JP3558794B2 - Polishing method and polishing apparatus for semiconductor wafer - Google Patents

Polishing method and polishing apparatus for semiconductor wafer Download PDF

Info

Publication number
JP3558794B2
JP3558794B2 JP27730196A JP27730196A JP3558794B2 JP 3558794 B2 JP3558794 B2 JP 3558794B2 JP 27730196 A JP27730196 A JP 27730196A JP 27730196 A JP27730196 A JP 27730196A JP 3558794 B2 JP3558794 B2 JP 3558794B2
Authority
JP
Japan
Prior art keywords
polishing
film thickness
semiconductor wafer
time
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27730196A
Other languages
Japanese (ja)
Other versions
JPH10106984A (en
Inventor
秀高 中尾
隆志 佐藤
厚 重田
志朗 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Toshiba Corp
Original Assignee
Ebara Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Toshiba Corp filed Critical Ebara Corp
Priority to JP27730196A priority Critical patent/JP3558794B2/en
Publication of JPH10106984A publication Critical patent/JPH10106984A/en
Application granted granted Critical
Publication of JP3558794B2 publication Critical patent/JP3558794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は半導体ウエハーを研磨する研磨装置(ポリッシング装置)において、研磨する膜厚を精度よく所定値で維持するために最適な研磨時間で半導体ウエハーを研磨する研磨方法及び研磨装置に関するものである。
【0002】
【従来の技術】
半導体ウエハーの表面を鏡面状に研磨(ポリッシング)する研磨装置(ポリッシング装置)において、ウエハー膜厚を所定値に研磨するには、研磨時間を制御することによって行っている。即ち、研磨量はポリッシング速度及び面圧等の研磨条件が一定であると、研磨量はポリッシング時間に比例するから、ポリッシング時間を制御することにより、膜厚を所定の値に維持できる。
【0003】
従来、このポリッシング時間を得るために、作業者が先ず研磨前に1枚の半導体ウエハーの膜厚を測定し(通常のポリッシング装置では装置の外で行う)、続いて該1枚の半導体ウエハーをポリッシング装置で所定時間研磨し、研磨後に該半導体ウエハーの膜厚を測定し(ポリッシング装置内で測定することも装置外で測定することもある)、研磨前の膜厚と研磨後の膜厚と、目標膜圧と、ポリッシング時間とから最適なポリッシング時間を計算し、この最適なポリッシング時間で、後の半導体ウエハーの研磨を行っている。
【0004】
【発明が解決しようとする課題】
しかしながら上記のようにして研磨時間を設定する方法は、人手による困難な作業であると同時に、一回の作業でポリッシング時間を設定するので、ポリッシングが継続していく間に研磨条件が変化し、同じ研磨時間でも研磨量に差異が生じる等の問題がある。例えば研磨用不織物の表面が長時間研磨する間に消耗したり、経時変化を起したり、供給される研磨液の成分や温度変化等により同じ研磨時間でも研磨量に差異が生じる等の問題がある。
【0005】
また、例えば特公平7−100297号公報に開示するように、既に研磨した半導体ウエハーの研磨サイクルでの研磨量及び研磨時間を順次累積し、これら累積値に基づいて平均研磨速度を演算し、この平均速度と次回の研磨サイクルでの半導体ウエハーの研磨しろとに基づいて最適研磨時間を演算し、この最適研磨時間に基づいて次回の研磨サイクルの研磨を行うものもある。しかしながら、このように研磨時間の累積値の平均研磨速度を基に最適研磨時間を演算する手法も必ずしも最適な研磨時間を設定できるものではない。
【0006】
何故なら、ロット毎に半導体ウエハーを1枚ずつ連続して研磨するポリッシング装置においては、前回の半導体ウエハーが終了した時の研磨用不織物表面の状況や研磨液の成分や温度が今回や次回の半導体ウエアー研磨に大きな影響を与えるものであり、必ずしも過去の研磨時間の累積値の平均研磨速度が今回や次回の研磨に大きく影響を与えるものではない。従って、高精度の膜厚研磨ができないという問題がある。
【0007】
本発明は上述の点に鑑みてなされたもので、上記問題点を除去し、最新の研磨用不織物表面の状況や研磨液の成分や温度等の研磨条件を研磨に反映し、高精度の研磨ができる半導体ウエハーの研磨方法及び研磨装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するため請求項1に記載の発明は、研磨装置に1ロットが多数枚からなる半導体ウエハーをロット毎装填し、該半導体ウエハーを1枚ずつ研磨する研磨工程と、該半導体ウエハーの膜厚を測定する膜厚測定工程からなり、これらの工程で半導体ウエハーの研磨・膜厚測定作業を行う半導体ウエハーの研磨方法であって、先行の研磨・膜厚測定作業に並行して次の半導体ウエハーの研磨・膜厚測定作業である後行の研磨・膜厚測定作業を行い、先行の研磨・膜厚測定作業後に、該先行の研磨・膜厚測定作業における研磨時間、目標膜厚値、半導体ウエハーの研磨前の測定膜厚値及び研磨後の測定膜厚値から研磨工程の第1の最適研磨時間を算出し、算出した第1の最適研磨時間で所定枚数目後の半導体ウエハーの研磨・膜厚測定作業の研磨工程を行うことを特徴とする。
【0009】
また、請求項2に記載の発明は、研磨・膜厚測定作業は、研磨工程で研磨後の半導体ウエハーを洗浄し、該洗浄後の半導体ウエハーを乾燥させ、該乾燥後の半導体ウエハーの膜厚を測定することからなることを特徴とする。
【0010】
請求項1及び請求項2に記載の発明によれば、先行の研磨作業に並行して次の半導体ウエハーの研磨・膜厚測定作業である後行の研磨・膜厚測定作業を行うので、高い研磨効率が得られる。また、先行の研磨・膜厚測定作業後に最適研磨時間を算出し、該算出した最適研磨時間で所定枚数目後の半導体ウエハーの研磨・膜厚測定作業の研磨工程を行うので、例えば研磨用不織物表面の状況や研磨液の成分や温度等の研磨条件が変化しても、その変化した最新の研磨条件がそれ以降の半導体ウエハーの研磨に反映できるので、半導体ウエハーの膜厚を高精度の膜厚に研磨することができる。
【0011】
また、請求項3に記載の発明は、請求項1又は2に記載の半導体ウエハーの研磨方法において、先行の研磨・膜厚測定作業後に、該後行の半導体ウエハーの研磨・膜厚測定作業における研磨時間、目標膜厚値、研磨工程前の測定膜厚値、及び研磨後の測定膜厚値から第2の最適研磨時間を算出し、算出した第2の最適研磨時間で所定枚数目後の次の半導体ウエハーの研磨・膜厚測定作業の研磨工程を行うことを特徴とする。
【0012】
また、請求項4に記載の発明は、請求項1乃至3のいずれか1項に記載の半導体ウエハ ーの研磨方法において、1ロット内の1枚目の半導体ウエハーの研磨・膜厚測定作業が終了するまで2枚目の半導体ウエハーは待機することを特徴とする。
【0013】
また、請求項5に記載の発明は、請求項4に記載の半導体ウエハーの研磨方法において、1ロット内の1枚目の半導体ウエハーの研磨・膜厚測定作業後に、該1ロット内の1枚目の半導体ウエハーの研磨・膜厚測定作業における研磨時間、目標膜厚値、半導体ウエハーの研磨前の測定膜厚値、及び研磨後の測定膜厚値から第1の最適研磨時間を算出し、算出した第1の最適研磨時間で1ロット内の2枚目及び3枚目の半導体ウエハーの前記研磨・膜厚測定作業の研磨工程を行うことを特徴とする。
【0014】
また、請求項6に記載の発明は、研磨装置に1ロットが多数枚からなる半導体ウエハーをロット毎装填し、該半導体ウエハーを1枚ずつ研磨する研磨工程と、該半導体ウエハーの膜厚を測定する膜厚測定工程からなり、これらの工程で半導体ウエハーの研磨・膜厚測定作業を行う半導体ウエハーの研磨方法であって、研磨・膜厚測定作業に並行して次の半導体ウエハーの前記研磨・膜厚測定作業を行い、1ロット内の1枚目の半導体ウエハーの研磨・膜厚測定作業後に、該研磨・膜厚測定作業における研磨時間、目標膜厚値、半導体ウエハーの研磨前の測定膜厚値、及び研磨後の測定膜厚値から第1の最適研磨時間を算出し、算出した第1の最適研磨時間で所定枚数目後の半導体ウエハーの該研磨・膜厚測定作業の研磨工程を行い、所定枚数目後の半導体ウエハーの研磨・膜厚測定作業後に、該研磨・膜厚測定作業における研磨時間、目標膜厚値、半導体ウエハーの研磨後の測定膜厚値、及び1ロット内の1枚目の半導体ウエハーの研磨・膜厚測定作業の研磨前の測定膜厚値から第2の最適研磨時間を算出することを特徴とする。
【0015】
また、請求項7に記載の発明は、請求項6に記載の半導体ウエハーの研磨方法において、研磨・膜厚測定作業は、研磨工程で研磨後の前記半導体ウエハーを洗浄し、該洗浄後の半導体ウエハーを乾燥させ、該乾燥後の半導体ウエハーの膜厚を測定することからなることを特徴とする。
【0016】
また、請求項8に記載の発明は、研磨装置に1ロットが多数枚からなる半導体ウエハーをロット毎装填し、該半導体ウエハーを1枚ずつ研磨する研磨手段と、該半導体ウエハーの膜厚を測定する膜厚測定手段を具備し、これらの手段で半導体ウエハーの研磨・膜厚測定作業を行う半導体ウエハーの研磨装置であって、先行の研磨・膜厚測定作業に並行して次の半導体ウエハーの研磨・膜厚測定作業である後行の研磨・膜厚測定作業を行い、先行の半導体ウエハーの研磨・膜厚測定終了後に、該先行の研磨・膜厚測定作業における研磨手段の研磨時間、目標膜厚値、半導体ウエハーの研磨前の測定膜厚値、及び該研磨後の測定膜厚値から第1の最適研磨時間を算出し、該算出した第1の最適研磨時間で所定枚数目後の半導体ウエハーの研磨・膜厚測定作業を行う制御手段を設けたことを特徴とする。
【0017】
また、請求項9に記載の発明は、請求項8に記載の半導体ウエハーの研磨装置において、研磨手段で半導体ウエハーを研磨した後に、該半導体ウエハーを洗浄する洗浄手段、該洗浄後の半導体ウエハーを乾燥させる乾燥手段を具備し、膜厚測定手段で該乾燥後の半導体ウエハーの膜厚を測定することを特徴とする。
【0018】
また、請求項10に記載の発明は、請求項8又は9に記載の半導体ウエハーの研磨装置において、制御手段は、1ロット内の1枚目の半導体ウエハーの研磨・膜厚測定作業後に、該研磨・膜厚測定作業における研磨時間、目標膜厚値、半導体ウエハーの前記研磨前の測定膜厚値、及び研磨後の測定膜厚値から第1の最適研磨時間を算出し、該算出した第1の最適研磨時間で所定枚数目後の半導体ウエハーの該研磨・膜厚測定作業の研磨を行い、該所定枚数目後の半導体ウエハーの研磨・膜厚測定作業後に、該研磨・膜厚測定作業における研磨時間、目標膜厚値、半導体ウエハーの研磨後の測定膜厚値、及び前記1ロット内 の1枚目の半導体ウエハーの研磨・膜厚測定作業の研磨前の測定膜厚値から第2の最適研磨時間を算出することを特徴とする。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1は本発明の半導体ウエハー研磨装置の研磨制御装置の構成を示す図である。図示するように、本研磨制御装置は、膜厚測定部1、入力装置2、ポリッシング時間演算ユニット3、ポリッシング時間振り分けユニット4、研磨部制御部5を具備する。
【0020】
膜厚測定部1は研磨前の半導体ウエハーの膜厚を測定する研磨前測定機能1aと、研磨後の半導体ウエハーの膜厚を測定する研磨後測定機能1bを具備し、研磨前の測定膜厚値M及び研磨後の測定膜厚値Mをポリッシング時間演算ユニット3に入力する。ポリッシング時間演算ユニット3は後に詳述するように、次回以降の半導体ウエハーの最適研磨時間T〜Tを研磨終了毎に算出し、ポリッシング時間振り分けユニット4に出力する。なお、膜厚測定部1における膜厚の測定は半導体ウエハーの面の複数点の膜厚を測定し、その平均値から測定膜厚値M及びMを得ることにより精度の良い測定膜厚値が得られる。
【0021】
研磨部制御部5は研磨する半導体ウエハー毎に最適研磨時間を格納する研磨時間格納部5aを具備し、前記ポリッシング時間振り分けユニット4は前記ポリッシング時間演算ユニット3で算出された最適研磨時間T〜Tをそれぞれ研磨時間格納部5aの2枚目、3枚目、・・・・、N−1枚目、N枚目の記憶エリアに格納する。研磨部制御部5は後に詳述するようにポリッシング装置のポリッシング部(研磨部)を研磨時間格納部5aに格納された最適研磨時間T〜Tで制御して各半導体ウエハーを研磨する。
【0022】
図2は上記研磨制御装置が用いられるポリッシング装置の概略構成を示す図である。ポリッシング装置は多数枚の半導体ウエハーが収納された収納ケース25,25’を搬入搬送するロードアンロード部21、搬送装置22、ポリッシング(研磨)部23、洗浄部24及び図1に示す研磨制御装置の膜厚測定部1が所定の配置で配置されている。
【0023】
搬送装置22はロボット等からなり、ロードアンロード部21に搬入された収納ケース25から半導体ウエハーを1枚ずつ取り出し、膜厚測定部1に送る。該膜厚測定部1では先ず研磨前の膜厚を測定する。続いて搬送装置22は該研磨前の膜厚測定が終了した半導体ウエハーをポリッシング部23に渡す。ポリッシング部23では、例えばトップリングに半導体ウエハーをターンテーブル上面に貼付た研磨用不織物面に所定の圧力で当接させ、トップリングの回転とターンテーブルの回転による相互運動で半導体ウエハーを所定時間研磨する。この研磨時間は前記のように研磨部制御部5のポリッシング時間記憶部5aの各記憶エリアに格納された最適研磨時間T〜Tで行う。
【0024】
研磨の終了した半導体ウエハーは搬送装置22で洗浄部24に送られ、該洗浄部24で洗浄し乾燥した後、搬送装置22で膜厚測定部1に送られ、該膜厚測定部1で研磨後の膜厚が測定され、膜厚測定後はロードアンロード部21に移送され、該ロードアンロード部21に別途配置されている研磨終了後の半導体ウエハーを収納する収納ケース25’に収納される。上記のように収納ケース25に収納された1ロットの半導体ウエハーは搬送装置22により1枚ずつ取り出され、研磨、洗浄・乾燥、研磨後の膜厚測定の作業が繰り返される。この収納ケース25の全部の半導体ウエハーの上記作業が研磨が終了した時点、即ち1ロットの半導体ウエハーの研磨が終了した時点で次のロットの研磨作業に移る。
【0025】
図3及び図4は上記研磨制御装置の研磨処理作業の流れを示す図であり、同図に基づいて研磨処理作業を説明する。先ず図3において研磨装置のロードアンロード部21に研磨を必要とする1ロット(例えば25枚)半導体ウエハーを収納した収納ケース25をセットする。次に、入力装置2から目標膜厚値Mと初期ポリッシング(研磨)時間Tを入力する。該目標膜厚値Mはポリッシング時間演算ユニット3に転送され、初期ポリッシング時間Tはポリッシング時間演算ユニット3と研磨部制御部5に転送され、研磨部制御部5ではポリッシング時間記憶部5aの1枚目の記憶エリアに格納される。
【0026】
初期ポリッシング時間Tは膜厚が前記目標膜厚値Mになるまで研磨するのに必要な時間で研磨前の膜厚と目標膜厚値より経験的に算出される。上記のように搬送装置22は収納ケース25から1枚目の半導体ウエハーWを取り出し、膜厚測定部1に移送する。この時2枚目の半導体ウエハーWは収納ケース25内で待機状態になる。膜厚測定部1は該半導体ウエハーWの研磨前の膜厚を測定し、その膜厚測定値Mをポリッシング時間演算ユニット3に転送する。
【0027】
続いて搬送装置22は半導体ウエハーWをポリッシング部23に移送する。該ポリッシング部23では半導体ウエハーWを研磨部制御部5の制御により初期ポリッシング時間Tだけ研磨する。該研磨が終了すると搬送装置22は半導体ウエハーWを洗浄部24に移送し、該洗浄部24で洗浄・乾燥された半導体ウエハーWは再び搬送装置22により、膜厚測定部1に移送され、ここで半導体ウエハーWの研磨後の膜厚が測定され、その測定膜厚値MF1はポリッシング時間演算ユニット3に転送される。膜厚測定終了後、半導体ウエハーWは搬送装置22でロードアンロード部21に移送され、研磨終了後の半導体ウエハーを収容する収納ケース25’に収納される。
【0028】
続いてポリッシング時間演算ユニット3では、前記初期ポリッシング時間T、半導体ウエハーWの研磨前の測定膜厚値M、研磨後の測定膜厚値MF1及び目標膜厚値Mから最適ポリッシング時間(目標膜厚値Mにするための最適なポリッシング時間)T{T=f(M,M,MF1,T)}を演算して求める。該最適ポリッシング時間Tはポリッシング時間振り分けユニット4に転送され、研磨部制御部5のポリッシング時間記憶部5aの2枚目及び3枚目の記憶エリアに格納する。
【0029】
この最適ポリッシング時間Tが演算されたことを確認したら、作業者は前記待機を解除して図4に示すように、2枚目以降の半導体ウエハーの研磨作業を開始する。搬送装置22は2枚目の半導体ウエハーWを収納ケース25から取り出しポリッシング部23に移送する。ポリッシング部23では研磨部制御部5の制御により、ポリッシング時間記憶部5aの2枚目の記憶エリアに格納され最適ポリッシング時間Tだけ2枚目の半導体ウエハーWを研磨する。
【0030】
搬送装置22は研磨の終了した半導体ウエハーWを洗浄部24に移送し、ここで洗浄され乾燥された半導体ウエハーWは再び搬送装置22で膜厚測定部1に移送される。膜厚測定部1は半導体ウエハーWの研磨後の膜厚を測定し、その膜厚測定値MF2をポリッシング時間演算ユニット3に転送する。研磨後の膜厚が測定された半導体ウエハーWは搬送装置22でロードアンロード部21に移送され、研磨終了後の半導体ウエハーを収容する収納ケース25’に収納される。
【0031】
ポリッシング時間演算ユニット3は、前記目標膜厚値M、2枚目の半導体ウエハーWの研磨前の測定膜厚値M、研磨後の膜厚測定値MF2、最適ポリッシング時間Tから4枚目の半導体ウエハーWを研磨する最適研磨時間T{T=f(M,M,MF2,T)}を演算して求め、この最適研磨時間Tをポリッシング時間振り分けユニット4に転送し、研磨部制御部5のポリッシング時間記憶部5aの4枚目の記憶エリアに格納する。
【0032】
前記2枚目の半導体ウエハーWの研磨作業に並行して3枚目の半導体ウエハーWの研磨作業もスタートする。搬送装置22は3枚目の半導体ウエハーWを収納ケース25から取り出しポリッシング部23に移送し、該ポリッシング部23では研磨部制御部5の制御により、ポリッシング時間記憶部5aの3枚目の記憶エリアに格納され最適ポリッシング時間Tで3枚目の半導体ウエハーWを研磨する。
【0033】
研磨の終了した半導体ウエハーWは搬送装置22により洗浄部24に移送され、洗浄・乾燥された半導体ウエハーWは膜厚測定部1に移送され、膜厚測定部1で研磨後の膜厚が測定され、その膜厚測定値MF3はポリッシング時間演算ユニット3に転送される。研磨後の膜厚が測定された半導体ウエハーWは搬送装置22でロードアンロード部21に移送され、研磨終了後の半導体ウエハーを収容する収納ケース25’に収納される。
【0034】
ポリッシング時間演算ユニット3は、前記目標膜厚値M、3枚目の半導体ウエハーWの研磨前の測定膜厚値M、研磨後の膜厚測定値MF3、最適ポリッシング時間Tから5枚目の半導体ウエハーWを研磨する最適研磨時間T(T=f(M,M,MF3,T))を演算して求め、この最適研磨時間Tをポリッシング時間振り分けユニット4に転送し、研磨部制御部5のポリッシング時間記憶部5aの5枚目の記憶エリアに格納する。
【0035】
4枚目の半導体ウエハーWの研磨作業は、搬送装置22により4枚目の半導体ウエハーWを取り出しポリッシング部23に移送され、該ポリッシング部23で研磨部制御部5の制御により、ポリッシング時間記憶部5aの4枚目の記憶エリアに格納され最適ポリッシング時間Tで4枚目の半導体ウエハーWを研磨する。
【0036】
研磨の終了した半導体ウエハーWは洗浄部24で洗浄・乾燥され、更に膜厚測定部1に移送され、膜厚測定部1で研磨後の膜厚が測定され、その測定膜厚値MF4はポリッシング時間演算ユニット3に転送され、半導体ウエハーWはロードアンロード21で研磨終了後の半導体ウエハーを収容する収納ケース25’に収納される。
【0037】
ポリッシング時間演算ユニット3は、前記目標膜厚値M、前記研磨前の測定膜厚値M、研磨後の測定膜厚値MF4、最適ポリッシング時間Tから6枚目の半導体ウエハーWを研磨する最適研磨時間T{T=f(M,M,MF4,T)}を演算して求め、この最適研磨時間Tをポリッシング時間振り分けユニット4に転送し、研磨部制御部5のポリッシング時間記憶部5aの6枚目の記憶エリアに格納する。
【0038】
以下同様に5枚目の半導体ウエハーWの研磨作業は研磨部制御部5のポリッシング時間記憶部5aの5枚目の記憶エリアに格納された最適研磨時間Tで研磨してその研磨終了後に7枚目の最適研磨時間Tを演算し、6枚目の半導体ウエハーWの研磨作業は研磨部制御部5のポリッシング時間記憶部5aの6枚目の記憶エリアに格納された最適研磨時間Tで研磨してその研磨終了後に8枚目の最適研磨時間Tを演算する。
【0039】
このようにK枚目の半導体ウエハーWの研磨終了後、研磨前の測定膜厚値M、研磨後の膜厚測定値MFK、最適ポリッシング時間TからK+2枚目の半導体ウエハーWK+2を研磨する最適研磨時間TK+2(TK+2=f(M,M,MFK,T))を演算して求め、研磨部制御部5のポリッシング時間記憶部5aのK+2枚目の記憶エリアに格納する。
【0040】
なお、上記実施の形態では、研磨前の膜厚測定は1枚目の半導体ウエハーWのみで行い、その測定膜厚値を用いているが、1枚毎に研磨前の膜厚を測定し、その都度、測定膜厚値MI1、MI2〜MINを得るようにしても良い。
【0041】
また、上記実施の形態では、初期ポリッシング時間T、研磨前の測定膜厚値M、研磨後の測定膜厚値MF1及び目標膜厚値Mから演算して得た最適ポリッシング時間T{T=f(M,M,MF1,T)}を2枚目及び3枚目の半導体ウエハーの研磨に使用し、以下研磨終了毎にそれから2枚目に当る半導体ウエハーの最適ポリッシング時間を演算して求めているが、これに限定されるものではなく、例えば、最適ポリッシング時間Tを2枚目、3枚目、4枚目の半導体ウエハーの研磨に使用し、以下研磨終了毎にそれから3枚目に当る半導体ウエハーの最適ポリッシング時間を演算して求めても良く、また最適ポリッシング時間Tを2枚目の半導体ウエハーの研磨に使用し、以下研磨終了毎にその次の半導体ウエハーの最適ポリッシング時間を演算して求めても良い。
【0042】
要は、1枚目の半導体ウエハーを初期研磨時間Tで研磨した後、該初期研磨時間T及び研磨前の測定膜厚値Mと研磨後の測定膜厚値MF1から次回以降所定枚数目までの最適研磨時間を算出し、該所定枚数目までの半導体ウエハーを該最適研磨時間で研磨し、以降順次研磨終了毎にそれ以降の所定枚数目の半導体ウエハーの最適研磨時間を算出し、該最適研磨時間で該所定枚数目の半導体ウエハーを研磨するようにすれば良い。
【0043】
【発明の効果】
以上説明したように各請求項に記載の発明によれば、下記のような優れた効果が得られる。
【0044】
先行の研磨作業に並行して次の半導体ウエハーの研磨・膜厚測定作業である後行の研磨・膜厚測定作業を行うので、高い研磨効率が得られる。
【0045】
また、先行の研磨・膜厚測定作業後に最適研磨時間を算出し、該算出した最適研磨時間で所定枚数目後の半導体ウエハーの研磨・膜厚測定作業の研磨工程を行うので、例えば研磨用不織物表面の状況や研磨液の成分や温度等の研磨条件が変化しても、その変化した最新の研磨条件がそれ以降の半導体ウエハーの研磨に反映できるので、半導体ウエハーの膜厚を高精度の膜厚に研磨することができる。
【図面の簡単な説明】
【図1】本発明の半導体ウエハー研磨装置の研磨制御装置の構成を示す図である。
【図2】本発明の研磨制御装置が用いられるポリッシング装置の概略構成を示す図である。
【図3】本発明の研磨制御装置の研磨処理作業の流れを示す図である。
【図4】本発明の研磨制御装置の研磨処理作業の流れを示す図である。
【符号の説明】
1 膜厚測定部
2 入力装置
3 ポリッシング時間演算ユニット
4 ポリッシング時間振り分けユニット
5 研磨部制御部
21 ロードアンロード部
22 搬送装置
23 ポリッシング部
24 洗浄部
25 収納ケース
25’ 収納ケース
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing method and a polishing apparatus for polishing a semiconductor wafer with an optimal polishing time in order to maintain a film thickness to be polished with a predetermined value accurately in a polishing apparatus (polishing apparatus) for polishing a semiconductor wafer.
[0002]
[Prior art]
2. Description of the Related Art In a polishing apparatus (polishing apparatus) for polishing (polishing) a surface of a semiconductor wafer to a mirror surface, polishing of a wafer film thickness to a predetermined value is performed by controlling a polishing time. That is, the polishing amount is proportional to the polishing time when the polishing conditions such as the polishing speed and the surface pressure are constant. Therefore, the film thickness can be maintained at a predetermined value by controlling the polishing time.
[0003]
Conventionally, in order to obtain this polishing time, an operator first measures the film thickness of one semiconductor wafer before polishing (this is performed outside the apparatus in a normal polishing apparatus), and then the single semiconductor wafer is removed. Polishing is performed for a predetermined time by a polishing apparatus, and the film thickness of the semiconductor wafer is measured after the polishing (may be measured inside the polishing apparatus or outside the apparatus). The optimum polishing time is calculated from the target film pressure and the polishing time, and the subsequent polishing of the semiconductor wafer is performed with the optimum polishing time.
[0004]
[Problems to be solved by the invention]
However, the method of setting the polishing time as described above is a difficult task by hand, and at the same time, since the polishing time is set in one operation, the polishing conditions change while polishing continues, There is a problem that the polishing amount differs even with the same polishing time. For example, there is a problem that the surface of the polishing nonwoven fabric is worn out during long polishing, changes over time, and a difference in polishing amount occurs even in the same polishing time due to a component of the supplied polishing liquid or a change in temperature. There is.
[0005]
Further, as disclosed in, for example, Japanese Patent Publication No. 7-100297, the polishing amount and the polishing time in the polishing cycle of the already polished semiconductor wafer are sequentially accumulated, and the average polishing rate is calculated based on these accumulated values. In some cases, an optimum polishing time is calculated based on the average speed and a margin for polishing the semiconductor wafer in the next polishing cycle, and polishing in the next polishing cycle is performed based on the optimum polishing time. However, the method of calculating the optimum polishing time based on the average polishing speed of the accumulated polishing time cannot necessarily set the optimum polishing time.
[0006]
This is because in a polishing apparatus that continuously polishes semiconductor wafers one by one for each lot, the condition of the surface of the nonwoven fabric for polishing and the composition and temperature of the polishing liquid when the previous semiconductor wafer was finished are changed this time and next time. This has a great effect on semiconductor wear polishing, and the average polishing rate of the cumulative value of past polishing times does not necessarily have a great effect on the current or next polishing. Therefore, there is a problem that high-precision film thickness polishing cannot be performed.
[0007]
The present invention has been made in view of the above points, removes the above-mentioned problems, reflects the latest polishing nonwoven fabric surface conditions and polishing conditions such as polishing liquid components and temperatures in the polishing, high precision An object of the present invention is to provide a polishing method and a polishing apparatus for a semiconductor wafer which can be polished.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 includes a polishing step of loading a lot of semiconductor wafers, one lot of which is a lot, into a polishing apparatus, and polishing the semiconductor wafers one by one . A polishing method for a semiconductor wafer, comprising a film thickness measuring step of measuring a film thickness, and a polishing and film thickness measuring operation of the semiconductor wafer in these steps . The following polishing / thickness measurement operation, which is a polishing / thickness measurement operation for a semiconductor wafer, is performed. After the preceding polishing / thickness measurement operation, the polishing time and the target thickness value in the preceding polishing / thickness measurement operation are performed. , measured before polishing of the semiconductor wafer thickness value, and calculates a first optimum polishing time of the polishing process from the measured thickness value after the polishing, the first optimum polishing time in the semiconductor after a predetermined number-th calculated Polishing and film thickness of wafer And performing a polishing process of a constant work.
[0009]
Further, in the polishing and film thickness measuring work , the polishing and the film thickness measuring work may include cleaning the polished semiconductor wafer in the polishing step, drying the polished semiconductor wafer, and drying the semiconductor wafer. Is measured .
[0010]
According to the first and second aspects of the present invention, the subsequent polishing and film thickness measurement work, which is the next semiconductor wafer polishing and film thickness measurement operation, is performed in parallel with the preceding polishing work. Polishing efficiency is obtained. In addition, the optimum polishing time is calculated after the preceding polishing and film thickness measurement work, and the polishing step of the polishing and film thickness measurement work of the semiconductor wafer after the predetermined number of semiconductor wafers is performed with the calculated optimum polishing time. Even if the polishing conditions such as the condition of the woven fabric surface, the composition of the polishing liquid, and the temperature change, the changed latest polishing conditions can be reflected in the subsequent polishing of the semiconductor wafer. It can be polished to a film thickness.
[0011]
According to a third aspect of the present invention, in the method for polishing a semiconductor wafer according to the first or second aspect, after the preceding polishing / thickness measuring operation, the polishing / thickness measuring operation of the subsequent semiconductor wafer is performed. A second optimum polishing time is calculated from the polishing time, the target film thickness value, the measured film thickness value before the polishing step, and the measured film thickness value after polishing, and the second optimum polishing time after the predetermined number of sheets is calculated with the calculated second optimum polishing time. It is characterized in that a polishing step of the following semiconductor wafer polishing / film thickness measuring operation is performed .
[0012]
The invention of claim 4 is the method of polishing a semiconductor wafer over according to any one of claims 1 to 3, the polishing-thickness measurement operation of the first sheet of the semiconductor wafer in one lot The second semiconductor wafer is on standby until the process is completed.
[0013]
According to a fifth aspect of the present invention, in the method for polishing a semiconductor wafer according to the fourth aspect, after polishing and measuring the film thickness of the first semiconductor wafer in one lot , one semiconductor wafer in the one lot is subjected to the polishing. The first optimal polishing time is calculated from the polishing time, the target film thickness value, the measured film thickness value before polishing of the semiconductor wafer, and the measured film thickness value after polishing in the polishing / thickness measurement work of the second semiconductor wafer, The polishing step of the polishing and film thickness measurement of the second and third semiconductor wafers in one lot is performed at the calculated first optimum polishing time .
[0014]
According to a sixth aspect of the present invention, there is provided a polishing step of loading a lot of semiconductor wafers of one lot into a polishing apparatus for each lot and polishing the semiconductor wafers one by one, and measuring a film thickness of the semiconductor wafers. A semiconductor wafer polishing method for performing a semiconductor wafer polishing and film thickness measuring operation in these steps, wherein the polishing and the film thickness measuring operation are performed in parallel with the polishing and film thickness measurement of the next semiconductor wafer. A film thickness measurement operation is performed, and after the polishing / film thickness measurement operation of the first semiconductor wafer in one lot, the polishing time, the target film thickness value in the polishing / film thickness measurement operation, and the measurement film before polishing the semiconductor wafer are measured. The first optimum polishing time is calculated from the thickness value and the measured film thickness value after polishing, and the polishing process of the polishing / thickness measurement operation of the semiconductor wafer after a predetermined number of semiconductor wafers is performed at the calculated first optimum polishing time. Done, predetermined number After the polishing / thickness measuring operation of the semiconductor wafer, the polishing time, the target film thickness value, the measured film thickness value after polishing the semiconductor wafer, and the first semiconductor in the lot are measured. A second optimum polishing time is calculated from a measured film thickness value before polishing in a wafer polishing / film thickness measuring operation.
[0015]
According to a seventh aspect of the present invention, in the method for polishing a semiconductor wafer according to the sixth aspect, the polishing / thickness measuring operation includes cleaning the semiconductor wafer after polishing in a polishing step, and cleaning the semiconductor wafer after the cleaning. Drying the wafer and measuring the film thickness of the semiconductor wafer after the drying.
[0016]
The invention according to claim 8 is a polishing means for loading a lot of semiconductor wafers, one lot per lot, into a polishing apparatus, and polishing the semiconductor wafers one by one, and measuring the film thickness of the semiconductor wafers. A semiconductor wafer polishing apparatus comprising a film thickness measuring means for performing polishing and film thickness measurement of a semiconductor wafer by these means, wherein the polishing and film thickness measurement of the next semiconductor wafer are performed in parallel with the preceding polishing and film thickness measuring work. A subsequent polishing / thickness measurement operation, which is a polishing / thickness measurement operation, is performed. After completion of the preceding polishing / thickness measurement of the semiconductor wafer, the polishing time of the polishing means in the preceding polishing / thickness measurement operation, the target A first optimal polishing time is calculated from the film thickness value, the measured film thickness value before polishing of the semiconductor wafer, and the measured film thickness value after the polishing, and the first optimal polishing time after the predetermined number of sheets is calculated with the calculated first optimal polishing time. Polishing and film of semiconductor wafer Characterized in that a control means for performing measurement operations.
[0017]
According to a ninth aspect of the present invention, in the semiconductor wafer polishing apparatus according to the eighth aspect, after the semiconductor wafer is polished by the polishing means, the cleaning means for cleaning the semiconductor wafer, and the semiconductor wafer after the cleaning is removed. A drying means for drying is provided, and the film thickness of the semiconductor wafer after the drying is measured by the film thickness measuring means.
[0018]
According to a tenth aspect of the present invention, in the semiconductor wafer polishing apparatus according to the eighth or ninth aspect, the control means performs the polishing and film thickness measuring operation of the first semiconductor wafer in one lot. The first optimum polishing time is calculated from the polishing time in the polishing / thickness measurement operation, the target film thickness value, the measured film thickness value before polishing of the semiconductor wafer, and the measured film thickness value after polishing, and the calculated first polishing time is calculated. The polishing and film thickness measurement of the semiconductor wafer after the predetermined number of wafers are polished in the optimal polishing time of 1, and the polishing and film thickness measurement of the semiconductor wafer after the predetermined number of wafers are performed. From the polishing time, the target film thickness value, the measured film thickness value after polishing the semiconductor wafer, and the measured film thickness value before polishing in the polishing and film thickness measurement work of the first semiconductor wafer in the lot. The feature is to calculate the optimal polishing time of That.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a polishing control device of a semiconductor wafer polishing apparatus according to the present invention. As shown in the figure, the present polishing control device includes a film thickness measuring unit 1, an input device 2, a polishing time calculation unit 3, a polishing time distribution unit 4, and a polishing unit control unit 5.
[0020]
The film thickness measuring section 1 has a pre-polishing measuring function 1a for measuring the film thickness of the semiconductor wafer before polishing and a post-polishing measuring function 1b for measuring the film thickness of the semiconductor wafer after polishing. enter a value M I and the measured thickness value M F after polishing the polishing time calculating unit 3. As will be described later in detail, the polishing time calculation unit 3 calculates the optimum polishing times T 1 to TN of the semiconductor wafers for the next and subsequent times each time polishing is completed, and outputs the calculated polishing times to the polishing time distribution unit 4. Note that a good measure thickness accuracy by measuring the film thickness at the film thickness measuring unit 1 measures the thickness of the plurality of points of the surface of the semiconductor wafer, to obtain a measurement thickness value M I and M F from the average value Value is obtained.
[0021]
The polishing section control section 5 includes a polishing time storage section 5a for storing an optimum polishing time for each semiconductor wafer to be polished, and the polishing time distribution unit 4 includes an optimum polishing time T 1 calculated by the polishing time calculation unit 3. TN are stored in the second, third,..., N−1, and N-th storage areas of the polishing time storage unit 5a. As will be described later in detail, the polishing section control section 5 controls the polishing section (polishing section) of the polishing apparatus with the optimum polishing times T 1 to TN stored in the polishing time storage section 5a to polish each semiconductor wafer.
[0022]
FIG. 2 is a diagram showing a schematic configuration of a polishing apparatus using the polishing control device. The polishing apparatus includes a load / unload unit 21, a transfer unit 22, a polishing (polishing) unit 23, a cleaning unit 24, and a polishing control unit shown in FIG. 1 for carrying in and transporting storage cases 25 and 25 'storing a large number of semiconductor wafers. Are arranged in a predetermined arrangement.
[0023]
The transfer device 22 is composed of a robot or the like, and takes out the semiconductor wafers one by one from the storage case 25 carried into the load / unload unit 21 and sends the semiconductor wafers to the film thickness measuring unit 1. The film thickness measuring unit 1 first measures the film thickness before polishing. Subsequently, the transfer device 22 transfers the semiconductor wafer, for which the film thickness measurement before polishing has been completed, to the polishing unit 23. In the polishing section 23, for example, the semiconductor wafer is brought into contact with the top ring at a predetermined pressure against the nonwoven fabric surface for polishing attached to the upper surface of the turntable, and the semiconductor wafer is moved for a predetermined time by the mutual movement due to the rotation of the top ring and the rotation of the turntable. Grind. The polishing time is carried out at the optimal polishing time stored in each storage area of the polishing time storing section 5a of the polishing unit control unit 5 as the T 1 through T N.
[0024]
The polished semiconductor wafer is sent to the cleaning unit 24 by the transfer unit 22, washed and dried by the cleaning unit 24, sent to the film thickness measurement unit 1 by the transfer unit 22, and polished by the film thickness measurement unit 1. After the film thickness is measured, the film is transferred to the load / unload unit 21 and stored in a storage case 25 ′ that is separately disposed in the load / unload unit 21 and stores the polished semiconductor wafer. You. One lot of semiconductor wafers stored in the storage case 25 as described above are taken out one by one by the transfer device 22, and the operations of polishing, washing / drying, and measuring the film thickness after polishing are repeated. When the above operation for all the semiconductor wafers in the storage case 25 has been polished, that is, when the polishing of one lot of semiconductor wafers has been completed, the polishing operation for the next lot is started.
[0025]
FIG. 3 and FIG. 4 are views showing the flow of the polishing processing operation of the above-mentioned polishing control device, and the polishing processing operation will be described with reference to FIG. First, in FIG. 3, a storage case 25 storing one lot (for example, 25) semiconductor wafers requiring polishing is set in the load / unload section 21 of the polishing apparatus. Then, enter the target thickness value M T and the initial polishing from the input device 2 (polishing) time T 0. Is the target thickness value M T is transferred to the polishing time calculation unit 3, an initial polishing time T 0 is transferred to the polishing unit control unit 5 and the polishing time calculation unit 3, the polishing unit control unit 5 in the polishing time storage unit 5a It is stored in the first storage area.
[0026]
Initial polishing time T 0 is the thickness is calculated the target thickness value empirically from the pre-polishing film thickness and the target film thickness value at the time required to polish to a M T. As described above, the transfer device 22 takes out the first semiconductor wafer W1 from the storage case 25 and transfers it to the film thickness measuring unit 1. At this time, the second sheet of semiconductor wafer W 2 is in a standby state in the storage case 25. Thickness measuring unit 1 measures the film thickness before polishing of the semiconductor wafer W 1, and transfers the measured film thickness M I in the polishing time calculating unit 3.
[0027]
Subsequently feeder 22 to transfer the semiconductor wafer W 1 to the polishing section 23. Polishing only the initial polishing time T 0 by the control of the polishing unit control unit 5 of the semiconductor wafer W 1 In the polishing section 23. Conveying device 22 and the polishing is completed by transferring the semiconductor wafer W 1 to the cleaning unit 24 by the conveying device 22 cleaned and dried semiconductor wafer W 1 by the cleaning unit 24 is again transferred to the film thickness measurement section 1 , where it is measured the film thickness after polishing of the semiconductor wafer W 1 is the measured thickness value M F1 is transferred to the polishing time calculating unit 3. After the film thickness measurement completion, the semiconductor wafer W 1 is transferred to the loading and unloading unit 21 by the transfer device 22, it is housed in the housing case 25 'which houses the semiconductor wafer after polishing.
[0028]
Following the polishing time calculation unit 3, the initial polishing time T 0, measured thickness value before polishing of the semiconductor wafer W 1 M I, optimum polishing from the measured thickness value M F1 and the target thickness value M T after polishing time (optimal polishing time to the target thickness value M T) T 1 {T 1 = f (M T, M I, M F1, T 0)} determined by calculating the. The optimum polishing time T 1 is transferred to the polishing time distribution unit 4, and stores the second sheet and the storage area of the third sheet of the polishing time storage unit 5a of the polishing unit control unit 5.
[0029]
Once this optimum polishing time T 1 is to confirm that the computed, the operator, as shown in FIG. 4 to cancel the standby, starts polishing operation of second and subsequent semiconductor wafer. Feeder 22 to transport the second sheet of the semiconductor wafer W 2 in the polishing section 23 removed from the housing case 25. The control of the polishing unit 23 in the polishing unit control unit 5 is stored in the second sheet storage area of the polishing time storing unit 5a polishing the optimum polishing time T 1 by the second sheet of the semiconductor wafer W 2.
[0030]
Feeder 22 transports the semiconductor wafer W 2 ended polishing the cleaning unit 24, wherein the washed and dried semiconductor wafer W 2 is transferred to the film thickness measurement unit 1 by the transfer device 22 again. Thickness measuring unit 1 measures the film thickness after polishing of the semiconductor wafer W 2, and transfers the measured film thickness M F2 in polishing time calculating unit 3. The semiconductor wafer W 2 that the film thickness after polishing is measured is transferred to the loading and unloading unit 21 by the transfer device 22, it is housed in the housing case 25 'which houses the semiconductor wafer after polishing.
[0031]
The polishing time calculation unit 3 calculates the target film thickness value M T , the measured film thickness value M I before polishing of the second semiconductor wafer W 2 , the measured film thickness value M F2 after polishing, and the optimum polishing time T 1. optimum polishing time for polishing a 4 th semiconductor wafer W 4 T 4 {T 4 = f (M T, M I, M F2, T 1)} determined by calculating the, the optimum polishing time T 4 the polishing time The data is transferred to the distribution unit 4 and stored in the fourth storage area of the polishing time storage unit 5a of the polishing unit control unit 5.
[0032]
The polishing work in parallel with the second sheet polishing operation of the semiconductor wafer W 2 of the third sheet of semiconductor wafer W 3 also start. The transfer device 22 takes out the third semiconductor wafer W3 from the storage case 25 and transfers it to the polishing unit 23. The polishing unit 23 controls the polishing unit control unit 5 to store the third semiconductor wafer W3 in the polishing time storage unit 5a. in the optimum polishing time T 1 is stored in the area for polishing the third sheet of the semiconductor wafer W 3.
[0033]
Semiconductor wafer W 3 ended polishing is transferred to the cleaning unit 24 by the transport device 22, the semiconductor wafer W 3 that has been cleaned and dried is transferred to a film thickness measuring unit 1, the film thickness after polishing by the film thickness measurement section 1 Is measured, and the film thickness measurement value MF3 is transferred to the polishing time calculation unit 3. Semiconductor wafer W 3 that the film thickness after polishing is measured is transferred to the loading and unloading unit 21 by the transfer device 22, it is housed in the housing case 25 'which houses the semiconductor wafer after polishing.
[0034]
The polishing time calculation unit 3 calculates the target film thickness M T , the measured film thickness M I before polishing of the third semiconductor wafer W 3 , the measured film thickness M F3 after polishing, and the optimum polishing time T 1. 5th optimum polishing time T 5 to polish the semiconductor wafer W 5 (T 5 = f ( M T, M I, M F3, T 3)) determined by calculating the, the optimum polishing time T 5 the polishing time The data is transferred to the distribution unit 4 and stored in the fifth storage area of the polishing time storage unit 5a of the polishing unit control unit 5.
[0035]
Grinding work 4 th semiconductor wafer W 4 is transferred to the polishing section 23 takes out the semiconductor wafer W 4 of the fourth sheet by the transfer device 22, the control of the polishing unit control unit 5 in the polishing section 23, the polishing time polishing the 4 th semiconductor wafer W 4 at 4th stored in the storage area optimal polishing time T 4 of the storage unit 5a.
[0036]
Semiconductor wafer W 4 which has finished polishing is washed and dried in the cleaning section 24, is further transported to a film thickness measuring unit 1, the film thickness after polishing by a film thickness measuring unit 1 is measured and the measured thickness value M F4 is transferred to the polishing time calculation unit 3, the semiconductor wafer W 4 is accommodated in the storage case 25 'which houses the semiconductor wafer after polishing at the load-unload 21.
[0037]
The polishing time calculation unit 3 calculates the sixth semiconductor wafer W 6 from the target film thickness M T , the measured film thickness M I before polishing, the measured film thickness M F4 after polishing, and the optimum polishing time T 4. Polishing time T 6 {T 6 = f (M T , M I , M F4 , T 4 )} is calculated, and this optimum polishing time T 6 is transferred to the polishing time distribution unit 4 for polishing. It is stored in the sixth storage area of the polishing time storage unit 5a of the unit control unit 5.
[0038]
Similarly polishing work 5 th semiconductor wafer W 5 after the completion of polishing is polished by optimum polishing time T 5, which are stored in the storage area of the 5th polishing time storage unit 5a of the polishing unit control section 5 below The optimum polishing time T 7 for the seventh wafer is calculated, and the polishing operation for the sixth semiconductor wafer W 6 is performed in the polishing time storage unit 5 a of the polishing unit control unit 5. It is polished by T 6 calculates the optimum polishing time T 8 of 8 th after the completion of polishing.
[0039]
After such polishing the end of the K-th semiconductor wafer W K, measured before polishing thickness value M I, the film thickness measurement value M FK after polishing, optimum polishing time T K from K + 2 th semiconductor wafer W K + 2 The polishing time T K + 2 (T K + 2 = f (M T , M I , M FK , T K )) for calculating the polishing time is calculated, and the ( K + 2 ) th storage of the polishing time storage unit 5 a of the polishing unit control unit 5 is stored. Store in area.
[0040]
In the above embodiment, the film thickness before polishing is measured only on the first semiconductor wafer W1, and the measured film thickness value is used. However, the film thickness before polishing is measured for each wafer. Each time, the measured film thickness values M I1 , M I2 to M IN may be obtained.
[0041]
In the above embodiment, the initial polishing time T 0, measured thickness value M I before polishing, measured thickness value M F1 and the target thickness value M T optimum polishing time obtained by calculation from the polished T 1 {T 1 = f (M T , M I , M F1 , T 0 )} is used for polishing the second and third semiconductor wafers. the While seeking calculates the optimum polishing time, it is not limited thereto, for example, the second sheet the optimum polishing time T 1, 3 sheet, used to polish 4 th semiconductor wafer, hereinafter be then determined by calculating the optimal polishing time of the semiconductor wafer to hit the third sheet to the polishing each finished good, also the optimum polishing time T 1 is used for polishing of the second sheet of the semiconductor wafer, each polishing ends below The next half The optimal polishing time of the body wafer may be obtained by calculation.
[0042]
In short, after polishing the first sheet of the semiconductor wafer at an initial polishing time T 0, a predetermined next time from the measured thickness value M F1 after polishing and measurement thickness value M I before initial polishing time T 0 and polishing The optimum polishing time up to the predetermined number of wafers is calculated, the semiconductor wafers up to the predetermined number of wafers are polished at the optimum polishing time, and thereafter, each time the polishing is sequentially completed, the optimum polishing time of the subsequent predetermined number of semiconductor wafers is calculated. The predetermined number of semiconductor wafers may be polished in the optimum polishing time.
[0043]
【The invention's effect】
As described above, according to the invention described in each claim, the following excellent effects can be obtained.
[0044]
Since the subsequent polishing / thickness measurement operation, which is the next semiconductor wafer polishing / thickness measurement operation, is performed in parallel with the preceding polishing operation, high polishing efficiency can be obtained.
[0045]
In addition, the optimum polishing time is calculated after the preceding polishing and film thickness measurement work, and the polishing step of the polishing and film thickness measurement work of the semiconductor wafer after the predetermined number of semiconductor wafers is performed with the calculated optimum polishing time. Even if the polishing conditions such as the condition of the surface of the fabric, the composition of the polishing liquid, and the temperature change, the changed latest polishing conditions can be reflected in the subsequent polishing of the semiconductor wafer, so that the film thickness of the semiconductor wafer can be adjusted with high precision. It can be polished to a film thickness.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a polishing control device of a semiconductor wafer polishing apparatus according to the present invention.
FIG. 2 is a diagram showing a schematic configuration of a polishing apparatus using the polishing control device of the present invention.
FIG. 3 is a diagram showing a flow of a polishing processing operation of the polishing control device of the present invention.
FIG. 4 is a diagram showing a flow of a polishing processing operation of the polishing control device of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 film thickness measurement unit 2 input device 3 polishing time calculation unit 4 polishing time distribution unit 5 polishing unit control unit 21 load / unload unit 22 transfer device 23 polishing unit 24 cleaning unit 25 storage case 25 'storage case

Claims (10)

研磨装置に1ロットが多数枚からなる半導体ウエハーをロット毎装填し、該半導体ウエハーを1枚ずつ研磨する研磨工程と、該半導体ウエハーの膜厚を測定する膜厚測定工程からなり、これらの工程で半導体ウエハーの研磨・膜厚測定作業を行う半導体ウエハーの研磨方法であって、
先行の前記研磨・膜厚測定作業に並行して次の半導体ウエハーの前記研磨・膜厚測定作業である後行の研磨・膜厚測定作業を行い、
前記先行の研磨・膜厚測定作業後に、該先行の研磨・膜厚測定作業における研磨時間、目標膜厚値、半導体ウエハーの前記研磨前の測定膜厚値及び研磨後の測定膜厚値から研磨工程の第1の最適研磨時間を算出し、
前記算出した第1の最適研磨時間で所定枚数目後の半導体ウエハーの研磨・膜厚測定作業の研磨工程を行うことを特徴とする半導体ウエハーの研磨方法。
A polishing apparatus is loaded with a lot of semiconductor wafers, one lot per lot, and a polishing step of polishing the semiconductor wafers one by one , and a film thickness measuring step of measuring the film thickness of the semiconductor wafers. A semiconductor wafer polishing method for performing semiconductor wafer polishing and film thickness measurement work in ,
In parallel with the preceding polishing and film thickness measurement work, the subsequent polishing and film thickness measurement work of the next semiconductor wafer is performed.
After polishing, the film thickness measuring operation of the preceding polishing time in the polishing-thickness measuring operations this prior target thickness value, measured before the polishing of the semiconductor wafer thickness value, and measuring thickness value after the polishing Calculate the first optimal polishing time of the polishing process from
Polishing a semiconductor wafer and performing a first optimum polishing time in the polishing step of polishing, the film thickness measuring operation of the semiconductor wafer after the predetermined number-th that the calculated.
前記研磨・膜厚測定作業は、前記研磨工程で研磨後の前記半導体ウエハーを洗浄し、該洗浄後の半導体ウエハーを乾燥させ、該乾燥後の半導体ウエハーの膜厚を測定することからなることを特徴とする請求項1に記載の半導体ウエハーの研磨方法。The polishing / thickness measuring operation includes cleaning the semiconductor wafer after polishing in the polishing step, drying the semiconductor wafer after cleaning, and measuring the film thickness of the semiconductor wafer after drying. The method for polishing a semiconductor wafer according to claim 1, wherein: 前記先行の研磨・膜厚測定作業後に、該後行の半導体ウエハーの研磨・膜厚測定作業における研磨時間、目標膜厚値、研磨工程前の測定膜厚値、及び研磨後の測定膜厚値から第2の最適研磨時間を算出し、After the preceding polishing and film thickness measurement operation, the polishing time, the target film thickness value, the measured film thickness value before the polishing step, and the measured film thickness value after polishing in the subsequent polishing and film thickness measurement operation of the semiconductor wafer. Calculate the second optimal polishing time from
前記算出した第2の最適研磨時間で前記所定枚数目後の次の半導体ウエハーの研磨・膜厚測定作業の研磨工程を行うことを特徴とする請求項1又は2に記載の半導体ウエハーの研磨方法。3. The method of polishing a semiconductor wafer according to claim 1, wherein a polishing step of polishing and measuring a film thickness of the next semiconductor wafer after the predetermined number is performed at the calculated second optimum polishing time. .
前記1ロット内の1枚目の半導体ウエハーの研磨・膜厚測定作業が終了するまで2枚目の半導体ウエハーは待機することを特徴とする請求項1乃至3のいずれか1項に記載の半導体ウエハーの研磨方法。4. The semiconductor according to claim 1, wherein the second semiconductor wafer waits until the polishing / thickness measurement of the first semiconductor wafer in the one lot is completed. 5. Wafer polishing method. 前記1ロット内の1枚目の半導体ウエハーの研磨・膜厚測定作業後に、該1ロット内の1枚目の半導体ウエハーの研磨・膜厚測定作業における研磨時間、目標膜厚値、半導体ウエハーの研磨前の測定膜厚値、及び研磨後の測定膜厚値から第1の最適研磨時間を算出し、After the work of polishing and measuring the thickness of the first semiconductor wafer in the one lot, the polishing time, the target film thickness value, and the target thickness of the semiconductor wafer in the work of measuring the thickness of the first semiconductor wafer in the one lot are measured. The first optimum polishing time is calculated from the measured film thickness value before polishing and the measured film thickness value after polishing,
前記算出した第1の最適研磨時間で前記1ロット内の2枚目及び3枚目の半導体ウエハーの前記研磨・膜厚測定作業の研磨工程を行うことを特徴とする請求項4に記載の半導体ウエハーの研磨方法。5. The semiconductor according to claim 4, wherein the polishing and the film thickness measurement of the second and third semiconductor wafers in the one lot are performed in the calculated first optimal polishing time. 6. Wafer polishing method.
研磨装置に1ロットが多数枚からなる半導体ウエハーをロット毎装填し、該半導体ウエハーを1枚ずつ研磨する研磨工程と、該半導体ウエハーの膜厚を測定する膜厚測定工程からなり、これらの工程で半導体ウエハーの研磨・膜厚測定作業を行う半導体ウエハーの研磨方法であって、A polishing apparatus is loaded with a lot of semiconductor wafers, one lot per lot, and a polishing step of polishing the semiconductor wafers one by one, and a film thickness measuring step of measuring the film thickness of the semiconductor wafers. A method of polishing a semiconductor wafer, which performs a polishing and film thickness measurement operation of the semiconductor wafer in,
前記研磨・膜厚測定作業に並行して次の半導体ウエハーの前記研磨・膜厚測定作業を行い、Perform the polishing and film thickness measurement work of the next semiconductor wafer in parallel with the polishing and film thickness measurement work,
前記1ロット内の1枚目の半導体ウエハーの前記研磨・膜厚測定作業後に、該研磨・膜厚測定作業における研磨時間、目標膜厚値、半導体ウエハーの研磨前の測定膜厚値、及び研磨後の測定膜厚値から第1の最適研磨時間を算出し、After the polishing / thickness measuring operation of the first semiconductor wafer in the one lot, the polishing time, the target film thickness value, the measured film thickness value before polishing the semiconductor wafer, and the polishing in the polishing / thickness measuring operation The first optimal polishing time is calculated from the measured film thickness value afterward,
前記算出した第1の最適研磨時間で所定枚数目後の半導体ウエハーの該研磨・膜厚測定作業の研磨工程を行い、Performing the polishing step of the polishing and film thickness measurement work of the predetermined number of semiconductor wafers after the first number at the calculated first optimal polishing time,
前記所定枚数目後の半導体ウエハーの前記研磨・膜厚測定作業後に、該研磨・膜厚測定作業における研磨時間、目標膜厚値、半導体ウエハーの研磨後の測定膜厚値、及び前記1ロット内の1枚目の半導体ウエハーの研磨・膜厚測定作業の研磨前の測定膜厚値から第2の最適研磨時間を算出することを特徴とする半導体ウエハーの研磨方法。After the polishing / thickness measuring operation of the semiconductor wafer after the predetermined number, the polishing time, the target film thickness value in the polishing / thickness measuring operation, the measured film thickness value after polishing the semiconductor wafer, and the A second optimum polishing time is calculated from a measured film thickness value before polishing in the polishing and film thickness measurement operation of the first semiconductor wafer.
前記研磨・膜厚測定作業は、研磨工程で研磨後の前記半導体ウエハーを洗浄し、該洗浄後の半導体ウエハーを乾燥させ、該乾燥後の半導体ウエハーの膜厚を測定The polishing / thickness measuring operation includes washing the polished semiconductor wafer in a polishing step, drying the washed semiconductor wafer, and measuring the thickness of the dried semiconductor wafer. することからなることを特徴とする請求項6に記載の半導体ウエハーの研磨方法。7. The method for polishing a semiconductor wafer according to claim 6, wherein the polishing is performed. 研磨装置に1ロットが多数枚からなる半導体ウエハーをロット毎装填し、該半導体ウエハーを1枚ずつ研磨する研磨手段と、該半導体ウエハーの膜厚を測定する膜厚測定手段を具備し、これらの手段で半導体ウエハーの研磨・膜厚測定作業を行う半導体ウエハーの研磨装置であって、A polishing apparatus is equipped with a lot of semiconductor wafers, one lot per lot, and a polishing means for polishing the semiconductor wafers one by one, and a film thickness measuring means for measuring the film thickness of the semiconductor wafer. A semiconductor wafer polishing apparatus for performing a semiconductor wafer polishing and film thickness measuring operation by means,
先行の前記研磨・膜厚測定作業に並行して次の半導体ウエハーの前記研磨・膜厚測定作業である後行の研磨・膜厚測定作業を行い、前記先行の半導体ウエハーの前記研磨・膜厚測定終了後に、該先行の研磨・膜厚測定作業における研磨手段の研磨時間、目標膜厚値、半導体ウエハーの研磨前の測定膜厚値、及び該研磨後の測定膜厚値から第1の最適研磨時間を算出し、該算出した第1の最適研磨時間で所定枚数目後の半導体ウエハーの研磨・膜厚測定作業を行う制御手段を設けたことを特徴とする半導体ウエハーの研磨装置。In parallel with the preceding polishing and film thickness measurement work, a subsequent polishing and film thickness measurement operation that is the following polishing and film thickness measurement operation of the next semiconductor wafer is performed, and the polishing and film thickness of the preceding semiconductor wafer are performed. After the measurement is completed, the first optimum value is obtained from the polishing time of the polishing means, the target film thickness value, the measured film thickness value before polishing the semiconductor wafer, and the measured film thickness value after the polishing in the preceding polishing / film thickness measurement work. A polishing apparatus for a semiconductor wafer, comprising: a control means for calculating a polishing time and performing a polishing / film thickness measuring operation of a predetermined number of semiconductor wafers after the first optimum polishing time.
研磨手段で半導体ウエハーを研磨した後に、該半導体ウエハーを洗浄する洗浄手段、該洗浄後の半導体ウエハーを乾燥させる乾燥手段を具備し、前記膜厚測定手段で該乾燥後の半導体ウエハーの膜厚を測定することを特徴とする請求項8に記載の半導体ウエハーの研磨装置。After the semiconductor wafer is polished by the polishing means, cleaning means for cleaning the semiconductor wafer, drying means for drying the semiconductor wafer after the cleaning is provided, and the film thickness of the dried semiconductor wafer is measured by the film thickness measuring means. The apparatus for polishing a semiconductor wafer according to claim 8, wherein the measurement is performed. 前記制御手段は、前記1ロット内の1枚目の半導体ウエハーの研磨・膜厚測定作業後に、該研磨・膜厚測定作業における研磨時間、目標膜厚値、半導体ウエハーの前記研磨前の測定膜厚値、及び研磨後の測定膜厚値から第1の最適研磨時間を算出し、該算出した第1の最適研磨時間で所定枚数目後の半導体ウエハーの該研磨・膜厚測定作業の研磨を行い、該所定枚数目後の半導体ウエハーの研磨・膜厚測定作業後に、該研磨・膜厚測定作業における研磨時間、目標膜厚値、半導体ウエハーの研磨後の測定膜厚値、及び前記1ロット内の1枚目の半導体ウエハーの研磨・膜厚測定作業の研磨前の測定膜厚値から第2の最適研磨時間を算出することを特徴とする請求項8又は9に記載の半導体ウエハーの研磨装置。After the polishing / thickness measuring operation of the first semiconductor wafer in the one lot, the control means controls a polishing time, a target film thickness value in the polishing / thickness measuring operation, and a measurement film of the semiconductor wafer before the polishing. A first optimal polishing time is calculated from the thickness value and the measured film thickness value after polishing, and the polishing for the polishing / thickness measurement operation of the semiconductor wafer after a predetermined number of semiconductor wafers is performed at the calculated first optimal polishing time. After the polishing and film thickness measurement of the semiconductor wafer after the predetermined number of times, the polishing time, the target film thickness, the measured film thickness after polishing of the semiconductor wafer, and the 1 lot 10. The polishing of a semiconductor wafer according to claim 8, wherein the second optimum polishing time is calculated from the measured film thickness value before polishing in the polishing and film thickness measuring operation of the first semiconductor wafer in the above. apparatus.
JP27730196A 1996-09-27 1996-09-27 Polishing method and polishing apparatus for semiconductor wafer Expired - Lifetime JP3558794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27730196A JP3558794B2 (en) 1996-09-27 1996-09-27 Polishing method and polishing apparatus for semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27730196A JP3558794B2 (en) 1996-09-27 1996-09-27 Polishing method and polishing apparatus for semiconductor wafer

Publications (2)

Publication Number Publication Date
JPH10106984A JPH10106984A (en) 1998-04-24
JP3558794B2 true JP3558794B2 (en) 2004-08-25

Family

ID=17581636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27730196A Expired - Lifetime JP3558794B2 (en) 1996-09-27 1996-09-27 Polishing method and polishing apparatus for semiconductor wafer

Country Status (1)

Country Link
JP (1) JP3558794B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6230069B1 (en) * 1998-06-26 2001-05-08 Advanced Micro Devices, Inc. System and method for controlling the manufacture of discrete parts in semiconductor fabrication using model predictive control
US6383058B1 (en) * 2000-01-28 2002-05-07 Applied Materials, Inc. Adaptive endpoint detection for chemical mechanical polishing
KR100366630B1 (en) 2000-09-20 2003-01-09 삼성전자 주식회사 Method of controlling wafer polishing time using sample-skip algorithm and method of wafer polishing using the same
JP4827292B2 (en) * 2000-11-01 2011-11-30 アプライド マテリアルズ インコーポレイテッド Polishing equipment
US7160739B2 (en) * 2001-06-19 2007-01-09 Applied Materials, Inc. Feedback control of a chemical mechanical polishing device providing manipulation of removal rate profiles
JP5021872B2 (en) * 2001-08-02 2012-09-12 日本電気株式会社 Process time correction method for semiconductor manufacturing equipment
JP2003124171A (en) 2001-10-19 2003-04-25 Nec Corp Method of polishing and polishing apparatus
DE10208165C1 (en) * 2002-02-26 2003-10-02 Advanced Micro Devices Inc Method, control and device for controlling the chemical mechanical polishing of substrates
DE10234956B4 (en) 2002-07-31 2007-01-04 Advanced Micro Devices, Inc., Sunnyvale A method of controlling chemical mechanical polishing of stacked layers having a surface topology
KR100471184B1 (en) * 2002-12-06 2005-03-10 삼성전자주식회사 System and method for controlling polishing time of multi-layer in chemical mechanical polishing process
EP1639630B1 (en) 2003-07-02 2015-01-28 Ebara Corporation Polishing apparatus and polishing method
JP4105622B2 (en) * 2003-11-05 2008-06-25 株式会社永田製作所 Polishing apparatus and method for determining thickness of material to be polished
JP2005203729A (en) 2003-12-19 2005-07-28 Ebara Corp Substrate polishing apparatus
DE102004004556B4 (en) * 2004-01-29 2008-12-24 Siltronic Ag Method for producing a semiconductor wafer
JP4808453B2 (en) 2005-08-26 2011-11-02 株式会社荏原製作所 Polishing method and polishing apparatus
KR100602101B1 (en) 2005-08-30 2006-07-19 동부일렉트로닉스 주식회사 Method for chemical mechanical polishing
JP5305729B2 (en) * 2008-05-12 2013-10-02 株式会社荏原製作所 Polishing method, polishing apparatus, and program for controlling polishing apparatus
JP6215602B2 (en) * 2013-07-11 2017-10-18 株式会社荏原製作所 Polishing apparatus and polishing state monitoring method
JP7081544B2 (en) * 2019-03-22 2022-06-07 株式会社Sumco Work double-sided polishing method and work double-sided polishing device
CN111599665A (en) * 2020-04-28 2020-08-28 杭州中欣晶圆半导体股份有限公司 Method for adjusting silicon wafer grinding time in chemical mechanical polishing process
CN112077731B (en) * 2020-09-21 2021-08-31 北京烁科精微电子装备有限公司 Grinding control method and system based on shared time

Also Published As

Publication number Publication date
JPH10106984A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
JP3558794B2 (en) Polishing method and polishing apparatus for semiconductor wafer
KR101660101B1 (en) Method of adjusting profile of a polishing member used in a polishing apparatus, and polishing apparatus
TWI739906B (en) Substrate processing control system, substrate processing control method, and program
US7361076B2 (en) Method for estimating polishing profile or polishing amount, polishing method and polishing apparatus
EP1068047B1 (en) Apparatus and method for film thickness measurement integrated into a wafer load/unload unit
US5816891A (en) Performing chemical mechanical polishing of oxides and metals using sequential removal on multiple polish platens to increase equipment throughput
US20080166949A1 (en) Method and apparatus for dry-in, dry-out polishing and washing of a semiconductor device
US6648728B2 (en) Polishing system
US20050153557A1 (en) Apparatus and method for treating susbtrates
JP2002208572A (en) Grinding device
US20080268643A1 (en) Methods and apparatus for polishing control
US6595220B2 (en) Apparatus for conveying a workpiece
WO1999043465A1 (en) Apparatus and method for the face-up surface treatment of wafers
JP6794275B2 (en) Polishing method
KR20200132699A (en) Grinding apparatus
JP2003092274A (en) Apparatus and method for working, method of manufacturing semiconductor device using the apparatus and semiconductor device manufactured by the method
JP3991598B2 (en) Wafer polishing method
TWI446993B (en) Polishing method and polishing apparatus
JP2003068689A (en) Apparatus for feedback polishing and method for polishing
US6447385B1 (en) Polishing apparatus
US6117780A (en) Chemical mechanical polishing method with in-line thickness detection
JP7145084B2 (en) SUBSTRATE PROCESSING APPARATUS AND METHOD FOR SPECIFYING REGION TO BE POLISHED IN SUBSTRATE PROCESSING APPARATUS
JPH0817768A (en) Manufacture of semiconductor device and device for effecting the manufacture
JP2018067609A (en) Local polishing device, local polishing method, and program
KR20220111417A (en) Management system and method for grinding wheel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term