JP3559220B2 - Ground injection material for high temperature ground - Google Patents

Ground injection material for high temperature ground Download PDF

Info

Publication number
JP3559220B2
JP3559220B2 JP2000138923A JP2000138923A JP3559220B2 JP 3559220 B2 JP3559220 B2 JP 3559220B2 JP 2000138923 A JP2000138923 A JP 2000138923A JP 2000138923 A JP2000138923 A JP 2000138923A JP 3559220 B2 JP3559220 B2 JP 3559220B2
Authority
JP
Japan
Prior art keywords
ground
molar ratio
injection material
slag
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000138923A
Other languages
Japanese (ja)
Other versions
JP2001323264A (en
Inventor
真木雄 高橋
崇 名越
求 三輪
健二 栢原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP2000138923A priority Critical patent/JP3559220B2/en
Publication of JP2001323264A publication Critical patent/JP2001323264A/en
Application granted granted Critical
Publication of JP3559220B2 publication Critical patent/JP3559220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete

Description

【0001】
【発明の属する技術分野】
本発明はスラグとアルミン酸アルカリ金属塩を有効成分とする地盤注入材に関し、特には、温泉地や地熱発電所付近等の高温地盤(地中の温度としては約50℃程度にもなる)の固結に適した地盤注入材に関する。
【0002】
【従来の技術】
従来の溶液型、懸濁型注入材は常温で使用されることを前提としている。その為、地熱を有する等の高温地盤においては硬化が早まり、浸透保持時間が極端に短縮され、薬液注入材としての機能を発揮できなくなる。
【0003】
このような高温地盤に対する対策として、硬化剤を減少、或いはセメント等固結成分を減少させることが挙げられ、これによりある程度は浸透保持時間を延長できる。しかし、これらの方法では固結後の強度が十分ではなく、実用に供しなくなってしまうという問題がある。
【0004】
一方、特許第2525331号公報では、スラグやセメントの微粉体と、MeO(但し、Meはアルカリ金属を表す)とAlとのモル比(MeO/Al)が2.8以上のアルミン酸アルカリ金属塩とを組み合わせて、常温における浸透保持時間と固結強度との両立を図った技術が開示されている。
【0005】
ここで、スラグは、セメントのような自己水和性ではなくアルカリ成分と混合されたときに水和を発現する潜在水硬性という性質を持っている。そのため、特許第2525331号公報記載の技術ではアルカリのモル比を上げることでスラグの硬化を可能にし、硬化のタイミングも加えるアルカリ成分量である程度コントロール可能にしている。
【0006】
【発明が解決しようとする課題】
しかしながら、特許第2525331号公報記載の配合系では高い地熱を有するような高温地盤には十分に対応することができなかった。即ち、アルミン酸アルカリ金属塩の使用量を減少させていくと、浸透保持時間の延長は図れるものの、実強度発現がかなり遅くなってしまうという問題があった。
【0007】
そこで本発明の目的は、粘性が低く、高地熱条件下でも十分な浸透保持時間が確保され、固結後の強度も良好な地盤注入材を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは上記課題を解決すべく鋭意検討した結果、使用するアルミン酸アルカリ金属塩のモル比(MeO/Al)を従来のものよりも低くしてアルカリを減少させると共に、供給されるアルミン酸の量を増加させることにより、高温時でも浸透保持時間の確保と強度発現の両立が図れることを見出し、本発明を完成するに至った。
【0009】
即ち、本発明は、スラグとアルミン酸アルカリ金属塩を有効成分とする40℃以上の高温地盤用の注入材であって、前記スラグが5000cm/g以上の比表面積を有し、前記アルミン酸アルカリ金属塩におけるMeO(但し、Meはアルカリ金属を表す)とAlとのモル比(MeO/Al)が0.5以上2.8未満であり、前記スラグ中のSiOと前記アルミン酸アルカリ金属塩中のAlとのモル比(SiO/Al)が1〜12であり、前記SiO/Alモル比〔S/A〕と、前記MeO/Alモル比〔M/A〕とが、次式、
〔S/A〕≧6.13×〔M/A〕−7.24 (1)
で表される関係を満足することを特徴とする高温地盤用の地盤注入材である。
【0012】
また、前記高温地盤用の地盤注入材において、前記SiO/Alモル比〔S/A〕と、前記MeO/Alモル比〔M/A〕とが、次式、
〔S/A〕≧6.13×〔M/A〕−5.39 (2)
で表される関係を満足する高温地盤用の地盤注入材である。
【0013】
通常温度域の地盤では、上記特許第2525331号公報に開示されているアルミン酸アルカリ金属塩のモル比(MeO/Al)2.8以上でも十分な硬化と浸透可能時間の保持との両立が可能であるが、温泉地や地熱発電所付近等の地熱を有する高温地盤(地中の温度としては約50℃程度)の高温度域では浸透可能時間を保持しようとしてアルミン酸アルカリ金属塩の使用量を少なくしていくと実強度の発現も同様に遅れてきてしまう。これは、高炉水砕スラグから凝結に必要な金属塩が過飽和量溶出可能となるまでスラグ表面の珪酸ゲル膜が破壊されないためと考えられる。これに対し本発明では、使用するアルミン酸アルカリ金属塩のモル比(MeO/Al)を2.8よりも低くし、供給するアルカリ成分を少なくすることによって高温時の浸透可能時間を確保すると同時に、アルミン酸成分の供給量を多くすることで強度発現をも確保したものであり、このようにすることで高温地盤用の地盤注入材として優れた効果を奏し得るということは本発明者らによって初めて見出されたことである。本発明においては、珪酸ゲル膜を破壊するアルカリが少なくて溶出してくるカルシウム塩等の量が少なくなっても、アルミニウムイオンが多く供給されることによりアルミン酸カルシウム等が形成され、硬化阻害を是正していると考えられる。この結果、本発明の地盤注入材は、例えば、40℃以上の地盤において好適に使用することができる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態につき説明する。
本発明に使用するスラグは特に限定されるものではなく、どのようなスラグでも使用することができるが、工業化適性の面から製鉄過程で生じるスラグを水冷・破砕することにより得られる高炉水砕スラグが好ましい。
【0015】
かかる高炉水砕スラグは表面が非晶質のガラス状である。そのため水に接しても表面は珪酸ゲルの膜となるだけでセメントのような成分の溶出はない。そこで高炉水砕スラグを通常水ではなくアルカリ成分を含む水の存在下におくと、形成されたゲル膜はアルカリ成分により破壊され、スラグ内部よりシリカ、カルシウム等の水和に必要なイオンが溶出し、硬化に至る。これを高炉水砕スラグの潜在水硬性という。従って、高炉水砕スラグの水和硬化にはアルカリ成分が必須となるが、地盤注入材として性能を発揮するためには、硬化することはもとより浸透可能時間の保持が必要となる。よって、高炉水砕スラグを用いて高温時の浸透可能時間を確保するには、本発明の条件を満たすことが必要となる。
【0016】
また、本発明に使用するスラグは、スラグ粒を比表面積5000cm/g以上、好ましくは比表面積8000cm/g以上まで微粉砕したものとする。比表面積が5000cm/g未満であるとスラグ粒子が大き過ぎるため、地盤注入材の浸透性が悪化する。
【0017】
スラグ粒の比表面積に上限は特にないが、必要以上に比表面積が大きすぎるとかえってスラグ粒子が凝集することがあり、また硬化も早まる傾向にあるので、好ましくは比表面積は12000cm/g以下とする。
【0018】
本発明に使用するアルミン酸アルカリ金属塩は、工業化適性の点でナトリウム塩およびカリウム塩が好ましく、特に好ましくはナトリウム塩である。
【0019】
本発明においてアルミン酸アルカリ金属塩は、MeO(但し、Meはアルカリ金属を表す)とAlとのモル比(MeO/Al)が0.5以上2.8未満であるものを使用する。このモル比が0.5未満であると、硬化しないか、又は硬化しても強度が不十分であり、逆にモル比が2.8以上となると高温地盤注入時における流動性保持時間が短か過ぎるものとなる。
【0020】
本発明の地盤注入材は、従来の地盤注入材と同様に、スラグとアルミン酸アルカリ金属塩の有効成分を水に溶解乃至分散させるなどして流動化させ、調製され使用に供される。本発明に使用するアルミン酸アルカリ金属塩は、上記モル比の水溶液として調製に供してもよいし、粉体のアルミン酸アルカリ金属塩を水に溶解して調製に供してもよいが、作業性及び作業環境の適正化の点から水溶液として調製に供することが好ましい。
【0021】
スラグとアルミン酸アルカリ金属塩との割合は、適切な浸透保持時間(概ね5分以上、好ましくは10分以上)の得られる割合とすればよく、かかる適切な浸透保持時間という点からは、好ましくはスラグ中のSiOとアルミン酸アルカリ金属塩中のAlとのモル比SiO/Al〔S/A〕と、アルミン酸アルカリ金属塩におけるMeOとAlとのモル比MeO/Al〔M/A〕とが、次式、
〔S/A〕≧6.13×〔M/A〕−7.24 (1)
で表される関係を満足するようにし、より好ましくは次式、
〔S/A〕≧6.13×〔M/A〕−5.39 (2)
で表される関係を満足するようにする。
【0022】
また、スラグ中のSiOとアルミン酸アルカリ金属塩中のAlとのモル比(SiO/Al)は、地盤注入材として適切な凝結終了時間(概ね1時間〜20時間程度)の得られる割合とすればよく、かかる適切な凝結終了時間という点からは、好ましくはSiO/Al=1〜12(モル比)とする。
【0023】
【実施例】
以下、本発明を実施例に基づき説明するが、本発明はこれらの実施例に限定されるものではない。
【0024】
実施例1〜13、参考例1〜4
比表面積10000cm/gの高炉水砕スラグ(SiO含量36.6重量%)100g(0.61モル)に、アルミン酸アルカリ金属塩として種々のモル比のアルミン酸ソーダ(粉末或いは水溶液)を下記の表1に記載の各割合となる量で使用して、高温時における可使時間と硬化時間を試験した。試験は、スラグ、アルミン酸ソーダ、水(全量が400ミリリットルとなる量)を混練し、常温で2時間放置し、その後、50℃の状況下に置き、粘度0.1Pa・sとなるまでの時間を測定することにより行い、この時間を「流動性保持時間」とした。その後、さらに50℃の状況下に放置し、凝結が終了するまでの時間を測定し、この時間を「凝結終了時間」とした。
【0025】
また、上記と同様にして、得られた混練物を常温で2時間放置した後、50℃の状況下に24時間放置し、しかる後圧縮強度を測定した。通常、注入後24時間の圧縮強度が1MPa以上であれば良好であるといえる。結果を下記の表1に示す。
【0026】
【表1】

Figure 0003559220
*1 スラグ中のSiOとアルミン酸ソーダ中のAlのモル比
*2 アルミン酸ソーダにおけるNaOとAlのモル比
*3 A:式(2)を満足する
B:式(1)を満足するが式(2)を満足しない
C:式(1)を満足しない
【0027】
また、各実施例における地盤注入材の〔S/A〕と〔M/A〕との関係から流動性保持時間を表すと図1に示すグラフのようになる。このグラフからわかるように、上記(1)式、特には上記(2)式の関係を満足する実施例はいずれも十分な流動性保持時間が確保されている。
【0028】
さらに、比較例として普通ポルトランドセメント100gを水(全量が400ミリリットルとなる量)で懸濁させた配合についても同様に試験したが、普通ポルトランドセメントは50℃の雰囲気下に置かれると5分弱で増粘が開始され、地盤注入材に適するとは言いがたいものであった。
【0029】
【発明の効果】
以上説明してきたように、本発明の地盤注入材においては、粘性が低く、高地熱条件下でも十分な浸透保持時間が確保され、固結後の強度も良好である。
【図面の簡単な説明】
【図1】各実施例における地盤注入材の〔S/A〕と〔M/A〕との関係から流動性保持時間を表すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ground injection material containing slag and an alkali metal aluminate as active ingredients, and particularly to a high-temperature ground (such as an underground temperature of about 50 ° C.) near a hot spring or a geothermal power plant. It relates to a ground injection material suitable for consolidation.
[0002]
[Prior art]
Conventional solution-type and suspension-type injection materials are assumed to be used at room temperature. Therefore, in a high-temperature ground having geothermal heat or the like, the hardening is accelerated, the permeation holding time is extremely shortened, and the function as a chemical injection material cannot be exhibited.
[0003]
As a countermeasure against such a high-temperature ground, reduction of a hardening agent or reduction of a consolidation component such as cement can be mentioned, whereby the permeation holding time can be extended to some extent. However, these methods have a problem that the strength after consolidation is not sufficient, and the method cannot be put to practical use.
[0004]
On the other hand, in Japanese Patent No. 2552531, the slag or cement fine powder, the molar ratio of Me 2 O (where Me represents an alkali metal) and Al 2 O 3 (Me 2 O / Al 2 O 3 ) are determined. A technique has been disclosed in which 2.8 or more alkali metal aluminate salts are combined to achieve both the permeation retention time at room temperature and the consolidation strength.
[0005]
Here, the slag has the property of latent hydraulicity that develops hydration when mixed with an alkaline component, rather than being self-hydrating like cement. Therefore, in the technique described in Japanese Patent No. 2552531, the slag can be hardened by increasing the molar ratio of alkali, and the timing of hardening can be controlled to some extent by the amount of the added alkali component.
[0006]
[Problems to be solved by the invention]
However, the blending system described in Japanese Patent No. 2552531 cannot sufficiently cope with high-temperature ground having high geothermal power. That is, when the amount of the alkali metal aluminate used is reduced, the permeation retention time can be extended, but the actual strength development is considerably delayed.
[0007]
Therefore, an object of the present invention is to provide a ground injection material having low viscosity, sufficient permeation holding time even under high geothermal conditions, and good strength after consolidation.
[0008]
[Means for Solving the Problems]
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the alkali metal aluminate used has a lower molar ratio (Me 2 O / Al 2 O 3 ) than that of the conventional one, thereby reducing alkali. The present inventors have found that by increasing the amount of aluminate supplied, it is possible to secure both the permeation retention time and the strength development even at high temperatures, and have completed the present invention.
[0009]
That is, the present invention relates to an injection material for high-temperature ground at 40 ° C. or higher, comprising slag and an alkali metal aluminate as active ingredients, wherein the slag has a specific surface area of 5000 cm 2 / g or more, The molar ratio of Me 2 O (where Me represents an alkali metal) to Al 2 O 3 (Me 2 O / Al 2 O 3 ) in the alkali metal salt is 0.5 or more and less than 2.8, the molar ratio of SiO 2 and Al 2 O 3 in the alkali metal aluminates in (SiO 2 / Al 2 O 3) is 1 to 12, wherein the SiO 2 / Al 2 O 3 molar ratio [S / A] and the Me 2 O / Al 2 O 3 molar ratio [M / A] are represented by the following formula:
[S / A] ≧ 6.13 × [M / A] −7.24 (1)
A ground injection material for high-temperature ground characterized by satisfying a relationship represented by:
[0012]
In the ground injection material for high-temperature ground, the SiO 2 / Al 2 O 3 molar ratio [S / A] and the Me 2 O / Al 2 O 3 molar ratio [M / A] are represented by the following formulas. ,
[S / A] ≧ 6.13 × [M / A] −5.39 (2)
It is a ground injection material for high temperature ground that satisfies the relationship represented by:
[0013]
On the ground in the normal temperature range, sufficient hardening and permeation time can be maintained even at a molar ratio (Me 2 O / Al 2 O 3 ) of 2.8 or more of the alkali metal aluminate disclosed in Japanese Patent No. 2525331. It is possible to maintain the permeation time in a high temperature area such as a hot spring area or a geothermal power station near a geothermal high-temperature ground (the ground temperature is about 50 ° C). As the amount of the metal salt used is reduced, the actual strength is similarly delayed. This is probably because the silica gel film on the slag surface is not destroyed until the supersaturated amount of the metal salt required for coagulation can be eluted from the granulated blast furnace slag. In contrast, in the present invention, the alkali metal aluminate used has a molar ratio (Me 2 O / Al 2 O 3 ) lower than 2.8, and the alkali component to be supplied is reduced, so that high-temperature penetration is possible. At the same time as securing the time, at the same time, increasing the supply amount of the aluminate component also ensures strength development, and by doing so, it is possible to achieve an excellent effect as a ground injection material for high-temperature ground. This is the first finding by the present inventors. In the present invention, even if the amount of calcium salts and the like eluted with a small amount of alkali breaking the silicate gel film is small, calcium aluminate and the like are formed by supplying a large amount of aluminum ions, thereby inhibiting the curing. It is thought that it has been corrected. As a result, the ground injection material of the present invention can be suitably used, for example, in the ground at 40 ° C. or higher.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
The slag used in the present invention is not particularly limited, and any slag can be used. Is preferred.
[0015]
The granulated blast furnace slag has an amorphous glassy surface. Therefore, even if it comes into contact with water, the surface only becomes a silica gel film, and components such as cement do not elute. Therefore, if the granulated blast furnace slag is placed in the presence of water containing an alkaline component instead of ordinary water, the formed gel film is destroyed by the alkaline component, and ions necessary for hydration of silica, calcium, etc. elute from the inside of the slag. And leads to hardening. This is called the potential hydraulicity of the granulated blast furnace slag. Therefore, an alkali component is indispensable for hydration hardening of granulated blast furnace slag, but in order to exhibit performance as a ground injection material, it is necessary to maintain hardening time as well as hardening. Therefore, it is necessary to satisfy the conditions of the present invention in order to secure the permeation time at high temperature using the granulated blast furnace slag.
[0016]
The slag used in the present invention is obtained by finely pulverizing slag particles to a specific surface area of 5,000 cm 2 / g or more, preferably 8000 cm 2 / g or more. If the specific surface area is less than 5000 cm 2 / g, the slag particles are too large, so that the permeability of the ground injection material deteriorates.
[0017]
There is no particular upper limit on the specific surface area of the slag particles. However, if the specific surface area is excessively large, the slag particles may be agglomerated and the curing may be accelerated. Therefore, the specific surface area is preferably 12000 cm 2 / g or less. And
[0018]
The alkali metal aluminate salt used in the present invention is preferably a sodium salt and a potassium salt, particularly preferably a sodium salt, from the viewpoint of industrial applicability.
[0019]
In the present invention, the alkali metal aluminate has a molar ratio of Me 2 O (where Me represents an alkali metal) to Al 2 O 3 (Me 2 O / Al 2 O 3 ) of 0.5 or more and 2.8. Use less than. If the molar ratio is less than 0.5, the resin does not cure or the cured resin has insufficient strength. Conversely, if the molar ratio is 2.8 or more, the fluidity retention time during high-temperature ground injection is short. It will be too much.
[0020]
The ground injection material of the present invention is fluidized by dissolving or dispersing an active ingredient of slag and an alkali metal aluminate in water, similarly to a conventional ground injection material, and is prepared for use. The alkali metal aluminate used in the present invention may be prepared as an aqueous solution having the above molar ratio, or may be prepared by dissolving a powdered alkali metal aluminate in water. It is preferable to provide the solution as an aqueous solution from the viewpoint of optimizing the working environment.
[0021]
The ratio between the slag and the alkali metal aluminate may be a ratio at which an appropriate permeation retention time (about 5 minutes or more, preferably 10 minutes or more) can be obtained. From the viewpoint of such an appropriate permeation retention time, it is preferable. a molar ratio SiO 2 / Al 2 O 3 and Al 2 O 3 of SiO 2 and in alkali metal aluminates in the slag is [S / a], Me 2 O and Al 2 O 3 in the alkali metal aluminates And the molar ratio Me 2 O / Al 2 O 3 [M / A] with the following formula:
[S / A] ≧ 6.13 × [M / A] −7.24 (1)
To satisfy the relationship represented by the following formula, more preferably the following formula:
[S / A] ≧ 6.13 × [M / A] −5.39 (2)
Satisfy the relationship represented by.
[0022]
In addition, the molar ratio of SiO 2 in the slag to Al 2 O 3 in the alkali metal aluminate (SiO 2 / Al 2 O 3 ) is a setting end time (approximately 1 hour to 20 hours) suitable as a ground injection material. ), And from the viewpoint of the appropriate setting end time, it is preferable that SiO 2 / Al 2 O 3 = 1 to 12 (molar ratio).
[0023]
【Example】
Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.
[0024]
Examples 1 to 13, Reference Examples 1 to 4
To 100 g (0.61 mol) of granulated blast furnace slag having a specific surface area of 10000 cm 2 / g (SiO 2 content: 36.6% by weight), sodium aluminate (powder or aqueous solution) having various molar ratios as an alkali metal aluminate is used. The pot life and the curing time at a high temperature were tested by using the respective amounts shown in Table 1 below. The test was conducted by kneading slag, sodium aluminate, and water (the total amount was 400 milliliters), leaving it to stand at room temperature for 2 hours, and then placing it at 50 ° C. until the viscosity became 0.1 Pa · s. The measurement was performed by measuring the time, and this time was defined as the “flowability retention time”. Thereafter, the mixture was further left at a temperature of 50 ° C., and the time until the setting was completed was measured, and this time was defined as “setting end time”.
[0025]
In the same manner as above, the obtained kneaded material was allowed to stand at room temperature for 2 hours, and then left at 50 ° C. for 24 hours, and then the compressive strength was measured. Usually, it can be said that the compression strength is good when the compressive strength for 24 hours after injection is 1 MPa or more. The results are shown in Table 1 below.
[0026]
[Table 1]
Figure 0003559220
* 1 Molar ratio of SiO 2 in slag and Al 2 O 3 in sodium aluminate * 2 Molar ratio of Na 2 O and Al 2 O 3 in sodium aluminate * 3 A: B satisfying formula (2) C that satisfies expression (1) but does not satisfy expression (2): does not satisfy expression (1)
In addition, the relationship between [S / A] and [M / A] of the ground injection material in each example shows the fluidity retention time as shown in the graph of FIG. As can be seen from this graph, all the examples satisfying the relationship of the above formula (1), particularly the above formula (2), secure a sufficient fluidity retention time.
[0028]
Further, as a comparative example, the same test was carried out on a formulation in which 100 g of ordinary Portland cement was suspended in water (the amount becomes 400 ml in total). And thickening was started, and it was hard to say that it was suitable for ground injection material.
[0029]
【The invention's effect】
As described above, in the ground injection material of the present invention, viscosity is low, sufficient permeation retention time is secured even under high geothermal conditions, and strength after consolidation is also good.
[Brief description of the drawings]
FIG. 1 is a graph showing a fluidity retention time from a relationship between [S / A] and [M / A] of a ground injection material in each example.

Claims (2)

スラグとアルミン酸アルカリ金属塩を有効成分とする40℃以上の高温地盤用の注入材であって、前記スラグが5000cm/g以上の比表面積を有し、前記アルミン酸アルカリ金属塩におけるMeO(但し、Meはアルカリ金属を表す)とAlとのモル比(MeO/Al)が0.5以上2.8未満であり、前記スラグ中のSiO と前記アルミン酸アルカリ金属塩中のAl とのモル比(SiO /Al )が1〜12であり、前記SiO /Al モル比〔S/A〕と、前記Me O/Al モル比〔M/A〕とが、次式、
〔S/A〕≧6.13×〔M/A〕−7.24 (1)
で表される関係を満足することを特徴とする高温地盤用の地盤注入材。
What is claimed is: 1. An injection material for a high-temperature ground at 40 ° C. or higher, comprising slag and an alkali metal aluminate as active ingredients , wherein said slag has a specific surface area of 5000 cm 2 / g or more, and Me 2 in said alkali metal aluminate salt. O (where, Me represents an alkali metal) Ri molar ratio (Me 2 O / Al 2 O 3) is 0.5 or more 2.8 than der the Al 2 O 3 and, and SiO 2 of the slag The molar ratio with Al 2 O 3 (SiO 2 / Al 2 O 3 ) in the alkali metal aluminate is 1 to 12, and the SiO 2 / Al 2 O 3 molar ratio [S / A] The Me 2 O / Al 2 O 3 molar ratio [M / A] is represented by the following formula:
[S / A] ≧ 6.13 × [M / A] −7.24 (1)
Soil injection material for high temperature soil characterized that you satisfied in represented by the relationship.
前記SiO/Alモル比〔S/A〕と、前記MeO/Alモル比〔M/A〕とが、次式、
〔S/A〕≧6.13×〔M/A〕−5.39 (2)
で表される関係を満足する請求項1記載の高温地盤用の地盤注入材。
The SiO 2 / Al 2 O 3 molar ratio [S / A] and the Me 2 O / Al 2 O 3 molar ratio [M / A] are represented by the following formula:
[S / A] ≧ 6.13 × [M / A] −5.39 (2)
The ground injection material for high temperature ground according to claim 1, which satisfies a relationship represented by the following expression.
JP2000138923A 2000-05-11 2000-05-11 Ground injection material for high temperature ground Expired - Lifetime JP3559220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000138923A JP3559220B2 (en) 2000-05-11 2000-05-11 Ground injection material for high temperature ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000138923A JP3559220B2 (en) 2000-05-11 2000-05-11 Ground injection material for high temperature ground

Publications (2)

Publication Number Publication Date
JP2001323264A JP2001323264A (en) 2001-11-22
JP3559220B2 true JP3559220B2 (en) 2004-08-25

Family

ID=18646460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000138923A Expired - Lifetime JP3559220B2 (en) 2000-05-11 2000-05-11 Ground injection material for high temperature ground

Country Status (1)

Country Link
JP (1) JP3559220B2 (en)

Also Published As

Publication number Publication date
JP2001323264A (en) 2001-11-22

Similar Documents

Publication Publication Date Title
JP5079950B2 (en) Setting and curing accelerator without alkali
JP3450420B2 (en) Backfill injection material
CN112521113A (en) Low-temperature hydration hardening gel material and preparation method and application thereof
JP5763661B2 (en) Quick setting agent for hydraulic binder, and rapid curing method of hydraulic binder
JP5059354B2 (en) Ground injection material for soil stabilization
JP3559220B2 (en) Ground injection material for high temperature ground
CA2324393C (en) Stabilized setting and hardening accelerator of low viscosity
JP6032830B2 (en) Cement-based injection material
JP2017154948A (en) Grouting material
JP3721289B2 (en) Ground consolidation material
JP4404369B2 (en) Method for producing cement hardened composition
JP2525331B2 (en) Ground injection chemical
JP2530658B2 (en) Alkaline hydraulic ground injection material
JP2941269B1 (en) Cement-based materials for radioactive waste disposal sites
KR100402456B1 (en) Ground hardening material
JP2520425B2 (en) Alkaline hydraulic ground injection material
WO2020036087A1 (en) Grouting material and method of grouting using same
JP5196990B2 (en) Chemical solution for soil stabilization
JP2549949B2 (en) Ground improvement agent
JP4234924B2 (en) Ground improvement method
JP2005350348A (en) Quick hardening cement concrete and quick setting cement concrete
JP2001164249A (en) Cement admixture for grouting and grouting material
JPH08253765A (en) Ground cementing material
JPH10273662A (en) Solidifying material for water-containing soil and solidification and improvement of water-containing soil
JP3506765B2 (en) Chemical solution for soil stabilization and ground stabilization method using it

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3559220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term