホールアレイ(ピンホール基板12)に入射する光源光はピンホール 以外の部分は透過しないので、光の利用効率が悪く、光源光の数%しか利 用できない。したがって、十分な検出光量を得るために時間がかかり、ひ いては物体の形状を測定する時間を短縮するのに限界がある。すなわち、 上記(4)の問題は全く改善されない。
【0013】
又、図21の装置固有の問題点として、次のようなものが挙げられる。
(c)ピンホール基板12に入射する光源光はピンホール以外の部分では反射し てしまうので、ピンホール基板12の反射率を、前記偏向特性を利用した り、あるいはピンホール基板12自体を光軸に対してオフセットしたりす るなどを対策を行って反射光が観察されないようにすることが必要となる 。すなわちこれは、ピンホール基板の背後から光を投射して点光源を作り 、同一のピンホールによって受光する共焦点光学系によるところの問題で あり、この反射光は観測信号のS/N比を悪化させるので、十分な対策が 必要となる。
【0014】
さらに、前記図20または図21に示す装置においては、形状計測時間を更に高速化するためには移動ステージ8を更に高速移動させる必要があるが、移動ステージ8は計測対象を載置しなくてはいけないので、その高速移動には限界がある。すなわち、例えば、非常に重く大きな計測対象や、非常に繊細な構造を有するために高速変位による慣性力に耐えられない計測対象等は、高速移動ステージによる移動が困難となる。
【0015】
この問題を解決するための手法として、計測対象7を固定して計測器自体をZ方向に移動変位させることが考えられる。しかし、計測器を高速変位させるためには、計測器自体が小型軽量でかつその構造が堅牢で高速変位による慣性力に耐えられなくてはならない。ところが、上記従来技術では、高速移動用の対策がなされていないために、高速移動した場合、共焦点光学系がくずれるなどの問題が発生する可能性がある。
【0016】
この発明はこのような実情に鑑みてなされたもので、装置の小型軽量化を図ると共に、3次元形状計測を高速に精度よくなし得、かつ各部の位置合わせを容易にでき、さらに光源光の利用効率を向上させるようにした共焦点光学装置を提供することを目的とする。
【0017】
【課題を解決するための手段および作用】
請求項1に対応する第1発明では、開口と、所定の検査点上に配設される被計測物体と、前記開口位置を第1の集光位置とし、前記検査点位置を第2の集光位置とするよう光を導光する光学手段と、ホログラムの参照光用の光源と、前記開口と検査点との間の所定位置に配設され、前記光源からの光を参照光として前記開口から出射される点光源光がこの所定位置を通過する際の光と等価な光を再生するホログラムと、前記開口を挟んで前記光学手段と反対側に配設され、前記開口を通過した光を検出する光検出器とを具え、前記被計測物体で散乱された前記ホログラム再生光を前記ホログラム、光学手段及び開口を介して前記光検出器に入射するようにしたことを特徴とする。前記ホログラムは、実質的に、従来装置における点光源アレイ(ピンホール)とハーフミラーの役割を兼ねる光学部品として機能する。
【0018】
すなわち、第1発明では、ホログラムに参照光を入射することにより、前記開口から出射される点光源からの光と等価な光を再生し、この再生光を直接あるいは前記光学手段を介して被計測物体上に集光する。被計測物体で散乱した光は光学手段、ホログラムを介することにより開口に集光された後この開口を通過し、光検出器で検出される。
【0019】
請求項2に対応する第2発明では、2次元配置された複数の開口を有する開口アレイと、所定の検査面上に配設される被計測物体と、前記開口アレイ位置を第1の集光位置とし、前記検査面位置を第2の集光位置とするよう光を導光する光学手段と、ホログラムの参照光用の光源と、前記開口アレイと検査面との間の所定位置に配設され、前記光源からの光を参照光として前記開口アレイの各開口から出射される各点光源光がこの所定位置を通過する際の光と等価な光を再生するホログラムと、前記開口アレイを挟んで前記光学手段と反対側に配設され、前記開口アレイの各開口を通過した光を検出する複数の光検出器を有する光検出器アレイとを具え、前記被計測物体で散乱された前記ホログラム再生光を前記ホログラム、光学手段および開口アレイを介して前記光検出器アレイの各光検出器に入射するようにしたことを特徴とする。
【0020】
係る第2発明によれば、ホログラムに参照光を入射することにより、前記開口アレイの各開口から出射される点光源からの光と等価な光を再生し、この再生光を直接あるいは前記光学手段を介して被計測物体上に集光する。被計測物体で散乱した光は光学手段、ホログラムを介することにより開口アレイの各開口に集光された後各開口を通過し、光検出器アレイの各光検出器で検出される。
【0021】
請求項4に対応する第3発明では、2次元配置された複数の開口を有する開口アレイと、所定の検査面上に配設される光透過性を有する被計測物体と、前記開口アレイ位置を第1の集光位置とし、前記検査面位置を第2の集光位置とするよう光を導光する光学手段と、ホログラムの参照光用の光源と、前記検査面上の被計測物体を挟んで前記光学手段と反対側の所定位置に配設され、前記光源からの光を参照光として前記開口アレイの各開口から出射される点光源光が前記所定位置を通過する際の光と逆向きの光と等価な光を再生するホログラムと、前記開口アレイを挟んで前記光学手段と反対側に配設され、前記開口アレイの各開口を通過した光を検出する複数の光検出器を有する光検出器アレイとを具え、前記被計測物体を透過した前記ホログラム再生光を前記光学手段および開口アレイを介して前記光検出器アレイの各光検出器に入射するようにしたことを特徴とする。
【0022】
係る第3発明によれば、ホログラムは前記検査面上の被計測物体を挟んで前記光学手段と反対側の所定位置に配設される。即ち第3発明では、ホログラムに参照光を入射することにより、前記開口アレイの各開口から出射される点光源光が前記所定位置を通過する際の光と逆向きの光と等価な光を再生し、この再生光を前記被計測物体を透過させる。被計測物体を透過した光は光学手段を介することにより開口アレイの各開口に集光された後各開口を通過し、光検出器アレイの各光検出器で検出される。
【0023】
請求項10に対応する第4発明では、複数の光検出器を2次元配置した光検出器アレイと、 所定の検査面上に配設される被計測物体と、前記光検出器アレイの各光検出器位置を第1の集光位置とし、前記検査面位置を第2の集光位置とするよう光を導光する光学手段と、ホログラムの参照光用の光源と、前記光検出器アレイと光学手段との間に配設され、前記光源からの光を参照光として前記光検出器アレイの各光検出器位置から出射される点光源光と等価な光を再生するホログラムとを具え、前記再生されたホログラム再生光を前記光学手段を介して被計測物体に照射するとともに、該被計測物体で散乱されたホログラム再生光を前記光学手段およびホログラムを介して前記光検出器アレイの各光検出器に入射するようにしている。
【0024】
かかる第4発明では開口アレイを省略するようにしている。すなわちこの第4発明では、光検出器アレイの各光検出器の位置にあたかも点光源があるようなホログラム露光を行う。したがって、再生されたホログラム再生光は前記光学手段を介して被計測物体に照射される。そして、被計測物体で散乱されたホログラム再生光は前記光学手段およびホログラムを介して前記光検出器アレイの各光検出器に入射される。
【0025】
請求項12に対応する第5発明の光学装置では、複数の開口が2次元配置された開口アレイと、この開口アレイ下に積層されるガラス基板と、このガラス基板下に積層され、参照光が入射されると前記開口アレイの各開口から出射される点光源光と等価な光を再生するホログラムとを具え、前記開口アレイとホログラムによってピンホールの作用をなすようにしたことを特徴としている。
【0026】
かかる第5発明では、ホログラムによって開口アレイの各開口に点光源が位置しているのと等価な光を再生する。したがって、この場合、点光源光を発生させるためには開口アレイを必要とはしない。開口アレイは、例えば、ホログラム再生光が被計測物体で反射された後の光を受光するために用いられる。すなわち、このピンホール機能を有する光学装置では、発光作用はホログラムで行い、受光作用を開口アレイで行う。
【0027】
【発明の実施の形態】
以下この発明の実施例を添付図面に従って詳細に説明する。
【0028】
図1はこの発明の第1実施例を示すもので、7は被計測物体、8はZ方向に移動可能な移動ステージ、9は複数の光検出器がマトリックス状に配置された光検出器アレイ、PHは複数のピンホールがマトリックス状に配置されたピンホールアレイ、14a,14bは対物レンズ、15は開口絞り、20はホログラム、21は参照光用光源、22,23はレンズ、30は光検出器の出力に基づいて被計測物体7の3次元計測を行う3次元計測部、40は移動ステージ8の移動制御を行う移動制御部である。レンズ14a,14bは、開口絞り15によって謂ゆるテレセントリック光学系を形成する。
【0029】
かかる構成において、ホログラム20は点光源光の発生手段として用いられるもので、光源21からの参照光が入射されることによって、あたかもピンホールアレイPHの各ピンホールから光が出射したような光を再生する。
【0030】
したがって、光源1からレンズ22、23を介して参照光がホログラム20に入射されると、ピンホールアレイPHの各ピンホールに点光源が存在するのと等価な光がホログラム20によって再生される。そして、該再生された光はレンズ14bによって移動ステージ8上の被計測物体7上に結像される。なお、図1では、便宜上1つのピンホールから出射した光を示しているが、実際は全てのピンホールから光が出射したのと等価な複数の点像が検査面上に結像される。
【0031】
被計測物体7で反射された光はレンズ14b、ホログラム20、開口絞り15を介してレンズ14aに入射され、レンズ14aによってピンホールアレイPHの各ピンホール位置に結像される。光検出器アレイの9の各光検出器はピンホールアレイPHの各ピンホールに対応する位置に配されており、各ピンホールを通過した光の受光強度を検出する。
【0032】
光検出器アレイ9の各光検出器の出力は3次元計測部30に入力されており、3次元計測部30では移動制御部40の制御による移動ステージ8のZ方向への移動に伴って光検出器アレイ9の個々の検出器の出力を順次サンプリングし、各々の出力が最大になったときのZ方向位置を被計測物体7の表面位置として検出する。
【0033】
ここで、ホログラム20に対する参照光の入射角度Φとしては、ホログラム20で反射または透過した光が直接またはレンズ14b,開口絞り15等を介して被計測物体7の検査面あるいは前記光検出器アレイ9の検出面に入射されないようにできるだけ小さくしたほうが望ましい。しかし、入射角度Φを小さくし過ぎるとホログラム媒質中に入る光が少なくなって満足な光量の点光源を再生および露光することができなくなるので、これら両方の条件が満足されるように入射角度Φを設定するようにする。なお、入射角度Φを小さくするということは、テレセントリック系の各光学部品14a、14b,15の間隔を詰めて配置することができ、より装置を小型化できるという利点も持つ。
【0034】
なお、図1において、ホログラム20は破線で示す位置*1(ピンホールアレイPHとレンズ14aの間)、または*2の位置(レンズ14bと検査面の間)に配置するようにしてもよい。さらにこのホログラム20は、レンズ14aと開口絞り15の間に配置するようにしてもよい。すなわち、ホログラム20は、ピンホールアレイPHと検査面の間であれば、光路中のどのに配置してもよい。
【0035】
図2は、ホログラム20を露光する際の構成を示すもので、ピンホールアレイPH、レンズ14a、開口絞り15、光源21、およびレンズ22,23として図1と同じものを用い、且つこれらを図1と同じ位置関係に配置する。
【0036】
この状態で、光源21から参照光をホログラム20に入射するとともに、平行光を物体光としてピンホールアレイPHに入射する。この結果、ピンホールアレイに形成された複数の点光源像がレンズ14aによって平行光になった状態でホログラム20に入射され、記録される。この場合は、参照光と物体光がホログラム20の片側から入射されるので、ホログラム20は透過型となる。
【0037】
ホログラム20の回折効率を例えば50%とすれば、参照光の50%が被計測物体7に照射され、物体7からの反射光の約50%がホログラム20を透過して光検出器アレイ9に入射されることになり、光源光の利用効率を従来より格段に向上させることができる。
【0038】
ホログラム20の材質としては、銀塩感光材、ポリマー感光材などを用いることができるが、特にポリマー材の場合は、ホログラム露光後に紫外線照射や加熱により回折効率の調整や定着が可能であるので、露光したホログラム20を図2の装置から取り外すことなく定着が可能であり、その後のホログラム20とピンホールアレイPHとの位置合わせが不要になる。
【0039】
以上のようにしてホログラムの露光が終了すると、ピンホールアレイPHの各ピンホールに各光検出器の開口が合うように光検出器アレイ9を設置する。そして、先のホログラム露光の際にレンズ14bが未設置の場合は、レンズ14bを設置して光学系が完成する。
【0040】
なお、ホログラム20を図示実線で示す位置に配置する場合には、露光の際はレンズ14bは不要である。しかし、破線位置*2にホログラム20を配置する場合には、露光の際もレンズ14bを配置する。また、破線位置*1にホログラム20を配置する場合には、露光の際、レンズ14a,14bは不要である。
【0041】
図3は、ホログラム露光時の光の利用率を向上するためと、点光源の開口数NAを所定の値に設定するために、ピンホールアレイPHの前面にマイクロレンズアレイ24を設置した状態を示すもので、この状態でホログラム露光を行うようにする。マイクロレンズアレイ24のレンズピッチはピンホールアレイPHの開口ピッチと同じとする。
【0042】
図4はこの発明の第2実施例を示すもので、この場合はホログラム20として反射型ホログラムを用いるようにしている。すなわち、この場合は、ホログラム20を挟んでピンホールアレイPHの反対側から参照光をホログラム20に入射するようにしている。なお、この図4に示すタイプにおいても、破線位置*1,*2にホログラムを配置するようにしてもよい。勿論、この実施例においても、ホログラム20は、先の第1実施例と同様、ピンホールアレイPHの各ピンホールに点光源が存在するのと等価な光を再生する。
【0043】
また、この図の実施例では、ピンホールアレイPHの各ピンホールを通過する光を接眼レンズ17を介して1対1で光検出器アレイ9の各光検出器に結像するようにしている。この場合、ピンホールアレイPHのピンホールのピッチと光検出器アレイ9の光検出器のピッチは同一である必要はなく、接眼レンズ17の倍率に対応して各々のピッチを設定すればよい。
【0044】
図5はこの発明の第3実施例を示すものであり、この第3実施例は先の図4の変形例であり、図4の実施例において、ホログラム20を破線位置*1に配置した場合の特殊な例である。この第3実施例においては、図4の接眼レンズ17を削除すると共に、光検出器アレイ9、ピンホールアレイPHおよびホログラム20を、図6に示すように、平板状の積層構造として、一体的に構成している。以下、この一体化部分を積層構造ユニット50という。
【0045】
すなわち、積層構造ユニット50は、図6に示すように、ホログラム20、透明光学基板(ガラス基板)25、偏光板26、ガラス基板27、ピンホールアレイPH、光ファイバー28、光検出器アレイ9を有し、これらの積層構造となっている。
【0046】
かかる図6に示す構成において、ホログラム20とピンホールアレイPHとは近接した位置関係にあるので、ホログラム20を透過する参照光がピンホールアレイPHを介して光検出器アレイ9の検出面に入射される可能性がある。また、ホログラムの特性によっては、散乱光や副次回折光が再生されるので、同様にこれらの光がピンホールアレイPHを介して光検出器アレイ9の検出面に入射される可能性がある。
【0047】
これらを防止するために、ガラス基板25と27の間に偏光板26を配設するとともに、参照光を偏光板26によって遮断される側の直線偏光とするようにしている。
【0048】
図5、図6に示す構成においては、ホログラム20によって再生された点光源光は1/4波長板29の作用によって円偏光に変換されると共に、テレセントリック光学系レンズ14a、14bによって被計測物体7の検査面上に結像する。被計測物体7で反射された光は、前記同様にして、レンズ14b,1/4波長板29、レンズ14aを介してピンホールアレイPHのピンホールで結像する。なお、この際、被計測物体7で反射された円偏光は1/4波長板29の作用により参照光と垂直な方向の直線偏光となるため、偏光板26を通過することができる。ピンホールに入射した光は光ファイバー束28を介して光検出器アレイ9の各光検出器に入射される。
【0049】
かかる第3実施例においては、光検出器アレイ9、ピンホールアレイPHおよびホログラム20を平面上に積層して一体構成としているので、小型軽量且つ堅牢な共焦点光学ユニットを実現できる。
【0050】
また、この第3実施例では、参照光を所定の入射角を持つ平行光としかつ上記積層構造ユニット50をX−Y方向に移動可能なように構成すれば、ピンホールとピンホールの間の部分に対応する位置の3次元計測を行うこともできる。
【0051】
さらにこの第3実施例では、ホログラム20が、その再生する点光源の距離がホログラムに近い、謂ゆるイメージホログラムであるため、参照光の入射角度選択性が高い。すなわち、参照光の空間コヒーレンスや角度の許容度が大きいので、空間コヒーレンスの低い光源を採用することができ、光源の位置ズレに対しても許容度の高い構成となる。
【0052】
図7は上記積層構造ユニット50のホログラム20を露光する際の構成を示すもので、まず、ガラス基板27の片面にピンホールアレイマスクPHを形成すると共に、ガラス基板25の片面にホログラム材20を塗布する。そして、この状態でピンホールアレイPH側から平行光を入射すると共に、ホログラム20側から参照光を入射することにより、ピンホールアレイPHから出射される光をホログラム20に記録する。但し、この際、平行光と参照光との直線偏光の方向が異なれば露光ができないので、これら双方の光は共に偏光板26を透過する方向の直線偏光にする。勿論、ホログラムを再生する時の参照光は、前述したように、偏光板26を透過してピンホールに入射されないように、偏光板26で吸収される方向の直線偏光とする。
【0053】
なお、上記積層構造ユニットのホログラム20を露光する際、図8に示すように、マイクロレンズを24を配置することにより、光の利用率を向上させるとともに、点光源の開口数NAを所望の値に設定するようにしてもよい。
【0054】
図9は上記積層構造ユニット50の変形例を示すもので、この場合は光ファイバー28とピンホールアレイPHの間にマイクロレンズアレイ24を配置するようにしている。
【0055】
図10も上記積層構造ユニットの変形例を示すもので、この場合は光検出器アレイ9とピンホールアレイPHの間に平板型のマイクロレンズアレイ24を配置するようにしている。この場合は、平板型マイクロレンズアレイ24と光検出器アレイ9との間に充分な密着性が得られるので、光ファイバー28を省略するようにしている。
【0056】
図11はこの発明の第4実施例を示すもので、この場合はホログラム20として、USP4643515号に示されるような、エッジイルミネイテッドホログラムを用いるようにしており、参照光はホログラム20のガラス基板の側面から入射させることができる。図12は、図11の積層構造ユニット70の詳細構成を示すもので、エッジイルミネイテッドホログラム20、ガラス基板29、ピンホールアレイPH、光ファイバー28および光検出器アレイ9から構成されている。
【0057】
この第4実施例においては、参照光がホログラム側面から入射される点のみが他の実施例と異なり、それ以外は先の実施例と全く同様に動作する。なお、この実施例においても、ホログラム20を図示破線位置*1,*2,*3に配置するようにしてもよい。
【0058】
かかる第4実施例においては、参照光をホログラムのガラス基板の側面から入射させることができるので、共焦点光学装置をさらに小型化できる。すなわち、テレセントリック系のレンズ14a,14bは、収差などの特性を改善するために通常は多群、複数枚構成になっているが、先の図1,図4に示した構成において、参照光のホログラムによる反射光や透過光が直接これらのレンズや開口絞りに入射されないようにするためには、これらテレセントリック系の各光学部品をある程度の間隔を持って配置する必要がある。これに対し、上記エッジイルミネイテッドホログラムを用いた場合は、ホログラムでの反射光や透過光の角度が非常に浅いので、上記テレセントリック系の各光学部品の間隔を詰めて配置することができ、より装置を小型化することが可能になる。
【0059】
また、上記図12の積層構造ユニット70においては、参照光のホログラム20への入射角が浅いので、その反射光は通常はピンホールPHに入射されない。また、仮に、該反射光がピンホールに向かったとしても、ピンホール側のガラス界面への入射角度が浅いので、臨界角となった光は全反射し、ピンホールには入射されない。よって、ホログラム20の散乱光や副次回折光の影響が少なければ、先の図6や図9に示した実施例を用いた偏光板26が不要になるという利点も持つ。
【0060】
図22は、図12の積層構造ユニット70の変形であり、反射型エッジイルミネイテッドホログラムになっている。ホログラム20を透過する参照光、あるいはホログラムの散乱光、副次回折光を遮断するために偏光板26を配している。さらに1/4波長板16も積層構造としてガラスCに密着させ、一体化している。
【0061】
これら積層構造ユニット70において、ホログラム20は透過型あるいは反射型であるが、参照光がエバネッセント波によるエッジイルミネイテッドホログラムにしてもよい。
【0062】
また、上記積層構造ユニットにおいて、積層する部品の間に光学マッチングのための屈折液を充填し、不要な反射、屈折を防止することが有効である。
【0063】
また、図6、図12の各積層構造ユニットにおいて、ピンホールアレイPHと光検出器アレイ9との間に適当な密着度、すなわち隣接ピンホールからの迷光が光検出器に入射されない密着性が得られるのであれば、光ファイバー28を省略するようにしてもよい。
【0064】
図13はこの発明の第5実施例を示すもので、この場合は先の図21に示した構成に本発明を適用するようにしている。
【0065】
この図13の実施例においては、先の図21に示した構成に対し、前記と同様の作用をなすホログラム20をガラス基板41を挟んでニポウ型(Nipkow)ピンホール基板12の下に配すると共に、ピンホール基板12の回転中心軸上に拡散球面波を発生する点光源を42を配置し、この光源42から参照光をホログラム20に入射するようにしている。ピンホール基板12の回転中心軸上に配置される点光源42を得るために、光をレンズ43によって集光して、ピンホール44を通過させるようにしており、ピンホール44はピンホール基板12の回転中心軸上に配置する。
【0066】
このように、拡散球面波の光源42をピンホール基板12の回転軸に配置するようにしてるので、ホログラムが回転されたとしても、ホログラム20の同じ半径距離を有する各位置では常に同じ入射角度を持つ球面波が入射されることになり、ホログラムからの再生光が回転によって変化することはない。
【0067】
かかる構成においては、ホログラム20に直線偏光を有する拡散球面波の参照光が入射されると、ホログラム20は、前記同様、ニポウ型(Nipkow)ピンホール基板12の各ピンホールに点光源が存在するのと等価な光を再生する。該再生された光は1/4波長板16によって円偏光に変換されると共に、レンズ14a,開口絞り15およびレンズ14bによるテレセントリック光学系によって移動ステージ8上の被計測物体7上に結像される。被計測物体7で反射された光は1/4波長板16によってその偏光面を90゜回転されると共に、レンズ14a,14bによって集光されてピンホール基板12の同じピンホールを通過する。ピンホール基板12を通過した光は、偏光板18を介して接眼レンズ17に入射され、接眼レンズ17によって光検出器アレイ9の光検出器上に結像される。なお、偏光板18は、参照光のホログラム20での透過光、散乱光、副次回折光がピンホール基板12の各ピンホールを介して光検出器アレイ9に入射されないように設けられたもので、参照光の偏光方向は偏光板12で吸収されるように設定されている。
【0068】
かかる実施例によれば、先の図21に示した従来構成に比べ、光源(参照光)の利用率が格段に向上すると共に、偏光ハーフミラー11(図21)による収差も考慮する必要がなくなる。さらに、従来構成のように、ピンホール基板12の背後から光を投射して点光源を作り同一のピンホール基板の背後で受光するのではなく、ピンホール基板を通過した光と等価な点光源をホログラムによって作り出すので、ピンホール基板12の反射光による観測信号のS/N比の悪化がない。
【0069】
図14および図15は、それぞれ図13の実施例で用いるホログラム20を露光する際の構成を示すもので、図14はホログラム20の基板全体を一括で露光する場合を示し、図15は分割露光する場合を示している。
【0070】
図14においては、ニポウ型ピンホール基板12、ガラス基板41およびホログラム20を積層した状態で、回転軸上の適宜位置に配した点光源42から球面波を参照光としてホログラム20に一括照射すると共に、平行光を物体光としてピンホールに一括照射することにより、ホログラム20を一括露光するようにしている。
【0071】
図15においては、ニポウ型ピンホール基板12、ガラス基板41およびホログラム20を積層した状態で、回転軸上の適宜位置に配した点光源42から球面波を参照光としてホログラム20の一部領域に照射すると共に、この一部領域に対し平行物体光を照射することにより、ホログラムの一部領域を露光する。次に、基板全体を回転させることにより露光位置を変え、同様の露光処理を実行する。このようにして、何回かに分けてホログラムを露光する。なお、部分露光の際、未露光領域および既に露光を終了した領域は、マスクで覆って露光しないようにすることが必要である。
【0072】
図16は上記図13に示した第5実施例の変形例であり、ホログラム20をニポウ型ピンホール基板12から離して配置することにより、参照光のホログラム20での透過光がピンホール基板12のピンホールに入射されてこれが光検出器で観測されたり、あるいは参照光がピンホール基板12のピンホール以外の所で反射されてこれらピンホールを通過して光検出器で観測されたりすることを防止し、これにより先の図13の実施例における1/4波長板16、偏光板18を省略するようにしている。勿論、図16において、参照光は直線偏光にする必要はなく、またホログラム20の回転軸とピンホールアレイ12の回転軸は共通であり、これらは完全に同期して回転する。
【0073】
なお、上記図16の実施例では、ピンホール基板12とホログラム20を共通の回転軸に固定するようにしたが、これらピンホール基板12とホログラム20を共通の円筒に配設するようにしてもよい。
【0074】
図17〜図19はこの発明の第6実施例を示すもので、透過型の共焦点光学装置に本発明を適用するようにしている。図17は、3次元計測時の構成を示すもので、図18はホログラム露光時の構成を示すものである。
【0075】
ホログラム露光の際は、図18に示すように、ピンホールアレイPH、レンズ14a,14bおよびホログラム20を図17と同一位置関係に配置すると共に、ピンホールアレイPHに物体光を照射し、さらにホログラム20に対し参照光を入射する。これにより、ピンホールアレイPHの各ピンホール位置に配した点光源像がレンズ14a,14bを介してホログラム20に入射された光を、参照光によってホログラム20に記録する。
【0076】
そして、3次元計測の際は、図17に示すように、検査面に被計測物体7を配置するとともに、ホログラム露光時の参照光と共役な光、すなわち参照光と逆の方向に伝搬する光を、参照光としてホログラム20に入射する。この参照光によってホログラム20は、図17に示すように、検査面で焦点を結び、かつピンホールアレイPHでも焦点を結ぶ光、すなわち記録時と逆の方向に進む光を再生する。
【0077】
したがって、検査面に置かれた被計測物体はホログラム20の再生光により照射され、その透過光がピンホールアレイPHを介して光検出器アレイ9に入射されので、その入射光を光検出器で観察する。なお、この実施例において、図19に示すように、ホログラム20と検査面の間にリレーレンズ45を配置するようにしてもよい。
【0078】
この実施例によれば、光源をホログラムに置換することにより顕著な小型軽量化がなされ、かつ従来装置で必要な投光側のピンホール、結像レンズおよびそれらの位置合わせが不要となる。また、光源光の利用率も格段に向上する。
【0079】
図23はこの発明の更に別の実施例を示すものであり、この実施例ではピンホールアレイPHを削除し、その位置にガラス基板25を配設している。また、ホログラム20、ガラス基板25、および光検出器アレイ9を平板状の積層構造として、一体的に構成している。
【0080】
この実施例において、ホログラム20の露光の際は、例えば、光検出器アレイ9の位置にピンホールアレイ(光検出器アレイの各光検出器の位置とピンホールアレイの各ピンホールの位置が1対1に対応している)を配置した状態で例えば図3に示すような平行光をピンホールアレイに入射し、この状態で参照光をホログラムに入射することにより、光検出器アレイ9の各光検出器の位置にあたかも点光源があるような露光を行う。
【0081】
したがって、この図23に示す実施例においては、参照光がホログラム20に入射されると、光検出器アレイ9の各光検出器の位置に点光源が存在するのと等価な光がホログラム20によって再生され、該再生された光はレンズ14a、開口絞り15、レンズ14bを介して移動ステージ8上の被計測物体7上に結像される。被計測物体7で反射された光はレンズ14b、開口絞り15、レンズ14a、ホログラム20、ガラス基板25を介して光検出器アレイの9の各光検出器位置で結像される。
【0082】
図24は、先の図7に示した積層構造ユニット50から偏光板26を削除した積層構造ユニット80を示すもので、また先の図13に示した積層構造ユニット(ニポウ型ピンホール基板12、ガラス基板41、ホログラム20)にも対応するもので、この積層構造ユニット80は先の各実施例で示した各積層構造ユニットの最も基本的の構成である。
【0083】
この積層構造ユニット80は、基本的にはピンホールと同じ作用をなすものであるが、発光作用はホログラム20によって行い、受光作用をピンホールアレイPHによって行っている。すなわち、点光源光は、ピンホールに光を照射することにより発生させるのではなく、ホログラム20によってこれと等価な光を再生する。
【0084】
この積層構造ユニット80によれば、ホログラム20を用いて点光源光を発生させているので、前述したように、光の利用効率を従来に比べ格段に向上させるとともに、ピンホールアレイPHに入射する光源光(図20の光源1の光)がピンホール以外の部分で反射して光検出器アレイ9(図1参照)に入射されるのを好適に防止することが可能になる。
【0085】
なお、上記各実施例においては、Z方向の移動走査を行うべく移動ステージ8を設け、被計測物体7をZ方向に移動可能な構成としたが、共焦点光学装置全体をZ方向に移動可能なように構成するようにしてもよく、あるいはテレセントリック光学系の対物レンズ14a,14bをZ方向に移動可能なように構成してもよい。また、テレセントリック光学系においては、その倍率は等倍、拡大、縮小の何れでもよい。
【0086】
また、上記各実施例で用いたピンホールアレイは不要な反射を防止する目的で遮光部分の反射率が低いことが望ましく、例えばCr2O3/Cr/Cr2O3の3層膜が好適である。
【0087】
また、上記各実施例で用いたピンホールアレイの開口径と開口のピッチは他の共焦点光学系におけるパラメータと同様に、例えば開口ピッチが開口径の10倍以上にするのが十分な共焦点効果を得るために適している。また、開口径の大きさは他の共焦点光学系におけるパラメータと同様にテレセントリック光学系の対物レンズ14a,14bの回折限界を考慮して決定すればよい。
【0088】
また、上記各実施例で用いたホログラム20は、ホログラム材をガラス基板に塗布したものを用いるようにしてもよい。この場合、ホログラム面あるいはガラス基板面での光の多重反射を防ぐ目的でホログラムガラス基板を光軸に対して斜めになるように配置するようにしてもよい。
【0089】
また、上記各実施例で用いたホログラム20は、ホログラム材をテレセントリック光学系の対物レンズ14aあるいは14bに塗布し、レンズ自体をホログラム基板としてもよい。
【0090】
また、上記各実施例における光検出器アレイ9としては、MOS型あるいはCCD型のエリアセンサが好適である。
【0091】
また、各実施例において、参照光、物体光は平行光である必要はなく、拡散光でもよい。特に、上記図1,図4,図5,図11,図17に示す実施例においては、参照光として平行面光線を用いるようにしたが、走査型のスリット光を用いるようにしてもよい。
【0092】
また、上記各実施例において、ホログラム再生時の参照光はホログラム20の再生に必要な空間、時間コヒーレンスをもった電磁波なら何れのコヒーレンスをもった電磁波でもよい。例えば、上記図4、図5、図13、図16に示したような反射型ホログラムを採用する場合、反射型ホログラムの波長選択性から参照光は時間コヒーレンス(単色性)の低い参照光を採用することができる。また、上記図5、図12、図13に示したようにイメージホログラムを採用する場合、イメージホログラムの角度選択性から空間コヒーレンスの低い参照光光源を採用できる。したがって、参照光用光源としては、空間、時間コヒーレンスともに高いレーザ、空間、時間コヒーレンスともに低い水銀灯やタングステンランプ、その他LED、スーパールミネッセントダイオード、レーザダイオードなどから、ホログラム特性にあわせて必要な空間、時間コヒーレンス、波長をもつ光源を選択するようにすればよい。
【0093】
さらに、上記図1、図4、図12、図16、図17に示す実施例において、設計上、ホログラム20を透過する参照光またはホログラム20の散乱光や副次回折光が光検出器アレイ9の検査面に入射される可能性があるときには、他の実施例と同様、偏光板および1/4波長板を採用すればよい。また、これら偏光板および1/4波長板の配設位置は任意であり、偏光板はピンホールアレイPHと光検出器アレイ9の間に配設するようにしてもよいし、ホログラム20とピンホールアレイPHの間に配置するようにしてもよい。1/4波長板はホログラム20と検査面の間であれば何処に配置してもよい。
【0094】
また、図23に示した、ピンホールアレイを省略した積層構造ユニット50を他の図1、図2、図4、図5、図11、図13、図16、図17に示した実施例に適用するようにしてもよい。
【0095】
さらに、上記各実施例において、被計測物体で反射された光を検出するのではなく、被計測物体に投射された光によって被計測物体自身が発生する蛍光を検出するようにしてもよい。この際、蛍光の波長以外の光を遮断する目的で、蛍光の波長を透過するバンドパスフィルタをピンホールアレイPHと光検出器アレイ9の間、あるいはホログラム20とピンホールアレイPHの間に配置するようにしてもよい。
【0096】
また、共焦点光学系の各構成要素はー例を示したもので、上記実施例に示したものと同一の機能を達成できるものであれば、他の構成を採用するようにしてもよい。
【0097】
【発明の効果】
以上説明したようにこの発明によれば、ホログラムによって点光源光と等価な光を再生し、ホログラムを点光源アレイおよびハーフミラーとして機能させるようにしたので、点光源用のピンホールアレイと受光用のピンホールアレイとの位置合わせが不要になる。またホログラムにはハーフミラーのような厚さがないので、光学的収差や対物レンズとの位置的な干渉が非常に少なくなる。
【0098】
また、ホログラムの回折効率は任意に設定できるので、これを例えば50%程度に設定すれば、従来のピンホール方式にくらべて光源光の利用効率が格段に向上する。また、ピンホールアレイに入射する光源光がピンホール以外の部分で反射して観察されていた従来の不具合を確実に防止することができる。
【0099】
また、光検出器アレイ、開口アレイ、ホログラムを平面上に積層して一体構成とするようにすれば、小型、軽量かつ堅牢な共焦点光学ユニットを実現でき、高速移動走査にも耐えられる。また、ホログラムは光検出器アレイと検査面の間に配設すればよいので、設計の自由度が非常に大きくなる。
【図面の簡単な説明】
【図1】この発明の第1実施例を示す図。
【図2】第1実施例のホログラムを露光する際の構成を示す図。
【図3】ピンホールアレイの前面にマイクロレンズアレイを配置した図。
【図4】この発明の第2実施例を示す図。
【図5】この発明の第3実施例を示す図。
【図6】第3実施例の積層構造ユニットの詳細構成を示す図。
【図7】上記積層構造ユニットの製造法を説明する図。
【図8】上記積層構造ユニットの他の製造法を説明する図。
【図9】上記積層構造ユニットの他の例を示す図。
【図10】上記積層構造ユニットの更に別の例を示す図。
【図11】この発明の第4実施例を示す図。
【図12】第4実施例に用いられる積層構造ユニットの詳細を示す図。
【図13】この発明の第5実施例を示す図。
【図14】第5実施例に用いられるホログラムの露光手法を説明する図。
【図15】第5実施例に用いられるホログラムの他の露光法を説明する図。
【図16】第5実施例の変形例を示す図。
【図17】この発明の第6実施例を示す図。
【図18】第6実施例に用いられるホログラムの露光法を示す図。
【図19】第6実施例の変形例を示す図。
【図20】従来技術を示す図。
【図21】他の従来技術を示す図。
【図22】積層構造ユニットの他の例を示す図。
【図23】この発明の更に別の実施例を示す図。
【図24】積層構造ユニットの他の例を示す図。
【符号の説明】
PH…ピンホールアレイ
4…ハーフミラー
5…レンズ
6…開口絞り
7…被計測物体
8…移動ステージ
9…光検出器アレイ
14…レンズ
15…開口絞り
20…ホログラム
24…マイクロレンズアレイ
30…3次元計測部
40…移動制御部
50…積層構造ユニット
Claims (12)
- 開口と、
所定の検査点上に配設される被計測物体と、
前記開口位置を第1の集光位置とし、前記検査点位置を第2の集光位置とするよう光を導光する光学手段と、
ホログラムの参照光用の光源と、
前記開口と検査点との間の所定位置に配設され、前記光源からの光を参照光として、前記開口から出射される点光源光がこの所定位置を通過する際の光と等価な光を再生するホログラムと、
前記開口を挟んで前記光学手段と反対側に配設され、前記開口を通過した光を検出する光検出器と、
を具え、
前記被計測物体で散乱された前記ホログラム再生光を前記ホログラム、光学手段及び開口を介して前記光検出器に入射するようにしたことを特徴とする共焦点光学装置。 - 2次元配置された複数の開口を有する開口アレイと、
所定の検査面上に配設される被計測物体と、
前記開口アレイ位置を第1の集光位置とし、前記検査面位置を第2の集光位置とするよう光を導光する光学手段と、
ホログラムの参照光用の光源と、
前記開口アレイと検査面との間の所定位置に配設され、前記光源からの光を参照光として、前記開口アレイの各開口から出射される各点光源光がこの所定位置を通過する際の光と等価な光を再生するホログラムと、
前記開口アレイを挟んで前記光学手段と反対側に配設され、前記開口アレイの各開口を通過した光を検出する複数の光検出器を有する光検出器アレイと、
を具え、
前記被計測物体で散乱された前記ホログラム再生光を前記ホログラム、光学手段および開口アレイを介して前記光検出器アレイの各光検出器に入射するようにしたことを特徴とする共焦点光学装置。 - 前記開口アレイの各開口を通過した光を前記光検出器アレイの各光検出器に導く接眼レンズを更に具えることを特徴とする請求項2記載の共焦点光学装置。
- 2次元配置された複数の開口を有する開口アレイと、
所定の検査面上に配設される光透過性を有する被計測物体と、
前記開口アレイ位置を第1の集光位置とし、前記検査面位置を第2の集光位置とするよう光を導光する光学手段と、
ホログラムの参照光用の光源と、
前記検査面上の被計測物体を挟んで前記光学手段と反対側の所定位置に配設され、前記光源からの光を参照光として前記開口アレイの各開口から出射される点光源光が前記所定位置を通過する際の光と逆向きの光と等価な光を再生するホログラムと、
前記開口アレイを挟んで前記光学手段と反対側に配設され、前記開口アレイの各開口を通過した光を検出する複数の光検出器を有する光検出器アレイと、
を具え、
前記被計測物体を透過した前記ホログラム再生光を前記光学手段および開口アレイを介して前記光検出器アレイの各光検出器に入射するようにしたことを特徴とする共焦点光学装置。 - 前記ホログラムで反射または透過した光が前記被計測物体の検査面および前記光検出器の検出面に向かわないように前記参照光の入射角度が設定されている請求項1、2または4記載の共焦点光学装置。
- 前記開口アレイとホログラムを積層して一体にしたことを特徴とする請求項2記載の共焦点光学装置。
- 前記開口アレイと光検出器アレイの間にレンズアレイを設け、該レンズアレイ、開口アレイおよびホログラムを積層して一体にしたことを特徴とする請求項2記載の共焦点光学装置。
- 前記開口アレイの各開口から光検出器アレイの各光検出器まで検査光を導くための光ファイバー束を更に具えることを特徴とする請求項2記載の共焦点光学装置。
- 前記参照光は直線偏光であり、前記ホログラムと被計測物体との間に1/4波長板を設けると共に、前記ホログラムと光検出器アレイとの間に偏光板を設けるようにしたことを特徴とする請求項2記載の共焦点光学装置。
- 複数の光検出器を2次元配置した光検出器アレイと、
所定の検査面上に配設される被計測物体と、
前記光検出器アレイの各光検出器位置を第1の集光位置とし、前記検査面位置を第2の集光位置とするよう光を導光する光学手段と、
ホログラムの参照光用の光源と、
前記光検出器アレイと光学手段との間に配設され、前記光源からの光を参照光として、前記光検出器アレイの各光検出器位置から出射される点光源光と等価な光を再生するホログラムと、
を具え、
前記再生されたホログラム再生光を前記光学手段を介して被計測物体に照射するとともに、該被計測物体で散乱されたホログラム再生光を前記光学手段およびホログラムを介して前記光検出器アレイの各光検出器に入射するようにしたことを特徴とする共焦点光学装置。 - 前記ホログラムと光検出器アレイはガラス基板が介在されて積層されている請求項10記載の共焦点光学装置。
- 複数の開口が2次元配置された開口アレイと、
この開口アレイ下に積層されるガラス基板と、
このガラス基板下に積層され、参照光が入射されると前記開口アレイの各開口から出射される点光源光と等価な光を再生するホログラムと、
を具え、前記開口アレイとホログラムによってピンホールの作用をなすようにしたことを特徴とする光学装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24765895A JP3564210B2 (ja) | 1994-09-30 | 1995-09-26 | 共焦点光学装置 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23780494 | 1994-09-30 | ||
JP6-237804 | 1994-09-30 | ||
JP24765895A JP3564210B2 (ja) | 1994-09-30 | 1995-09-26 | 共焦点光学装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08152308A JPH08152308A (ja) | 1996-06-11 |
JP3564210B2 true JP3564210B2 (ja) | 2004-09-08 |
Family
ID=26533383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24765895A Expired - Fee Related JP3564210B2 (ja) | 1994-09-30 | 1995-09-26 | 共焦点光学装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3564210B2 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2919776B2 (ja) * | 1995-08-28 | 1999-07-19 | 横河電機株式会社 | 共焦点顕微鏡 |
JPH09264720A (ja) * | 1996-03-29 | 1997-10-07 | Komatsu Ltd | 共焦点光学装置 |
JPH09274139A (ja) * | 1996-04-08 | 1997-10-21 | Komatsu Ltd | 共焦点光学装置 |
JPH109825A (ja) * | 1996-06-21 | 1998-01-16 | Komatsu Ltd | 共焦点光学装置 |
US6025905A (en) * | 1996-12-31 | 2000-02-15 | Cognex Corporation | System for obtaining a uniform illumination reflectance image during periodic structured illumination |
US5912768A (en) * | 1996-12-31 | 1999-06-15 | Cognex Corporation | Depth-from-defocus optical apparatus with invariance to surface reflectance properties |
US5878152A (en) * | 1997-05-21 | 1999-03-02 | Cognex Corporation | Depth from focal gradient analysis using object texture removal by albedo normalization |
US6219461B1 (en) | 1997-07-29 | 2001-04-17 | Cognex Corporation | Determining a depth |
US6148120A (en) * | 1997-10-30 | 2000-11-14 | Cognex Corporation | Warping of focal images to correct correspondence error |
JP4721685B2 (ja) * | 2004-10-07 | 2011-07-13 | パナソニック株式会社 | 形状測定方法及び形状測定装置 |
JP2008210435A (ja) * | 2007-02-26 | 2008-09-11 | Fuji Xerox Co Ltd | 空間光変調器、ホログラム記録装置およびホログラム記録方法 |
JP6547514B2 (ja) * | 2015-08-13 | 2019-07-24 | 富士ゼロックス株式会社 | 計測装置 |
-
1995
- 1995-09-26 JP JP24765895A patent/JP3564210B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08152308A (ja) | 1996-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7547874B2 (en) | Single axis illumination for multi-axis imaging system | |
KR100474100B1 (ko) | 공초점 현미경 및 이것을 이용한 높이 측정방법 | |
JP3350918B2 (ja) | 2次元配列型共焦点光学装置 | |
US8004690B2 (en) | Device and method for the optical measurement of an optical system, measurement structure support, and microlithographic projection exposure apparatus | |
JP3564210B2 (ja) | 共焦点光学装置 | |
JP2007279287A (ja) | 構造化照明光学系、及びそれを備えた構造化照明顕微鏡 | |
JPH0145973B2 (ja) | ||
US4932781A (en) | Gap measuring apparatus using interference fringes of reflected light | |
NL1024195C2 (nl) | Inspectiewerkwijze voor een belichtingsinrichting en een belichtingsinrichting. | |
KR100219823B1 (ko) | 조명장치 | |
EP0785411A1 (en) | Confocus optical apparatus | |
TW546468B (en) | Focus error correction method and apparatus | |
KR19980070407A (ko) | 노광 장치 | |
JP2579416B2 (ja) | リソグラフィ用の光学系 | |
JP2009253214A (ja) | 露光装置及びデバイス製造方法 | |
JPH11118446A (ja) | 2次元配列型共焦点光学装置 | |
JPH08306609A (ja) | 位置検出装置 | |
JP3336622B2 (ja) | 結像特性計測方法及び装置、並びに露光装置 | |
JPH09305094A (ja) | テレセントリック光学装置 | |
JPS5973712A (ja) | 平面度測定装置 | |
JP3448663B2 (ja) | 投影露光装置 | |
JP2621792B2 (ja) | 空間的コヒーレンスの測定方法およびその測定装置 | |
JPH0934134A (ja) | アライメント装置 | |
KR100362927B1 (ko) | 정렬방법 | |
JPH05259020A (ja) | 投影露光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040521 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040601 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040607 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |