JP3991598B2 - Wafer polishing method - Google Patents

Wafer polishing method Download PDF

Info

Publication number
JP3991598B2
JP3991598B2 JP2001050356A JP2001050356A JP3991598B2 JP 3991598 B2 JP3991598 B2 JP 3991598B2 JP 2001050356 A JP2001050356 A JP 2001050356A JP 2001050356 A JP2001050356 A JP 2001050356A JP 3991598 B2 JP3991598 B2 JP 3991598B2
Authority
JP
Japan
Prior art keywords
polishing
wafer
thickness
carrier
surface plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001050356A
Other languages
Japanese (ja)
Other versions
JP2002254299A (en
Inventor
昭治 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2001050356A priority Critical patent/JP3991598B2/en
Publication of JP2002254299A publication Critical patent/JP2002254299A/en
Application granted granted Critical
Publication of JP3991598B2 publication Critical patent/JP3991598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、上下の回転定盤間でキャリアを用いて半導体ウエーハの両面を同時研磨するウエーハ研磨方法に関する。
【0002】
【従来の技術】
半導体デバイスの高集積化が急速に進み、その素材である半導体ウエーハに要求される平坦度は益々厳しくなっている。また、半導体デバイスの製造コスト低減の観点からは、半導体ウエーハの大径化が進められているため、その平坦度の向上は一層困難なものになっている。このような事情から、半導体ウエーハの加工プロセスにおいては、エッチング後に研削工程を導入したプロセスの提案がなされ、研削に続く鏡面研磨工程においては、従来の片面研磨より優れた加工精度を有する両面研磨方式が注目されている。
【0003】
半導体ウエーハの両面研磨装置としては、通常、遊星歯車方式のものが使用される。この両面研磨装置は、上下一対の回転定盤と、回転定盤間の回転中心部に設けられた太陽歯車と、回転定盤間の外周部に設けられた環状の内歯歯車とを備えている。上側の回転定盤は昇降可能で、加圧用を兼ねるシリンダにより昇降駆動され、その回転方向は下側の回転定盤の回転方向と反対である。上下の回転定盤の対向面には、それぞれ研磨布が貼付されている。
【0004】
研磨作業では、上側の回転定盤を上昇させた状態で、下側の回転定盤上の回転中心回りに複数のキャリアをセットすると共に、各キャリアに半導体ウエーハをセットする。遊星歯車である複数のキャリアは、内側の太陽歯車及び外側の内歯歯車にそれぞれ噛み合っており、その回転中心から偏心した位置にホールと呼ばれるウエーハ収容孔を有している。
【0005】
キャリア及び半導体ウエーハのセットが終わると、上側の回転定盤をゆっくり下降させ、複数の半導体ウエーハを上下の回転定盤間に所定圧力で挟む。そして、回転定盤間に研磨液を供給しながら回転定盤、太陽歯車及び内歯歯車を回転させる。これにより、複数のキャリアは逆方向に回転する回転定盤の間で自転しつつ太陽歯車の回りを公転する。こうして、複数の半導体ウエーハの両面が同時に研磨される。
【0006】
ここで使用されるキャリアの厚みは、研磨プロセスの全体にわたって所定の圧力が確実にウエーハへ付加されるように、ウエーハの最終仕上がり厚みの目標値より十分に薄く設定されている。具体的に言えば、最終仕上がり厚みの目標値が750μmの12インチウエーハの場合、これに組み合わされるキャリアの厚みは650μm程度である。また、キャリアの材質としては、ガラス繊維で強化された樹脂、例えばエポキシ樹脂、フェノール樹脂、ナイロン樹脂の他、ステンレス鋼が主に使用されている。
【0007】
【発明が解決しようとする課題】
このような半導体ウエーハの両面鏡面研磨工程では、平坦度の改善のみならず、前工程までの加工歪みの除去と表面粗さの矯正のために、研磨量の管理が重要な技術課題とされており、その管理は、従来は研磨時間の管理により行われていた。
【0008】
すなわち、鏡面研磨工程における研磨量は研磨条件によって大きく異なり、特に研磨布のライフによるコンディションの変化に大きく左右される。このため、バッチ毎又はプロセス毎に鏡面研磨の前後で、装置外に設けた自動又は手動の厚み計でウエーハ厚みの測定を行い、その差である研磨量と研磨時間とから研磨速度を算出し、所定の研磨量を確保するべく次バッチ又は次プロセスでの研磨時間を設定するフィードバック制御が行われている。
【0009】
そして、鏡面研磨工程前に研削工程を導入するプロセスの提案により、研削後のウエーハ間の厚みバラツキが飛躍的に改善された結果、ウエーハの厚みデータが既知情報として鏡面研磨工程に供されるようになり、研磨前の厚み測定については割愛することが可能になった。
【0010】
しかし、剛体からなる上下の回転定盤間で直接両面を加工し、それらの定盤間隔によりウエーハ厚を検出できるラッピング工程と異なり、粘弾性体からなる研磨布を介してウエーハの両面を加圧し加工する鏡面研磨工程の場合は、定盤間隔によるインプロセスでのウエーハ厚の検出が不可能であり、定寸研磨ができない。このため、研磨後の厚み測定については、依然としてオフラインでの測定が必要である。
【0011】
その結果、装置の肥大化や稼働率の低下が問題になる。すなわち、オフラインでの厚み測定では、測定機種によっては厚み測定前にウエーハ乾燥工程を必要とし、装置の肥大化を招く。また工程の煩雑さを助長し、稼働率の低下を招く。
【0012】
本発明の目的は、ウエーハの厚み測定を行わずとも、また研磨布のコンディションに影響されることもなく、簡単かつ正確に所定量の研磨を行うことができるウエーハ研磨方法を提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明者らはウエーハの仕上がり厚みに対するキャリアの厚みに着目した。
【0014】
すなわち、従来は、前述したとおり、研磨プロセスの全体にわたって所定の圧力が確実にウエーハへ付加されるように、ウエーハに組み合わされるキャリアの厚みは、そのウエーハの最終仕上がり厚みより十分に薄く設定される。これにより、ウエーハの厚みが最終仕上がり厚みに達した時点でも、上下の研磨布はウエーハにのみ圧接し、キャリアの上下面には実質的に接触しない。このため、上側の回転定盤からの所定の加圧力が、研磨終了までウエーハのみに付加されることになる。
【0015】
ウエーハの厚みが最終仕上がり厚みに達した後も研磨を続けると、ウエーハが更に薄くなる。キャリアとほぼ同じ厚みまで研磨が進行すると、上側の回転定盤からの加圧力がウエーハ及びキャリアの両方に付加され、分散される。また、常時、上側の回転定盤を経由して回転定盤間に供給されていた研磨液の逃げ場がなくなり、上側の回転定盤を持ち上げる方向に背圧が発生するため、ハイドロプレーン研磨(スリップ研磨)の状態になり、ウエーハに付加される圧力が激減する。その結果、研磨が実質的に停止する。また、上下の回転定盤を駆動するモータのトルクが急激に低下する。更に、この状態では、キャリアの上下面に研磨布が接触するものの、ハイドロプレーン研磨のため、キャリアが研磨布から受けるダメージは意外に軽微である。
【0016】
本発明者らは、ウエーハの厚みがキャリアとほぼ同じ厚みに達するまで研磨を続けると、その研磨が実質的に停止する点、この時点で上下の回転定盤を駆動するモータのトルクが急激に低下する点、更には、キャリアのダメージが軽微である点に着目して、キャリアの厚みを基準に研磨量、更にはウエーハの最終仕上がり厚みを管理することを企画し、実験検討を行った。その結果、キャリアの厚みとして、ウエーハの最終仕上がり厚みと同一かこれより僅かに小さい値を選択しておくと、ウエーハの厚みがキャリア厚みより僅かに小さい値に達した時点で回転定盤を駆動するモータトルクの急激な低下が始まり、その低下から研磨量や研磨後のウエーハ厚を簡単かつ正確に管理できることが明らかになった。
【0017】
本発明のウエーハ研磨方法は、かかる知見に基づいて発明されたものであり、研磨すべき半導体ウエーハをキャリアに保持して上下の回転定盤間で回転させることにより、前記半導体ウエーハの両面を同時に研磨するウエーハ研磨方法において、
前記キャリアの研磨前厚みを前記半導体ウエーハの最終仕上がり厚みと同一か、僅かに小さくし、前記キャリアの研磨前厚みと前記半導体ウエーハの最終仕上がり厚みとの差を6μm以下とするとともに、
前記キャリアとほぼ同じ厚みまで前記半導体ウエーハの研磨が進行すると前記上側の回転定盤を持ち上げる方向に背圧が発生するため前記半導体ウエーハに付加される圧力が激減することで生じる前記回転定盤の駆動トルクの低下から研磨終了時点を検知することを特徴とする。
また、本発明は、前記研磨終了と判断する前記回転定盤の駆動トルクの低下は、前記駆動トルクの最大値からの低下率が5〜50%であることができる。
また、本発明は、前記半導体ウエーハの最終仕上がり厚みの目標値が750μmとされることを特徴とすることが好ましい。
また、本発明は、前記キャリアがステンレス鋼、または、エポキシ樹脂、フェノール樹脂、ポリイミドのいずれかに強化繊維を複合したFRPからなることができる。
本発明のウエーハ研磨方法は、研磨すべき半導体ウエーハをキャリアに保持して上下の回転定盤間で回転させることにより、前記半導体ウエーハの両面を同時に研磨するウエーハ研磨方法において、前記キャリアの厚みを前記半導体ウエーハの最終仕上がり厚みと同一か、これより僅かに小さくするものである。
【0018】
こうすることにより、ウエーハの厚みがキャリア厚みより僅かに小さい値となった時点で、回転定盤の駆動トルクの急激な低下が始まり、その低下を検知することにより、ウエーハ厚を測定したり、研磨時間を管理せずとも、研磨終了時点が正確に求まる。
【0019】
キャリアの厚みと半導体ウエーハの仕上がり厚みとの差は6μm以下が望ましい。この差が6μmを超える領域では、駆動トルクの顕著な低下が生じず、研磨終了時点の正確な検知が困難である。なお、半導体ウエーハの仕上がり厚みがキャリアの厚み未満になるまで研磨を行うには長時間を要し、キャリアの磨耗も顕著になるため好ましくない。
【0020】
本発明では、従来と比べ研磨布とキャリアの間隔は小さくなり、研磨布とキャリアの接触圧も大きくなるため、キャリアの磨耗が進みやすく、厚みが小さくなれば、ウエーハの最終仕上がり厚みもその磨耗量だけ小さくなり、定寸精度に支障をきたす。キャリアの磨耗は、定盤に貼り付けられた研磨布との摩擦で起こるので、キャリアの材質としては、耐磨耗性が高く研磨布との摩擦係数が小さい材質で、且つpH8〜12のアルカリ研磨液中での耐薬品性が高いものが好ましい。このような条件を満足するキャリア材としては、ステンレス鋼の他、エポキシ樹脂、フェノール樹脂、ポリイミド等の樹脂にガラス繊維、炭素繊維、アラミド繊維等の強化繊維を複合したFRPを挙げることができる。
【0021】
【発明の実施の形態】
以下に本発明の実施形態を図面に基づいて説明する。図1は本発明の一実施形態を説明するための研磨装置の構成図、図2は図1のA−A線矢示図である。
【0022】
研磨装置は、水平に支持された環状の下定盤1と、下定盤1に上方から対向する環状の上定盤2と、環状の下定盤1の内側に配置された太陽歯車3と、下定盤1の外側に配置されたリング状の内歯歯車4とを備えている。
【0023】
下定盤1は、モータ11により回転駆動される。上定盤2は、シリンダ5にジョイント6を介して吊り下げられ、下定盤1を駆動するモータ11とは別のモータにより逆方向に回転駆動される。また、下定盤1との間に研磨液を供給するためのタンク7を含む研磨液供給系統を装備している。太陽歯車3及び内歯歯車4も、定盤を駆動するモータとは別のモータ12により独立に回転駆動される。
【0024】
下定盤1及び上定盤2の対向面には、不織布にウレタン樹脂を含浸させた研磨布、或いは発泡ウレタン等からなる研磨布が貼付されている。
【0025】
下定盤1上には、複数のキャリア8が太陽歯車3を取り囲むようにセットされる。セットされた各キャリア8は、内側の太陽歯車3及び外側の内歯歯車4にそれぞれ噛み合う。各キャリア8には、半導体ウエーハ10を収容するホール9が偏心して設けられている。そして、各キャリア8の厚みは、ウエーハ10の最終仕上がり厚みの目標値と同一か、これより僅かに小さく設定されている。
【0026】
ウエーハ10の研磨を行うには、上定盤2を上昇させた状態で、下定盤1上に複数のキャリア8をセットし、各キャリア8のホール9にウエーハ10をセットする。上定盤2を下降させ、各ウエーハ10に所定の加圧力を付加する。この状態で、下定盤1と上定盤2の間に研磨液を供給しながら、下定盤1、上定盤2、太陽歯車3及び内歯歯車4を所定の方向に所定の速度で回転させる。
【0027】
これにより、下定盤1と上定盤2の間で複数のキャリア8が自転しながら太陽歯車3の周囲を公転するいわゆる遊星運動を行う。各キャリア8に保持されたウエーハ10は、研磨液中で上下の研磨布と摺接し、上下両面が同時に研磨される。研磨条件は、ウエーハ10の両面が均等に研磨されるように設定される。
【0028】
研磨中、下定盤1を駆動するモータ11のトルク、或いは上定盤2を駆動するモータのトルクが監視される。そして、そのトルクが安定値から、予め設定した比率、例えば10%低下した時点で、上定盤2を上昇させて研磨を終了する。これにより、ウエーハ10の最終仕上がり厚さは、研磨前キャリア厚みより僅かに薄いか同一の厚みに高精度かつ安定的に管理される。
【0029】
詳しく説明すると、ここでは、各キャリア8の厚さは、ウエーハ10の最終仕上がり厚みと同一か、これより僅かに小さく設定されている。このため、研磨前のウエーハ10の厚みは、キャリア8の厚みより十分に大きい。従って、この段階では、上下の研磨布は、ウエーハ10の上下面にのみ実質接触しキャリア8の上下面には圧接しない。
【0030】
研磨初期の段階においては、キャリア8より十分に厚いウエーハ10が集中的に加圧され、投入された複数のウエーハ10の厚みのバラツキが解消される。この間、下定盤1を駆動するモータ11のトルク、或いは上定盤2を駆動するモータのトルクは、急上昇し、複数のウエーハ10の厚みのバラツキが解消された時点でピークを向かえ、安定領域に入る。
【0031】
研磨が更に進んでウエーハ10の厚みがキャリア8の厚さより僅かに大きい値になると、前述したように、上定盤2からの加圧力がウエーハ10及びキャリア8の両方に付加され、分散される。また、常時、上定盤2を経由して定盤1,2間に供給されていた研磨液の逃げ場がなくなり、上定盤2を持ち上げる方向に背圧が発生するため、ハイドロプレーン研磨(スリップ研磨)の状態になり、ウエーハ10に付加される圧力が激減する。その結果、研磨が実質的に停止すると共に、下定盤1を駆動するモータ11のトルクも、上定盤2を駆動するモータのトルクも急激に低下する。
【0032】
従って、これらのトルクが、最大値から予め設定した比率、例えば10%低下した時点を検知して研磨終了とすることにより、ウエーハ10の最終仕上がり厚みは、キャリア8の厚さと同等かこれより僅かに小さい値に高精度に一致する。また、研磨前後にウエーハ10の厚みを測定する作業も、研磨速度から研磨時間を算出して、これを管理する作業も不要になる。
【0033】
研磨終了と判断するトルクの最大値からの低下率は5〜50%が好ましく、5〜30%が特に好ましい。5%未満では検出自体が困難であり、50%超では研磨速度が遅く、無駄な研磨時間が生じ、またキャリアの磨耗が増加するため、好ましくない。
【0034】
【実施例】
次に、本発明の実施結果を従来例と比較して説明する。共通の研磨条件は以下のとおりである。
【0035】
使用ウエーハ:12インチシリコンウエーハ
研磨装置:Peter Wolters製両面研磨装置AC2000P
研磨布:ロデール・ニッタ製発泡ウレタン研磨布MHN15A
研磨液:Nalco2350 20倍希釈液
研磨圧:200g/cm2
使用キャリア:ステンレス鋼製
【0036】
厚みが745μm、740μm、720μmのキャリアを使用した。各研磨での上定盤のモータトルク値の経時変化を図3に示す。各トルク値が最大値より10%低下した時点で研磨を終了した。745μm厚の第1のキャリアを使用した場合、研磨開始から40数分後にトルク値が急激に低下し、最大値の10%減で研磨を停止したときの最終仕上がり厚みは、751μmに管理された。
【0037】
これに対し、740μm厚の第2のキャリアを使用した場合、研磨開始から約60分後にトルク値が急激に低下した。最大値の10%減で研磨を停止すると、最終仕上がり厚みは、744μmであった。720μm厚の第3のキャリアを使用した場合、研磨開始から80数分後にトルク値が急激に低下した。最大値の10%減で研磨を停止したときの最終仕上がり厚みは、726μmであった。
【0038】
本発明例として、ウエーハの最終仕上がり厚さ(750μm)より6μm薄い744μm厚のキャリアを使用し、上定盤のモータトルク値が最大値より10%低下した時点で研磨を終了するトルク管理型の研磨方法を10サイクル連続して実施した。また、従来例として、最終仕上がり厚さ(750μm)より100μm薄いキャリアを使用し、サイクル毎にウエーハの厚みを測定して研磨速度を算出し、その研磨速度から次サイクルの研磨時間を算出する研磨時間管理型の研磨方法を10回実施した。また、参考例として、研磨布初期状態での研磨速度の不安定さを露見させるために、研磨時間を一定にして連続研磨を行った。
【0039】
それぞれの場合の最終仕上がり厚みを図4に示す。研磨布の使用初期では、研磨速度が不安定になる。一般に、その初期では、研磨剤が研磨布に十分に含浸しいないため、研磨が促進されず、研磨速度は小さい。サイクルを重ねると、徐々に研磨速度は大きくなる。従来の研磨時間管理型の場合、前サイクルの研磨速度から研磨時間を設定する。研磨布の1サイクル目や装置停止後の1サイクル目は、過去の実績値を参考に研磨時間を設定するため、仕上がり厚みの精度が不安定になりやすい。しかるに、本発明法の場合は、キャリア厚を基準にしたトルク管理により、安定して高精度が得られる。
【0040】
最終仕上がり厚みと合わせて、その厚みの面内分布も評価した。結果を図5に示す。研磨時間管理型の従来法の場合、研磨後のウエーハの外周部に面ダレが発生しやすく、TTV平均値が1μm強であったが、本発明法では、このTTV平均値が0.4μmに改善された。本発明法でウエーハ外周部の面ダレが抑制される理由としては、ウエーハの研磨がキャリアの厚み近くまで進行した時点でウエーハ外周部にかかる荷重がキャリアによって緩和されることが考えられる。
【0041】
図6は、上定盤モータトルクの低下挙動と、そのトルク低下がウエーハ厚及びキャリア厚に与える影響を示している。
【0042】
この図から分かるように、上定盤を駆動するモータのトルク低下現象は、低下開始時に顕著で、低下開始からの時間が経過すると共に、低下速度が遅くなる。このモータトルクの低下と共に、ウエーハの仕上がり厚みはキャリア厚みに近づき、モータトルクの低下率が5〜30%の範囲内で研磨を停止することにより、ウエーハの仕上がり厚みは、キャリア厚みに対して+6μm以下に管理される。また、この範囲内では、キャリアの磨耗も実質的に生じない。
【0043】
具体的に説明すると、研磨を停止するモータトルクの低下率を10%とすれば、ウエーハの仕上がり厚みは、キャリア厚みの+5〜6μmとなる。すなわち、ここではウエーハの仕上がり厚みより5〜6μm薄いキャリアが使用される。研磨を停止するモータトルクの低下率を20%とすれば、ウエーハの仕上がり厚みは、キャリア厚みの+4〜5μmとなる。研磨を停止するモータトルクの低下率を30%とすれば、ウエーハの仕上がり厚みは、キャリア厚みの+3〜4μmとなる。研磨を停止するモータトルクの低下率を40%とすれば、ウエーハの仕上がり厚みは、キャリア厚みの+3μmとなるが、キャリアに若干磨耗が生じる。研磨を停止するモータトルクの低下率を50%とすれば、ウエーハの仕上がり厚みは、キャリア厚みに一致するが、キャリアの磨耗が大きくなり、研磨時間も長くなる。
【0044】
なお、上記実施例では、研磨終了時期を決定するためのトルク値の変化を上定盤を駆動するモータのトルク値で検出したが、下定盤を駆動するモータのトルク値で検出してもよく、要は上下の回転定盤の少なくとも一方の回転駆動に関与するモータのトルク値の変化から、研磨終了時期を決定すればよい。
【0045】
上記実施例では又、キャリアに公転運動と自転運動を組み合わせた遊星運動を行わせたが、キャリアを定位置で自転させてもよい。
【0046】
【発明の効果】
以上に説明したとおり、本発明のウエーハ研磨方法によれば、研磨後のウエーハの厚み測定及びその結果を基にした研磨時間の設定等の煩雑な作業が不要になる。また、簡単な作業にもかかわらず、ウエーハの仕上がり厚みが研磨布のコンディションに影響されない。このため、高精度な定寸研磨が簡単かつ安定に行われる。
【図面の簡単な説明】
【図1】本発明の一実施形態を説明するための研磨装置の構成図である。
【図2】図1のA−A線矢示図である。
【図3】定盤駆動モータのトルク変化とキャリア厚さとの関係を示すグラフである。
【図4】従来例、参考例及び本発明例についてウエーハの仕上がり厚さを示すグラフである。
【図5】従来例及び本発明例についてウエーハ厚さの面内バラツキを示すグラフである。
【図6】モータトルクの低下挙動と、その低下がウエーハ厚及びキャリア厚に与える影響を示すグラフである。
【符号の説明】
1 下定盤
2 上定盤
3 太陽歯車
4 内歯歯車
8 キャリア
10 ウエーハ
11,12 モータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wafer polishing method for simultaneously polishing both surfaces of a semiconductor wafer using a carrier between upper and lower rotating surface plates.
[0002]
[Prior art]
High integration of semiconductor devices is rapidly progressing, and flatness required for a semiconductor wafer as a material thereof is becoming increasingly severe. Further, from the viewpoint of reducing the manufacturing cost of the semiconductor device, since the diameter of the semiconductor wafer is being increased, it is more difficult to improve the flatness. For this reason, in the semiconductor wafer processing process, a process was proposed in which a grinding process was introduced after etching, and in the mirror polishing process following grinding, a double-side polishing system with processing accuracy superior to conventional single-side polishing. Is attracting attention.
[0003]
As a double-side polishing apparatus for semiconductor wafers, a planetary gear type is usually used. This double-side polishing apparatus includes a pair of upper and lower rotating surface plates, a sun gear provided at the center of rotation between the rotating surface plates, and an annular internal gear provided at the outer peripheral portion between the rotating surface plates. Yes. The upper rotary platen can be raised and lowered, and is driven up and down by a cylinder that also serves as a pressurizing cylinder, and the rotation direction is opposite to the rotation direction of the lower rotary platen. A polishing cloth is affixed to the opposing surfaces of the upper and lower rotating surface plates.
[0004]
In the polishing operation, a plurality of carriers are set around the rotation center on the lower rotating surface plate with the upper rotating surface plate raised, and a semiconductor wafer is set on each carrier. The plurality of carriers, which are planetary gears, mesh with the inner sun gear and the outer internal gear, respectively, and have a wafer accommodation hole called a hole at a position eccentric from the rotation center.
[0005]
When the setting of the carrier and the semiconductor wafer is completed, the upper rotating surface plate is slowly lowered, and a plurality of semiconductor wafers are sandwiched between the upper and lower rotating surface plates with a predetermined pressure. Then, the rotating surface plate, the sun gear, and the internal gear are rotated while supplying the polishing liquid between the rotating surface plates. As a result, the plurality of carriers revolve around the sun gear while rotating between the rotating surface plates rotating in the opposite directions. Thus, both surfaces of the plurality of semiconductor wafers are polished simultaneously.
[0006]
The thickness of the carrier used here is set sufficiently thinner than the target value of the final finished thickness of the wafer so as to ensure that a predetermined pressure is applied to the wafer throughout the polishing process. Specifically, in the case of a 12-inch wafer whose final finished thickness target value is 750 μm , the thickness of the carrier combined therewith is about 650 μm . Further, as the material of the carrier, stainless steel is mainly used in addition to a resin reinforced with glass fiber, for example, epoxy resin, phenol resin, nylon resin.
[0007]
[Problems to be solved by the invention]
In such a double-sided mirror polishing process for semiconductor wafers, management of the polishing amount is regarded as an important technical issue not only for improving flatness but also for removing processing distortion and correcting surface roughness up to the previous process. In the past, the management was performed by managing the polishing time.
[0008]
In other words, the polishing amount in the mirror polishing process varies greatly depending on the polishing conditions, and is greatly influenced by changes in the condition due to the life of the polishing pad. For this reason, before and after mirror polishing for each batch or process, the wafer thickness is measured with an automatic or manual thickness gauge provided outside the apparatus, and the polishing rate is calculated from the polishing amount and polishing time that are the difference between them. In order to ensure a predetermined polishing amount, feedback control for setting the polishing time in the next batch or the next process is performed.
[0009]
And by proposing a process that introduces a grinding process before the mirror polishing process, the thickness variation between the wafers after grinding has been dramatically improved. As a result, the wafer thickness data can be used as the known information for the mirror polishing process. Thus, the thickness measurement before polishing can be omitted.
[0010]
However, unlike the lapping process in which both sides are processed directly between the upper and lower rotating surface plates made of a rigid body and the wafer thickness can be detected by the interval between the surface plates, both surfaces of the wafer are pressed through a polishing cloth made of a viscoelastic material. In the case of the mirror polishing process to be processed, it is impossible to detect the wafer thickness in-process by the surface plate interval, and it is impossible to perform fixed-size polishing. For this reason, offline measurement is still necessary for the thickness measurement after polishing.
[0011]
As a result, enlargement of the apparatus and a decrease in the operation rate become problems. That is, in the offline thickness measurement, a wafer drying process is required before the thickness measurement depending on the measurement model, and the apparatus becomes enlarged. Moreover, the complexity of a process is promoted and the fall of an operation rate is caused.
[0012]
An object of the present invention is to provide a wafer polishing method capable of performing a predetermined amount of polishing simply and accurately without measuring the thickness of the wafer and without being affected by the condition of the polishing cloth. .
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors paid attention to the thickness of the carrier with respect to the finished thickness of the wafer.
[0014]
That is, conventionally, as described above, the thickness of the carrier combined with the wafer is set sufficiently thinner than the final finished thickness of the wafer so as to ensure that a predetermined pressure is applied to the wafer throughout the polishing process. . Thereby, even when the thickness of the wafer reaches the final finished thickness, the upper and lower polishing cloths are only pressed against the wafer and do not substantially contact the upper and lower surfaces of the carrier. For this reason, a predetermined pressing force from the upper rotating surface plate is applied only to the wafer until the polishing is completed.
[0015]
If polishing continues even after the wafer thickness reaches the final thickness, the wafer becomes thinner. When polishing progresses to approximately the same thickness as the carrier, the applied pressure from the upper rotating surface plate is applied to both the wafer and the carrier and dispersed. In addition, there is always no escape space for the polishing liquid supplied between the rotating surface plates via the upper rotating surface plate, and back pressure is generated in the direction of lifting the upper rotating surface plate. The pressure applied to the wafer is drastically reduced. As a result, polishing is substantially stopped. In addition, the torque of the motor that drives the upper and lower rotating surface plates is abruptly reduced. Further, in this state, although the polishing cloth is in contact with the upper and lower surfaces of the carrier, the damage that the carrier receives from the polishing cloth is surprisingly small due to hydroplane polishing.
[0016]
When the polishing is continued until the thickness of the wafer reaches substantially the same thickness as the carrier, the polishing is substantially stopped, and at this point, the torque of the motors that drive the upper and lower rotating surface plates suddenly increases. Focusing on the point of decrease and further on the fact that the damage to the carrier is minor, we planned to manage the polishing amount and the final finished thickness of the wafer based on the thickness of the carrier, and conducted an experimental study. As a result, if the carrier thickness is selected to be the same as or slightly smaller than the final finished thickness of the wafer, the rotating platen will be driven when the wafer thickness reaches a value slightly smaller than the carrier thickness. It has become clear that the amount of polishing and the thickness of the wafer after polishing can be managed easily and accurately.
[0017]
The wafer polishing method of the present invention has been invented based on such knowledge. By holding a semiconductor wafer to be polished on a carrier and rotating it between upper and lower rotating surface plates, both surfaces of the semiconductor wafer can be simultaneously applied. In the wafer polishing method for polishing,
The thickness before polishing of the carrier is the same as or slightly smaller than the final finished thickness of the semiconductor wafer, and the difference between the thickness before polishing of the carrier and the final finished thickness of the semiconductor wafer is 6 μm or less,
When the polishing of the semiconductor wafer proceeds to substantially the same thickness as the carrier, back pressure is generated in the direction of lifting the upper rotating surface plate, so that the pressure applied to the semiconductor wafer is greatly reduced. The polishing end point is detected from a decrease in driving torque.
Further, according to the present invention, the reduction in the driving torque of the rotary platen determined to be the completion of the polishing may be a reduction rate of 5 to 50% from the maximum value of the driving torque.
Further, the present invention is preferably characterized in that a target value of a final finished thickness of the semiconductor wafer is 750 μm.
In the present invention, the carrier may be made of stainless steel, or FRP in which a reinforcing fiber is combined with any of epoxy resin, phenol resin, and polyimide.
The wafer polishing method of the present invention is a wafer polishing method in which a semiconductor wafer to be polished is held on a carrier and rotated between upper and lower rotating surface plates to simultaneously polish both surfaces of the semiconductor wafer. It is the same as or slightly smaller than the final finished thickness of the semiconductor wafer.
[0018]
By doing this, when the thickness of the wafer becomes a value slightly smaller than the carrier thickness, a rapid decrease in the driving torque of the rotating surface plate starts, and by detecting the decrease, the wafer thickness can be measured, Even if the polishing time is not managed, the polishing end point can be obtained accurately.
[0019]
The difference between the thickness of the carrier and the finished thickness of the semiconductor wafer is preferably 6 μm or less. In a region where this difference exceeds 6 μm, the driving torque does not significantly decrease, and it is difficult to accurately detect the polishing end point. Note that it takes a long time to perform polishing until the finished thickness of the semiconductor wafer becomes less than the thickness of the carrier, and the wear of the carrier becomes significant, which is not preferable.
[0020]
In the present invention, the distance between the polishing cloth and the carrier is smaller than in the conventional case, and the contact pressure between the polishing cloth and the carrier is also increased, so that the wear of the carrier easily proceeds, and if the thickness is reduced, the final finished thickness of the wafer is also worn. The amount is reduced, which affects the sizing accuracy. Carrier wear occurs due to friction with the polishing cloth affixed to the surface plate, so the carrier material is a material that has high wear resistance and a low friction coefficient with the polishing cloth, and an alkaline pH 8-12. Those having high chemical resistance in the polishing liquid are preferred. Examples of the carrier material satisfying such conditions include stainless steel, FRP in which a reinforcing fiber such as glass fiber, carbon fiber, or aramid fiber is combined with a resin such as epoxy resin, phenol resin, or polyimide.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a polishing apparatus for explaining an embodiment of the present invention, and FIG. 2 is a view taken along line AA in FIG.
[0022]
The polishing apparatus includes an annular lower surface plate 1 that is horizontally supported, an annular upper surface plate 2 that faces the lower surface plate 1 from above, a sun gear 3 that is disposed inside the annular lower surface plate 1, and a lower surface plate. 1 and a ring-shaped internal gear 4 disposed on the outer side of 1.
[0023]
The lower surface plate 1 is rotationally driven by a motor 11. The upper surface plate 2 is suspended from the cylinder 5 via a joint 6 and is rotationally driven in the reverse direction by a motor different from the motor 11 that drives the lower surface plate 1. A polishing liquid supply system including a tank 7 for supplying the polishing liquid to the lower surface plate 1 is also provided. The sun gear 3 and the internal gear 4 are also rotationally driven independently by a motor 12 different from the motor that drives the surface plate.
[0024]
On the opposing surfaces of the lower surface plate 1 and the upper surface plate 2, a polishing cloth made by impregnating a urethane resin into a nonwoven fabric or a polishing cloth made of foamed urethane or the like is affixed.
[0025]
A plurality of carriers 8 are set on the lower surface plate 1 so as to surround the sun gear 3. Each set carrier 8 meshes with the inner sun gear 3 and the outer internal gear 4, respectively. Each carrier 8 is provided with an eccentric hole 9 for accommodating the semiconductor wafer 10. The thickness of each carrier 8 is set to be the same as or slightly smaller than the target value of the final finished thickness of the wafer 10.
[0026]
In order to polish the wafer 10, a plurality of carriers 8 are set on the lower surface plate 1 with the upper surface plate 2 raised, and the wafers 10 are set in the holes 9 of each carrier 8. The upper surface plate 2 is lowered and a predetermined pressure is applied to each wafer 10. In this state, the lower surface plate 1, the upper surface plate 2, the sun gear 3, and the internal gear 4 are rotated at a predetermined speed in a predetermined direction while supplying polishing liquid between the lower surface plate 1 and the upper surface plate 2. .
[0027]
As a result, a so-called planetary motion in which the plurality of carriers 8 revolve around the sun gear 3 while rotating between the lower surface plate 1 and the upper surface plate 2 is performed. The wafer 10 held by each carrier 8 is in sliding contact with the upper and lower polishing cloths in the polishing liquid, and both upper and lower surfaces are polished simultaneously. The polishing conditions are set so that both surfaces of the wafer 10 are uniformly polished.
[0028]
During polishing, the torque of the motor 11 that drives the lower surface plate 1 or the torque of the motor that drives the upper surface plate 2 is monitored. Then, when the torque decreases from a stable value by a preset ratio, for example, 10%, the upper surface plate 2 is raised to finish the polishing. As a result, the final finished thickness of the wafer 10 is managed with high accuracy and stability to be slightly less than or equal to the thickness of the carrier before polishing.
[0029]
More specifically, here, the thickness of each carrier 8 is set to be the same as or slightly smaller than the final finished thickness of the wafer 10. For this reason, the thickness of the wafer 10 before polishing is sufficiently larger than the thickness of the carrier 8. Therefore, at this stage, the upper and lower polishing cloths substantially contact only the upper and lower surfaces of the wafer 10 and do not press the upper and lower surfaces of the carrier 8.
[0030]
In the initial stage of polishing, the wafer 10 that is sufficiently thicker than the carrier 8 is intensively pressed, and the variation in the thickness of the plurality of wafers 10 that have been charged is eliminated. During this time, the torque of the motor 11 that drives the lower surface plate 1 or the torque of the motor that drives the upper surface plate 2 suddenly increases, and when the variation in the thickness of the plurality of wafers 10 is resolved, the peak is reached and the stable region is reached. enter.
[0031]
When the polishing further proceeds and the thickness of the wafer 10 becomes slightly larger than the thickness of the carrier 8, the pressure applied from the upper surface plate 2 is applied to both the wafer 10 and the carrier 8 and dispersed as described above. . In addition, since there is no escape space for the polishing liquid supplied between the surface plates 1 and 2 via the upper surface plate 2 and back pressure is generated in the direction of lifting the upper surface plate 2, hydroplane polishing (slip The pressure applied to the wafer 10 is drastically reduced. As a result, the polishing is substantially stopped, and the torque of the motor 11 that drives the lower surface plate 1 and the torque of the motor that drives the upper surface plate 2 are rapidly reduced.
[0032]
Therefore, by detecting the time when these torques are reduced by a preset ratio from the maximum value, for example, 10%, and finishing the polishing, the final finished thickness of the wafer 10 is equal to or slightly less than the thickness of the carrier 8. Matches a small value with high accuracy. Further, the work of measuring the thickness of the wafer 10 before and after polishing and the work of calculating the polishing time from the polishing speed and managing this time are not required.
[0033]
The rate of decrease from the maximum value of the torque that is judged as the end of polishing is preferably 5 to 50%, particularly preferably 5 to 30%. If it is less than 5%, detection itself is difficult, and if it exceeds 50%, the polishing rate is slow, useless polishing time is generated, and carrier wear increases, which is not preferable.
[0034]
【Example】
Next, the implementation results of the present invention will be described in comparison with a conventional example. Common polishing conditions are as follows.
[0035]
Wafer used: 12-inch silicon wafer polisher: Double-side polisher AC2000P made by Peter Wolters
Abrasive Cloth: Rodel Nita Foam Urethane Abrasive MHN15A
Polishing liquid: Nalco 2350 20 times diluted polishing pressure: 200 g / cm 2
Carrier used: Stainless steel [0036]
Carriers having thicknesses of 745 μm, 740 μm, and 720 μm were used. FIG. 3 shows the change over time of the motor torque value of the upper surface plate in each polishing. Polishing was completed when each torque value decreased by 10% from the maximum value. When the first carrier having a thickness of 745 μm was used, the torque value suddenly decreased 40 minutes after the start of polishing, and the final finished thickness when polishing was stopped at 10% reduction of the maximum value was controlled to 751 μm. .
[0037]
On the other hand, when the second carrier having a thickness of 740 μm was used, the torque value decreased rapidly about 60 minutes after the start of polishing. When the polishing was stopped at a reduction of 10% of the maximum value, the final finished thickness was 744 μm. When the third carrier having a thickness of 720 μm was used, the torque value suddenly decreased 80 minutes after the start of polishing. The final finished thickness was 726 μm when polishing was stopped with a reduction of 10% of the maximum value.
[0038]
As an example of the present invention, a carrier having a thickness of 744 μm, which is 6 μm thinner than the final finished thickness (750 μm) of the wafer, is used, and the polishing is finished when the motor torque value of the upper surface plate decreases by 10% from the maximum value. The polishing method was carried out continuously for 10 cycles. Further, as a conventional example, a carrier that is 100 μm thinner than the final finished thickness (750 μm) is used, the wafer thickness is measured for each cycle, the polishing rate is calculated, and the polishing time for the next cycle is calculated from the polishing rate. A time-controlled polishing method was performed 10 times. Further, as a reference example, continuous polishing was performed with a constant polishing time in order to reveal the instability of the polishing rate in the initial state of the polishing cloth.
[0039]
FIG. 4 shows the final finished thickness in each case. At the initial use of the polishing cloth, the polishing rate becomes unstable. In general, since the polishing agent is not sufficiently impregnated into the polishing cloth at the initial stage, the polishing is not promoted and the polishing rate is low. As the cycle is repeated, the polishing rate gradually increases. In the case of the conventional polishing time management type, the polishing time is set from the polishing rate of the previous cycle. In the first cycle of the polishing cloth and the first cycle after the apparatus is stopped, the polishing time is set with reference to the past actual values, so that the accuracy of the finished thickness tends to become unstable. However, in the case of the method of the present invention, high accuracy can be stably obtained by the torque management based on the carrier thickness.
[0040]
Together with the final finished thickness, the in-plane distribution of the thickness was also evaluated. The results are shown in FIG. In the case of the conventional method of polishing time management type, surface sagging is likely to occur on the outer peripheral portion of the wafer after polishing, and the TTV average value was slightly over 1 μm. Improved. The reason why the surface sagging of the wafer outer peripheral portion is suppressed by the method of the present invention can be considered that the load applied to the outer peripheral portion of the wafer is alleviated by the carrier when the polishing of the wafer proceeds to near the thickness of the carrier.
[0041]
FIG. 6 shows a lowering behavior of the upper surface plate motor torque and an influence of the lowering of the torque on the wafer thickness and the carrier thickness.
[0042]
As can be seen from this figure, the torque reduction phenomenon of the motor that drives the upper platen is remarkable at the start of the reduction, and the time from the start of the reduction elapses and the reduction speed becomes slow. As the motor torque decreases, the finished thickness of the wafer approaches the thickness of the carrier. By stopping polishing when the motor torque reduction rate is in the range of 5 to 30%, the finished thickness of the wafer is +6 μm with respect to the carrier thickness. It is managed as follows. Further, within this range, the wear of the carrier does not substantially occur.
[0043]
More specifically, if the reduction rate of the motor torque for stopping polishing is 10%, the finished thickness of the wafer becomes +5 to 6 μm of the carrier thickness. That is, a carrier 5 to 6 μm thinner than the finished thickness of the wafer is used here. If the reduction rate of motor torque for stopping polishing is 20%, the finished thickness of the wafer is +4 to 5 μm of the carrier thickness. If the reduction rate of the motor torque for stopping polishing is 30%, the finished thickness of the wafer is +3 to 4 μm of the carrier thickness. If the reduction rate of the motor torque at which polishing is stopped is 40%, the finished thickness of the wafer is +3 μm of the carrier thickness, but the carrier is slightly worn. If the reduction rate of the motor torque for stopping the polishing is 50%, the finished thickness of the wafer matches the carrier thickness, but the wear of the carrier increases and the polishing time also increases.
[0044]
In the above embodiment, the change in the torque value for determining the polishing end time is detected by the torque value of the motor that drives the upper platen, but may be detected by the torque value of the motor that drives the lower platen. In short, the polishing end time may be determined from the change in the torque value of the motor involved in the rotational drive of at least one of the upper and lower rotary surface plates.
[0045]
In the above embodiment, the carrier is caused to perform a planetary motion combining a revolving motion and a rotational motion. However, the carrier may be rotated at a fixed position.
[0046]
【The invention's effect】
As described above, according to the wafer polishing method of the present invention, complicated operations such as measurement of the thickness of the wafer after polishing and setting of a polishing time based on the result are not required. In addition, despite the simple work, the finished thickness of the wafer is not affected by the condition of the polishing cloth. For this reason, high-precision sizing is easily and stably performed.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a polishing apparatus for explaining an embodiment of the present invention.
FIG. 2 is a view taken along the line AA in FIG.
FIG. 3 is a graph showing a relationship between torque change of a surface plate drive motor and carrier thickness.
FIG. 4 is a graph showing the finished thickness of a wafer for a conventional example, a reference example, and an example of the present invention.
FIG. 5 is a graph showing in-plane variations in wafer thickness for a conventional example and an example of the present invention.
FIG. 6 is a graph showing motor torque reduction behavior and the effect of the reduction on wafer thickness and carrier thickness.
[Explanation of symbols]
1 Lower surface plate 2 Upper surface plate 3 Sun gear 4 Internal gear 8 Carrier 10 Wafers 11 and 12 Motor

Claims (4)

研磨すべき半導体ウエーハをキャリアに保持して上下の回転定盤間で回転させることにより、前記半導体ウエーハの両面を同時に研磨するウエーハ研磨方法において、
前記キャリアの研磨前厚みを前記半導体ウエーハの最終仕上がり厚みと同一か、僅かに小さくし、前記キャリアの研磨前厚みと前記半導体ウエーハの最終仕上がり厚みとの差を6μm以下とするとともに、
前記キャリアとほぼ同じ厚みまで前記半導体ウエーハの研磨が進行すると前記上側の回転定盤を持ち上げる方向に背圧が発生するため前記半導体ウエーハに付加される圧力が激減することで生じる前記回転定盤の駆動トルクの低下から研磨終了時点を検知することを特徴とするウエーハ研磨方法。
In a wafer polishing method for simultaneously polishing both surfaces of the semiconductor wafer by holding the semiconductor wafer to be polished on a carrier and rotating between the upper and lower rotating surface plates,
The thickness before polishing of the carrier is the same as or slightly smaller than the final finished thickness of the semiconductor wafer, and the difference between the thickness before polishing of the carrier and the final finished thickness of the semiconductor wafer is 6 μm or less,
When the polishing of the semiconductor wafer proceeds to substantially the same thickness as the carrier, back pressure is generated in the direction of lifting the upper rotating surface plate, so that the pressure applied to the semiconductor wafer is greatly reduced. A wafer polishing method, wherein a polishing end point is detected from a decrease in driving torque .
前記研磨終了と判断する前記回転定盤の駆動トルクの低下は、前記駆動トルクの最大値からの低下率が5〜50%であることを特徴とする請求項1に記載のウエーハ研磨方法。 2. The wafer polishing method according to claim 1 , wherein a decrease in the driving torque of the rotating surface plate determined to be the end of the polishing is 5 to 50% from a maximum value of the driving torque . 前記半導体ウエーハの最終仕上がり厚みの目標値が750μmとされることを特徴とする請求項1又は2に記載のウエーハ研磨方法。The wafer polishing method according to claim 1, wherein a target value of a final finished thickness of the semiconductor wafer is 750 μm . 前記キャリアがステンレス鋼、または、エポキシ樹脂、フェノール樹脂、ポリイミドのいずれかに強化繊維を複合したFRPからなることを特徴とする請求項1又は2に記載のウエーハ研磨方法。3. The wafer polishing method according to claim 1 , wherein the carrier is made of FRP in which a reinforcing fiber is combined with any of stainless steel, epoxy resin, phenol resin, or polyimide .
JP2001050356A 2001-02-26 2001-02-26 Wafer polishing method Expired - Fee Related JP3991598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001050356A JP3991598B2 (en) 2001-02-26 2001-02-26 Wafer polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001050356A JP3991598B2 (en) 2001-02-26 2001-02-26 Wafer polishing method

Publications (2)

Publication Number Publication Date
JP2002254299A JP2002254299A (en) 2002-09-10
JP3991598B2 true JP3991598B2 (en) 2007-10-17

Family

ID=18911323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001050356A Expired - Fee Related JP3991598B2 (en) 2001-02-26 2001-02-26 Wafer polishing method

Country Status (1)

Country Link
JP (1) JP3991598B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104380439A (en) * 2012-06-25 2015-02-25 胜高股份有限公司 Method for polishing work and work polishing device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205265A (en) * 2005-01-25 2006-08-10 Speedfam Co Ltd Polishing method and polishing composition
JP2009289925A (en) 2008-05-28 2009-12-10 Sumco Corp Method of grinding semiconductor wafers, grinding surface plate, and grinding device
JP2009285768A (en) 2008-05-28 2009-12-10 Sumco Corp Method and device for grinding semiconductor wafer
WO2010119833A1 (en) 2009-04-13 2010-10-21 株式会社Sumco Method for producing silicon epitaxial wafer
JP5381304B2 (en) 2009-05-08 2014-01-08 株式会社Sumco Manufacturing method of silicon epitaxial wafer
WO2011135949A1 (en) 2010-04-30 2011-11-03 株式会社Sumco Method for polishing silicon wafer and polishing liquid therefor
WO2012005289A1 (en) * 2010-07-08 2012-01-12 株式会社Sumco Method for polishing silicon wafer, and polishing solution for use in the method
JP2012069897A (en) * 2010-08-27 2012-04-05 Covalent Materials Corp Method for polishing semiconductor wafer and semiconductor wafer polishing device
WO2012090366A1 (en) 2010-12-27 2012-07-05 株式会社Sumco Method and device for polishing workpiece
JP2016036857A (en) * 2014-08-05 2016-03-22 株式会社Sumco Polishing method of workpiece and polishing device of the workpiece
JP6593318B2 (en) * 2016-12-20 2019-10-23 株式会社Sumco Carrier plate thickness adjustment method
JP7031491B2 (en) 2018-05-22 2022-03-08 株式会社Sumco Work double-sided polishing device and double-sided polishing method
JP7110877B2 (en) * 2018-09-27 2022-08-02 株式会社Sumco Double-sided polishing device for workpiece and double-sided polishing method
JP7004026B2 (en) * 2020-06-12 2022-01-21 株式会社Sumco Work double-sided polishing method, work manufacturing method, and work double-sided polishing equipment
JP7435436B2 (en) 2020-12-24 2024-02-21 株式会社Sumco How to polish carrier plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104380439A (en) * 2012-06-25 2015-02-25 胜高股份有限公司 Method for polishing work and work polishing device
CN104380439B (en) * 2012-06-25 2016-09-07 胜高股份有限公司 Workpiece Ginding process and workpiece grinding device

Also Published As

Publication number Publication date
JP2002254299A (en) 2002-09-10

Similar Documents

Publication Publication Date Title
JP3991598B2 (en) Wafer polishing method
US6623334B1 (en) Chemical mechanical polishing with friction-based control
US7147541B2 (en) Thickness control method and double side polisher
US6387289B1 (en) Planarizing machines and methods for mechanical and/or chemical-mechanical planarization of microelectronic-device substrate assemblies
US6419568B1 (en) Fixed abrasive polishing pad
KR102119556B1 (en) Method of polishing both sides of semiconductor wafer
US9908213B2 (en) Method of CMP pad conditioning
TW201730951A (en) Method and device for polishing wafer
US7097535B2 (en) Method and configuration for conditioning a polishing pad surface
JP3637594B2 (en) Manufacturing method of semiconductor wafer
US20060019417A1 (en) Substrate processing method and substrate processing apparatus
JP2008141186A (en) Polishing method and polishing device
KR100694905B1 (en) Polishing method and apparatus
US6969306B2 (en) Apparatus for planarizing microelectronic workpieces
JP5507799B2 (en) Semiconductor wafer polishing apparatus and polishing method
JP4326985B2 (en) Wafer polishing method
JP2021053748A (en) Polishing pad and method for manufacturing polished product
JP2977543B2 (en) Chemical mechanical polishing apparatus and chemical mechanical polishing method
US9630292B2 (en) Single side polishing apparatus for wafer
JP2012069897A (en) Method for polishing semiconductor wafer and semiconductor wafer polishing device
JP3820432B2 (en) Wafer polishing method
JPH05177533A (en) Method and device for polishing semiconductor wafer
JP2001088008A (en) Polishing method and device
KR101259315B1 (en) Method for polishing semiconductor wafer, and device for polishing semiconductor wafer
JP2012064835A (en) Polishing method of semiconductor wafer, and semiconductor wafer polishing device

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

R150 Certificate of patent or registration of utility model

Ref document number: 3991598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees