JP3562652B2 - Organic electroluminescence device - Google Patents

Organic electroluminescence device Download PDF

Info

Publication number
JP3562652B2
JP3562652B2 JP31361892A JP31361892A JP3562652B2 JP 3562652 B2 JP3562652 B2 JP 3562652B2 JP 31361892 A JP31361892 A JP 31361892A JP 31361892 A JP31361892 A JP 31361892A JP 3562652 B2 JP3562652 B2 JP 3562652B2
Authority
JP
Japan
Prior art keywords
embedded image
transport layer
substituted
group
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31361892A
Other languages
Japanese (ja)
Other versions
JPH05331459A (en
Inventor
仁 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Priority to JP31361892A priority Critical patent/JP3562652B2/en
Priority to US08/037,454 priority patent/US5393614A/en
Priority to EP19930302459 priority patent/EP0564224B1/en
Priority to DE1993610982 priority patent/DE69310982T2/en
Publication of JPH05331459A publication Critical patent/JPH05331459A/en
Application granted granted Critical
Publication of JP3562652B2 publication Critical patent/JP3562652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明はエレクトロルミネッセンス素子に関し、特に陽極、有機化合物からなる正孔輸送層、有機化合物からなる発光層、有機化合物からなる電子輸送層及び陰極が順に積層された有機エレクトロルミネッセンス素子に関する。
【0002】
【従来の技術】
この種の有機エレクトロルミネッセンス素子として、図1に示すように、陰極である金属電極1と陽極である透明電極2との間に、互いに積層された有機蛍光体薄膜(発光層)3及び有機正孔輸送層4が配された2層構造のものが知れている。また、図2に示すように、金属電極1と透明電極2との間に互いに積層された有機電子輸送層5、発光層3及び有機正孔輸送層4が配された3層構造のものも知れている。ここで、有機正孔輸送層4は陽極から正孔を注入させ易くする機能と電子をブロックする機能とを有し、有機電子輸送層5は陰極から電子を注入させ易くする機能を有している。
【0003】
これら有機エレクトロルミネッセンス素子において、透明電極2の外側にはガラス基板6が配されている。金属電極1から注入された電子と透明電極2から注入された正孔との再結合によって、励起子が生じ、この励起子が放射失活する過程で光を放ち、この光が透明電極2及びガラス板6を介して外部に放出される。
【0004】
【発明が解決しようとする課題】
しかしながら、比較的高い輝度で発光が得られる有機エレクトロルミネッセンス素子であっても、輝度について充分満足なものではなかった。
本発明は、上述した従来の要望を満たすべくなされたものであって、有機蛍光体を効率良く高輝度にて発光させることができる有機エレクトロルミネッセンス素子を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明によるエレクトロルミネッセンス素子は、陽極、有機化合物からなる正孔輸送層、有機化合物からなる発光層、有機化合物からなる電子輸送層及び陰極が順に積層された有機エレクトロルミネッセンス素子であって、前記電子輸送層は、前記発光層とは組成が異なりかつ前記発光層に接する下記化学式1で示されるフェナントロリン誘導体
【0006】
【化1】

Figure 0003562652
【0007】
(化学式1中、R1〜R8は、それぞれ独立に、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換アリール基、置換もしくは非置換アミノ基、ハロゲン原子、ニトロ基、シアノ基又は水酸基を表わす)からなることを特徴とする。本発明によるエレクトロルミネッセンス素子は、陽極、有機化合物からなる正孔輸送層、有機化合物からなる発光層、有機化合物からなる電子輸送層及び陰極が順に積層された有機エレクトロルミネッセンス素子であって、前記電子輸送層は、前記発光層とは組成が異なりかつ前記発光層に接する下記化学式83で示される1,7−フェナントロリン誘導体
【0008】
【化83】
Figure 0003562652
【0009】
(化学式83中、R1〜R8は、それぞれ独立に、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換アリール基、置換もしくは非置換アミノ基、ハロゲン原子、ニトロ基、シアノ基又は水酸基を表わす)からなることを特徴とする。本発明によるエレクトロルミネッセンス素子は、陽極、有機化合物からなる正孔輸送層、有機化合物からなる発光層、有機化合物からなる電子輸送層及び陰極が順に積層された有機エレクトロルミネッセンス素子であって、前記電子輸送層は、前記発光層とは組成が異なりかつ前記発光層に接する下記化学式84で示される4,7−フェナントロリン誘導体
【0010】
【化84】
Figure 0003562652
【0011】
(化学式84中、R1〜R8は、それぞれ独立に、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換アリール基、置換もしくは非置換アミノ基、ハロゲン原子、ニトロ基、シアノ基又は水酸基を表わす)からなることを特徴とする。本発明によるエレクトロルミネッセンス素子は、陽極、有機化合物からなる正孔輸送層、有機化合物からなる発光層、有機化合物からなる電子輸送層及び陰極が順に積層された有機エレクトロルミネッセンス素子であって、前記電子輸送層は、前記発光層とは組成が異なりかつ前記発光層に接する下記化学式87で示されるジベンゾフェナントロリンのジヒドロ体を骨格とするフェナントロリン誘導体
【0012】
【化87】
Figure 0003562652
【0013】
(化学式87中、R〜R10は、それぞれ独立に、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換アリール基、置換もしくは非置換アミノ基、ハロゲン原子、ニトロ基、シアノ基又は水酸基を表わす)からなることを特徴とする。
【0014】
【作用】
本発明によれば、効率良く高輝度で発光させることができる有機エレクトロルミネッセンス素子が得られる。
【0015】
【実施例】
以下、本発明を図に基づいて詳細に説明する。
本発明の有機エレクトロルミネッセンス素子は、図2に示した構造の有機エレクトロルミネッセンス素子と同様であって、図2に示すように、一対の金属陰極1と透明陽極2との間に電子輸送層5、発光層3及び正孔輸送層4を順に成膜した構造を有する。この場合、電極1,2については一方が透明であればよい。例えば陰極1には、アルミニウム、マグネシウム、インジウム、銀又は各々の合金等の仕事関数が小さな金属からなり厚さが約 100〜5000Å程度のものを用い得る。また、例えば陽極2には、インジウムすず酸化物(以下、ITOともいう)等の仕事関数の大きな導電性材料からなり厚さが1000〜3000Å程度で、又は金で厚さが 800〜1500Å程度のものを用い得る。なお、金を電極材料として用いた場合には、電極は半透明の状態となる。
【0016】
図2に示すように有機正孔輸送層4には、例えば下記化学式2のトリフェニルアミン誘導体、更に下記化学式3〜13のCTM(Carrier Transport Materials)として知られる化合物を用い得る。
【0017】
【化2】
Figure 0003562652
【0018】
【化3】
Figure 0003562652
【0019】
【化4】
Figure 0003562652
【0020】
【化5】
Figure 0003562652
【0021】
【化6】
Figure 0003562652
【0022】
【化7】
Figure 0003562652
【0023】
【化8】
Figure 0003562652
【0024】
【化9】
Figure 0003562652
【0025】
【化10】
Figure 0003562652
【0026】
【化11】
Figure 0003562652
【0027】
【化12】
Figure 0003562652
【0028】
【化13】
Figure 0003562652
【0029】
図2に示すように発光層3としては、下記化学式14〜16及び85で示されるテトラフェニルブタジエン化合物を含む蛍光体薄膜が好ましく用いられる。
【0030】
【化14】
Figure 0003562652
【0031】
【化15】
Figure 0003562652
【0032】
【化16】
Figure 0003562652
【0033】
【化85】
Figure 0003562652
【0034】
また、発光層3としては、さらに記化学式17〜25の化合物も用いられる。これらの発光層3の膜厚は1μm以下に設定される。
【0035】
【化17】
Figure 0003562652
【0036】
【化18】
Figure 0003562652
【0037】
【化19】
Figure 0003562652
【0038】
【化20】
Figure 0003562652
【0039】
【化21】
Figure 0003562652
【0040】
【化22】
Figure 0003562652
【0041】
【化23】
Figure 0003562652
【0042】
【化24】
Figure 0003562652
【0043】
【化25】
Figure 0003562652
【0044】
図2に示すように電子輸送層5としては、化学式1で示される一般式の化合物が用いられる。
【0045】
【化1】
Figure 0003562652
【0046】
(化学式1中、R〜Rは、それぞれ独立に、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換アリール基、置換もしくは非置換アミノ基、ハロゲン原子、ニトロ基、シアノ基又は水酸基を表わす)から形成される。
以下、本発明で用いられるフェナントロリン誘導体の具体例を化学式26〜82に示すが、本発明はこれに限定されるものではない。
【0047】
【化26】
Figure 0003562652
【0048】
【化27】
Figure 0003562652
【0049】
【化28】
Figure 0003562652
【0050】
【化29】
Figure 0003562652
【0051】
【化30】
Figure 0003562652
【0052】
【化31】
Figure 0003562652
【0053】
【化32】
Figure 0003562652
【0054】
【化33】
Figure 0003562652
【0055】
【化34】
Figure 0003562652
【0056】
【化35】
Figure 0003562652
【0057】
【化36】
Figure 0003562652
【0058】
【化37】
Figure 0003562652
【0059】
【化38】
Figure 0003562652
【0060】
【化39】
Figure 0003562652
【0061】
【化40】
Figure 0003562652
【0062】
【化41】
Figure 0003562652
【0063】
【化42】
Figure 0003562652
【0064】
【化43】
Figure 0003562652
【0065】
【化44】
Figure 0003562652
【0066】
【化45】
Figure 0003562652
【0067】
【化46】
Figure 0003562652
【0068】
【化47】
Figure 0003562652
【0069】
【化48】
Figure 0003562652
【0070】
【化49】
Figure 0003562652
【0071】
【化50】
Figure 0003562652
【0072】
【化51】
Figure 0003562652
【0073】
【化52】
Figure 0003562652
【0074】
【化53】
Figure 0003562652
【0075】
【化54】
Figure 0003562652
【0076】
【化55】
Figure 0003562652
【0077】
【化56】
Figure 0003562652
【0078】
【化57】
Figure 0003562652
【0079】
【化58】
Figure 0003562652
【0080】
【化59】
Figure 0003562652
【0081】
【化60】
Figure 0003562652
【0082】
【化61】
Figure 0003562652
【0083】
【化62】
Figure 0003562652
【0084】
【化63】
Figure 0003562652
【0085】
【化64】
Figure 0003562652
【0086】
【化65】
Figure 0003562652
【0087】
【化66】
Figure 0003562652
【0088】
【化67】
Figure 0003562652
【0089】
【化68】
Figure 0003562652
【0090】
【化69】
Figure 0003562652
【0091】
【化70】
Figure 0003562652
【0092】
【化71】
Figure 0003562652
【0093】
【化72】
Figure 0003562652
【0094】
【化73】
Figure 0003562652
【0095】
【化74】
Figure 0003562652
【0096】
【化75】
Figure 0003562652
【0097】
【化76】
Figure 0003562652
【0098】
【化77】
Figure 0003562652
【0099】
【化78】
Figure 0003562652
【0100】
【化79】
Figure 0003562652
【0101】
【化80】
Figure 0003562652
【0102】
【化81】
Figure 0003562652
【0103】
【化82】
Figure 0003562652
【0104】
また、上記実施例では、有機エレクトロルミネッセンス素子における電子輸送層5は、上記化学式1で示される1,10−フェナントロリンを骨格とする誘導体から形成されているが、下記化学式83又は84で示される1,7−フェナントロリン又は4,7−フェナントロリンを骨格とするフェナントロリン誘導体から形成された薄膜でもよい。
【0105】
【化83】
Figure 0003562652
【0106】
【化84】
Figure 0003562652
【0107】
化学式83及び84中、R〜Rは、それぞれ独立に、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換アリール基、置換もしくは非置換アミノ基、ハロゲン原子、ニトロ基、シアノ基又は水酸基を表わす。
さらにまた、1,7−フェナントロリン又は4,7−フェナントロリンを骨格とするフェナントロリン誘導体の他に、有機エレクトロルミネッセンス素子における電子輸送層5は、下記化学式87で示されるジベンゾフェナントロリンのジヒドロ体を骨格とするフェナントロリン誘導体から形成された薄膜でもよい。
【0108】
【化87】
Figure 0003562652
【0109】
化学式87中、R〜R10は、それぞれ独立に、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換アリール基、置換もしくは非置換アミノ基、ハロゲン原子、ニトロ基、シアノ基又は水酸基を表わす。ジベンゾフェナントロリンのジヒドロ体の誘導体の具体例を化学式88〜91に示すが、本発明はこれに限定されるものではない。
【0110】
【化88】
Figure 0003562652
【0111】
【化89】
Figure 0003562652
【0112】
【化90】
Figure 0003562652
【0113】
【化91】
Figure 0003562652
【0114】
[実施例1]
膜厚1500ÅのITOの薄膜が形成されたガラス基板を、エタノール中で5分間超音波洗浄した後、風乾した。このガラス基板上に、化学式2で示される化合物
【0115】
【化2】
Figure 0003562652
【0116】
をタンタル製ボートから蒸着速度3Å/秒で 500Åの膜厚に成膜し、正孔輸送層を形成した。蒸着時の真空度は5×10−6Torrであった。
次に、この正孔輸送層上に発光物質として化学式15で示されるテトラフェニルブタジエン誘導体
【0117】
【化15】
Figure 0003562652
【0118】
を蒸着速度4Å/秒で 200Åの膜厚に成膜し、発光層を形成した。
次に、この発光層上に化学式39で示されるフェナントロリン化合物
【0119】
【化39】
Figure 0003562652
【0120】
を蒸着速度3Å/秒で 500Åの膜厚に成膜し、電子輸送層を形成した。
最後に、この電子輸送層上に膜厚1500ÅのMg−Ag合金の金属層を各々別のボートからMgを蒸着速度10Å/秒で、Agを蒸着速度1Å/秒で成膜し、電極層を形成して、有機エレクトロルミネッセンス素子を作成した。
この様にして作成した有機エレクトロルミネッセンス素子のITO薄膜を陽極、Mg−Ag合金層を陰極として電圧を印加したところ、5Vで輝度25cd/mの青色発光を得た。このときの発光効率は0.7 lm/Wであった。
【0121】
[実施例2]
電子輸送層に化学式40で示されるフェナントロリン化合物を用いた以外は、実施例1と同様な方法で有機エレクトロルミネッセンス素子を作成した。
【0122】
【化40】
Figure 0003562652
【0123】
この素子のITO薄膜を陽極、Mg−Ag合金層を陰極として電圧を印加したところ、12Vで輝度47cd/mの青色発光を得た。このときの発光効率は0.3 lm/Wであった。
[実施例3]
発光層に化学式14で示されるテトラフェニルブタジエン誘導体を用いた以外は実施例1と同様な方法で有機エレクトロルミネッセンス素子を作成した。
【0124】
【化14】
Figure 0003562652
【0125】
この素子のITO薄膜を陽極、Mg−Ag合金層を陰極として電圧を印加したところ、7Vで輝度72cd/mの青色発光を得た。このときの発光効率は0.4 lm/Wであった。
[実施例4]
発光層に化学式85で示される1,1,4,4−テトラフェニル−1,3−ブタジエンを用いた以外は、実施例1と同様な方法で有機エレクトロルミネッセンス素子を作成した。
【0126】
【化85】
Figure 0003562652
【0127】
この素子のITO薄膜を陽極、Mg−Ag合金層を陰極として電圧を印加したところ、6Vで輝度63cd/mの青色発光を得た。このときの発光効率は1.5lm/Wであった。さらに、この素子に13Vの電圧を印加すると、輝度5800cd/mの青色発光が得られた。
[実施例5]
電子輸送層上の陰極として膜厚800ÅのLi濃度0.2wt%のAl−Li合金の金属層を蒸着速度10Å/秒で形成た以外は実施例4と同様な方法で有機エレクトロルミネッセンス素子を作成した。
【0128】
この素子のITO薄膜を陽極、Al−Li合金層を陰極として電圧を印加したところ、5Vで輝度82cd/mの青色発光を得た。このときの発光効率は2.4 lm/Wであった。さらに、この素子に12Vの電圧を印加すると、輝度9700cd/mの青色発光が得られた。
[比較例1]
電子輸送層を形成しない以外は実施例1と同様な方法で比較例1の有機エレクトロルミネッセンス素子を作成した。
【0129】
この素子のITO薄膜を陽極、Mg−Ag合金層を陽極として電圧を印加したところ12Vで輝度24cd/mの発光を得た。このときの発光効率は0.02 lm/Wで、実施例に比べ1桁小さいものであった。
[実施例6]
実施例4の有機エレクトロルミネッセンス素子を真空中で輝度40cd/mで発光させ一定電流値で保持したところ輝度の半減期は4時間45分であった。
【0130】
[比較例2]
従来から電子輸送材料として最も優れているもののひとつとされている化学式86で示されるt−Bu−PBD{2−(4´−tert−butylphenyl)−5−(4´´−biphenyl)−1,3,4−oxadiazole}を電子輸送層として用いた以外は、実施例4と同様な方法で比較例2の有機エレクトロルミネッセンス素子を作成した。
【0131】
【化86】
Figure 0003562652
【0132】
この素子のITO薄膜を陽極、Mg−Ag合金層を陽極として電圧を印加したところ7Vで輝度29cd/m、発光効率1.4 lm/Wの青色発光を得たが、この素子に13Vの電圧印加した時には輝度1300cd/mの発光しか得られなかった。これは、実施例4に比べ四分の一以下の最大輝度である。
さらにこの素子を真空中で輝度40cd/mで発光させ一定電流値で保持したところ輝度の半減期は4分であり、図3に示すように実施例6に比して著しく短かった。
【0133】
[実施例7]
電子輸送層に化学式40で示されるフェナントロリン化合物を用いた以外は、実施例4と同様な方法で有機エレクトロルミネッセンス素子を作成した。
【0134】
【化40】
Figure 0003562652
【0135】
この素子を真空中で発光させ一定電流値で保持したところ、初期輝度200cd/mの青色発光からの輝度の半減期は4時間45分であり、初期輝度40cd/mの青色発光からの輝度の半減期は35時間であり、初期輝度10cd/mの青色発光からの輝度の半減期は100時間であり、この素子は比較例2に比して輝度の半減期が著しく延びた。
【0136】
[実施例8]
電子輸送層に化学式88で示されるジベンゾフェナントロリンのジヒドロ体の誘導体を用いた以外は、実施例1と同様な方法で有機エレクトロルミネッセンス素子を作成した。
【0137】
【化88】
Figure 0003562652
【0138】
この素子を真空中で初期輝度40cd/mで青色発光させ一定電流値で保持したところ、輝度の半減期は33時間であり、比較例2に比して輝度の半減期が著しく延びた。
【0139】
【発明の効果】
以上説明したように、本発明による有機エレクトロルミネッセンス素子においては、有機化合物からなり互いに積層された電子輸送層、発光層及び正孔輸送層が陰極及び陽極間に配された構成の有機エレクトロルミネッセンス素子であって、電子輸送層が上記のフェナントロリン誘導体を含む薄膜からなるので、効率良く高輝度で長期間に亘って発光させることができる。
【図面の簡単な説明】
【図1】有機エレクトロルミネッセンス素子の概略構造図である。
【図2】有機エレクトロルミネッセンス素子の概略構造図である。
【図3】実施例6及び比較例2の有機エレクトロルミネッセンス素子の輝度の経時変化を示すグラフである。
【符号の説明】
1 金属電極(陰極)
2 透明電極(陽極)
3 発光層
4 有機正孔輸送層
5 有機電子輸送層
6 ガラス基板[0001]
[Industrial applications]
The present invention relates to an electroluminescent device, and more particularly, to an organic electroluminescent device in which an anode, a hole transport layer made of an organic compound, a light emitting layer made of an organic compound, an electron transport layer made of an organic compound, and a cathode are sequentially stacked.
[0002]
[Prior art]
As this type of organic electroluminescent device, as shown in FIG. 1, an organic phosphor thin film (light emitting layer) 3 and an organic positive electrode layer laminated together between a metal electrode 1 as a cathode and a transparent electrode 2 as an anode. A two-layer structure having a hole transport layer 4 is known. As shown in FIG. 2, a three-layer structure in which an organic electron transporting layer 5, a light emitting layer 3, and an organic hole transporting layer 4 are laminated between a metal electrode 1 and a transparent electrode 2 is also available. Is known. Here, the organic hole transport layer 4 has a function of facilitating injection of holes from the anode and a function of blocking electrons, and the organic electron transport layer 5 has a function of facilitating injection of electrons from the cathode. I have.
[0003]
In these organic electroluminescent elements, a glass substrate 6 is arranged outside the transparent electrode 2. The recombination of the electrons injected from the metal electrode 1 and the holes injected from the transparent electrode 2 generates excitons, and emits light in the process of radiation deactivation of the excitons, and this light is It is released to the outside via the glass plate 6.
[0004]
[Problems to be solved by the invention]
However, even an organic electroluminescence device capable of emitting light with relatively high luminance has not been sufficiently satisfactory in luminance.
The present invention has been made to satisfy the above-described conventional needs, and has as its object to provide an organic electroluminescence device capable of efficiently emitting an organic phosphor with high luminance.
[0005]
[Means for Solving the Problems]
The electroluminescent device according to the present invention is an organic electroluminescent device in which an anode, a hole transport layer made of an organic compound, a light emitting layer made of an organic compound, an electron transport layer made of an organic compound, and a cathode are stacked in this order. The transport layer has a composition different from that of the light emitting layer and is in contact with the light emitting layer, and is a phenanthroline derivative represented by the following chemical formula 1.
Embedded image
Figure 0003562652
[0007]
(In Chemical Formula 1, R 1 to R 8 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, a halogen atom, a nitro group, a cyano group, or a hydroxyl group. ). The electroluminescent device according to the present invention is an organic electroluminescent device in which an anode, a hole transport layer made of an organic compound, a light emitting layer made of an organic compound, an electron transport layer made of an organic compound, and a cathode are stacked in this order. The transport layer has a different composition from the light emitting layer and is in contact with the light emitting layer, and is a 1,7-phenanthroline derivative represented by the following chemical formula 83.
Embedded image
Figure 0003562652
[0009]
(In Chemical Formula 83, R 1 to R 8 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, a halogen atom, a nitro group, a cyano group, or a hydroxyl group. ). The electroluminescent device according to the present invention is an organic electroluminescent device in which an anode, a hole transport layer made of an organic compound, a light emitting layer made of an organic compound, an electron transport layer made of an organic compound, and a cathode are stacked in this order. The transport layer has a composition different from that of the light emitting layer and is in contact with the light emitting layer, and is a 4,7-phenanthroline derivative represented by the following chemical formula 84:
Embedded image
Figure 0003562652
[0011]
(In the chemical formula 84, R 1 to R 8 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, a halogen atom, a nitro group, a cyano group, or a hydroxyl group. ). The electroluminescent device according to the present invention is an organic electroluminescent device in which an anode, a hole transport layer made of an organic compound, a light emitting layer made of an organic compound, an electron transport layer made of an organic compound, and a cathode are stacked in this order. The transport layer has a composition different from that of the light emitting layer and is in contact with the light emitting layer, and is a phenanthroline derivative having a skeleton of a dihydro form of dibenzophenanthroline represented by the following chemical formula 87.
Embedded image
Figure 0003562652
[0013]
(In Chemical Formula 87, R 1 to R 10 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, a halogen atom, a nitro group, a cyano group, or a hydroxyl group. ).
[0014]
[Action]
According to the present invention, an organic electroluminescence element capable of efficiently emitting light with high luminance can be obtained.
[0015]
【Example】
Hereinafter, the present invention will be described in detail with reference to the drawings.
The organic electroluminescent device of the present invention is the same as the organic electroluminescent device having the structure shown in FIG. 2, and has an electron transport layer 5 between a pair of metal cathodes 1 and a transparent anode 2 as shown in FIG. , A light emitting layer 3 and a hole transport layer 4 in this order. In this case, one of the electrodes 1 and 2 only needs to be transparent. For example, the cathode 1 may be made of a metal having a small work function, such as aluminum, magnesium, indium, silver, or an alloy thereof, and having a thickness of about 100 to 5000 °. Further, for example, the anode 2 is made of a conductive material having a large work function such as indium tin oxide (hereinafter also referred to as ITO) and has a thickness of about 1000 to 3000 ° or gold of about 800 to 1500 °. Can be used. When gold is used as an electrode material, the electrode is in a translucent state.
[0016]
As shown in FIG. 2, for example, a triphenylamine derivative represented by the following chemical formula 2 and a compound known as CTM (Carrier Transport Materials) represented by the following chemical formulas 3 to 13 can be used for the organic hole transport layer 4.
[0017]
Embedded image
Figure 0003562652
[0018]
Embedded image
Figure 0003562652
[0019]
Embedded image
Figure 0003562652
[0020]
Embedded image
Figure 0003562652
[0021]
Embedded image
Figure 0003562652
[0022]
Embedded image
Figure 0003562652
[0023]
Embedded image
Figure 0003562652
[0024]
Embedded image
Figure 0003562652
[0025]
Embedded image
Figure 0003562652
[0026]
Embedded image
Figure 0003562652
[0027]
Embedded image
Figure 0003562652
[0028]
Embedded image
Figure 0003562652
[0029]
As shown in FIG. 2, as the light emitting layer 3, a phosphor thin film containing a tetraphenylbutadiene compound represented by the following chemical formulas 14 to 16 and 85 is preferably used.
[0030]
Embedded image
Figure 0003562652
[0031]
Embedded image
Figure 0003562652
[0032]
Embedded image
Figure 0003562652
[0033]
Embedded image
Figure 0003562652
[0034]
Further, as the light emitting layer 3, compounds of the above formulas 17 to 25 are also used. The thickness of these light emitting layers 3 is set to 1 μm or less.
[0035]
Embedded image
Figure 0003562652
[0036]
Embedded image
Figure 0003562652
[0037]
Embedded image
Figure 0003562652
[0038]
Embedded image
Figure 0003562652
[0039]
Embedded image
Figure 0003562652
[0040]
Embedded image
Figure 0003562652
[0041]
Embedded image
Figure 0003562652
[0042]
Embedded image
Figure 0003562652
[0043]
Embedded image
Figure 0003562652
[0044]
As shown in FIG. 2, as the electron transporting layer 5, a compound represented by the general formula 1 is used.
[0045]
Embedded image
Figure 0003562652
[0046]
(In Chemical Formula 1, R 1 to R 8 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, a halogen atom, a nitro group, a cyano group, or a hydroxyl group. ).
Hereinafter, specific examples of the phenanthroline derivative used in the present invention are shown in Chemical Formulas 26 to 82, but the present invention is not limited thereto.
[0047]
Embedded image
Figure 0003562652
[0048]
Embedded image
Figure 0003562652
[0049]
Embedded image
Figure 0003562652
[0050]
Embedded image
Figure 0003562652
[0051]
Embedded image
Figure 0003562652
[0052]
Embedded image
Figure 0003562652
[0053]
Embedded image
Figure 0003562652
[0054]
Embedded image
Figure 0003562652
[0055]
Embedded image
Figure 0003562652
[0056]
Embedded image
Figure 0003562652
[0057]
Embedded image
Figure 0003562652
[0058]
Embedded image
Figure 0003562652
[0059]
Embedded image
Figure 0003562652
[0060]
Embedded image
Figure 0003562652
[0061]
Embedded image
Figure 0003562652
[0062]
Embedded image
Figure 0003562652
[0063]
Embedded image
Figure 0003562652
[0064]
Embedded image
Figure 0003562652
[0065]
Embedded image
Figure 0003562652
[0066]
Embedded image
Figure 0003562652
[0067]
Embedded image
Figure 0003562652
[0068]
Embedded image
Figure 0003562652
[0069]
Embedded image
Figure 0003562652
[0070]
Embedded image
Figure 0003562652
[0071]
Embedded image
Figure 0003562652
[0072]
Embedded image
Figure 0003562652
[0073]
Embedded image
Figure 0003562652
[0074]
Embedded image
Figure 0003562652
[0075]
Embedded image
Figure 0003562652
[0076]
Embedded image
Figure 0003562652
[0077]
Embedded image
Figure 0003562652
[0078]
Embedded image
Figure 0003562652
[0079]
Embedded image
Figure 0003562652
[0080]
Embedded image
Figure 0003562652
[0081]
Embedded image
Figure 0003562652
[0082]
Embedded image
Figure 0003562652
[0083]
Embedded image
Figure 0003562652
[0084]
Embedded image
Figure 0003562652
[0085]
Embedded image
Figure 0003562652
[0086]
Embedded image
Figure 0003562652
[0087]
Embedded image
Figure 0003562652
[0088]
Embedded image
Figure 0003562652
[0089]
Embedded image
Figure 0003562652
[0090]
Embedded image
Figure 0003562652
[0091]
Embedded image
Figure 0003562652
[0092]
Embedded image
Figure 0003562652
[0093]
Embedded image
Figure 0003562652
[0094]
Embedded image
Figure 0003562652
[0095]
Embedded image
Figure 0003562652
[0096]
Embedded image
Figure 0003562652
[0097]
Embedded image
Figure 0003562652
[0098]
Embedded image
Figure 0003562652
[0099]
Embedded image
Figure 0003562652
[0100]
Embedded image
Figure 0003562652
[0101]
Embedded image
Figure 0003562652
[0102]
Embedded image
Figure 0003562652
[0103]
Embedded image
Figure 0003562652
[0104]
In the above embodiment, the electron transport layer 5 in the organic electroluminescence device is formed from the derivative having the skeleton of 1,10-phenanthroline represented by the above chemical formula 1, but the electron transport layer 5 represented by the following chemical formula 83 or 84 is used. A thin film formed from a phenanthroline derivative having a skeleton of 4,7-phenanthroline or 4,7-phenanthroline may be used.
[0105]
Embedded image
Figure 0003562652
[0106]
Embedded image
Figure 0003562652
[0107]
In Chemical Formulas 83 and 84, R 1 to R 8 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, a halogen atom, a nitro group, a cyano group, or Represents a hydroxyl group.
Furthermore, in addition to the phenanthroline derivative having 1,7-phenanthroline or 4,7-phenanthroline as a skeleton, the electron transport layer 5 in the organic electroluminescence device has a dihydro dibenzophenanthroline represented by the following chemical formula 87 as a skeleton. A thin film formed from a phenanthroline derivative may be used.
[0108]
Embedded image
Figure 0003562652
[0109]
In Chemical Formula 87, R 1 to R 10 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, a halogen atom, a nitro group, a cyano group, or a hydroxyl group. Express. Specific examples of the dihydro derivative of dibenzophenanthroline are shown in Chemical Formulas 88 to 91, but the present invention is not limited thereto.
[0110]
Embedded image
Figure 0003562652
[0111]
Embedded image
Figure 0003562652
[0112]
Embedded image
Figure 0003562652
[0113]
Embedded image
Figure 0003562652
[0114]
[Example 1]
The glass substrate on which a thin film of ITO having a thickness of 1500 ° was formed was ultrasonically washed in ethanol for 5 minutes, and then air-dried. On this glass substrate, a compound represented by the chemical formula 2
Embedded image
Figure 0003562652
[0116]
Was deposited from a tantalum boat at a deposition rate of 3 ° / sec to a film thickness of 500 ° to form a hole transport layer. The degree of vacuum at the time of vapor deposition was 5 × 10 −6 Torr.
Next, a tetraphenylbutadiene derivative represented by the chemical formula 15 as a light emitting substance is formed on the hole transport layer.
Embedded image
Figure 0003562652
[0118]
Was formed at a deposition rate of 4 ° / sec to a thickness of 200 ° to form a light emitting layer.
Next, a phenanthroline compound represented by the chemical formula 39 was formed on the light emitting layer.
Embedded image
Figure 0003562652
[0120]
Was formed into a film having a thickness of 500 ° at a deposition rate of 3 ° / sec to form an electron transport layer.
Finally, a 1500-.ANG.-thick Mg-Ag alloy metal layer was formed on the electron transport layer from a separate boat by depositing Mg at a deposition rate of 10 DEG / sec and Ag at a deposition rate of 1 DEG / sec. The organic electroluminescent device was formed.
When a voltage was applied using the ITO thin film of the organic electroluminescent element thus prepared as an anode and the Mg-Ag alloy layer as a cathode, blue light emission with a luminance of 25 cd / m 2 at 5 V was obtained. The luminous efficiency at this time was 0.7 lm / W.
[0121]
[Example 2]
An organic electroluminescent device was prepared in the same manner as in Example 1, except that the phenanthroline compound represented by the chemical formula 40 was used for the electron transport layer.
[0122]
Embedded image
Figure 0003562652
[0123]
When voltage was applied using the ITO thin film of the device as an anode and the Mg-Ag alloy layer as a cathode, blue light emission with a luminance of 47 cd / m 2 at 12 V was obtained. The luminous efficiency at this time was 0.3 lm / W.
[Example 3]
An organic electroluminescent device was prepared in the same manner as in Example 1, except that the tetraphenylbutadiene derivative represented by Chemical Formula 14 was used for the light emitting layer.
[0124]
Embedded image
Figure 0003562652
[0125]
When voltage was applied using the ITO thin film of the device as an anode and the Mg-Ag alloy layer as a cathode, blue light emission with a luminance of 72 cd / m 2 at 7 V was obtained. The luminous efficiency at this time was 0.4 lm / W.
[Example 4]
An organic electroluminescent device was prepared in the same manner as in Example 1, except that 1,1,4,4-tetraphenyl-1,3-butadiene represented by Chemical Formula 85 was used for the light emitting layer.
[0126]
Embedded image
Figure 0003562652
[0127]
When voltage was applied using the ITO thin film of the device as an anode and the Mg-Ag alloy layer as a cathode, blue light emission with a luminance of 63 cd / m 2 at 6 V was obtained. The luminous efficiency at this time was 1.5 lm / W. When a voltage of 13 V was applied to this device, blue light emission with a luminance of 5800 cd / m 2 was obtained.
[Example 5]
An organic electroluminescent device was prepared in the same manner as in Example 4, except that a metal layer of an Al—Li alloy having a thickness of 800% and a Li concentration of 0.2 wt% was formed at a deposition rate of 10 ° / sec as a cathode on the electron transport layer. did.
[0128]
When voltage was applied using the ITO thin film of the device as an anode and the Al-Li alloy layer as a cathode, blue light emission with a luminance of 82 cd / m 2 was obtained at 5 V. The luminous efficiency at this time was 2.4 lm / W. Further, when a voltage of 12 V was applied to this element, blue light emission with a luminance of 9700 cd / m 2 was obtained.
[Comparative Example 1]
An organic electroluminescent device of Comparative Example 1 was prepared in the same manner as in Example 1 except that the electron transport layer was not formed.
[0129]
When voltage was applied using the ITO thin film as the anode and the Mg-Ag alloy layer as the anode, light emission of 24 cd / m 2 at 12 V was obtained. At this time, the luminous efficiency was 0.02 lm / W, which was one digit smaller than that of the example.
[Example 6]
When the organic electroluminescent device of Example 4 emitted light at a luminance of 40 cd / m 2 in vacuum and was kept at a constant current value, the half-life of the luminance was 4 hours and 45 minutes.
[0130]
[Comparative Example 2]
T-Bu-PBD {2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1, represented by chemical formula 86, which has conventionally been regarded as one of the most excellent electron transport materials. An organic electroluminescent device of Comparative Example 2 was produced in the same manner as in Example 4, except that 3,4-oxadazole * was used as the electron transporting layer.
[0131]
Embedded image
Figure 0003562652
[0132]
When voltage was applied using the ITO thin film of the device as an anode and the Mg-Ag alloy layer as an anode, blue light emission with a luminance of 29 cd / m 2 and a luminous efficiency of 1.4 lm / W was obtained at 7 V. When voltage was applied, only light emission with a luminance of 1300 cd / m 2 was obtained. This is a maximum luminance of one-fourth or less as compared with the fourth embodiment.
Further, when this device was made to emit light at a luminance of 40 cd / m 2 in a vacuum and kept at a constant current value, the half-life of the luminance was 4 minutes, which was significantly shorter than that of Example 6 as shown in FIG.
[0133]
[Example 7]
An organic electroluminescence device was prepared in the same manner as in Example 4, except that the phenanthroline compound represented by the chemical formula 40 was used for the electron transport layer.
[0134]
Embedded image
Figure 0003562652
[0135]
When this device was made to emit light in a vacuum and kept at a constant current value, the half-life of the luminance from blue light emission with an initial luminance of 200 cd / m 2 was 4 hours and 45 minutes, and the half life from the blue light emission with an initial luminance of 40 cd / m 2 was The half-life of the luminance was 35 hours, and the half-life of the luminance from blue light emission having an initial luminance of 10 cd / m 2 was 100 hours. The half-life of the luminance of this device was significantly increased as compared with Comparative Example 2.
[0136]
Example 8
An organic electroluminescent device was prepared in the same manner as in Example 1 except that a dihydrophenbenzophenanthroline derivative represented by the chemical formula 88 was used for the electron transport layer.
[0137]
Embedded image
Figure 0003562652
[0138]
When this device was made to emit blue light at an initial luminance of 40 cd / m 2 in a vacuum and kept at a constant current value, the half-life of the luminance was 33 hours, and the half-life of the luminance was significantly extended as compared with Comparative Example 2.
[0139]
【The invention's effect】
As described above, in the organic electroluminescent device according to the present invention, an organic electroluminescent device having a configuration in which an electron transport layer, a light emitting layer, and a hole transport layer, which are made of an organic compound and are stacked on each other, is disposed between a cathode and an anode. In addition, since the electron transport layer is formed of a thin film containing the phenanthroline derivative, light can be efficiently emitted with high luminance for a long period of time.
[Brief description of the drawings]
FIG. 1 is a schematic structural diagram of an organic electroluminescence element.
FIG. 2 is a schematic structural view of an organic electroluminescence element.
FIG. 3 is a graph showing a change over time in luminance of the organic electroluminescence devices of Example 6 and Comparative Example 2.
[Explanation of symbols]
1 metal electrode (cathode)
2 Transparent electrode (anode)
3 light emitting layer 4 organic hole transport layer 5 organic electron transport layer 6 glass substrate

Claims (4)

陽極、有機化合物からなる正孔輸送層、有機化合物からなる発光層、有機化合物からなる電子輸送層及び陰極が順に積層された有機エレクトロルミネッセンス素子であって、前記電子輸送層は、前記発光層とは組成が異なりかつ前記発光層に接する下記化学式1で示されるフェナントロリン誘導体
Figure 0003562652
(化学式1中、R1〜R8は、それぞれ独立に、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換アリール基、置換もしくは非置換アミノ基、ハロゲン原子、ニトロ基、シアノ基又は水酸基を表わす)からなることを特徴とする有機エレクトロルミネッセンス素子。
An anode, a hole transport layer made of an organic compound, a light emitting layer made of an organic compound, an organic electroluminescent element in which an electron transport layer made of an organic compound and a cathode are sequentially stacked, wherein the electron transport layer has the light emitting layer and Is a phenanthroline derivative represented by the following chemical formula 1 having a different composition and in contact with the light emitting layer:
Figure 0003562652
(In Chemical Formula 1, R 1 to R 8 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, a halogen atom, a nitro group, a cyano group, or a hydroxyl group. Wherein the organic electroluminescent device comprises:
陽極、有機化合物からなる正孔輸送層、有機化合物からなる発光層、有機化合物からなる電子輸送層及び陰極が順に積層された有機エレクトロルミネッセンス素子であって、前記電子輸送層は、前記発光層とは組成が異なりかつ前記発光層に接する下記化学式83で示される1,7−フェナントロリン誘導体
Figure 0003562652
(化学式83中、R1〜R8は、それぞれ独立に、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換アリール基、置換もしくは非置換アミノ基、ハロゲン原子、ニトロ基、シアノ基又は水酸基を表わす)からなることを特徴とする有機エレクトロルミネッセンス素子。
An anode, a hole transport layer made of an organic compound, a light emitting layer made of an organic compound, an organic electroluminescent element in which an electron transport layer made of an organic compound and a cathode are sequentially stacked, wherein the electron transport layer has the light emitting layer and Is a 1,7-phenanthroline derivative having a different composition and in contact with the light emitting layer, represented by the following chemical formula 83:
Figure 0003562652
(In Chemical Formula 83, R 1 to R 8 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, a halogen atom, a nitro group, a cyano group, or a hydroxyl group. Wherein the organic electroluminescent device comprises:
陽極、有機化合物からなる正孔輸送層、有機化合物からなる発光層、有機化合物からなる電子輸送層及び陰極が順に積層された有機エレクトロルミネッセンス素子であって、前記電子輸送層は、前記発光層とは組成が異なりかつ前記発光層に接する下記化学式84で示される4,7−フェナントロリン誘導体
Figure 0003562652
(化学式84中、R1〜R8は、それぞれ独立に、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換アリール基、置換もしくは非置換アミノ基、ハロゲン原子、ニトロ基、シアノ基又は水酸基を表わす)からなることを特徴とする有機エレクトロルミネッセンス素子。
An anode, a hole transport layer made of an organic compound, a light emitting layer made of an organic compound, an organic electroluminescent element in which an electron transport layer made of an organic compound and a cathode are sequentially stacked, wherein the electron transport layer has the light emitting layer and Is a 4,7-phenanthroline derivative having a different composition and in contact with the light emitting layer, represented by the following chemical formula 84:
Figure 0003562652
(In the chemical formula 84, R 1 to R 8 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, a halogen atom, a nitro group, a cyano group, or a hydroxyl group. Wherein the organic electroluminescent device comprises:
陽極、有機化合物からなる正孔輸送層、有機化合物からなる発光層、有機化合物からなる電子輸送層及び陰極が順に積層された有機エレクトロルミネッセンス素子であって、前記電子輸送層が化学式87で示されるジベンゾフェナントロリンのジヒドロ体を骨格とするフェナントロリン誘導体
Figure 0003562652
(化学式87中、R1〜R10は、それぞれ独立に、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換アリール基、置換もしくは非置換アミノ基、ハロゲン原子、ニトロ基、シアノ基又は水酸基を表わす)からなることを特徴とする有機エレクトロルミネッセンス素子。
An organic electroluminescent device in which an anode, a hole transport layer made of an organic compound, a light emitting layer made of an organic compound, an electron transport layer made of an organic compound, and a cathode are sequentially stacked, wherein the electron transport layer is represented by a chemical formula 87. Phenanthroline derivatives based on the dihydro form of dibenzophenanthroline
Figure 0003562652
(In formula 87, R 1 to R 10 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, a halogen atom, a nitro group, a cyano group, or a hydroxyl group. Wherein the organic electroluminescent device comprises:
JP31361892A 1992-04-03 1992-11-24 Organic electroluminescence device Expired - Fee Related JP3562652B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP31361892A JP3562652B2 (en) 1992-04-03 1992-11-24 Organic electroluminescence device
US08/037,454 US5393614A (en) 1992-04-03 1993-03-26 Organic electroluminescence device
EP19930302459 EP0564224B1 (en) 1992-04-03 1993-03-30 Organic electroluminescene device
DE1993610982 DE69310982T2 (en) 1992-04-03 1993-03-30 Organic electroluminescent device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-82197 1992-04-03
JP8219792 1992-04-03
JP31361892A JP3562652B2 (en) 1992-04-03 1992-11-24 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JPH05331459A JPH05331459A (en) 1993-12-14
JP3562652B2 true JP3562652B2 (en) 2004-09-08

Family

ID=13767705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31361892A Expired - Fee Related JP3562652B2 (en) 1992-04-03 1992-11-24 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP3562652B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1993154A1 (en) 2007-05-16 2008-11-19 Yamagata Promotional Organization for Industrial Technology Electron transporting materials and organic light-emitting devices therewith
US7834346B2 (en) 2005-08-05 2010-11-16 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescence device making use of the same

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079297A (en) * 1996-07-09 1998-03-24 Sony Corp Electroluminescent element
JP3774897B2 (en) * 1997-06-03 2006-05-17 ソニー株式会社 Organic electroluminescence device
JPH11204259A (en) * 1998-01-09 1999-07-30 Sony Corp Electroluminescence element
JP3852509B2 (en) * 1998-01-09 2006-11-29 ソニー株式会社 Electroluminescent device and manufacturing method thereof
JP4210872B2 (en) * 1998-01-09 2009-01-21 ソニー株式会社 Electroluminescent device and manufacturing method thereof
JP4003299B2 (en) * 1998-07-06 2007-11-07 三菱化学株式会社 Organic electroluminescence device
JP4876311B2 (en) * 2000-01-14 2012-02-15 東レ株式会社 Light emitting element
US6639357B1 (en) * 2000-02-28 2003-10-28 The Trustees Of Princeton University High efficiency transparent organic light emitting devices
KR20080041754A (en) * 2000-11-24 2008-05-13 도레이 가부시끼가이샤 Luminescent element material and luminescent element comprising the same
KR100495407B1 (en) * 2001-08-20 2005-06-14 티디케이가부시기가이샤 Organic EL Device and Preparation Method
JP5002758B2 (en) * 2002-03-11 2012-08-15 双葉電子工業株式会社 Organic EL device
KR100490539B1 (en) * 2002-09-19 2005-05-17 삼성에스디아이 주식회사 Organic electroluminescence device and manufacturing method thereof
US7179542B2 (en) 2003-05-20 2007-02-20 Canon Kabushiki Kaisha Thiazole- and imidazole-fused phenanthroline molecules in organic light-emitting devices
EP2592905B1 (en) 2003-07-31 2014-11-12 Mitsubishi Chemical Corporation Compound, charge transporting material and organic electroluminescent element
US8188315B2 (en) 2004-04-02 2012-05-29 Samsung Mobile Display Co., Ltd. Organic light emitting device and flat panel display device comprising the same
JP4896451B2 (en) * 2004-07-07 2012-03-14 株式会社半導体エネルギー研究所 Phenanthroline derivative, light emitting element and light emitting device using the same
CN1980928B (en) * 2004-07-07 2012-09-05 株式会社半导体能源研究所 Phenanthroline derivative and light emitting element and light emitting device using the same
JP5339725B2 (en) * 2004-11-24 2013-11-13 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photosensitive optoelectronic devices with phenanthroline exciton blocking layers
JP2006151866A (en) 2004-11-29 2006-06-15 Canon Inc Phenanthroline compound and light-emitting element
JP2007157753A (en) * 2004-12-01 2007-06-21 Semiconductor Energy Lab Co Ltd Light emitting element, light emitting device and electronic apparatus
EP1820801B1 (en) 2004-12-10 2015-04-01 Pioneer Corporation Organic compound, charge-transporting material, and organic electroluminescent element
JP4852252B2 (en) * 2005-03-02 2012-01-11 ケミプロ化成株式会社 1,10-phenanthroline derivative, process for producing the same, and organic electroluminescent device containing the same
JP5261887B2 (en) 2005-05-17 2013-08-14 三菱化学株式会社 Monoamine compound, charge transport material, and organic electroluminescence device
JP4865258B2 (en) 2005-06-21 2012-02-01 キヤノン株式会社 1,8-naphthyridine compound and organic light-emitting device using the same
JP4843321B2 (en) * 2006-01-31 2011-12-21 Jnc株式会社 Coumarin compound, material for light emitting device, and organic electroluminescent device
EP2117062B1 (en) 2007-03-07 2017-01-18 Mitsubishi Chemical Corporation Composition for organic device, polymer membrane and organic electroluminescent device
JP5355421B2 (en) 2007-12-21 2013-11-27 出光興産株式会社 Organic electroluminescence device
EP3182479B1 (en) 2008-02-15 2018-10-03 Mitsubishi Chemical Corporation Conjugated polymer for organic electroluminescence element
TWI472074B (en) 2008-03-17 2015-02-01 Nippon Steel & Sumikin Chem Co Organic electroluminescent elements
CN101981086A (en) 2008-04-02 2011-02-23 三菱化学株式会社 Polymer compound, reticulated polymer compound produced by crosslinking the polymer compound, composition for organic electroluminescent element, organic electroluminescent element, organic EL display, and organic el lighting
WO2010013780A1 (en) 2008-07-31 2010-02-04 三菱化学株式会社 Composition for organic electroluminescent element, organic thin film, organic electroluminescent element, organic el display device, and organic el lighting
US8795849B2 (en) 2008-08-07 2014-08-05 Mitsubishi Chemical Corporation Polymers containing thermally dissociable and soluble groups and the use of such polymers as organic electroluminescent materials
JP5491796B2 (en) 2008-08-11 2014-05-14 三菱化学株式会社 Charge transporting polymer, composition for organic electroluminescent device, organic electroluminescent device, organic EL display and organic EL lighting
KR101708064B1 (en) 2008-08-13 2017-02-17 미쓰비시 가가꾸 가부시키가이샤 Organic electroluminescent element, organic el display device and organic el illuminating device
EP2361009A4 (en) * 2008-12-22 2012-12-05 Du Pont Electronic device including phenanthroline derivative
WO2011083588A1 (en) 2010-01-08 2011-07-14 三菱化学株式会社 Organic el element and organic light-emitting device
JP5884213B2 (en) 2009-03-13 2016-03-15 三菱化学株式会社 Organic electroluminescent device manufacturing method, organic electroluminescent device, organic EL display, and organic EL lighting
JP4758513B2 (en) * 2009-07-31 2011-08-31 富士フイルム株式会社 Container screening method
KR20120052940A (en) 2009-08-27 2012-05-24 미쓰비시 가가꾸 가부시키가이샤 Monoamine compound, charge-transporting material, composition for charge-transporting film, organic electroluminescent element, organic el display device and organic el lighting
JP5102818B2 (en) * 2009-09-29 2012-12-19 独立行政法人科学技術振興機構 Photoelectric conversion element using phenanthroline derivative and method for producing the same
KR101830985B1 (en) 2009-10-30 2018-02-21 미쯔비시 케미컬 주식회사 Low-molecular compound, polymer, material for electronic devices, composition for electronic devices, organic electroluminescent element, organic solar cell element, display and lighting equipment
EP2515615A1 (en) 2009-12-15 2012-10-24 Mitsubishi Chemical Corporation Method for manufacturing organic electroluminescent element, organic electroluminescent element, display device and illuminating device
JP5793878B2 (en) 2010-02-10 2015-10-14 三菱化学株式会社 Polymer, organic electroluminescent element material, composition for organic electroluminescent element, organic electroluminescent element, display device and lighting device
JP5423706B2 (en) 2010-03-15 2014-02-19 三菱化学株式会社 Organic electroluminescent device manufacturing method, organic electroluminescent device, organic EL lighting, and organic EL display device
JP6035706B2 (en) 2010-04-09 2016-11-30 三菱化学株式会社 Manufacturing method of composition for organic electric field element, composition for organic electric field element, manufacturing method of organic electroluminescent element, organic electroluminescent element, organic EL display device and organic EL lighting
JP2012033918A (en) 2010-07-08 2012-02-16 Mitsubishi Chemicals Corp Organic electroluminescent element, organic electroluminescent device, organic el display device, and organic el lighting
JP5601064B2 (en) 2010-07-21 2014-10-08 富士ゼロックス株式会社 Photoelectric conversion device, electrophotographic photosensitive member, process cartridge, and image forming apparatus
KR101763987B1 (en) 2011-01-14 2017-08-01 미쓰비시 가가꾸 가부시키가이샤 Organic electroluminescent element, composition for organic electroluminescent element, and organic electroluminescent device
US8748070B2 (en) 2011-01-28 2014-06-10 Fuji Xerox Co., Ltd. Thiol group-containing charge transporting material, thiol group-containing charge transporting material-dissolving solution, photoelectric conversion device, electrophotographic photoreceptor, image forming apparatus, and process cartridge
WO2012137958A1 (en) 2011-04-07 2012-10-11 三菱化学株式会社 Organic compound, charge transport material, composition containing said compound, organic electroluminescent element, display device, and lighting device
JP2014167946A (en) * 2011-06-23 2014-09-11 Toray Ind Inc Light-emitting element
EP2779263B1 (en) 2011-11-11 2020-12-09 Mitsubishi Chemical Corporation Organic electroluminescent element and organic electroluminescent device
EP2803671B1 (en) 2012-01-13 2019-05-01 Mitsubishi Chemical Corporation Iridium complex compound, solution composition containing iridium complex compound, organic electroluminescent element, display device, and lighting device
JP5321700B2 (en) 2012-01-17 2013-10-23 三菱化学株式会社 Organic electroluminescence device, organic EL lighting, and organic EL display device
JP5523486B2 (en) * 2012-01-20 2014-06-18 出光興産株式会社 Nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same
WO2013125662A1 (en) 2012-02-23 2013-08-29 三菱化学株式会社 Polymer, and organic electroluminescent element
KR102374181B1 (en) 2012-04-09 2022-03-15 미쯔비시 케미컬 주식회사 Composition for organic electroluminescent elements, and organic electroluminescent element
KR20150013496A (en) 2012-05-09 2015-02-05 미쓰비시 가가꾸 가부시키가이샤 Organic el light emitting device
JP5182441B1 (en) 2012-05-24 2013-04-17 三菱化学株式会社 Organic electroluminescent device, organic electroluminescent lighting device and organic electroluminescent display device
EP2862888B1 (en) 2012-06-18 2019-10-09 Mitsubishi Chemical Corporation Polymer compound, charge transporting polymer, composition for organic electroluminescent elements, organic electroluminescent element, organic el display device, and organic el lighting
CN104540841A (en) 2012-08-08 2015-04-22 三菱化学株式会社 Iridium complex compound, composition containing iridium complex compound, organic electroluminescent element, display device and lighting device
KR20150052024A (en) 2012-09-04 2015-05-13 미쯔비시 가가꾸 가부시끼가이샤 Organic electroluminescent device and manufacturing method thereof
KR20150060737A (en) 2012-10-02 2015-06-03 미쓰비시 가가꾸 가부시키가이샤 Organic electroluminescent element, organic el lighting and organic el display device
EP2933851B1 (en) 2012-12-17 2017-05-10 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent device
JP6335428B2 (en) * 2012-12-21 2018-05-30 出光興産株式会社 Organic electroluminescence device and electronic device
EP3081571B1 (en) 2013-12-12 2021-04-21 Mitsubishi Chemical Corporation Iridium complex compound, method for producing said compound, composition containing said compound, organic electroluminescent element, display device, and lighting device
JP6769303B2 (en) 2015-01-29 2020-10-14 東レ株式会社 Phenanthroline derivatives, electronic devices containing them, light emitting devices and photoelectric conversion devices
JP7238782B2 (en) 2017-11-07 2023-03-14 三菱ケミカル株式会社 Iridium complex compound, composition containing said compound and solvent, organic electroluminescence device containing said compound, display device and lighting device
JP7147783B2 (en) 2017-11-29 2022-10-05 三菱ケミカル株式会社 Iridium complex compound, composition containing said compound and solvent, organic electroluminescence device containing said compound, display device and lighting device
JP7176558B2 (en) 2018-03-16 2022-11-22 三菱ケミカル株式会社 Polymer, composition for organic electroluminescence device, organic electroluminescence device, organic EL display device, organic EL lighting, and method for producing organic electroluminescence device
CN113242874B (en) 2018-12-20 2023-12-12 三菱化学株式会社 Organic photodiode and infrared CMOS sensor
KR20210113991A (en) 2019-01-10 2021-09-17 미쯔비시 케미컬 주식회사 Iridium Complex Compound
EP3971196A4 (en) 2019-05-15 2022-06-29 Mitsubishi Chemical Corporation Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device and lighting device
EP4105222A4 (en) 2020-02-12 2023-07-19 Mitsubishi Chemical Corporation Iridium complex compound, iridium complex compound-containing composition, organic electroluminescent element and production method therefor, organic el display device, and organic el lighting device
WO2022250044A1 (en) 2021-05-25 2022-12-01 三菱ケミカル株式会社 Iridium complex compound, composition containing iridium complex compound, organic electroluminescent element and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7834346B2 (en) 2005-08-05 2010-11-16 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescence device making use of the same
EP1993154A1 (en) 2007-05-16 2008-11-19 Yamagata Promotional Organization for Industrial Technology Electron transporting materials and organic light-emitting devices therewith

Also Published As

Publication number Publication date
JPH05331459A (en) 1993-12-14

Similar Documents

Publication Publication Date Title
JP3562652B2 (en) Organic electroluminescence device
EP0564224B1 (en) Organic electroluminescene device
US6278236B1 (en) Organic electroluminescent devices with electron-injecting layer having aluminum and alkali halide
JP2974835B2 (en) Organic electroluminescence device
JP3300069B2 (en) Organic electroluminescence device
JP3571977B2 (en) Organic light emitting device
JP2891784B2 (en) Organic electroluminescence device
JPH05202356A (en) Organic electroluminescence element
JPH04308688A (en) Organic electroluminescence element
JPH059470A (en) Organic electroluminescent element
JPH0790256A (en) Organic electroluminescent device
JPH0496990A (en) Organic electroluminescence element
JP2772019B2 (en) EL device
JP3951425B2 (en) Organic electroluminescence device
JPH03162481A (en) Electroluminescent element
JPH0665569A (en) Electroluminescent element
JP2888740B2 (en) Organic electroluminescence device
JPH06151063A (en) Organic electroluminescent element
JPH1140352A (en) Organic el element and manufacture thereof
JP4109979B2 (en) Organic light emitting device
JP2000340365A (en) Organic electroluminescence element
JP4343653B2 (en) Organic light emitting device having metal borate or metal organic boride
JP2000030869A (en) Organic electroluminescence element
JP3738870B2 (en) Organic electroluminescence device
JP3868061B2 (en) Organic electroluminescence device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees