JP3564079B2 - Insulating coating agent and method for producing non-oriented electrical steel sheet with excellent weldability using the same - Google Patents

Insulating coating agent and method for producing non-oriented electrical steel sheet with excellent weldability using the same Download PDF

Info

Publication number
JP3564079B2
JP3564079B2 JP2001123224A JP2001123224A JP3564079B2 JP 3564079 B2 JP3564079 B2 JP 3564079B2 JP 2001123224 A JP2001123224 A JP 2001123224A JP 2001123224 A JP2001123224 A JP 2001123224A JP 3564079 B2 JP3564079 B2 JP 3564079B2
Authority
JP
Japan
Prior art keywords
mass
parts
coating agent
coating
insulating coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001123224A
Other languages
Japanese (ja)
Other versions
JP2002317277A (en
Inventor
知二 熊野
和文 半澤
穣 松本
知昭 伊藤
收 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP2001123224A priority Critical patent/JP3564079B2/en
Publication of JP2002317277A publication Critical patent/JP2002317277A/en
Application granted granted Critical
Publication of JP3564079B2 publication Critical patent/JP3564079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、無方向性電磁鋼板において、高速ラインにおける塗れ性が極めて優れると共に、焼付け後の絶縁被膜の性状として、溶接性の極めて優れる絶縁被膜剤とそれを用いた絶縁被膜の形成方法に関する。
【0002】
【従来の技術】
一般に、無方向性電磁鋼板をモーターやトランスの鉄心に使用する場合には、所定の形状に打ち抜いた後、所定枚数積み重ね、溶接、かしめ或いは接着等により鉄心とされる。また、この際、必要に応じて歪焼鈍が施される。通常、この無方向性電磁鋼板表面には電気絶縁被膜処理が施される。
【0003】
この絶縁被膜としては、絶縁性の他に打ち抜き性、溶接性、耐食性、密着性、占積率等が重要で、焼鈍工程を必要とする場合には焼鈍後の密着性、絶縁性、耐食性等も重要となる。
従来、絶縁被膜剤としては、無機系、有機系、有機−無機混合系被膜が使用条件や目的に応じて適用されてきた。一般に、無機系被膜は耐熱性や溶接性は優れるが打ち抜き性が劣る。一方、有機被膜の場合には打ち抜き性、密着性は優れるが耐熱性が悪く、溶接性が劣る欠点がある。このような両者の欠点を解決すべく、中間的な特性が得られる有機−無機系被膜が用いられるようになった。
【0004】
しかしながら、溶接性を重視する分野においては未だ無機被膜の要求がある。特公昭38−9409号公報には、鉄鋼製品の表面に5〜40%のリン酸、1〜10%の6価のクロムを含む化合物及び1〜8%の硼酸又は硼酸塩を含む水溶液を塗布し、これを200〜800℃に短時間加熱、焼き付けすることを特徴とする表面処理法が提案されている。これにより、優れた占積率、密着性、加工性、層間抵抗、耐食性を有する被膜を容易に、しかも安価に得る方法が開示されている。
【0005】
また、特公昭48−12300号公報には質量比で第一リン酸Mg:40質量部と無水クロム酸:2〜12質量部含み、さらに硝酸アルミニュウム又は無定形水酸化Al或いはその両者をAlとして0.4〜2.1質量部含む水溶液よりなることを特徴とする処理剤が提案されている。これにより、絶縁性、密着性、耐食性、占積率、耐熱性、加工性、溶接性等が優れた絶縁被膜が得られることが述べられている。
【0006】
更に、特開昭62−44581号公報にはリン酸塩を含む水溶液に含まれるPO −3イオン100質量部に対し重クロム酸カリウムを15〜45質量部、ケイ酸コロイドをシリカとして10〜80質量部、分子量3000〜5000のカルボン酸型高分子界面活性剤を0.2〜3質量部、更に、硼酸を15質量部以下からなる絶縁被膜処理剤が提案されている。これにより焼き付け過程での被膜処理液からの有害ガスの発生がなく、歪取り焼鈍に要求される耐焼鈍性と被膜密着性を向上することが述べられている。また、この明細書では、コロイダリシリカは耐熱性を向上のために適用される。適用条件としては、スノーテックスOやスノーテックス30(粒子径10〜20μm)やスノーテックスOZL(粒子径70〜100μm)の如きを用いるのが良いとされ、特に後者はより有利に用いることが述べられている。
【0007】
また、特開平1−168005号公報には、クロム酸カルシュウムをCrO換算で10〜70g/l含有し、酢酸イオンで安定させたアルミナゾルを固形分換算で前記クロム酸カルシュウムのCrO換算の含有量の25〜75%含有し、還元性の有機化合物を前記クロム酸カルシュウムをCrO換算の含有量の10〜40%含有する処理液を電磁鋼板表面に乾燥質量で0.5〜4g/m塗布し、200〜400℃の温度で前記電磁鋼板表面に焼き付けることを特徴とする耐熱性に優れた絶縁被膜形成方法が提案されている。これによれば、被膜形成後の歪焼鈍によっても耐熱性に優れた被膜を、特公昭49−6742号公報のようにアルミナゾルにコロイダルシリカを併用することなく得られることが述べられている。
【0008】
【発明が解決しようとする課題】
上述したような従来の無機成分を基本とするコーティング剤やその処理方法においては、被膜成分の鋼板への塗れ性や液の安定性が十分でなく、特に、高速の塗布・焼付け処理ラインにおける液の塗れ性問題或いは被膜成分の問題から、溶接性、打ち抜き性、耐食性不良等の問題があり、更なる改善が望まれている。
【0009】
【課題を解決するための手段】
本発明は、従来のリン酸塩を主成分とする無機成分を基本とする絶縁被膜剤の組成を改善することにより、塗れ性向上と被膜成分の高温での安定化による溶接性を改善すべく考案されたもので、これにより、従来の無機被膜の欠点を改善して、均一性、被膜性能の優れた無方向性電磁鋼板の製造方法を提供することを目的とする。本発明は以下の構成を要旨とする。
(1)固形分としてAl,Caの第一リン酸塩の1種又は2種を合計で5〜75質量部含むMg,Ca,Alの第一リン酸塩100質量部に対し、比表面積350m2/g以上のコロイダルシリカをSiO2として10〜90質量部、CrO35〜50質量部、カルボン酸系界面活性剤を0.1〜3.0質量部を添加配合することを特徴とする絶縁被膜剤。
)ポリカルボン酸系界面活性剤として、ポリカルボン酸ナトリュウム、ポリカルボン酸カリュウム、ポリカルボン酸アンモニュウムの1種又は2種以上を用いることを特徴とする()記載の絶縁被膜剤。
)固形分としてさらに硼酸を、第一リン酸塩100質量部に対し2〜10質量部添加配合することを特徴とする(1)〜()のいずれかの項に記載の絶縁被膜剤。
)配合する第一リン酸Mg中のMgOとH3PO4のモル数の比が0.40〜0.50、第一リン酸Ca中のCaOとH3PO4のモル数の比が0.40〜0.50、第一リン酸Al中のAl23とH3PO4モル数の比が0.14〜0.18であることを特徴とする(1)〜()のいずれかの項に記載の絶縁被膜剤。
)表面接触角が40度以下であることを特徴とする(1)〜()のいずれかの項に記載の絶縁被膜剤。
)連続焼鈍後の鋼板表面に(1)〜()のいずれかの項に記載の絶縁被膜剤を塗布後、板温380〜550℃で焼き付け処理することを特徴とする溶接性の極めて優れる無方向性電磁鋼板の製造方法。
【0010】
【発明の実施の形態】
本発明者らは、リン酸塩を主成分とする全無機系絶縁被膜における被膜の処理工程と被膜特性の欠点である高速塗布・焼付けラインにおける塗れ性不良と、これによりもたらされる打ち抜き性や溶接の問題を解決すべく、液組成や焼付け条件の改善に取り組んだ。
【0011】
即ち、従来技術の絶縁被膜技術では、高速ライン、特に、100m/分以上のような高速塗布では、液の塗れ性が十分でなく、均一塗布が困難になり安定した塗布膜が得られない。このため、生産性を阻害するような低速通板や塗れ性向上のため塗布量を増やす等の作業条件の必要が生じる。しかしながら、このような条件変更を行っても、本質的な液塗れ性不良の性質から、目的の付着量に達しても、安定して均一な膜厚を有する製品が得られない問題が残る。このため、膜厚増加や不均一被膜を形成すると打ち抜き時にポンチに不均一な欠けをもたらし、打ち抜き性の評価が不利になる。
【0012】
また、リン酸塩を主成分とする被膜の場合、厳しい溶接性を要求される使用条件においては、溶接時にリン酸分等の分解ガスによる溶接不良が生じやすい問題がある。
本発明者らはこのような問題を解決すべく溶液成分や処理条件の研究を行った。その結果、複合リン酸塩溶液、高比表面積(超微粒子或いは多孔質)のコロイダルシリカ主成分で、クロム酸化合物と必要に応じて添加される硼酸の適正な配合条件を基本液とし、界面活性剤を適切に配合することにより、相乗的な効果により溶液の塗れ性が極めて改善し、外観の優れる均一な膜厚を得ると共に、優れた溶接性、耐食性、打ち抜き性等の被膜性能が得られる絶縁被膜剤溶液と絶縁被膜形成技術の開発に成功した。以下に本発明を詳細に説明する。
【0013】
本発明においては、先ず、その処理剤に特徴がある。本発明の絶縁被膜剤の液組成においては、複合リン酸塩、高比表面積コロイダルシリカ、クロム化合物、硼酸の割合及び適切な界面活性剤を用いることが重要である。
即ち、その液組成は、固形分として少なくともAl,Caの第一リン酸塩の1種又は2種を5〜75質量部含むMg,Ca,Alの第一リン酸塩100質量部に対し、比表面積350m/g以上のコロイダルシリカをSiOとして10〜90質量部、CrO:5〜50質量部からる。この基本液に必要に応じて界面活性剤0.1〜3.0質量部、及び硼酸(HBO)2〜10質量部が用いられる。このような組成とすることにより、溶液の塗れ性と焼付け被膜の良好な外観が得られる。
【0014】
先ず、リン酸塩は、被膜剤の塗布性と焼付け後の外観等を左右するため重要である。リン酸塩はコロイダルシリカ、クロム化合物、硼酸等の混合液成分を鋼板に均一に密着させる重要な役割がある。また、耐熱性や耐食性向上の面でも重要で、本発明のように、主成分として一定量以上の割合を占めることが重要である。
【0015】
本発明においては、Al,Caからなる第一リン酸塩の1種又は2種を5〜75質量部含む、Mg,Ca,Alの複合リン酸塩が適用される。Al,Caの第一リン酸塩の全リン酸塩中に占める割合が5質量部未満ではやや塗れが劣化するため、高速塗布において斑点を生じやすい。一方、75質量部超では被膜外観が白濁して劣化したり、塗り斑を生じやすい。
【0016】
また、好ましいリン酸塩の条件として、リン酸塩のモル比は溶液の安定性や被膜塗れ性、外観に影響するため、リン酸Mgおよびリン酸Caの場合0.40〜0.50、リン酸Alの場合0.14〜0.18に制御するのが好ましい。
また、本発明に適用する第一リン酸塩の好ましい条件としては、リン酸塩のモル比として、Mg,Caの場合、モル比が0.40〜0.50、第一リン酸Alのモル比は0.14〜0.18である。Mg,Caの第一リン酸のモル比が0.40未満では、フリーリン酸の増加によりCr化合物の添加量や焼付け温度の最適範囲が狭まる。また、フリーリン酸の増加により溶液の安定性を損ねるため制限される。0.50超の場合、他成分の配合条件によっては、過剰MgOやCaOによる被膜外観、特に、透明度の劣化が生じたり、析出物による塗れ不均一問題を生じ、商品価値を損なうため制限される。第一リン酸Alのモル比も同様な理由により制限される。
【0017】
この第一リン酸塩100質量部に対し、高比表面積コロイダルシリカをSiOとして10〜90質量部が配合される。コロイダルシリカの特性は、被膜の外観はもちろん、本発明の特徴の一つである溶接性に多大な影響をもたらす。このため、本発明においては比表面積が350m/g以上の高比表面積の超微粒子のものを用いることが重要である。コロイダルシリカとしては触媒化成製カタロイドSI350(350m/g)又はSI550(550m/g)或いは日産化学製ST−XS(550m/g)等が適している。比表面積が350m/m未満では外観の白濁化や粗度の悪化が生じる。また、リン酸分等の十分な安定化効果が得られないため、溶接性向上効果が弱い。
【0018】
添加量としては、10質量部未満では焼付け後、表面外観の白濁化や表面粗度を劣化する。また、リン酸分の安定化効果が十分でないため、溶接性改善効果が十分に発揮できない。90質量部超になると、焼き付け条件によっては、被膜に亀裂を生じたり,被膜の硬度が増して打ち抜き性を損ねるため制限される。
次に、CrOは第一リン酸塩100質量部あたり5〜50質量部添加配合される。これにより、絶縁被膜溶液の安定性と共に焼き付け後の被膜外観、吸湿性、耐食性、耐熱性が向上する。5質量部未満では、吸湿性抑制効果が発揮されず耐食性が低下し、外観や光沢も低下する。また、焼き付け時の条件によってはリン酸分による鋼板表面のエッチングによるムラが生じ、外観を悪くする。また、被膜中のフリーリン酸の増加により溶接性においてもリン酸分の揮発量が増加して不利となる。一方、50質量部超になると、溶液自体の表面接触角が上がり、塗れ性を低下する場合があるため制限される。
【0019】
本発明の効果をより大きくするために、界面活性剤の適切な使用が重要である。必要に応じて添加される界面活性剤は、カルボン酸系界面活性剤が0.1〜2.0質量部の割合で配合され、本発明の重要な塗れ性向上のための役割を有している。本発明の無機成分を基本溶液とする場合の様に、本質的に表面張力の大きい組成においては、均一且つ薄膜厚絶縁被膜を得るのに重要である。
【0020】
一般に、界面活性剤としては、非イオン性剤、陽イオン性、陰イオン、両性界面活性剤等が知られており、非イオン性界面活性剤がもっとも一般的に用いられる。しかしながら、本発明のようにコロイダルシリカを主成分の一つに用いる場合には、特定の界面活性剤に限定される。即ち、一般に用いられる非イオン性界面活性剤、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシオレイルエーテル等の場合、コロイダルシリカ表面のチャージに影響してSiOの沈殿物を生じ、良好な被膜を得られなくするため、使用できない。
【0021】
本発明者らはこのような悪影響のなく、塗れ性向上効果を発揮できる界面活性剤を研究した結果、特殊な高分子カルボン酸系界面活性剤が効果的に適用できることを発見した。カルボン酸系界面活性剤はリン酸塩、コロイダルシリカ、クロム化合物被膜剤との相溶性に優れ、極めて優れた塗れ性改善効果を得られる。また、他の界面活性剤のように液攪拌による泡立ち性が弱く、100〜300m/分のような高速塗布ラインでの泡巻き込み問題がないことから、極めて優れた塗布作業性が得られる。好ましいカルボン酸系界面活性剤としては、カルボン酸ナトリュウム、カルボン酸カリュウム、カルボン酸アンモニュウム等が本発明の絶縁被膜剤には優れた効果を発揮する。
【0022】
添加量は第一リン酸塩100質量部に対し0.1〜3.0質量部である。0.1質量部未満では塗れ性改善効果が弱い。一方、3.0質量部超では、界面活性剤による表面接触角低下効果が平衡に達し、それ以上の塗れ性向上効果は生じないばかりか、溶接性の劣化をもたらす傾向があるため制限される。
なお、界面活性剤の添加においては、攪拌が不十分の場合、高濃度の界面活性剤を一気に添加配合すると前記被膜成分の微細な析出が生じて塗れ性や外観に影響をもたらす場合がある。この対策としては、例えば、界面活性剤を予め温水で0.1%以下の希釈液とした後、溶液を攪拌しながら徐々に添加すると良い。
【0023】
また、必要に応じて添加される硼酸は、第一リン酸塩100質量部に対し2〜10質量部が配合されるのが好ましい。硼酸は溶液の塗れ性改善の補助作用、被膜外観として特に透明度向上に寄与する。これにより美麗な薄塗り被膜形成が促進される。添加量が2質量部未満では被膜外観の透明化や光沢向上効果が十分に得られない。一方、10質量部超になると余剰の硼酸分による吸湿による耐食性に影響をもたらす他、溶液の安定性に悪影響をもたらすため制限される。
【0024】
なお、HBOの添加法は、リン酸塩にクロム化合物を配合した液を目的の濃度近くまで希釈した後、溶液を40〜60℃に加熱した後、添加することにより容易に溶解できる。
また更に、本発明において無機成分被膜の均一な絶縁被膜を得るために、溶液の表面接触角を40度以下とすることがより好ましい。このためには、絶縁被膜剤の配合条件や界面活性剤が影響する。配合条件としては、コロイダルシリカの粒子径や配合割合、クロム酸等の他成分とのバランスを保つことが、より優れた効果を得るのに重要である。表面接触角は固体と液体間の接触角(塗れ)を測定した値で、市販の表面接触角計(例;協和界面科学製CA−S150型)で測定した値である。
【0025】
本発明者らは表面接触角が鋼板に絶縁被膜剤を塗布するにあたり、特に、高速塗布ラインでは均一塗布のために非常に重要なことを見出し、その影響について調査検討した。その結果、高比表面積のコロイダルシリカを主成分の一つに用いるリン酸塩被膜では、表面接触角が40度以下に制御されていれば、100〜300m/分のような高速通板速度においても良好な塗れ性と均一な絶縁被膜が形成できることを突き止めた。これは、コロイダルシリカ自体が鋼板の表面に対し非常に塗れ易い性質を有するためで、溶液全体として表面接触角が40度以下に低下すれば極めて良好な塗れ性が得られることによる。また、この際、本発明の界面活性剤を添加すれば表面接触角は20〜30度に安定して低下でき、塗れ性が向上して均一な塗布膜を得られる。
【0026】
以上のようにして調整された絶縁被膜剤は連続ラインにおいて、最終板厚に冷延した鋼板を焼鈍後、コーティングロールによって塗布し焼付け処理される。この際の塗布量は特に限定するものでないが0.7〜3.0g/mであれば良好な外観と被膜性能が得られる。
また、焼付け条件としては380〜550℃の温度が望ましい。380℃未満では、リン酸塩とクロム化合物やコロイダルシリカとの反応が十分に進行せず、形成した被膜が吸湿性を増す結果、耐食性や溶接性劣化をもたらす。一方、550℃超では、本発明のようにコロイダルシリカを主成分に使用する場合、被膜の硬度が高くなり、打ち抜き性の劣化をもたらすため好ましくない。また、被膜の密着性の低下をもたらすことから制限される。
【0030】
(実施例1)
質量で、Si:0.35%、Al:0.002%、Mn:0.25%を含有する板厚0.5mmの無方向性電磁鋼板冷延コイルを連続焼鈍ラインで焼鈍後、同ラインにてラインスピード120m/分で処理し、表1に示すように界面活性剤の転化条件を変更した絶縁被膜剤を乾燥後質量で1.5g/m2の割合でラインスピード180m/分にて塗布し、450℃で焼付けを行った。この後、このコイルからサンプルを切り出し、被膜性能の評価を行った。結果を表2に示す。
【0031】
【表1】

Figure 0003564079
【0032】
【表2】
Figure 0003564079
【0033】
この試験の結果、本発明の適正なリン酸塩とクロム酸塩及びコロイダルシリカ含有組成では界面活性剤0.2〜2.4質量部では、高速塗布においてより塗れ性が改善し、光沢、透明度等を改善した均一な塗布膜が得られた。この結果、極めて優れた塗れ性を示し、耐食性、溶接性も極めて良好な特性を示した。また、界面活性剤が3.5質量部と多い場合には、表面張力は1.2質量部の場合とほぼ同じで、塗れ性は改善したものの、泡の発生が激しく、若干の表面欠陥が賞した。また溶接性が1.2質量部の材料に比し劣る傾向であった。一方、コロイダルシリカ、クロム酸がを含有しない比較例では、表面張力のある程度の低下は得られても、被膜外観や耐食性が不良で、溶接試験では本発明に比し極めて劣る結果となった。
(実施例2)
実施例1と同様に連続焼鈍ラインにおいて表3に示すような、リン酸塩のモル比及び焼き付け条件を変更して絶縁被膜焼付け処理をした。次いでこのコイルからサンプルを切り出し被膜性能評価試験を行った。結果を表4に示す。
【0034】
【表3】
Figure 0003564079
【0035】
【表4】
Figure 0003564079
【0036】
この試験の結果、リン酸塩のモル比が低い場合には耐食性、溶接性がやや劣る傾向が見られ、モル比が高い場合には被膜の外観がやや損なわれる他密着性がやや劣化する。また乾燥条件として温度が低い場合にはやや耐食性と溶接性が劣り、高すぎる場合には密着性が劣る結果となった。
【0037】
【発明の効果】
本発明によれば、複合リン酸塩の配合条件、高比表面積(超微粒子)コロイダルシリカとCr化合物必要に応じて添加される硼酸及び界面活性剤の適正配合条件の採用によって、処理剤の表面接触角を低下させ、処理剤の鋼板への反応と塗布性の向上と反応の均一化を得、高速ラインにおいて極めて優れた被膜性能を有する均一被膜を得る。これにより、薄塗り被膜での外観、溶接性、耐食性、打ち抜き性、密着性等の優れた無方向性電磁鋼板の製造が可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an insulating coating agent having extremely excellent wettability in a high-speed line and extremely excellent weldability as a property of an insulating coating after baking, and a method for forming an insulating coating using the same.
[0002]
[Prior art]
Generally, when a non-oriented electrical steel sheet is used for an iron core of a motor or a transformer, the core is punched into a predetermined shape, stacked, welded, caulked, or bonded to form an iron core. At this time, strain annealing is performed as necessary. Usually, the surface of the non-oriented electrical steel sheet is subjected to an electrical insulation coating treatment.
[0003]
As this insulating film, punching properties, weldability, corrosion resistance, adhesion, space factor, etc. are important in addition to insulation properties. If an annealing step is required, adhesion after insulation, insulation, corrosion resistance, etc. Is also important.
Conventionally, as an insulating coating agent, an inorganic coating, an organic coating, and an organic-inorganic mixed coating have been applied depending on the use conditions and purposes. Generally, inorganic coatings are excellent in heat resistance and weldability, but inferior in punchability. On the other hand, in the case of an organic film, the punching property and the adhesion are excellent, but the heat resistance is poor and the weldability is poor. In order to solve these disadvantages, an organic-inorganic coating film having an intermediate property has been used.
[0004]
However, there is still a demand for inorganic coatings in fields that emphasize weldability. In Japanese Patent Publication No. 38-9409, an aqueous solution containing 5 to 40% of phosphoric acid, 1 to 10% of a compound containing hexavalent chromium and 1 to 8% of boric acid or borate is applied to the surface of a steel product. Then, a surface treatment method characterized by heating and baking it at 200 to 800 ° C. for a short time has been proposed. Thus, there is disclosed a method for easily and inexpensively obtaining a film having excellent space factor, adhesion, workability, interlayer resistance, and corrosion resistance.
[0005]
JP-B-48-12300 contains 40 parts by mass of magnesium phosphate and 2 to 12 parts by mass of chromic anhydride in a mass ratio, and further comprises aluminum nitrate or amorphous hydroxide hydroxide or both of them as aluminum. A treating agent characterized by comprising an aqueous solution containing 0.4 to 2.1 parts by mass has been proposed. It is described that an insulating film excellent in insulation, adhesion, corrosion resistance, space factor, heat resistance, workability, weldability, and the like is thereby obtained.
[0006]
Further, Japanese Patent Application Laid-Open No. 62-45881 discloses that 15 to 45 parts by mass of potassium dichromate and 10 to 45 parts by mass of colloidal silicate are used for 100 parts by mass of PO 4 -3 ions contained in an aqueous solution containing phosphate. An insulating film treating agent comprising 80 parts by mass, 0.2 to 3 parts by mass of a carboxylic acid type polymer surfactant having a molecular weight of 3000 to 5000, and 15 parts by mass or less of boric acid has been proposed. It is described that there is no generation of harmful gas from the coating solution during the baking process, and the annealing resistance and coating adhesion required for strain relief annealing are improved. In this specification, colloidal silica is applied to improve heat resistance. It is said that it is preferable to use Snowtex O, Snowtex 30 (particle diameter: 10 to 20 μm), Snowtex OZL (particle diameter: 70 to 100 μm), and that the latter is more advantageously used. Have been.
[0007]
JP-A-1-168005 also discloses that calcium chromate contains 10 to 70 g / l in terms of CrO 3 and alumina sol stabilized with acetate ions contains calcium chromate in terms of solid content in terms of CrO 3. A treatment liquid containing 25 to 75% of the amount of a reducing organic compound and 10 to 40% of the content of the above calcium chromate in terms of CrO 3 in terms of a dry mass of 0.5 to 4 g / m 2 on a magnetic steel sheet surface. A method for forming an insulating film having excellent heat resistance, characterized by applying two coatings and baking the surface of the magnetic steel sheet at a temperature of 200 to 400 ° C, has been proposed. According to this, it is described that a film having excellent heat resistance can be obtained without using colloidal silica in an alumina sol as disclosed in JP-B-49-6742, even by strain annealing after forming the film.
[0008]
[Problems to be solved by the invention]
In the conventional coating agents based on inorganic components and the processing methods described above, the coating properties of the coating components on steel sheets and the stability of the solution are not sufficient, and particularly, the solution in a high-speed coating and baking treatment line is not sufficient. There are problems such as weldability, punching property, and poor corrosion resistance due to the problem of wettability or coating composition, and further improvement is desired.
[0009]
[Means for Solving the Problems]
The present invention aims to improve the wettability by improving the wettability and stabilizing the coating components at high temperatures by improving the composition of the conventional insulating coating agent based on a phosphate-based inorganic component. It is intended to provide a method for producing a non-oriented electrical steel sheet having improved uniformity and coating performance by improving the disadvantages of the conventional inorganic coating. The gist of the present invention is as follows.
(1) Specific surface area of 350 m with respect to 100 parts by mass of first phosphate of Mg, Ca, Al containing 5 to 75 parts by mass of one or two kinds of primary phosphates of Al and Ca as solid content in total 10 to 90 parts by mass of colloidal silica of 2 / g or more as SiO 2 , 5 to 50 parts by mass of CrO 3 , and 0.1 to 3.0 parts by mass of a carboxylic acid surfactant are blended. Insulating coating agent.
( 2 ) The insulating coating agent according to ( 1 ), wherein one or more of sodium polycarboxylate, potassium polycarboxylate, and ammonium polycarboxylate are used as the polycarboxylic acid surfactant.
( 3 ) The insulating coating according to any one of (1) to ( 2 ), wherein 2 to 10 parts by mass of boric acid is further added and blended as a solid content with respect to 100 parts by mass of the first phosphate. Agent.
( 4 ) The ratio of the number of moles of MgO and H 3 PO 4 in the mixed primary phosphate Mg is 0.40 to 0.50, and the ratio of the number of moles of CaO and H 3 PO 4 in the Ca primary phosphate is blended. but from 0.40 to 0.50, the ratio Al 2 O 3 and H 3 PO 4 moles of in the first phosphoric acid Al is characterized in that it is a 0.14-.18 (1) - (3 The insulating coating agent according to any one of the above items.
( 5 ) The insulating coating agent according to any one of (1) to ( 4 ), wherein the surface contact angle is 40 degrees or less.
( 6 ) Weldability characterized in that after applying the insulating coating agent according to any of (1) to ( 5 ) on the steel sheet surface after continuous annealing, baking treatment is performed at a sheet temperature of 380 to 550 ° C. An excellent method for producing non-oriented electrical steel sheets.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have found that the coating process in a high-speed coating and baking line, which is a drawback of the coating process and the coating properties of an all-inorganic insulating coating containing phosphate as a main component, and the punching property and welding caused by this In order to solve this problem, we worked on improving the liquid composition and baking conditions.
[0011]
That is, in the conventional insulation coating technology, in a high-speed line, particularly in a high-speed coating at 100 m / min or more, the wettability of the liquid is not sufficient, and uniform coating becomes difficult, and a stable coating film cannot be obtained. For this reason, there is a need for working conditions such as low-speed sheet passing that hinders productivity and an increase in the amount of application for improving wettability. However, even when such conditions are changed, there remains a problem that a product having a stable and uniform film thickness cannot be obtained even when the target amount of adhesion is reached due to the inherent property of poor liquid wettability. For this reason, if the film thickness increases or a non-uniform film is formed, the punch will be unevenly chipped at the time of punching, and the evaluation of the punching property will be disadvantageous.
[0012]
Further, in the case of a coating film containing a phosphate as a main component, there is a problem that poor welding is likely to occur due to a decomposition gas such as a phosphoric acid component at the time of use under conditions where severe weldability is required.
The present inventors have studied the solution components and processing conditions to solve such problems. As a result, complex phosphate solution, a high specific surface area (ultrafine particle or porous) main component of colloidal silica, and a proper mixing condition of a chromic acid compound and boric acid added as needed as a basic solution, By appropriately mixing the agents, the wettability of the solution is greatly improved by a synergistic effect, and a uniform film thickness with excellent appearance is obtained, and also excellent coating properties such as weldability, corrosion resistance and punching property are obtained. We succeeded in the development of insulation coating agent solution and insulation coating formation technology. Hereinafter, the present invention will be described in detail.
[0013]
In the present invention, first, the treatment agent is characterized. In the liquid composition of the insulating coating agent of the present invention, it is important to use a composite phosphate, a high specific surface area colloidal silica, a chromium compound, a ratio of boric acid, and an appropriate surfactant.
That is, the liquid composition is based on 100 parts by mass of the first phosphate of Mg, Ca, Al containing 5 to 75 parts by mass of at least one or two types of primary phosphates of Al and Ca as solid components. Colloidal silica having a specific surface area of 350 m 2 / g or more is composed of 10 to 90 parts by mass as SiO 2 and 5 to 50 parts by mass of CrO 3 . The base solution 0.1 to 3.0 parts by weight surfactant as necessary, and boric acid (H 3 BO 3) 2~10 parts by weight is used. With such a composition, wettability of the solution and good appearance of the baked film can be obtained.
[0014]
First, phosphate is important because it affects the applicability of the coating agent and the appearance after baking. Phosphate plays an important role in uniformly adhering a mixed liquid component such as colloidal silica, a chromium compound, and boric acid to a steel sheet. It is also important in terms of improving heat resistance and corrosion resistance, and as in the present invention, it is important that the main component occupies a certain amount or more.
[0015]
In the present invention, a composite phosphate of Mg, Ca and Al containing 5 to 75 parts by mass of one or two types of primary phosphates composed of Al and Ca is applied. If the proportion of the primary phosphates of Al and Ca in the total phosphates is less than 5 parts by mass, the coating is slightly deteriorated, so that spots are likely to be generated in high-speed coating. On the other hand, if it exceeds 75 parts by mass, the appearance of the coating film becomes cloudy and deteriorates, and coating unevenness easily occurs.
[0016]
Further, as a preferable condition of the phosphate, the molar ratio of the phosphate affects the stability of the solution, the coatability, and the appearance. In the case of acid Al, it is preferable to control it to 0.14 to 0.18.
In addition, preferable conditions of the first phosphate applied to the present invention are as follows. In the case of Mg and Ca, the molar ratio of the phosphate is 0.40 to 0.50, The ratio is between 0.14 and 0.18. When the molar ratio of the primary phosphoric acid of Mg and Ca is less than 0.40, the optimum range of the amount of the Cr compound added and the baking temperature is narrowed by the increase of the free phosphoric acid. In addition, an increase in the amount of free phosphoric acid impairs the stability of the solution, which is limited. In the case of more than 0.50, depending on the blending conditions of other components, the film appearance due to excess MgO or CaO, particularly, the deterioration of the transparency or the problem of non-uniform coating due to the precipitates is caused, which impairs the commercial value, which is limited. . The molar ratio of Al primary phosphate is also limited for the same reason.
[0017]
With respect to 100 parts by mass of this first phosphate, 10 to 90 parts by mass of high specific surface area colloidal silica as SiO 2 is blended. The properties of colloidal silica have a great effect on the weldability, which is one of the features of the present invention, as well as the appearance of the coating. Therefore, in the present invention, it is important to use ultrafine particles having a high specific surface area of 350 m 2 / g or more. As the colloidal silica, catalyst chemicals such as Cataloid SI350 (350 m 2 / g) or SI550 (550 m 2 / g) or Nissan Chemical's ST-XS (550 m 2 / g) are suitable. When the specific surface area is less than 350 m 2 / m, the appearance becomes cloudy and the roughness deteriorates. In addition, since a sufficient stabilizing effect such as phosphoric acid content cannot be obtained, the effect of improving weldability is weak.
[0018]
If the amount is less than 10 parts by mass, the surface appearance becomes cloudy and the surface roughness deteriorates after baking. Further, since the effect of stabilizing the phosphoric acid content is not sufficient, the effect of improving the weldability cannot be sufficiently exhibited. If the amount exceeds 90 parts by mass, cracks may occur in the coating or the hardness of the coating may be increased and the punching property may be impaired, depending on the baking conditions, so that there is a limitation.
Next, 5 to 50 parts by mass of CrO 3 is added and blended with respect to 100 parts by mass of the first phosphate. This improves the stability of the insulating coating solution, as well as the appearance of the coating after baking, moisture absorption, corrosion resistance, and heat resistance. If the amount is less than 5 parts by mass, the effect of suppressing the hygroscopicity is not exhibited, the corrosion resistance is reduced, and the appearance and gloss are also reduced. Further, depending on the conditions at the time of baking, unevenness due to etching of the steel sheet surface due to the phosphoric acid content occurs, and the appearance is deteriorated. In addition, the increase in the amount of free phosphoric acid in the coating increases the volatility of the phosphoric acid component in weldability, which is disadvantageous. On the other hand, when the amount exceeds 50 parts by mass, the surface contact angle of the solution itself increases, and the wettability may be reduced, which is limited.
[0019]
In order to further enhance the effects of the present invention, it is important to appropriately use a surfactant. Surfactant added as needed, the carboxylic acid surfactant is blended in a ratio of 0.1 to 2.0 parts by mass, has a role for the important wettability improvement of the present invention I have. As in the case of using the inorganic component of the present invention as a basic solution, in a composition having a substantially large surface tension, it is important to obtain a uniform and thin insulating coating film.
[0020]
In general, as surfactants, nonionic agents, cationic, anionic, amphoteric surfactants and the like are known, and nonionic surfactants are most commonly used. However, when colloidal silica is used as one of the main components as in the present invention, it is limited to a specific surfactant. That is, in the case of a commonly used nonionic surfactant, for example, polyoxyethylene lauryl ether, polyoxyethylene alkyl ether, polyoxyoleyl ether, etc., the charge on the colloidal silica surface is affected, and a precipitate of SiO 2 is formed. Cannot be used because a good coating cannot be obtained.
[0021]
The present inventors have studied surfactants that can exert the effect of improving wettability without such adverse effects, and as a result, have found that a special polymer carboxylic acid-based surfactant can be effectively applied. Carboxylic acid surfactants have excellent compatibility with phosphates, colloidal silica, and chromium compound coating agents, and can provide an extremely excellent wettability improving effect. Also, unlike other surfactants, the foaming property due to liquid stirring is weak, and there is no problem of foam entrapment in a high-speed coating line of 100 to 300 m / min, so that extremely excellent coating workability can be obtained. As preferred carboxylic acid surfactants, sodium carboxylate, calcium carboxylate, ammonium carboxylate, and the like exhibit excellent effects on the insulating coating agent of the present invention.
[0022]
The amount of addition is 0.1 to 3.0 parts by mass based on 100 parts by mass of the first phosphate. If the amount is less than 0.1 part by mass, the effect of improving wettability is weak. On the other hand, if the content exceeds 3.0 parts by mass, the effect of lowering the surface contact angle by the surfactant reaches equilibrium, and not only the effect of improving the wettability further does not occur, but also the deterioration of the weldability tends to be limited. .
In addition, in the case of adding a surfactant, when stirring is insufficient, if a high concentration of a surfactant is added and blended at once, fine deposition of the film component may occur, which may affect the coatability and appearance. As a countermeasure, for example, it is preferable that the surfactant is previously diluted with hot water to a diluent of 0.1% or less, and then the solution is gradually added while stirring.
[0023]
Further, it is preferable that boric acid to be added as needed is blended in an amount of 2 to 10 parts by mass with respect to 100 parts by mass of the first phosphate. Boric acid contributes to the auxiliary action of improving the wettability of the solution, and particularly to the improvement of the transparency as a film appearance. This promotes the formation of a beautiful thin coating film. When the addition amount is less than 2 parts by mass, the effect of making the appearance of the film transparent and improving the gloss cannot be sufficiently obtained. On the other hand, when the content exceeds 10 parts by mass, the excess boric acid content affects the corrosion resistance due to moisture absorption and also adversely affects the stability of the solution, so that the content is limited.
[0024]
The addition method of the H 3 BO 3, after diluting a solution obtained by mixing the chromium compound to the phosphate to near the desired concentration, after the solution was heated to 40 to 60 ° C., readily soluble by the addition of .
Further, in order to obtain a uniform insulating film of the inorganic component film in the present invention, it is more preferable that the surface contact angle of the solution is 40 degrees or less. To this end, the blending conditions of the insulating coating agent and the surfactant have an effect. As the blending conditions, it is important to maintain the particle diameter and blending ratio of colloidal silica and the balance with other components such as chromic acid in order to obtain more excellent effects. The surface contact angle is a value obtained by measuring a contact angle (painting) between a solid and a liquid, and is a value measured by a commercially available surface contact angle meter (for example, Model CA-S150 manufactured by Kyowa Interface Science).
[0025]
The present inventors have found that the surface contact angle is very important for uniform coating in a high-speed coating line in applying an insulating coating agent to a steel sheet, and investigated and examined the effect thereof. As a result, in a phosphate coating using colloidal silica having a high specific surface area as one of the main components, if the surface contact angle is controlled to 40 degrees or less, at a high sheet passing speed such as 100 to 300 m / min. Also found that good wettability and a uniform insulating film could be formed. This is because the colloidal silica itself has a property of being very easily applied to the surface of the steel sheet. If the surface contact angle of the solution as a whole is reduced to 40 degrees or less, extremely good wettability is obtained. At this time, if the surfactant of the present invention is added, the surface contact angle can be stably reduced to 20 to 30 degrees, and the wettability is improved and a uniform coating film can be obtained.
[0026]
In the continuous line, the insulating coating agent adjusted as described above is applied to a steel sheet cold-rolled to the final thickness, then applied by a coating roll and baked. The coating amount at this time is not particularly limited, but if it is 0.7 to 3.0 g / m 2 , good appearance and coating performance can be obtained.
The baking condition is preferably a temperature of 380 to 550 ° C. If the temperature is lower than 380 ° C., the reaction between the phosphate and the chromium compound or colloidal silica does not sufficiently proceed, and the formed film increases in hygroscopicity, resulting in deterioration of corrosion resistance and weldability. On the other hand, when the temperature exceeds 550 ° C., when the colloidal silica is used as a main component as in the present invention, the hardness of the coating film is increased, and the punching property is deteriorated. In addition, it is limited because it causes a decrease in adhesion of the coating.
[0030]
(Example 1)
A 0.5 mm thick non-oriented electrical steel sheet cold-rolled coil containing Si: 0.35%, Al: 0.002%, Mn: 0.25% by mass is annealed by a continuous annealing line, and then the line And dried at a line speed of 180 g / m 2 at a rate of 1.5 g / m 2 by mass after drying the insulating coating agent with the surfactant conversion conditions changed as shown in Table 1 at a line speed of 120 m / min. It was applied and baked at 450 ° C. Thereafter, a sample was cut out from the coil, and the coating performance was evaluated. Table 2 shows the results.
[0031]
[Table 1]
Figure 0003564079
[0032]
[Table 2]
Figure 0003564079
[0033]
As a result of this test, with the appropriate phosphate, chromate and colloidal silica-containing composition of the present invention, with 0.2 to 2.4 parts by mass of the surfactant, the coatability was further improved in high-speed coating, and the gloss and transparency were improved. Thus, a uniform coating film with improved properties was obtained. As a result, extremely excellent wettability was exhibited, and corrosion resistance and weldability also exhibited extremely good characteristics. When the amount of the surfactant is as large as 3.5 parts by mass, the surface tension is almost the same as that in the case of 1.2 parts by mass, and although the wettability is improved, the generation of bubbles is severe and some surface defects are generated. Awarded. Also, the weldability tended to be inferior to the 1.2 parts by mass of the material. On the other hand, in the comparative example containing no colloidal silica or chromic acid, even though the surface tension was reduced to some extent, the appearance of the coating film and the corrosion resistance were poor, and the welding test was extremely inferior to the present invention.
(Example 2)
In the same manner as in Example 1 , the insulating film was baked by changing the molar ratio of the phosphate and the baking conditions as shown in Table 3 in the continuous annealing line. Next, a sample was cut out from the coil and a coating performance evaluation test was performed. Table 4 shows the results.
[0034]
[Table 3]
Figure 0003564079
[0035]
[Table 4]
Figure 0003564079
[0036]
As a result of this test, when the molar ratio of the phosphate is low, the corrosion resistance and weldability tend to be slightly inferior. When the molar ratio is high, the appearance of the coating is slightly impaired and the adhesion is slightly deteriorated. When the temperature was low as the drying condition, the corrosion resistance and weldability were slightly poor, and when the temperature was too high, the adhesion was poor.
[0037]
【The invention's effect】
According to the present invention, the surface conditions of the treating agent can be improved by employing the proper mixing conditions of the complex phosphate, the high specific surface area (ultrafine particles) colloidal silica and the boric acid and the surfactant, which are added as necessary, and boric acid. It reduces the contact angle, improves the reaction of the treatment agent to the steel sheet, improves the applicability and makes the reaction uniform, and obtains a uniform film having extremely excellent film performance in a high-speed line. This makes it possible to produce a non-oriented electrical steel sheet having excellent appearance, weldability, corrosion resistance, punching properties, adhesion, and the like in a thin coating film.

Claims (6)

固形分として、Al,Caの第一リン酸塩の1種又は2種を合計で5〜75質量部含むMg,Ca,Alの第一リン酸塩100質量部に対し、比表面積350m2/g以上のコロイダルシリカをSiO2として10〜90質量部、CrO3:5〜50質量部、カルボン酸系界面活性剤を0.1〜3.0質量部を添加配合することを特徴とする絶縁被膜剤。The specific surface area is 350 m 2 / g based on 100 parts by mass of the first phosphate of Mg, Ca and Al containing 5 to 75 parts by mass of one or two kinds of primary phosphates of Al and Ca in total as solids. g of colloidal silica of at least 10 to 90 parts by mass as SiO 2 , 5 to 50 parts by mass of CrO 3 , and 0.1 to 3.0 parts by mass of a carboxylic acid surfactant. Coating agent. ポリカルボン酸系界面活性剤として、ポリカルボン酸ナトリュウム、ポリカルボン酸カリュウム、ポリカルボン酸アンモニュウムの1種又は2種以上を用いることを特徴とする請求項に記載の絶縁被膜剤。The insulating coating agent according to claim 1, wherein one or more of sodium polycarboxylate, potassium polycarboxylate, and ammonium polycarboxylate are used as the polycarboxylic acid surfactant. 固形分としてさらに硼酸を、第一リン酸塩100質量部に対し2〜10質量部添加配合することを特徴とする請求項1ないしのいずれかに記載の絶縁被膜剤。The insulating coating agent according to any one of claims 1 to 2 , wherein 2 to 10 parts by mass of boric acid is further added as a solid content to 100 parts by mass of the first phosphate. 配合する第一リン酸Mg中のMgOとH3PO4のモル数の比が0.40〜0.50、第一リン酸Ca中のCaOとH3PO4のモル数の比が0.40〜0.50、第一リン酸Al中のAl23とH3PO4モル数の比が0.14〜0.18であることを特徴とする請求項1〜のいずれかの項に記載の絶縁被膜剤。The molar ratio of MgO to H 3 PO 4 in the mixed Mg primary phosphate is 0.40 to 0.50, and the molar ratio of CaO to H 3 PO 4 in the Ca primary phosphate is 0. 40 to 0.50, either of claims 1 to 3 in which the ratio Al 2 O 3 and H 3 PO 4 moles of in the first phosphoric acid Al is characterized in that it is a 0.14 to 0.18 The insulating coating agent according to item. 表面接触角が40度以下であることを特徴とする請求項1〜のいずれかの項に記載の絶縁被膜剤。The insulating coating agent according to any one of claims 1 to 4 , wherein the surface contact angle is 40 degrees or less. 連続焼鈍後の鋼板表面に請求項1〜のいずれかの項に記載の絶縁被膜剤を塗布後、板温380〜550℃で焼き付け処理することを特徴とする溶接性の極めて優れる無方向性電磁鋼板の製造方法。Non-directionality with extremely excellent weldability, characterized in that the surface of the steel sheet after continuous annealing is coated with the insulating coating agent according to any one of claims 1 to 5 and then baked at a sheet temperature of 380 to 550 ° C. Manufacturing method of electrical steel sheet.
JP2001123224A 2001-04-20 2001-04-20 Insulating coating agent and method for producing non-oriented electrical steel sheet with excellent weldability using the same Expired - Fee Related JP3564079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001123224A JP3564079B2 (en) 2001-04-20 2001-04-20 Insulating coating agent and method for producing non-oriented electrical steel sheet with excellent weldability using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001123224A JP3564079B2 (en) 2001-04-20 2001-04-20 Insulating coating agent and method for producing non-oriented electrical steel sheet with excellent weldability using the same

Publications (2)

Publication Number Publication Date
JP2002317277A JP2002317277A (en) 2002-10-31
JP3564079B2 true JP3564079B2 (en) 2004-09-08

Family

ID=18972815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001123224A Expired - Fee Related JP3564079B2 (en) 2001-04-20 2001-04-20 Insulating coating agent and method for producing non-oriented electrical steel sheet with excellent weldability using the same

Country Status (1)

Country Link
JP (1) JP3564079B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR122019014307B1 (en) * 2008-06-20 2020-03-10 Nippon Steel Corporation LIQUID FOR APPLICATION FOR AN ELECTRIC STEEL SHEET
JP6100273B2 (en) * 2011-11-04 2017-03-22 タタ、スティール、ユーケー、リミテッドTata Steel Uk Limited Coated grain oriented steel
PL3239352T3 (en) 2014-12-26 2019-12-31 Nippon Steel Corporation Electrical steel sheet
JP6736878B2 (en) * 2014-12-26 2020-08-05 日本製鉄株式会社 Electrical steel sheet
PL3239354T3 (en) 2014-12-26 2022-02-07 Nippon Steel Corporation Electrical steel sheet
WO2016104407A1 (en) 2014-12-26 2016-06-30 新日鐵住金株式会社 Electrical steel sheet
JP6455525B2 (en) * 2014-12-26 2019-01-23 新日鐵住金株式会社 Electrical steel sheet
JP6931968B2 (en) * 2014-12-26 2021-09-08 日本製鉄株式会社 Electrical steel sheet
CN113817391A (en) * 2020-09-07 2021-12-21 帕珂表面处理技术(上海)有限公司 Surface treatment agent for stainless steel material

Also Published As

Publication number Publication date
JP2002317277A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
JP4878788B2 (en) Insulating coating agent for electrical steel sheet containing no chromium
WO2007007417A1 (en) Grain-oriented electromagnetic steel sheet having chromium-free insulation coating and insulation coating agent therefor
JP5900705B2 (en) Treatment liquid for chromium-free tension coating, method for forming chromium-free tension coating, and method for producing grain-oriented electrical steel sheet with chromium-free tension coating
JP5236077B2 (en) Non-chromium coating agent for grain-oriented electrical steel sheet, electrical steel sheet using the same, and manufacturing method thereof
JP5063902B2 (en) Oriented electrical steel sheet and method for treating insulating film
JP2000169972A (en) Chromium-free surface treating agent for grain oriented silicon steel sheet, and manufacture of grain oriented silicon steel sheet using same
JP3482374B2 (en) Grain-oriented electrical steel sheet with excellent coating properties and method for producing the same
KR101195220B1 (en) Coating solution for forming insulating film with excellent insulation film adhesion property, tension allowance ability and a method for making the insulation film on grain-oriented electrical steel sheet by using it
JP2002047576A (en) Treating solution and treating method for forming insulating film on silicon steel sheet
CN110396683B (en) Insulating coating liquid for directional electrical steel sheet, and method for manufacturing directional electrical steel sheet
JP3564079B2 (en) Insulating coating agent and method for producing non-oriented electrical steel sheet with excellent weldability using the same
JPH1046350A (en) Method for forming insulating film containing no chromium compound, capable of stress relieving annealing and excellent in corrosion resistance on surface of silicon steel sheet
JP2017137540A (en) Electrical insulation coating sheet treatment agent for directive electro-magnetic steel sheet, directive electro-magnetic steel sheet, and electrical insulation coating sheet treatment method for directive electro-magnetic steel sheet
JP6558325B2 (en) Treatment liquid for forming chromium-free tension coating, grain-oriented electrical steel sheet with chromium-free tension film, method for producing grain-oriented electrical steel sheet with chromium-free tension film, and core for transformer
KR101136484B1 (en) Insulation Coating Material Of Non-Orient Electrical Steel Sheet, Method Of Manufacturing And Insulation Coating Material And Method Of Forming Insulation Coating Layer
JP2005200705A (en) Grain oriented silicon steel sheet having insulating film containing no chromium, and insulating film agent therefor
JP3895944B2 (en) Insulating coating agent with excellent paintability and method for producing non-oriented electrical steel sheet using the same
WO2005090636A1 (en) Electromagnetic steel sheet having insulating coating
JP2012158800A (en) Grain oriented electromagnetic steel sheet with chromeless stress coating
JP5633401B2 (en) Treatment liquid for chromeless tension coating and method for forming chromeless tension coating
JP3276567B2 (en) Insulating coating agent having excellent coating characteristics and method for producing grain-oriented electrical steel sheet using the same
RU2758423C1 (en) Liquid for obtaining an insulating coating, textured electrical steel sheet with an insulating coating and its production method
CN112831200A (en) Coating for chromium-free oriented electromagnetic steel sheet, preparation method thereof and preparation method of chromium-free oriented electromagnetic steel sheet with coating
JP2698526B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties and surface properties
JP4112866B2 (en) Non-oriented electrical steel sheet with excellent coating performance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040604

R151 Written notification of patent or utility model registration

Ref document number: 3564079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees