JP5236077B2 - Non-chromium coating agent for grain-oriented electrical steel sheet, electrical steel sheet using the same, and manufacturing method thereof - Google Patents

Non-chromium coating agent for grain-oriented electrical steel sheet, electrical steel sheet using the same, and manufacturing method thereof Download PDF

Info

Publication number
JP5236077B2
JP5236077B2 JP2011521992A JP2011521992A JP5236077B2 JP 5236077 B2 JP5236077 B2 JP 5236077B2 JP 2011521992 A JP2011521992 A JP 2011521992A JP 2011521992 A JP2011521992 A JP 2011521992A JP 5236077 B2 JP5236077 B2 JP 5236077B2
Authority
JP
Japan
Prior art keywords
phosphate
coating agent
hematite
electrical steel
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011521992A
Other languages
Japanese (ja)
Other versions
JP2011530012A (en
Inventor
ミン−スー ハン、
ミン−セルク クォン、
チュン−ウ キム、
ジェ−クワン キム、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2011530012A publication Critical patent/JP2011530012A/en
Application granted granted Critical
Publication of JP5236077B2 publication Critical patent/JP5236077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

本発明は、クロムを含有せず、絶縁皮膜の形成後に耐食性、素材との優れた接着性および界面特性を示し、皮膜張力を向上させるコーティング剤とその製造方法、およびこれを用いた方向性電気鋼板とその製造方法に関する。   The present invention relates to a coating agent that does not contain chromium, exhibits corrosion resistance after formation of an insulating film, excellent adhesion to the material and interface characteristics, and improves film tension, a method for producing the same, and directional electricity using the same. It is related with a steel plate and its manufacturing method.

本発明のコーティング剤は、クロムを含有しないコーティング剤であって、方向性電気鋼板などのコーティング剤として使用することができる。   The coating agent of the present invention is a coating agent that does not contain chromium, and can be used as a coating agent for grain-oriented electrical steel sheets.

方向性電気鋼板とは、Si成分を3.1%含有しているものであって、圧延方向に優れた磁気的性質があるので、変圧器、電動機、発電機およびその他の電子機器などの鉄心材料として使われる。   The grain-oriented electrical steel sheet contains 3.1% Si component and has excellent magnetic properties in the rolling direction. Therefore, iron cores such as transformers, electric motors, generators and other electronic devices are used. Used as a material.

優れた絶縁コーティングは、基本的に、外観に欠陥がない、均一な色相を持たなければならないが、最近、高磁束密度の方向性電気鋼板が商用化され、最終絶縁皮膜の高張力化を追求することになり、実際、高張力絶縁皮膜が、最終製品の磁気的特性の改善に大きく寄与することが確認された。   A good insulating coating must basically have a uniform hue with no defects in appearance, but recently, high-flux-density grain-oriented electrical steel sheets have been commercialized to pursue higher tension in the final insulating film. In fact, it was confirmed that the high-strength insulating film greatly contributes to the improvement of the magnetic properties of the final product.

高張力皮膜を形成するために様々な方法が提案されたが、現在商品化されている方向性電気鋼板は、鋼板と、フォルステライト系下地皮膜上に形成された絶縁皮膜との熱膨張係数の差を用いて、鋼板に引張応力を与えることにより、鉄損減少効果を図っている。従来の代表的な絶縁皮膜形成方法として、日本特開平11−71683号では高温のガラス転移温度を有するコロイドシリカを用いて皮膜張力を向上させた方法を提案し、また日本特許第3098691号および日本特許第2688147号ではアルミナ主体のアルミナゾル(alumina sol)とホウ酸との混合液を用いて、電気鋼板に高張力の酸化物皮膜を形成する技術を提案している。また、韓国特許第10−0377566号では、フォルステライト系下地皮膜上に、特定の金属原子を含有したリン酸水素塩とシリカから構成された第1層を形成することにより、フォルステアリト系下地皮膜と絶縁皮膜との密着性の向上を誘導し、その上に再びホウ酸アルミニウムを主成分とする第2層を形成することにより、さらに強力な皮膜張力効果を出す技術を提案している。   Various methods have been proposed to form a high-strength film, but the directional electrical steel sheet currently commercialized has a coefficient of thermal expansion between the steel sheet and the insulating film formed on the forsterite base film. By using the difference to give a tensile stress to the steel sheet, the iron loss reduction effect is achieved. As a conventional representative method for forming an insulating film, Japanese Patent Application Laid-Open No. 11-71683 proposes a method in which film tension is improved using colloidal silica having a high glass transition temperature, and Japanese Patent No. 3098691 and Japan Japanese Patent No. 2688147 proposes a technique for forming a high-tensile oxide film on an electrical steel sheet using a mixed liquid of alumina sol (alumina sol) mainly composed of alumina and boric acid. Also, in Korean Patent No. 10-0377566, a forsterite base is formed by forming a first layer composed of hydrogen phosphate containing a specific metal atom and silica on a forsterite base film. A technique has been proposed in which an improvement in adhesion between the film and the insulating film is induced, and a second layer mainly composed of aluminum borate is formed thereon, thereby providing a stronger film tension effect.

ところが、前述した従来の技術に係るコーティング液の組成は、クロム酸化物を必然的に含有しており、環境規制が強化されている現実に鑑みて、その用途が制限されている。   However, the composition of the coating liquid according to the above-described conventional technology necessarily contains chromium oxide, and its use is limited in view of the fact that environmental regulations are strengthened.

このため、最近、環境規制の強化に応じて、電気鋼板においても非クロム化が盛んに行われているが、無方向性電気鋼板コーティング剤の場合、非クロム化による耐食性および密着性の弱化を補強するために、リン酸塩を導入する方法と、コロイドシリカの導入によるバリア効果を誘導する方法とが活発に提案されている。ところが、リン酸塩またはコロイドシリカを主軸とする非クロム系コーティング剤の全ては、リン酸塩が持っている濡れ性(sticky)およびコロイドシリカが持っている耐食性の向上の限界を、それぞれ有している。   For this reason, in recent years, non-chromatization has been actively performed on electrical steel sheets in response to stricter environmental regulations. However, in the case of non-oriented electrical steel sheet coating agents, corrosion resistance and adhesion are weakened by non-chromatization. In order to reinforce, a method of introducing a phosphate and a method of inducing a barrier effect by introducing colloidal silica have been actively proposed. However, all of the non-chromium coating agents that have phosphate or colloidal silica as the main axis have the limitations on the wettability (sticky) of phosphate and the corrosion resistance of colloidal silica. ing.

従来の方向性電気鋼板用非クロム系張力コーティング剤としては、日本特許第2007−23329号に開示されたようにFe、Al、Ga、Tiなどが改質されたコロイドシリカを導入する方法と、韓国公開特許第10−2008−0025733号に開示されたようにFe、Co、Cuなどの酸化物を導入して耐食性および皮膜張力を向上させる方法とが提案されている。前者の場合は、コロイドシリカをFe、Alなどと反応させて改質させる過程が相当複雑であり、製造コストの面でも不利であるが、効果は十分でないため、産業界で実施されるには難しい。後者の場合は、前者に比べて簡単に用いることができるが、導入された酸化物が単にコーティング剤乾燥の際に発生する遊離リン酸を防止する効果によって付随的に皮膜緻密性または皮膜張力を向上させる。前者と後者の両者とも、高い耐食性と皮膜張力が要求される最近の高級方向性電気鋼板の水準を満足させるには限界がある。   As a conventional non-chromium tension coating agent for grain-oriented electrical steel sheet, as disclosed in Japanese Patent No. 2007-23329, a method of introducing colloidal silica modified with Fe, Al, Ga, Ti, etc., and As disclosed in Korean Published Patent No. 10-2008-0025733, a method for improving corrosion resistance and film tension by introducing an oxide such as Fe, Co, or Cu has been proposed. In the former case, the process of modifying colloidal silica by reacting with Fe, Al, etc. is considerably complicated and disadvantageous in terms of manufacturing cost, but the effect is not sufficient, so that it can be implemented in the industry. difficult. In the latter case, it can be used more easily than in the former case, but the introduced oxide simply increases the film density or film tension by preventing the free phosphoric acid generated when the coating agent is dried. Improve. Both the former and the latter have limitations in satisfying the level of recent high-grade grain-oriented electrical steel sheets that require high corrosion resistance and film tension.

したがって、要求される全ての物性を満足すべき方向性非クロム系コーティング剤の商用化技術は未だ提案されていないのが実情である。   Therefore, the actual situation is that no commercialized technology of a directional non-chromium coating agent that satisfies all the required physical properties has been proposed yet.

本発明は、上述した従来の技術の問題点である、非クロム系コーティング剤が持っている相溶性、耐食性および密着性の劣化を克服し、皮膜張力に優れた絶縁皮膜の特性を有する非クロム系コーティング剤とその製造方法、およびこれを用いた方向性電気鋼板とその製造方法に関する。したがって、本発明の目的は、クロム酸化物を含有しないため、環境的に有利であるうえ、耐食性および皮膜張力が向上したコーティング剤を提供することにある。   The present invention overcomes the above-described problems of the prior art, and overcomes the deterioration of compatibility, corrosion resistance and adhesion of non-chromium coating agents, and has non-chromium characteristics having an insulating film excellent in film tension. TECHNICAL FIELD The present invention relates to a system coating agent and a manufacturing method thereof, and a grain-oriented electrical steel sheet using the same and a manufacturing method thereof. Accordingly, an object of the present invention is to provide a coating agent which is environmentally advantageous since it does not contain chromium oxide, and has improved corrosion resistance and film tension.

上記目的を達成するために、本発明は、クロム酸化物を含有しない代わりに、金属リン酸塩、コロイドシリカおよびヘマタイトゾル(hematite sol)を添加することにより、環境的に有利であるうえ、耐食性および皮膜張力が向上したコーティング剤を提供する。   In order to achieve the above object, the present invention is environmentally advantageous and corrosion resistant by adding metal phosphate, colloidal silica and hematite sol instead of containing chromium oxide. And a coating agent having improved film tension.

本発明のコーティング剤は、相溶性に優れるうえ、コーティング剤を用いて方向性電気鋼板の絶縁皮膜を形成した場合、低温ではヘマタイト−シリカ、ヘマタイト−リン酸塩の反応を起こし、高温ではシリカ間の反応によって強固で緻密な皮膜を形成することができ、素材と皮膜間の密着性を向上させることができる。また、このように製造された絶縁皮膜は、それによる張力付与が従来の技術の絶縁皮膜に比べて著しく向上し、耐食性も非常に優れる。   The coating agent of the present invention is excellent in compatibility, and when an insulating film of a grain-oriented electrical steel sheet is formed using the coating agent, it causes a reaction of hematite-silica and hematite-phosphate at a low temperature, and between silica at a high temperature. By this reaction, a strong and dense film can be formed, and the adhesion between the material and the film can be improved. In addition, the insulating film produced in this way is significantly improved in the tension imparted by the insulating film as compared with the conventional insulating film, and is very excellent in corrosion resistance.

金属リン酸塩、コロイドシリカおよびヘマタイトゾルの成分比による皮膜張力の変化を2次元等高線で表現したものである。The change in film tension due to the component ratio of metal phosphate, colloidal silica, and hematite sol is expressed by two-dimensional contour lines. 金属リン酸塩、コロイドシリカおよびヘマタイトゾルの成分比による皮膜張力の変化を3次元で立体表現したものである。This is a three-dimensional representation of the change in film tension due to the component ratio of metal phosphate, colloidal silica and hematite sol. クロム系の従来例および本発明の実施例の耐食性を比べたものである。This is a comparison of the corrosion resistance of the conventional chromium type and the examples of the present invention.

本発明のコーティング剤は、リン酸塩、コロイドシリカおよびヘマタイトゾルを含むことを特徴とする。   The coating agent of the present invention is characterized by containing phosphate, colloidal silica, and hematite sol.

また、本発明のコーティング剤の前記リン酸塩は、第1リン酸アルミニウムと第1リン酸マグネシウムとの混合物であることを特徴とする。   The phosphate of the coating agent of the present invention is a mixture of a first aluminum phosphate and a first magnesium phosphate.

また、本発明のコーティング剤の前記コロイドシリカは、リン酸塩100g当たりの重量で25〜300g含まれることを特徴とする。   In addition, the colloidal silica of the coating agent of the present invention is contained in an amount of 25 to 300 g by weight per 100 g of phosphate.

また、本発明のコーティング剤の前記コロイドシリカは、酸性型であることを特徴とする。   The colloidal silica of the coating agent of the present invention is an acidic type.

また、本発明のコーティング剤の前記ヘマタイトゾルは、表面に水酸基を有することを特徴とする。   The hematite sol of the coating agent of the present invention is characterized by having a hydroxyl group on the surface.

また、本発明のコーティング剤の前記ヘマタイトゾルは、リン酸塩100g当たりの重量で0.5〜40g含まれることを特徴とする。   In addition, the hematite sol of the coating agent of the present invention is contained in an amount of 0.5 to 40 g by weight per 100 g of phosphate.

また、本発明のコーティング剤は、前記リン酸塩100g当たりの固体部重量で0.5〜5.0gの水酸化コバルト、およびリン塩100g当たりの重量で1〜7gのホウ酸からなる群より選択される1つ以上をさらに含むことを特徴とする。   Further, the coating agent of the present invention is a group consisting of 0.5 to 5.0 g of cobalt hydroxide in a solid part weight per 100 g of the phosphate and 1 to 7 g of boric acid in a weight per 100 g of the phosphate salt. It further includes one or more selected.

本発明のコーティング剤の製造方法は、コロイドシリカにヘマタイトゾルを投入し攪拌してシリカ−ヘマタイト混合溶液1を製造する段階と、前記製造したシリカ−ヘマタイト混合溶液1にリン酸塩を漸進的に投入して混合溶液2を製造する段階とを含むことを特徴とする。   The method for producing a coating agent according to the present invention includes a step of producing a silica-hematite mixed solution 1 by introducing a hematite sol into colloidal silica and stirring, and gradually adding phosphate to the produced silica-hematite mixed solution 1. And a mixed solution 2 is produced.

また、本発明のコーティング剤の製造方法において、前記リン酸塩は、第1リン酸アルミニウムと第1リン酸亜鉛とを含む混合物であることを特徴とする。   Moreover, in the manufacturing method of the coating agent of this invention, the said phosphate is a mixture containing 1st aluminum phosphate and 1st zinc phosphate, It is characterized by the above-mentioned.

また、本発明のコーティング剤の製造方法のさらなる態様は、前記混合溶液1にリン酸塩を投入する代わりに、リン酸塩にホウ酸をまず添加して溶解させた後、水酸化コバルトをさらに添加し、攪拌して製造した混合溶液4を使用することを特徴とする。   Further, in a further aspect of the method for producing a coating agent of the present invention, instead of adding a phosphate to the mixed solution 1, boric acid is first added and dissolved in the phosphate, and then cobalt hydroxide is further added. A mixed solution 4 prepared by adding and stirring is used.

本発明のコーティング鋼板は、リン酸塩、コロイドシリカおよびヘマタイトゾルを含むコーティング剤が、鋼板の表面にコートされたことを特徴とする。   The coated steel sheet of the present invention is characterized in that the surface of the steel sheet is coated with a coating agent containing phosphate, colloidal silica, and hematite sol.

また、本発明のコーティング鋼板の製造に用いられる前記コーティング剤のリン酸塩は、第1リン酸アルミニウムと第2リン酸亜鉛との混合物であることを特徴とする。   Moreover, the phosphate of the said coating agent used for manufacture of the coated steel plate of this invention is a mixture of the 1st aluminum phosphate and the 2nd zinc phosphate, It is characterized by the above-mentioned.

また、本発明のコーティング鋼板の製造に用いられた前記コーティング剤は、水酸化コバルトおよびホウ酸からなる群より選択された1つ以上の成分がさらに添加されたものであることを特徴とする。   In addition, the coating agent used for the production of the coated steel sheet of the present invention is characterized in that one or more components selected from the group consisting of cobalt hydroxide and boric acid are further added.

本発明の前記コーティング鋼板の製造方法は、リン酸塩、コロイドシリカおよびヘマタイトゾルを含むコーティング剤を鋼板の表面にコートして、800℃以下の低温で10秒〜10分間の熱処理後、800℃以上の高温で熱処理する、2段階熱処理を含むことを特徴とする。   In the method for producing the coated steel sheet of the present invention, the surface of the steel sheet is coated with a coating agent containing phosphate, colloidal silica, and hematite sol, and after heat treatment at a low temperature of 800 ° C. or lower for 10 seconds to 10 minutes, 800 ° C. It includes a two-stage heat treatment in which heat treatment is performed at the above high temperature.

また、本発明の前記コーティング鋼板の製造方法に用いられたコーティング剤は、水酸化コバルトおよびホウ酸の少なくとも一つをさらに含むものであることを特徴とする。   The coating agent used in the method for producing a coated steel sheet according to the present invention further includes at least one of cobalt hydroxide and boric acid.

以下、本発明について詳細に説明する。   The present invention will be described in detail below.

クロム系張力コーティング剤の場合、皮膜乾燥の際に6価クロムイオン(Cr6+)がコーティング剤内の水と反応してクロム酸(HCrO)化合物に変わり、さらにクロム酸(HCrO)は鋼板に存在する鉄(Fe)と反応して酸化鉄(FeO)を生成することにより、酸化鉄(FeO)および金属リン酸塩と反応することが可能な状態を作る。このような作用は、鋼板とコーティング剤間の密着性の向上に大きく役立ち、結果として皮膜張力を向上させる。また、6価クロムイオン(Cr6+)は生成された酸化鉄(FeO)とも反応して3価クロムイオン(Cr3+)に還元されることもあり、還元された3価クロム(Cr3+)の縮合重合によって皮膜緻密性を高めることができ、これは耐食性の向上に大きな影響を及ぼす。また、酸化クロムは、皮膜乾燥の後に濡れ性の不良を引き起こす遊離リン酸の発生を抑制することにより、表面物性を向上させる。 In the case of a chromium-based tension coating agent, hexavalent chromium ions (Cr 6+ ) react with water in the coating agent when the film is dried to change to a chromic acid (H 2 CrO 4 ) compound, and further chromic acid (H 2 CrO). 4 ) reacts with iron (Fe) present in the steel sheet to produce iron oxide (FeO), thereby creating a state capable of reacting with iron oxide (FeO) and metal phosphate. Such an action greatly helps to improve the adhesion between the steel sheet and the coating agent, and as a result, improves the film tension. In addition, hexavalent chromium ions (Cr 6+ ) may react with the produced iron oxide (FeO) to be reduced to trivalent chromium ions (Cr 3+ ), and the reduced trivalent chromium (Cr 3+ ) Condensation polymerization can increase the denseness of the film, which greatly affects the improvement of corrosion resistance. Further, chromium oxide improves surface physical properties by suppressing the generation of free phosphoric acid that causes poor wettability after film drying.

コロイドシリカは、皮膜張力が優れるうえ、製造コストが比較的低い塩基性コロイドシリカを使用する。この際、コロイドシリカは、張力コーティング剤のバインダーとして使用される酸性の金属リン酸塩とは相溶性が良くないため、ゲル化をもたらす。このような場合、酸化クロムを添加すると、2成分が混合されるときにゲル化を防止し、コーティング剤が安定な液相を持てるようになる。よって、コーティング剤が酸化クロムを含まない場合、コロイドシリカと金属リン酸塩とのpH差による相溶性低下は、コーティング剤の製造の際に深刻な問題となる。   Colloidal silica uses basic colloidal silica having excellent film tension and relatively low production costs. At this time, the colloidal silica is not compatible with the acidic metal phosphate used as the binder of the tension coating agent, and thus causes gelation. In such a case, when chromium oxide is added, gelation is prevented when the two components are mixed, and the coating agent can have a stable liquid phase. Therefore, when the coating agent does not contain chromium oxide, a decrease in compatibility due to the pH difference between the colloidal silica and the metal phosphate becomes a serious problem in the production of the coating agent.

よって、本発明は、酸化クロムを含まないコーティング剤を使用する場合に発生する皮膜張力、耐食性および相溶性の低下問題を解決するために、次のような技術を提案する。   Therefore, the present invention proposes the following technique in order to solve the problems of film tension, corrosion resistance and compatibility that are generated when a coating agent not containing chromium oxide is used.

第一に、シリカのヒドロキシ基との縮合反応を誘導して、シリカ単独皮膜に比べて皮膜の強固さおよび緻密性を向上させることが可能な、酸化鉄(FeO)系の酸化物ゾルを導入した。その結果、皮膜の緻密性および耐食性の向上だけでなく、金属リン酸塩の接着性の向上にも大きな寄与をし、究極的には優れた皮膜張力を得ることができる。この際、使用された酸化鉄(FeO)はコロイド状態であり、粒子の内部は三酸化第二鉄(Fe)状態として存在し、粒子の表面はコロイドシリカまたは金属リン酸塩との円滑な反応のために水酸化鉄(FeO−OH)形態を採用することがより好ましい。 First, an iron oxide (FeO) -based oxide sol that can induce a condensation reaction with the hydroxy group of silica and improve the strength and density of the coating compared to the silica coating alone is introduced. did. As a result, it not only improves the denseness and corrosion resistance of the film, but also greatly improves the adhesion of the metal phosphate, and ultimately an excellent film tension can be obtained. At this time, the used iron oxide (FeO) is in a colloidal state, the inside of the particle exists as a ferric trioxide (Fe 2 O 3 ) state, and the surface of the particle is colloidal with silica or metal phosphate. It is more preferable to adopt an iron hydroxide (FeO—OH) form for a smooth reaction.

第二に、非クロム系リン酸塩含有コーティング剤に発生しうる表面吸湿性および耐食性の低下の問題は、水酸化コバルト(cobalt hydroxide)を導入して解決した。リン酸塩を多量含有したコーティング剤を用いて表面コーティングを施した後、時間が経つと、遊離リン酸によって吸湿性、発粉および耐食性の低下が現れる。よって、遊離リン酸による表面欠陥を減らすためには、純粋なリン酸塩と金属酸化物が適正の組成比で構成されなければならず、コーティング剤内におけるリン酸塩の占有成分比が適切でなければならない。本発明では、前述したように、第1リン酸アルミニウム(Al(HPO)と第1リン酸マグネシウム(Mg(HPO)との混合溶液100g(固形分比60wt(重量)%)に固体部重量で水酸化コバルトを0.5%以上添加して、酸化クロムとリン酸との反応による遊離リン酸の抑制機能を、水酸化コバルトが代替する役割を果たす。 Second, the problem of reduced surface moisture absorption and corrosion resistance that can occur in non-chromium phosphate-containing coating agents has been solved by introducing cobalt hydroxide. Over time, after surface coating is performed using a coating agent containing a large amount of phosphate, the hygroscopicity, powdering and corrosion resistance decrease due to free phosphoric acid. Therefore, in order to reduce surface defects due to free phosphoric acid, pure phosphate and metal oxide must be configured with an appropriate composition ratio, and the proportion of phosphate occupied in the coating agent is appropriate. There must be. In the present invention, as described above, 100 g of a mixed solution of first aluminum phosphate (Al (H 2 PO 4 ) 3 ) and first magnesium phosphate (Mg (H 2 PO 4 ) 2 ) (solid content ratio 60 wt. Cobalt hydroxide serves as a substitute for the function of suppressing free phosphoric acid by the reaction of chromium oxide and phosphoric acid by adding 0.5% or more of cobalt hydroxide to (weight%) by weight of solid part.

第三に、コーティングの製造後に優れた溶液安定性を確保するために、成分間の配合順序を差別化した。酸性の第1リン酸アルミニウム(Al(HPO)と第1リン酸マグネシウム(Mg(HPO)との混合物に、酸性型のコロイドシリカを導入して、コーティング剤の成分間の相互混合性、すなわち相溶性を確保した。前述したように、一般なコロイドシリカの場合、製造コストが比較的低い塩基性型コロイドシリカを使用しており、pHの差によって酸性の金属リン酸塩とは相溶性が良くないため、ゲル化をもたらす。よって、本発明では、金属リン酸塩、コロイドシリカ、ホウ酸、水酸化コバルト、ヘマタイトゾルの配合順序を特別にして、貯蔵安定性を向上させることにより、8時間以上の貯蔵の際にも全く問題とならないようにした。 Third, the order of blending between components was differentiated to ensure excellent solution stability after the coating was manufactured. An acidic colloidal silica is introduced into a mixture of acidic primary aluminum phosphate (Al (H 2 PO 4 ) 3 ) and primary magnesium phosphate (Mg (H 2 PO 4 ) 2 ) to form a coating agent. The mutual mixing property, that is, the compatibility between these components was ensured. As described above, in the case of general colloidal silica, basic type colloidal silica, which is relatively low in production cost, is used and is not compatible with acidic metal phosphate due to the difference in pH. Bring. Therefore, in the present invention, the compounding order of the metal phosphate, colloidal silica, boric acid, cobalt hydroxide, and hematite sol is specially improved to improve the storage stability. I tried not to be a problem.

以下、これらの提案された技術を検討しながら、本発明についてより詳細に説明する。   Hereinafter, the present invention will be described in more detail while examining these proposed techniques.

最近、方向性電気鋼板の高級化の趨勢に伴い、絶縁皮膜の高張力化による磁性改善が重要な要因となったが、方向性電気鋼板は、最終工程として絶縁コーティングおよび平坦化焼鈍の最終工程を経る際、絶縁コーティングの後に焼鈍を経ながら熱によって膨張した素材が冷却の際にさらに収縮する一方で、既にセラミック化された絶縁コーティング層は素材の収縮を妨害する。このような母材とコーティング剤間の熱膨張係数の差を大きくすることにより、皮膜張力を向上させることができる。   Recently, with the trend of upgrading graded electrical steel sheets, magnetic improvement by increasing the tension of the insulation film has become an important factor. However, oriented electrical steel sheets are the final process of insulating coating and flattening annealing. The material that has been thermally expanded while undergoing annealing after the insulation coating is further shrunk upon cooling, while the already ceramicized insulation coating layer prevents the material from shrinking. By increasing the difference in coefficient of thermal expansion between the base material and the coating agent, the film tension can be improved.

ところが、単純な母材とコーティング剤との熱膨張率の差による高張力皮膜の形成には限界があるので、本発明は、シリカの連鎖反応によって緻密な皮膜層を形成させて強力な皮膜張力を与えようとした。このような緻密な皮膜層を形成するためにはシリカおよび金属リン酸塩と反応して接着力を向上させることが可能な物質を必要とした。また、本発明は、他の成分との相溶性に優れる酸化鉄(FeO)ゾルを用いてセラミック層単独皮膜を形成したときに有する欠点を克服した。   However, since there is a limit to the formation of a high-tensile film due to the difference in coefficient of thermal expansion between a simple base material and a coating agent, the present invention forms a strong film layer by the chain reaction of silica, and has a strong film tension. Tried to give. In order to form such a dense film layer, a substance capable of improving the adhesive force by reacting with silica and metal phosphate is required. In addition, the present invention has overcome the drawbacks of forming a ceramic layer single film using an iron oxide (FeO) sol that is excellent in compatibility with other components.

本発明のコーティング剤に含まれるヘマタイトは、磁性材料の腐食を防ぐ効果を有するが、単純なヘマタイト形態として導入した場合、乾燥の際に低温でシリカおよび金属リン酸塩と反応し難いため、粒子の表面は水酸基で置換された形態を採用することが好ましい。   The hematite contained in the coating agent of the present invention has an effect of preventing corrosion of the magnetic material, but when introduced as a simple hematite form, it is difficult to react with silica and metal phosphate at a low temperature during drying. It is preferable to adopt a form in which the surface is substituted with a hydroxyl group.

ヘマタイトゾルは、シリカの水酸基と縮合反応を起こして鉄−シリカ複合物を形成することにより、シリカ単独で形成したセラミック層より強固な皮膜を形成して皮膜の強度を高め、且つ金属リン酸塩とも反応してコーティング剤の接着力を向上させる。   The hematite sol increases the strength of the film by causing a condensation reaction with the hydroxyl group of silica to form an iron-silica composite, thereby forming a stronger film than the ceramic layer formed of silica alone, and metal phosphate It also reacts to improve the adhesion of the coating agent.

また、高張力を実現するためには、シリカセラミック層の微視的観点からみて、多くの多孔質が形成された皮膜より緻密な皮膜が形成されなければならないが、800℃以上の熱処理の際にはシリカの連鎖反応によって多くの多孔質が形成された皮膜が形成されるため、これを解決するために、シリカおよび金属リン酸塩との縮合反応を誘導して皮膜の密着性を向上させ、シリカとヘマタイトゾルとが縮合反応して鉄−シリカ複合物を形成することにより、シリカ単独で形成するセラミック層に比べて非常に強固な皮膜を形成して皮膜の強度を高めるために、800℃以下の低温で熱処理を施す。したがって、本発明では、緻密な皮膜が形成されるように、800℃以下で10秒〜1分間の低温熱処理と、800℃以上で10秒〜1分間の高温熱処理との2段階熱処理を施す。   In order to achieve high tension, from the microscopic viewpoint of the silica ceramic layer, a film more dense than a film in which many porous layers are formed must be formed. In order to solve this problem, a coating reaction with silica and metal phosphate is induced to improve the adhesion of the coating. In order to increase the strength of the film by forming an iron-silica composite by a condensation reaction of silica and hematite sol, thereby forming a very strong film as compared with a ceramic layer formed of silica alone, Heat treatment is performed at a low temperature of ℃ or less. Therefore, in the present invention, two-stage heat treatment is performed, that is, a low temperature heat treatment at 800 ° C. or lower for 10 seconds to 1 minute and a high temperature heat treatment at 800 ° C. or higher for 10 seconds to 1 minute so that a dense film is formed.

一方、コーティング剤には、コーティング剤と母材とを接着させる用途で、金属リン酸塩が主要成分として導入されたが、このような場合、必然的に遊離リン酸による表面濡れ性が発生する。この際、かかる問題点の解決における技術の限界性、すなわち、コーティング剤乾燥の際に発生する遊離リン酸を防止する効果によって、付随的に皮膜緻密性または皮膜張力を向上させるが、その効果は大きくないという問題がある。よって、前述したように、皮膜張力および接着力の向上はヘマタイトゾルを用いて解決し、遊離リン酸による濡れ性現象は他の金属酸化物である水酸化コバルトを導入して解決した。   On the other hand, a metal phosphate is introduced as a main component in the coating agent for bonding the coating agent and the base material. In such a case, surface wettability due to free phosphoric acid is inevitably generated. . At this time, the limit of the technology in solving such problems, that is, the effect of preventing the free phosphoric acid generated when the coating agent is dried, is incidentally improved in the film denseness or film tension, but the effect is There is a problem that it is not big. Therefore, as described above, the improvement in film tension and adhesive force was solved by using a hematite sol, and the wettability phenomenon due to free phosphoric acid was solved by introducing cobalt hydroxide which is another metal oxide.

張力コーティング剤が酸化クロムを含まないと、コロイドシリカと金属リン酸塩との激しいゲル化現象が起こるので、コーティング剤を製造するときから問題が発生する。よって、ゲル化現象を回避するためには、酸性状態のコーティング剤が必要とされるが、この場合にも混合方法に多くの注意が要求される。すなわち、同じ酸性状態の2成分であっても、コロイドシリカは酸性状態にするために塩基性状態を改質させて作った製品なので、急激に混合するときはこれもゲル化現象が誘発される。このような理由により、コロイドシリカとヘマタイトゾルとの混合溶液1を攪拌する状態で、金属リン酸塩を非常にゆっくり導入しながら、2成分が十分に混合できるように時間を与えることが重要である。こうして製造された例は表1に詳細に示した。   If the tension coating agent does not contain chromium oxide, a severe gelation phenomenon occurs between the colloidal silica and the metal phosphate, which causes a problem from the time of manufacturing the coating agent. Therefore, in order to avoid the gelation phenomenon, an acidic coating agent is required, but in this case as well, much attention is required for the mixing method. In other words, even if the two components are in the same acidic state, colloidal silica is a product made by modifying the basic state in order to make it acidic, so this also induces a gelling phenomenon when mixed rapidly. . For this reason, it is important to give time so that the two components can be sufficiently mixed while introducing the metal phosphate very slowly while stirring the mixed solution 1 of colloidal silica and hematite sol. is there. Examples thus produced are detailed in Table 1.

表1に示すように、コーティング剤を構成するそれぞれの成分の製造順序が、コーティング剤の相溶性および安定性に非常に重要な影響を及ぼし、本発明では酸性状態のコロイドシリカを用いてコーティング剤の相溶性および安定性に優れた溶液を製造することができる。   As shown in Table 1, the production order of the respective components constituting the coating agent has a very important influence on the compatibility and stability of the coating agent. In the present invention, the coating agent is used using colloidal silica in an acidic state. It is possible to produce a solution having excellent compatibility and stability.

コーティング剤に使用されたリン酸塩は、第1リン酸マグネシウム(Mg(HPO)と第1リン酸アルミニウム(Al(HPO)との混合液を使用することが好ましい。コーティング剤に投入されるリン酸塩の量は、コーティング剤の全体重量が100gの場合には30〜60g程度投入することが好ましく、30g未満であればコーティング剤の接着力が低下して皮膜張力が低下し、60g以上であれば遊離リン酸による濡れ性(sticky)を誘発することができる。 The phosphate used in the coating agent should be a mixture of primary magnesium phosphate (Mg (H 2 PO 4 ) 2 ) and primary aluminum phosphate (Al (H 2 PO 4 ) 3 ) Is preferred. The amount of phosphate added to the coating agent is preferably about 30 to 60 g when the total weight of the coating agent is 100 g, and if it is less than 30 g, the adhesive strength of the coating agent is reduced and the film tension is reduced. If it is 60 g or more, wettability (sticky) by free phosphoric acid can be induced.

コロイドシリカは、コーティング剤の熱処理の際に熱膨張係数の低いセラミック層を形成して素材に引張応力を与える作用を果たし、リン酸塩溶液100gに対して25〜300g投入することが好ましい。コロイドシリカの投入量が25g以下の場合には、適切なセラミック層を形成しないため、素材に与える引張応力が不足し、コロイドシリカの投入量が300g以上の場合には、コーティング剤に対する固形分比が高くなって、鋼板の表面品質が低下する。よって、本発明では、前記コロイドシリカの含有量を、前記リン酸塩溶液100gに対して25〜300gの範囲に制限する。   Colloidal silica forms a ceramic layer having a low coefficient of thermal expansion during the heat treatment of the coating agent and exerts an action of applying a tensile stress to the material. When the amount of colloidal silica input is 25 g or less, an appropriate ceramic layer is not formed, so the tensile stress applied to the material is insufficient, and when the amount of colloidal silica input is 300 g or more, the solid content ratio to the coating agent Increases, and the surface quality of the steel sheet decreases. Therefore, in this invention, content of the said colloidal silica is restrict | limited to the range of 25-300g with respect to 100g of said phosphate solutions.

金属リン酸塩の製造の際に添加されるホウ酸は、リン酸塩溶液100g当たり1〜7gを添加して溶解させるが、7g以下に添加される場合には、リン酸塩に存在するマグネシウムまたはアルミナと適切な縮合反応を行うことが難しく、7g以上に添加される場合には、過量添加による析出現象が発生するので、前記リン酸塩溶液100gに対して1〜7g添加することが好ましい。   Boric acid added in the production of the metal phosphate is dissolved by adding 1 to 7 g per 100 g of the phosphate solution. When added to 7 g or less, magnesium present in the phosphate is added. Alternatively, it is difficult to perform an appropriate condensation reaction with alumina, and when it is added to 7 g or more, a precipitation phenomenon due to excessive addition occurs, so 1 to 7 g is preferably added to 100 g of the phosphate solution. .

ヘマタイトゾルは、リン酸塩溶液100gに対して0.5〜40g投入することが好ましい。ヘマタイトゾルの投入量が0.5g以下の場合にはヘマタイト粒子の不足により乾燥過程で適切なセラミック−酸化鉄(FeO)またはリン酸塩−酸化鉄(FeO)の量が多くないため、皮膜張力の付与が十分でなく、ヘマタイトゾルの投入量が40g以上の場合にはコーティング剤に対するヘマタイト分率が高くなって、セラミック層の形成をむしろ妨害する。よって、本発明では、前記ヘマタイトゾルは、前記リン酸塩溶液100gに対して0.5〜40g添加することが好ましい。   It is preferable to add 0.5 to 40 g of hematite sol with respect to 100 g of the phosphate solution. When the amount of hematite sol input is 0.5 g or less, the film tension is not sufficient because the amount of appropriate ceramic-iron oxide (FeO) or phosphate-iron oxide (FeO) is not large in the drying process due to the lack of hematite particles. When the amount of hematite sol is not less than 40 g, the hematite fraction with respect to the coating agent becomes high, which rather hinders the formation of the ceramic layer. Therefore, in the present invention, it is preferable to add 0.5 to 40 g of the hematite sol with respect to 100 g of the phosphate solution.

水酸化コバルトの場合、リン酸塩溶液100gに対して固体重量で0.5〜5.0g添加することで、物性の向上を図ることができる。   In the case of cobalt hydroxide, physical properties can be improved by adding 0.5 to 5.0 g of solid weight to 100 g of the phosphate solution.

重量比でSi:3.1%を含有し、板厚さ0.23mmの仕上げ焼鈍された1次皮膜を有する方向性電気鋼板(300×60mm)を供試材とし、850℃で30秒間乾燥させると、コートされた面はコーティング剤による引張応力の付加により一方の方向に撓み、このような撓みの度合いを測定して皮膜による張力を評価した。   A grain-oriented electrical steel sheet (300 × 60 mm) containing a primary film having a final annealing thickness of Si containing 3.1% by weight and having a thickness of 0.23 mm is used as a test material and dried at 850 ° C. for 30 seconds. Then, the coated surface was deflected in one direction by applying a tensile stress by the coating agent, and the degree of such bending was measured to evaluate the tension by the film.

SRAは、乾燥した100%Nガス雰囲気下に750℃で2時間熱処理した。絶縁性は300PSI圧力下で入力0.5V、1.0Aの電流を通したときの収納電流値として示し、密着性はSRA前、後試片を10、20、30〜100mmΦの円弧に接して180°曲げるときに、皮膜剥離がない最小円弧直径として示し、皮膜の外観は縞模様、光沢有無などを肉眼で観察して評価した。耐食性は5%、35℃、NaCl溶液に8時間試片の錆発生有無を評価する。本試験では、錆発生面積が5%以下の場合には優秀、20%以下の場合には良好、20〜50%の場合にはやや不良、50%以上の場合には不良とそれぞれ表示した。 SRA was heat-treated at 750 ° C. for 2 hours in a dry 100% N 2 gas atmosphere. Insulation is shown as stored current value when current of 0.5V and 1.0A is passed under pressure of 300PSI. Adhesion is in contact with arcs of 10, 20, 30-100mmΦ before and after SRA. When bending by 180 °, it was shown as the minimum arc diameter with no peeling of the film, and the appearance of the film was evaluated by observing the striped pattern, glossiness, etc. with the naked eye. Corrosion resistance is 5%, 35 ° C., and the presence or absence of rust on the specimen is evaluated for 8 hours in NaCl solution. In this test, when the rust generation area was 5% or less, it was indicated as excellent, 20% or less as good, 20 to 50% as slightly defective, and 50% or more as defective.

コーティング剤が非クロム化された場合、最も劣位にある物性部分を一つずつ検討した。コーティング剤が酸化クロムを含まないとき、コロイドシリカと金属リン酸塩との混合状態を確認し、その結果を表1に示した。   When the coating agent was non-chromated, the inferior physical properties were examined one by one. When the coating agent did not contain chromium oxide, the mixed state of colloidal silica and metal phosphate was confirmed, and the results are shown in Table 1.

表1に示すように、通常の塩基性コロイドシリカと酸性金属リン酸塩を使用した場合にはゲル化現象が現れたが、金属リン酸塩と類似のpHを有する製品の酸性コロイドシリカを使用した場合にはゲル化現象を防止することができた。また、配合順序および相溶性とも非常に密接した関係があるが、酸性コロイドシリカを適用した場合にも、実施例1〜実施例3に記載したように、リン酸塩に水酸化コバルトをまず溶かした後、コロイドシリカとヘマタイトゾルを導入したときに優れた相溶性を示した。特に、実施例3では、時間による粘度増加もなかった。これに対し、2つの成分を同時にリン酸塩に導入した場合には、相溶性がよくなく、時間による粘度も多くの増加を示した。   As shown in Table 1, gelation occurred when normal basic colloidal silica and acidic metal phosphate were used, but the product used acidic colloidal silica having a pH similar to that of metal phosphate. In this case, the gelation phenomenon could be prevented. In addition, although there is a very close relationship with the blending order and compatibility, when acidic colloidal silica is applied, cobalt hydroxide is first dissolved in phosphate as described in Examples 1 to 3. After that, when the colloidal silica and hematite sol were introduced, excellent compatibility was shown. In particular, in Example 3, there was no increase in viscosity over time. On the other hand, when two components were simultaneously introduced into the phosphate, the compatibility was not good, and the viscosity with time showed a large increase.

表1の結果より、本発明者は、非クロム系張力コーティング剤の基本成分としてリン酸塩、ホウ酸、水酸化コバルト、酸性状態のコロイドシリカおよびヘマタイトゾルを採用した。また、遊離リン酸の抑制および耐食性の強化のために導入された水酸化コバルトの場合、リン酸塩に可溶できる量が2.5g以下であるから、本発明では1.5g以下の水酸化コバルトおよびホウ酸2.0gが導入された金属リン酸塩を基本とした。よって、水酸化コバルトおよびホウ酸が溶解された金属リン酸塩、ヘマタイトゾル、コロイドシリカの3つの成分に対する皮膜張力への影響程度を測定した。塗布量は4.0g/mに合わせた。このように塗布されたコーティング剤は2段階乾燥過程を経るが、第1段階として、温度750℃の乾燥炉で10秒〜1分間乾燥させた後、第2段階として、温度900℃の乾燥炉で30秒〜9分間処理した。 From the results shown in Table 1, the present inventors employed phosphate, boric acid, cobalt hydroxide, acidic colloidal silica, and hematite sol as basic components of the non-chromic tension coating agent. In addition, in the case of cobalt hydroxide introduced for suppressing free phosphoric acid and enhancing corrosion resistance, the amount that can be dissolved in phosphate is 2.5 g or less. Based on metal phosphates with 2.0 g of cobalt and boric acid introduced. Therefore, the degree of influence on the film tension was measured for the three components of metal phosphate, hematite sol, and colloidal silica in which cobalt hydroxide and boric acid were dissolved. The coating amount was adjusted to 4.0 g / m 2 . The coating agent applied in this way undergoes a two-stage drying process. As the first stage, after drying in a drying furnace at a temperature of 750 ° C. for 10 seconds to 1 minute, the second stage is performed at a drying furnace at a temperature of 900 ° C. For 30 seconds to 9 minutes.

表2は金属リン酸塩、酸性コロイドシリカ、およびヘマタイトゾル成分による皮膜張力および耐食性の影響を示した。まず、皮膜張力の面からみると、ヘマタイトゾルが含まれた大部分の実施例の場合、ヘマタイトゾルを含んでおらず、クロムを添加した従来例に比べて優れた皮膜張力を示している。   Table 2 shows the effects of film tension and corrosion resistance due to metal phosphate, acidic colloidal silica, and hematite sol components. First, from the viewpoint of film tension, most of the examples containing hematite sol do not contain hematite sol, and show a film tension superior to that of the conventional example to which chromium is added.

このような結果より、本発明で導入したヘマタイトゾルがコーティング剤に導入されたとき、既存のクロム系コーティング剤が持っている欠点、すなわち多孔質のセラミック皮膜の形成を補完し、ヘマタイトゾル−金属リン酸塩複合物は単に金属リン酸塩が提供する接着力に比べて接着効果が大きく作用して、究極的には皮膜張力の向上に寄与するものと判断される。各成分と皮膜張力との関係は図1および図2に示した。   From these results, when the hematite sol introduced in the present invention is introduced into the coating agent, it complements the drawbacks of the existing chromium-based coating agent, that is, the formation of a porous ceramic film. It is judged that the phosphate composite has a greater adhesion effect than the adhesion provided by the metal phosphate, and ultimately contributes to the improvement of the film tension. The relationship between each component and the film tension is shown in FIGS.

しかも、耐食性は、図3に示すように、通常のクロム系コーティング剤と表2の実施例の成分系とを比較してみたが、図から確認できるように実施例の耐食性が従来例に比べて優秀である。このような結果は前述したようにヘマタイトゾルの導入による化学反応および皮膜緻密性の効果をよく示している。   Moreover, as shown in FIG. 3, the corrosion resistance was compared with the conventional chromium coating agent and the component systems of the examples in Table 2. As can be confirmed from the figure, the corrosion resistance of the examples was higher than that of the conventional examples. And excellent. Such a result well shows the effect of chemical reaction and film denseness due to the introduction of hematite sol as described above.

表3は表2の実施例1〜3の成分系を基本としてコーティング液を製造した後、乾燥条件による影響度を示す。表3に示すように、低温で1段の乾燥、高温で2段の乾燥を行う方式を使用することが皮膜張力の向上に大きく寄与することが分かる。これは、リン酸塩とFeO系との化学的反応が乾燥条件に応じて大きく影響されることを示唆し、本発明のように2段の熱処理を施した方が、優れた皮膜張力を得るのに効果的であることを証明している。   Table 3 shows the degree of influence due to drying conditions after the coating liquid was produced based on the component systems of Examples 1 to 3 in Table 2. As shown in Table 3, it can be seen that the use of a system that performs one-stage drying at a low temperature and two-stage drying at a high temperature greatly contributes to an improvement in film tension. This suggests that the chemical reaction between the phosphate and the FeO system is greatly affected depending on the drying conditions, and an excellent film tension is obtained when the two-stage heat treatment is performed as in the present invention. It proves to be effective.

Claims (12)

リン酸塩と、前記リン酸塩100g当たりの重量で、酸性型のコロイドシリカを25〜300gヘマタイトゾルを0.5〜40g、および水酸化コバルトを0.5〜5.0gみ、前記ヘマタイトゾルは表面に水酸基を含むことを特徴とする、方向性電気鋼板用非クロム系コーティング剤。 And phosphate, by weight per the phosphate 100 g, 0.5 to 5.0 g saw including 25~300g the acid form of colloidal silica, 0.5 to 40 g hematite sol, and cobalt hydroxide, the A hematite sol is a non-chromium coating agent for grain-oriented electrical steel sheets, characterized in that the surface contains a hydroxyl group . 前記リン酸塩は、第1リン酸アルミニウムと第1リン酸マグネシウムとの混合物であることを特徴とする、請求項1に記載の方向性電気鋼板用非クロム系コーティング剤。   The non-chromium coating agent for grain-oriented electrical steel sheets according to claim 1, wherein the phosphate is a mixture of a first aluminum phosphate and a first magnesium phosphate. 前記ヘマタイトゾルは、水酸化鉄(FeO−OH)形態になることを特徴とする、請求項1または2に記載の方向性電気鋼板用非クロム系コーティング剤。 The non-chromium coating agent for grain-oriented electrical steel sheets according to claim 1 or 2 , wherein the hematite sol is in the form of iron hydroxide (FeO-OH) . 前記リン酸塩100g当たりの重量で1〜7gのホウ酸さらに含むことを特徴とする、請求項1から3のいずれか1項に記載の方向性電気鋼板非クロム系コーティング剤。 The grain-oriented electrical steel sheet non-chromium coating agent according to any one of claims 1 to 3 , further comprising 1 to 7 g of boric acid by weight per 100 g of the phosphate. 酸性型のコロイドシリカに表面に水酸基を含むヘマタイトゾルを投入し攪拌してシリカ−ヘマタイト混合溶液1を製造する段階と、
前記製造したシリカ−ヘマタイト混合溶液1にリン酸塩を漸進的に投入して、シリカ−ヘマタイト−リン酸塩混合溶液2を製造する段階とを含み、
前記シリカーヘマタイト混合溶液にリン酸塩を投入する前に、前記リン酸塩にホウ酸を添加して溶解させて固形分比50〜65重量%、粘度200〜300cpの混合溶液3を製造する段階と、
前記混合溶液3に水酸化コバルトをさらに添加し、攪拌して混合溶液4を製造する段階とをさらに含むことを特徴とする、方向性電気鋼板用非クロム系コーティング剤の製造方法。
A step of producing a silica-hematite mixed solution 1 by introducing a hematite sol containing a hydroxyl group on the surface of acidic colloidal silica and stirring the mixture;
The manufacturing silica - phosphate into hematite mixed solution 1 was gradually poured, silica - hematite - a stage of producing a phosphate mixed solution 2 seen including,
Before adding the phosphate to the silica-hematite mixed solution, boric acid is added to the phosphate and dissolved therein to produce a mixed solution 3 having a solid content ratio of 50 to 65% by weight and a viscosity of 200 to 300 cp. Stages,
The method further includes adding cobalt hydroxide to the mixed solution 3 and stirring to produce the mixed solution 4 .
前記シリカ−ヘマタイト−リン酸塩混合溶液2の製造段階で使用したリン酸塩は、第1リン酸アルミニウムと第1リン酸マグネシウムとの混合物であることを特徴とする、請求項に記載の方向性電気鋼板用非クロム系コーティング剤の製造方法。 The phosphate used in the manufacturing stage of the silica-hematite-phosphate mixed solution 2 is a mixture of a first aluminum phosphate and a first magnesium phosphate, according to claim 5 . A method for producing a non-chromium coating agent for grain-oriented electrical steel sheets. 前記ヘマタイトゾルは、水酸化鉄(FeO−OH)形態になることを特徴とする、請求項5または6に記載の方向性電気鋼板用非クロム系コーティング剤の製造方法。 The method for producing a non-chromium coating agent for grain-oriented electrical steel sheets according to claim 5 or 6 , wherein the hematite sol is in the form of iron hydroxide (FeO-OH) . リン酸塩、酸性型のコロイドシリカヘマタイトゾルおよび水酸化コバルトを含むコーティング剤が鋼板の表面にコートされて形成されたコーティング鋼板の皮膜張力が0.30〜1.02kg/mmであり、前記ヘマタイトゾルは表面に水酸基を含むことを特徴とする、方向性電気鋼板。 Phosphate, acid form colloidal silica, coating tension of hematite sol and coating steel sheet coating agent containing cobalt hydroxide is formed is coated on the surface of the steel sheet 0.30~1.02kg / mm 2 der Ri The grain- oriented electrical steel sheet , wherein the hematite sol contains a hydroxyl group on the surface . 前記コーティング剤のリン酸塩は、第1リン酸アルミニウムと第リン酸マグネシウムとの混合物であることを特徴とする、請求項に記載の方向性電気鋼板。 The grain-oriented electrical steel sheet according to claim 8 , wherein the phosphate of the coating agent is a mixture of a first aluminum phosphate and a first magnesium phosphate. 前記コーティング剤はホウ酸さらに添加されたものであることを特徴とする、請求項8または9に記載の方向性電気鋼板。 The coating agent is characterized in that the boric acid was further added, oriented electrical steel sheet according to claim 8 or 9. リン酸塩、酸性型のコロイドシリカ、表面に水酸基を含むヘマタイトゾル、水酸化コバルトおよびホウ酸を含むコーティング剤を、乾燥皮膜塗布量が0.5〜6.0g/mとなるように鋼板の表面に塗布して、2段階熱処理し、
前記2段階熱処理は、800℃以下の低温で10秒〜1分間の熱処理をした後、800℃以上の高温で30秒〜9分間の熱処理を行うことを特徴とする、高張力方向性電気鋼板の製造方法。
Steel sheet with phosphate, acidic colloidal silica , hematite sol containing hydroxyl group on the surface, coating agent containing cobalt hydroxide and boric acid so that the dry film coating amount is 0.5-6.0 g / m 2 And apply two-stage heat treatment ,
The high-strength grain-oriented electrical steel sheet , wherein the two-stage heat treatment is a heat treatment for 10 seconds to 1 minute at a low temperature of 800 ° C. or lower and then a heat treatment for 30 seconds to 9 minutes at a high temperature of 800 ° C. or higher. Manufacturing method.
前記ヘマタイトゾルは水酸化鉄(FeO−OH)形態になることを特徴とする、請求項11に記載の高張力方向性電気鋼板の製造方法。 The method of manufacturing a high-tensile-oriented electrical steel sheet according to claim 11 , wherein the hematite sol is in the form of iron hydroxide (FeO-OH) .
JP2011521992A 2008-08-08 2009-06-10 Non-chromium coating agent for grain-oriented electrical steel sheet, electrical steel sheet using the same, and manufacturing method thereof Active JP5236077B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2008-0078147 2008-08-08
KR1020080078147A KR100966819B1 (en) 2008-08-08 2008-08-08 Cr -free coating solution, manufacturing method and steel sheet, manufacturing method
PCT/KR2009/003114 WO2010016658A2 (en) 2008-08-08 2009-06-10 Non-chromium coating agent for a grain-oriented electrical steel sheet, preparation method thereof, electrical steel sheet using the same, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011530012A JP2011530012A (en) 2011-12-15
JP5236077B2 true JP5236077B2 (en) 2013-07-17

Family

ID=41664048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011521992A Active JP5236077B2 (en) 2008-08-08 2009-06-10 Non-chromium coating agent for grain-oriented electrical steel sheet, electrical steel sheet using the same, and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP5236077B2 (en)
KR (1) KR100966819B1 (en)
CN (1) CN102119239B (en)
WO (1) WO2010016658A2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101228710B1 (en) * 2010-12-27 2013-02-01 주식회사 포스코 Coating composition for forming insulating film on electrical steel sheet, method for making insulation film on grain-oriented electrical steel sheet by using the same and grain-oriented electrical steel sheet made by using the same
KR101253857B1 (en) * 2010-12-27 2013-04-12 주식회사 포스코 Insulation coating method of electrical steel sheet
KR101308731B1 (en) * 2011-11-21 2013-09-13 주식회사 포스코 Tension coating agent for forming insulating film with excellent punching, processing and tension properties oriented electrical steel sheet and method for forming insulation film using that, and oriented ecectrical steel sheet with coated insulating film that method
KR101283702B1 (en) * 2011-11-21 2013-07-05 주식회사 포스코 Tension coating agent for forming insulating film with excellent drying property, electrical resistance and method for forming insulation film using that, and electrical steel sheet with insulating film by that method
KR101324260B1 (en) 2011-12-28 2013-11-01 주식회사 포스코 Insulation coating material for non-oriented electrical steel sheet and method for manufacturing the same
KR101439503B1 (en) * 2012-11-12 2014-11-03 주식회사 포스코 Composition of oriented electrical steel sheet for forming insulation film, method for forming insulating film using the same, and oriented electrical steel sheet manufactured by the method
KR101448596B1 (en) * 2012-12-27 2014-10-08 주식회사 포스코 Oriented electrical steel steet and method for the same
DE102013208618A1 (en) 2013-05-10 2014-11-13 Henkel Ag & Co. Kgaa Chrome-free coating for electrical insulation of grain-oriented electrical steel
EP2902509B1 (en) * 2014-01-30 2018-08-29 Thyssenkrupp Electrical Steel Gmbh Grain oriented electrical steel flat product comprising an insulation coating
KR101596446B1 (en) 2014-08-07 2016-03-07 주식회사 포스코 Pre-coating composition for forsterite film-eliminated grain oriented electrical steels, grain oriented electrical steels manufactured by using the same, and method for manufacturing the same grain oriented electrical steels
KR101796234B1 (en) 2015-12-22 2017-11-09 주식회사 포스코 Insulation coating composite for oriented electrical steel steet, forming method of insulation coating using the same, and oriented electrical steel steet
CN112567073B (en) * 2018-08-17 2022-05-27 杰富意钢铁株式会社 Method and apparatus for producing treatment liquid for forming insulating coating, and method for producing steel sheet with insulating coating
CN109852109A (en) * 2018-12-29 2019-06-07 南京宝淳新材料科技有限公司 Not chromyl environment-friendly type coating of a kind of steel plate and preparation method thereof
KR102597512B1 (en) * 2020-12-22 2023-11-01 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08239771A (en) * 1995-03-02 1996-09-17 Nippon Steel Corp Grain-oriented silicon steel sheet having high tensile strength insulating film and formation of the same insulating film
JP3935664B2 (en) * 2000-08-01 2007-06-27 住友金属工業株式会社 Treatment liquid for insulating film formation of electrical steel sheet and method
KR100572486B1 (en) * 2003-11-29 2006-04-19 테크앤라이프 주식회사 Trivalent chromium plating solution composition and preparation method thereof
JP4264362B2 (en) * 2004-01-15 2009-05-13 新日本製鐵株式会社 Insulating coating agent for grain-oriented electrical steel sheet not containing chromium and grain-oriented electrical steel sheet having an insulating film not containing chromium
KR101141282B1 (en) * 2004-12-28 2012-05-07 주식회사 포스코 Composition for insulated coating of the grain oriented eletrical steel sheet having good contact coating and tension properties
JP4878788B2 (en) * 2005-07-14 2012-02-15 新日本製鐵株式会社 Insulating coating agent for electrical steel sheet containing no chromium
CN100567570C (en) * 2006-08-31 2009-12-09 宝山钢铁股份有限公司 The oriented silicon steel insulating coating of chromium-free environment-friendly
KR100817157B1 (en) 2006-12-27 2008-03-27 주식회사 포스코 Method for manufacturing of cr-free coating solution for non-oriented electrical steel sheet with excellent solution stability

Also Published As

Publication number Publication date
WO2010016658A3 (en) 2010-04-01
WO2010016658A2 (en) 2010-02-11
CN102119239B (en) 2013-03-27
KR100966819B1 (en) 2010-06-29
KR20100019226A (en) 2010-02-18
JP2011530012A (en) 2011-12-15
CN102119239A (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP5236077B2 (en) Non-chromium coating agent for grain-oriented electrical steel sheet, electrical steel sheet using the same, and manufacturing method thereof
KR101324260B1 (en) Insulation coating material for non-oriented electrical steel sheet and method for manufacturing the same
US7976902B2 (en) Coating solution for forming insulating film with excellent corrosion resistance property and film close adhesion property and film intensity without chrome and a method for making the insulation film on non-oriented electrical steel sheet by using it
KR100762465B1 (en) Coating solution for forming insulating film with excellent corrosion resistance property and film close adhesion property without cr and a method for making the insulation film on non-oriented electrical steel sheet by using it
KR101195220B1 (en) Coating solution for forming insulating film with excellent insulation film adhesion property, tension allowance ability and a method for making the insulation film on grain-oriented electrical steel sheet by using it
KR101286248B1 (en) Coating solution for forming an insulation film on grain-oriented electrical steel sheet, method for manufacturing said coating solution, and method for forming an insulation film on grain-oriented electrical steel sheet by using the same
CN110283488B (en) Semi-organic insulating coating for ultrahigh magnetic induction oriented silicon steel and use method thereof
JP5232246B2 (en) COATING SOLUTION FOR NONDIRECTIONAL ELECTRIC STEEL, COATING METHOD FOR NONDIRECTIONAL ELECTRIC STEEL USING THE SAME, AND COATING LAYER OF NONDIRECTIONAL ELECTRIC STEEL
KR101110255B1 (en) Coating composition for forming insulation film, Method for manufacturing insulation film of grain-oriented electric steel sheet using it And Grain-oriented electric steel sheet therof
KR20140060717A (en) Coating composition for forming insulation film, method for forming insulating film of non-oriented electrical steel sheet using the same, and non-oriented electrical steel sheet manufactured by the method
WO2005090636A1 (en) Electromagnetic steel sheet having insulating coating
JP3564079B2 (en) Insulating coating agent and method for producing non-oriented electrical steel sheet with excellent weldability using the same
KR100817157B1 (en) Method for manufacturing of cr-free coating solution for non-oriented electrical steel sheet with excellent solution stability
KR101228710B1 (en) Coating composition for forming insulating film on electrical steel sheet, method for making insulation film on grain-oriented electrical steel sheet by using the same and grain-oriented electrical steel sheet made by using the same
KR101481127B1 (en) Coating composition for forming insulation film, method for forming insulating film of non-oriented electrical steel sheet using the same, and non-oriented electrical steel sheet manufactured by the method
KR101507941B1 (en) Composition of oriented electrical steel sheet for forming insulation film, method for forming insulating film using the same, and oriented electrical steel sheet manufactured by the method
KR101308731B1 (en) Tension coating agent for forming insulating film with excellent punching, processing and tension properties oriented electrical steel sheet and method for forming insulation film using that, and oriented ecectrical steel sheet with coated insulating film that method
KR101419473B1 (en) Coating composition for forming insulation film, method for forming insulating film of non-oriented electrical steel sheet using the same, and non-oriented electrical steel sheet manufactured by the method
KR20110015167A (en) Coating composition for forming insulation film, method for manufacturing insulation film of grain-oriented electric steel sheet using it, and grain-oriented electric steel sheet therof
KR101439503B1 (en) Composition of oriented electrical steel sheet for forming insulation film, method for forming insulating film using the same, and oriented electrical steel sheet manufactured by the method
KR101243210B1 (en) Coating solution for forming an insulation film and and electrical steel sheet including the same, method for forming an insulation film on electrical steel sheet
JP4449454B2 (en) Method for forming chromium-free insulating coating for grain-oriented electrical steel sheet
EP3808871A1 (en) Electromagnetic steel sheet having insulation coating film attached thereto, and method for producing same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250