JP3820432B2 - Wafer polishing method - Google Patents

Wafer polishing method Download PDF

Info

Publication number
JP3820432B2
JP3820432B2 JP11600398A JP11600398A JP3820432B2 JP 3820432 B2 JP3820432 B2 JP 3820432B2 JP 11600398 A JP11600398 A JP 11600398A JP 11600398 A JP11600398 A JP 11600398A JP 3820432 B2 JP3820432 B2 JP 3820432B2
Authority
JP
Japan
Prior art keywords
wafer
polishing
sheet
thickness
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11600398A
Other languages
Japanese (ja)
Other versions
JPH11291163A (en
Inventor
淳一 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP11600398A priority Critical patent/JP3820432B2/en
Publication of JPH11291163A publication Critical patent/JPH11291163A/en
Application granted granted Critical
Publication of JP3820432B2 publication Critical patent/JP3820432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ワックスフリー法によるウエーハの研磨方法に係り、特に、回転する加工プレートに貼付けたブランク材のドーナツ穴にバッキング材を介装させたテンプレートアッセンブリで、ウエーハの形状を維持したまま取り代を均一に研磨するウエーハの倣い研磨方法に関する。
【0002】
【従来の技術】
一般に、半導体ウエーハは円筒状のインゴットをスライス切断、面取りを行なった後、研磨(ラップ)定盤とウエーハを砥粒を含む研磨液を介して摺擦させながらラッピングを行ない、そして該ラッピングされたウエーハはケミカルエッチング処理された後、仕上げ加工工程に導かれる。
【0003】
仕上加工工程においては、研磨(ポリッシング)パッドとウエーハ間に、SiO2 系微粒子を弱アルカリ液中に懸濁させたポリッシング液を用い、化学機械的研磨法により、平滑で無歪の鏡面に鏡面研磨される。
【0004】
半導体ウエーハの化学機械的研磨法は、研磨剤を供給しながらウエーハと研磨クロスの間に一定の荷重と相対速度を与えながら行なう。研磨剤はアルカリ溶液中に焼成シリカやコロイダルシリカ等を分散させたものが主に用いられる。
シリコンウエーハの鏡面研磨はアルカリ溶液によってウエーハ表面に軟質なシリ力水和膜が形成され、その水和膜が研磨剤粒子によって除去されて加工が進むと考えられている。
【0005】
かかる化学機械的研磨法においては、従来複数のウエーハをワックスの接着材によりガラスプレートやセラミックプレートに貼り付けて研磨する方法が主流であった。
かかるワックス法においては、接着層(ワックス層)の厚さの不均一性がそのまま、研磨後ウエーハの平面度、平行度等を反映するため、接着層厚を均一にすることが重要である。また、ウエーハ研磨後にウエーハからワックスを除去する必要があるため、工程が複雑になるという問題点があった。
【0006】
かかる欠点を解消するために、ワックスを用いることなくウエーハを保持するワックスレスマウント方式が提案されている。
かかるワックスレスマウント方式には真空吸着によるワックスレス保持方法と、多孔質の樹脂、例えばポリウレタン樹脂多孔質体からなるバッキングパッドを用いてウエーハを水貼りするワックスレス保持方法とが利用されているが、いずれも前記したウエーハに対するワックスの塗布、除去が不要になる長所がある。
【0007】
さて前記した研磨装置は生産効率の面より、テンプレートに複数枚のウエーハを保持して研磨を行なうバッチ式研磨方法が主流であったが、近年、ウエーハの大口径化と、より平坦度に優れたウエーハ需要を背景に、テンプレートに一枚のウエーハを保持してウエーハ回転中心と該ウエーハを支持する加工プレートの回転中心を一致させた状態で研磨を行なう枚葉式研磨方式が検討されている。
【0008】
かかる枚葉式研磨方式で一枚ずつバッキングパッドとテンプレートで保持しつつ研磨するワックスレスマウント方式を採用した場合、弾性に優れた研磨クロス、バッキングパッド、及び加工プレートの機構により、ウエーハ面内に比較的一様な圧力が加わり、その結果、取り代の面内分布が均一となり、結果として前工程のウエーハの平坦度を維持するような倣い研磨が行なわれる。
【0009】
倣い研磨の特徴として、前工程のウエーハの平坦度を維持するような研磨が行なわれるため、前工程における平坦度が優れている場合には、その平坦度を維持したまま研磨でき、結果として平坦度に優れたウエーハを得ることができるという利点がある。一方、前工程における平坦度が不十分である場合には、前工程のウエーハの平坦度を維持するような研磨が行なわれるため、結果として得られるウエーハの平坦度は不十分なままである。
【0010】
この為、従来の研磨では表面の粗さを改善(鏡面化)すると共に、面内形状のバラツキの修正の為の研磨(平坦度の改善、例えば周辺部分を優先的に削る等)の修正研磨と、前工程の平坦度形状は維持したまま取り代を均一(厚さをコントロール)にし、鏡面化する倣い研磨の両者を前工程の平坦度状態に応じて適宜選択若しくは組合せて用いる。
【0011】
そしてこれらの研磨では、バッキングパッドの厚みを例えば250μm以下と薄くし、ウエーハの面内形状が直接研磨面側に現出するようにしている。
そしてバッキングパッドとして人工皮革シートやポリエステル繊維等の不織布にポリウレタン樹脂を含浸させ、その表面を微細発泡構造としたバッキングパッドを用いており、更に特開平6−23664号において、例えば厚さ40μm程度の基質層の表面にポリエステル系ポリウレタンの発泡性樹脂組成物を塗布し、これを60℃に加温して発泡させた後、研削盤で発泡層の厚さを所定の厚みにカットし、例えば全体の厚みを120〜250μm程度にしたバッキングパッドを用い、該パッドの基質層を加圧プレート側に接触するように、そして発泡層をウエーハとの接触面側に配置して研磨を行なう。
【0012】
かかる発明によれば、ウエーハとの接触面側に発泡層が位置しているために、研磨時にウエーハとの接触部が圧縮変形してもこの接触部の面積はそれほど増大しないために、平坦度に優れた研磨を可能にするとしている。
【0013】
【発明が解決しようとする課題】
しかしながら従来の修正研磨では、研磨機の機械精度の関係で必ずしも高平坦度に修正できず、ラッピングやエッチング工程、更には平面研削等の前工程で高平坦度に加工した後、その高平坦度を維持したまま研磨工程で鏡面研磨を行なった方が、好ましい平坦度の改善が可能であることが知見された。
【0014】
従って今後研磨工程における倣い研磨が注目されるが、前工程の高平坦度形状は維持したまま取り代を均一にすることは大変難しく、肉厚なバッキングパッドを用い、より具体的には修正研磨より厚みの厚い、例えば数百μm〜1mmの従来組成のバッキングパッドを用いて、倣い研磨を優先させてもプレート表面形状がウエーハに転写され、ウエーハ形状によって部分的に当たりが変わってしまい、好ましい倣い研磨が出来なかった。
【0015】
その理由は、人工皮革シートや不織布では、それ自体の弾性強度が大きいために、ウエーハ背面側の凹凸が収拾されることなく、ウエーハ研磨面側にその凹凸が現出してウエーハを変形させてしまい、均一な取り代の倣い研磨を行なうことができなかった。
【0016】
又、ウエーハとの接触面側に発泡層が位置している特開平6−23664号に係るバッキングパッドを用いた場合には、発泡層の厚みを例えば1mm以上と厚くした場合にも、発泡層が断面方向に並立分散する独立気泡であるために、発泡層の圧縮に比例して接触部の面圧はそれほど増大することなく、結果としてウエーハの面内形状がバッキングパッド内に吸収出来ず、結果として基質層側に押圧支持される状態になり、均一な取り代の倣い研磨を行なうことができない。
【0017】
本発明は、かかる従来技術の欠点に鑑み、均一な取り代で倣い研磨を行なうことの出来るウエーハの研磨方法を提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明はかかる課題を達成するため、回転する加工プレートに貼付けたブランク材のドーナツ穴にバッキング材を介装させたテンプレートアッセンブリでウエーハを、形状を維持したまま取り代を均一に研磨するウエーハの倣い研磨方法において、前記ウエーハの肉厚偏差(ウエーハ面内厚さのmax値とmin値の差;Total Thickness Variation:TTV)及びウエーハ間の厚さのバラツキより厚い肉厚、より具体的には前記ブランク材のドーナツ穴へ1〜2mmの肉厚のシート状弾性体を敷き、その上に人工皮革シートやポリエステル繊維の不織布で形成され、その厚みを前記ウエーハの肉厚偏差より大で、かつシート状弾性体の厚みより小さく設定したバッキングパッドを介装させ、該バッキングパッドの厚みが、300〜800μmに設定されたテンプレートアッセンブリでウエーハを研磨することを特徴としている。
【0019】
スポンジ状の弾性体としては、スポンジ状シリコーンを用いることが好ましい。特にシリコンゴムスポンジは、ウエーハ形状を吸収しやすい部材であり、なおかつ入手も容易であり、簡便に使用できるため好適である。シリコンゴムスポンジは単にシリコンスポンジとも言われ、変性シリコーンゴムを主材料とするスポンジで、柔軟性に富んだ材料である。
【0020】
即ち、本発明はシート状弾性体をバッキング材として直接用いるのではなく、バッキング材については従来公知のものを用い、加工プレートとバッキング材との間に独立したシート状弾性体を介装させたものである。
【0021】
尚、前記シート状弾性体はその見かけ比重が0.2〜0.4g/cm3 に設定されたものを用いるのがよい。
かかる発明の場合、前記シート状弾性体はその硬さをアスカーC硬度で15〜35(SRISーC)に設定するのが良く、又前記バッキングパッドは、人工皮革シートやポリエステル繊維等の不織布で形成され、その厚みを前記ウエーハの肉厚偏差より大でかつシート状弾性体の厚みより小さく、好ましくは300〜800μm、更に好ましくは500〜600μmに設定する。
【0022】
かかる発明によれば、ウエーハの背面側の凹凸がバッキングパッドを介したシート状弾性体により吸収されつつ研磨されるために、均一取り代の精度良い倣い研磨が可能である。
【0023】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施形態を例示的に詳しく説明する。但しこの実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がないかぎりは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例にすぎない。
【0024】
図2は本発明の実施例及び比較例に係る枚葉式ワックスレス化学機械的研磨装置を示し、バッキングパッドを用いたワックスフリー研磨装置は、同図に示すように、研磨布2(ポリッシングパッド)を貼着した下側回転テーブル1と、下面側にバッキングパッド6を介して、ひとつの穴部13aに1枚のウエーハ10が保持されたドーナツ状のブランク材13が接着された複数の加工プレート4と、前記研磨布2にスラリー(研磨懸濁液)を供給するスラリー管5からなり、そして前記研磨布2を介してウエーハ10を回転テーブル1側の研磨布2に押し付けてウエーハの凹凸を平滑化する研磨装置であり、そしてかかる装置に用いるブランク材13はガラスエポキシ樹脂、ポリカーボネートシート、ポリエステルシート等から形成されている。
【0025】
またバッキングパッド6として人工皮革シートやポリエステル繊維等の不織布にポリウレタン樹脂を含浸させ、その表面を微細発泡構造としたバッキングパッド、例えばポリウレタン樹脂多孔質体から形成されている。
尚、図上右(A)に示す本発明は加工プレート4とバッキングパッド6との間にシート状弾性体7を介装させており、図上左(B)に示す従来技術は加工プレート4とバッキングパッド6との間にシート状弾性体7を介装させていない。
【0026】
そして、ウエーハ10は加工プレート4との回転中心を一致させて(シート状弾性体7を介装した)バッキングパッド6に一体的に保持するとともに、回転テーブル1の回転中心に対し、複数の加工プレート4の回転中心を半径方向に変位した位置に配置し、両者を互いに矢印方向に回転させることにより、ブランク材13の穴部13aに嵌設させたウエーハ10は研磨布2に対し相対的に自転且つ公転しながら研磨される。
【0027】
かかる装置を用いて、研磨布2とウエーハ10間に、SiO2 系微粒子を弱アルカリ液中に懸濁させたポリッシング液(スラリー)を供給しながら、化学機械的研磨を行なう。
尚、図1に本発明と従来技術の研磨工程を示し、本発明を示す(A)及び従来技術を示す(B)の夫々の工程は(イ)は研磨前のウエーハ断面形状、(ロ)はテンプレートアッセンブリに前記ウエーハ組込んだ状態、(ハ)は研磨初期、(ニ)は研磨中、(ホ)研磨後のウエーハ断面形状を誇張的に示している。
本図より明らかな如く、(A)の本発明ではウエーハ背面側の周縁凸部がバッキングパッド6を介してシート状弾性体7に効率よく吸収され、ウエーハ背面側の中凹形状を維持した状態でウエーハ10の研磨が可能であり、取り代が均一となる。
【0028】
一方(B)の従来技術ではウエーハ背面側の周縁凸部がバッキングパッド6を介して加工プレート4に押圧され、ウエーハ背面側の中凹が低減され、その分研磨側の中凹が拡大した状態でウエーハ10の研磨が行なわれるため、結果として平坦度が上がるが、面内の取り代は均一でなくなる。また研磨前に高平坦度であったものが、加工プレートとの押圧の関係で逆に悪化することもあった。
尚、図1中に記載のウエーハ形状・厚さ(外周肉厚800μm、中央肉厚700μm等)は、従来技術との違いを説明するために用いた参考的な値であり、実施例そのものを示すものではない。
【0029】
次に前記装置を用いて次のような本発明の確認実験を行なった。
先ず、テンプレートアッセンブリのブランク材13にはガラスエポキシ材で外径φ335mm、内径φ301.5mm、厚さ2.27mm(ただし、これはシート状弾性体として1mmのシリコンゴムスポンジを用いた場合であり、シリコンゴムスポンジを用いない場合や厚いものを使用する時にはウエーハが200μm程度突き出すように任意に調整している)のドーナツ型を用いて加工プレート4に貼り付けた。
【0030】
ブランク材13の穴部13aには、弾性体として硬さ25(SRIS−C)のシリコンゴムスポンジシート7をφ300mm、肉厚1mmの円形とし、その上に、肉厚が560μmポリウレタン樹脂多孔質体、より具体的にはロデール社製R301バッキングパッド6を介装させた。
尚、SRIS−Cは、いわゆるアスカーC硬度といわれるもので、JISK6301に準じたスプリング式硬さ試験機を用いて測定したものである。
又、シリコンゴムスポンジシート7はその見かけ比重が0.2〜0.4g/cm3 に設定された部材を用いる。
【0031】
上記テンプレートアッセンブリを用いて、図1(A)に示すような工程で、直径300mmφ、ウエーハ中心厚さ775μm±25μm、TTV1.8μm程度のエッチング後のウエーハを、約2μmの取り代になるように100枚研磨したところ、研磨後のウエーハの取り代TTVは0.3μmであり、取り代の均一度を示す形状変化率(形状変化率=取り代TTV/平均取り代×100)が15%以下の好ましい倣い研磨を行なうことが出来た。(実施例1)
ここで、取り代TTVとは、加工前のウエーハの面内複数点の厚さを測定し、加工後に同一点を測定し、その差より各点の取り代を求める。この面内の取り代のmax値とmin値の差を取り代TTVとした。
以下に本発明の他の実施例及び比較例を示すが、テンプレートアッセンブリを変更した他は実施例1と同様なウエーハ及び研磨条件で実施している。
【0032】
実施例1のシリコンゴムスポンジシートの肉厚を2mmに上げて、弾性体として硬さ35(SRIS−C)のシリコンゴムスポンジシートを用いて100枚研磨したところ、取り代の均一度を示す形状変化率が10%以下と更に好ましい倣い研磨を行なうことが出来た。(実施例2)
そこで更に、上記シリコンゴムスポンジシートの肉厚を3mmに上げて、100枚研磨した所、取り代の均一度を示す形状変化率は10%以下であったが、シリコンゴムスポンジやバッキングパッドの偏りなどが発生し、安定して研磨することができなかった。(比較例1)
【0033】
次に実施例1のシリコンゴムスポンジシートについて、弾性体として硬さ15(SRIS−C)のシリコンゴムスポンジシートを用いて研磨を行なったところ、100枚研磨ウエーハの取り代の均一度を示す形状変化率が20%以下の好ましい倣い研磨を行なうことが出来た。(実施例3)
次に実施例1のシリコンゴムスポンジシートを用い、ロデール社製R301バッキング材の厚み350μmのものを用いて、研磨を行なったところ、100枚研磨ウエーハの取り代の均一度を示す形状変化率が20%以下の好ましい倣い研磨を行なうことが出来た。(実施例4)
【0034】
次に実施例1のシリコンゴムスポンジシートを用い、ロデール社製R301バッキング材の厚み750μmのものを用いて、研磨を行なったところ、100枚研磨ウエーハの取り代の均一度を示す形状変化率が15%以下の好ましい倣い研磨を行なうことが出来た。(実施例5)
【0035】
次に図1(A)に示すように、実施例1のシリコンゴムスポンジシートを用い、ロデール社製R301バッキング材の厚み1mmのものを用いて、研磨を行なったところ、100枚研磨ウエーハの取り代の均一度を示す形状変化率が25%程度に大幅に上昇した。(比較例2)
これはシリコンゴムスポンジシートの効果が、あまり現われなかったものと思料される。
【0036】
最後に図1(B)に示すように特開平6−23664号のバッキング材の厚み250μmのものを用いて、同様な研磨を行なったところ、100枚研磨ウエーハの取り代の均一度を示す形状変化率が50%程度に大幅に上昇した。(比較例3)
【0037】
尚、今回の実施例は研磨前にラッピング・エッチングを行なったウエーハを用いたが、平面研削後のウエーハ、研磨前のTTVの悪いウエーハを用いても、形状変化率が大幅に低減した。研磨代を増やしても同様であった。
従来のバッキングパッドを用いた倣い研磨では、その厚みを1mm以上にしても形状変化率は20〜40%であったが、「シート状弾性体とバッキングパッド」の組合せからなる本願発明の場合は10〜20%と、その形状変化率が大幅に低減できた。
【0038】
【発明の効果】
以上記載のごとく本発明によれば、ウエーハの形状を変えること無く、均一な取り代で研磨が可能になり、特に形状変化率を15%程度に安定して倣い研磨を行なうことが出来る。このことにより、前工程で高平坦度化されたウエーハをそのまま鏡面化できる。
【図面の簡単な説明】
【図1】本発明(A)と従来技術(B)のテンプレートアッセンブリを示す断面図と加工工程手順を示す作用図である。
【図2】本発明に適用される枚葉式ワックスレス化学機械的研磨装置を示す全体図である。
【符号の説明】
4 加工プレート
6 バッキングパッド
7 シリコンゴムスポンジシート
10 ウエーハ
13 ブランク材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wafer polishing method using a wax-free method, and more particularly, to a template assembly in which a backing material is interposed in a donut hole of a blank material affixed to a rotating processing plate, while maintaining the shape of the wafer. BACKGROUND OF THE INVENTION 1. Field of the Invention
[0002]
[Prior art]
In general, a semiconductor wafer is sliced, cut and chamfered from a cylindrical ingot, and then lapped while rubbing the polishing (lap) surface plate and the wafer through a polishing liquid containing abrasive grains, and the lapping is performed. After the wafer is subjected to a chemical etching process, the wafer is guided to a finishing process.
[0003]
In the finishing process, a polishing solution in which SiO 2 fine particles are suspended in a weak alkaline solution is used between the polishing (polishing) pad and the wafer. Polished.
[0004]
The chemical mechanical polishing method of a semiconductor wafer is performed while applying a constant load and a relative speed between the wafer and the polishing cloth while supplying an abrasive. As the abrasive, a dispersion in which baked silica, colloidal silica or the like is dispersed in an alkaline solution is mainly used.
It is considered that mirror polishing of a silicon wafer forms a soft silicic hydrated film on the wafer surface by an alkaline solution, and the hydrated film is removed by abrasive particles to proceed with processing.
[0005]
In such a chemical mechanical polishing method, a method of polishing a plurality of wafers by pasting them on a glass plate or a ceramic plate with a wax adhesive has been the mainstream.
In such a wax method, it is important to make the thickness of the adhesive layer uniform because the non-uniformity of the thickness of the adhesive layer (wax layer) directly reflects the flatness, parallelism, etc. of the wafer after polishing. Further, since it is necessary to remove the wax from the wafer after the wafer polishing, there is a problem that the process becomes complicated.
[0006]
In order to eliminate such drawbacks, a waxless mount system that holds a wafer without using wax has been proposed.
For such a waxless mounting method, a waxless holding method by vacuum adsorption and a waxless holding method in which a wafer is water-sealed using a backing pad made of a porous resin, for example, a polyurethane resin porous body, are used. Both have the advantage that it is not necessary to apply and remove the wax to the wafer.
[0007]
From the viewpoint of production efficiency, the above-described polishing apparatus has been mainly a batch type polishing method in which a plurality of wafers are held in a template for polishing, but in recent years, the wafer diameter has been increased and the flatness has been improved. Against the background of demand for wafers, a single wafer polishing method is being studied in which a single wafer is held in a template and polishing is performed with the wafer rotation center and the rotation center of the processing plate supporting the wafer being aligned. .
[0008]
When adopting a waxless mounting method in which polishing is performed while holding the backing pad and the template one by one in such a single wafer polishing method, the polishing cloth, backing pad, and processing plate mechanism having excellent elasticity can be used in the wafer surface. A relatively uniform pressure is applied, and as a result, the in-plane distribution of the machining allowance becomes uniform. As a result, the copying polishing is performed so as to maintain the flatness of the wafer in the previous process.
[0009]
As a characteristic of copying polishing, polishing is performed so as to maintain the flatness of the wafer in the previous process. Therefore, when the flatness in the previous process is excellent, the wafer can be polished while maintaining the flatness, and as a result, flatness is achieved. There is an advantage that an excellent wafer can be obtained. On the other hand, when the flatness in the previous step is insufficient, polishing is performed so as to maintain the flatness of the wafer in the previous step, and the resulting flatness of the wafer remains insufficient.
[0010]
For this reason, the conventional polishing improves the surface roughness (mirror surface), and corrective polishing for polishing to improve the variation of the in-plane shape (improving flatness, for example, preferentially scraping the peripheral portion). In addition, the machining allowance is made uniform (thickness is controlled) while maintaining the flatness shape in the previous step, and both of the mirror polishing to be mirror-finished are appropriately selected or combined depending on the flatness state in the previous step.
[0011]
In these polishings, the thickness of the backing pad is reduced to, for example, 250 μm or less so that the in-plane shape of the wafer appears directly on the polishing surface side.
And, as a backing pad, a backing pad in which a nonwoven fabric such as artificial leather sheet or polyester fiber is impregnated with polyurethane resin and the surface thereof has a fine foam structure is used. Further, in JP-A-6-23664, for example, a thickness of about 40 μm is used. After applying a foaming resin composition of polyester-based polyurethane to the surface of the substrate layer and heating it to 60 ° C. for foaming, the thickness of the foaming layer is cut to a predetermined thickness with a grinding machine, Polishing is performed using a backing pad having a thickness of about 120 to 250 μm, with the substrate layer of the pad being in contact with the pressure plate side, and the foam layer being disposed on the contact surface side with the wafer.
[0012]
According to this invention, since the foam layer is located on the contact surface side with the wafer, even if the contact portion with the wafer is compressed and deformed during polishing, the area of the contact portion does not increase so much. It is supposed to be able to polish excellently.
[0013]
[Problems to be solved by the invention]
However, the conventional correction polishing cannot always be corrected to high flatness due to the mechanical accuracy of the polishing machine, and after processing to high flatness in the previous process such as lapping, etching process, and surface grinding, the high flatness It was found that the preferred flatness can be improved by performing mirror polishing in the polishing step while maintaining the above.
[0014]
Therefore, in the future, follow-up polishing in the polishing process will attract attention, but it is very difficult to make the machining allowance uniform while maintaining the high flatness shape of the previous process, and more specifically, using a thick backing pad, more specifically modified polishing Even if priority is given to profiling using a backing pad having a thicker thickness, for example, several hundred μm to 1 mm, the surface shape of the plate is transferred to the wafer, and the contact changes partially depending on the wafer shape. I could not polish.
[0015]
The reason for this is that artificial leather sheets and non-woven fabrics have high elastic strength, so that the irregularities on the back side of the wafer are not picked up, but the irregularities appear on the wafer polishing surface and deform the wafer. Therefore, it was not possible to carry out copying polishing with uniform removal allowance.
[0016]
Further, when using a backing pad according to Japanese Patent Laid-Open No. 6-23664 in which the foam layer is located on the contact surface side with the wafer, the foam layer can be used even when the thickness of the foam layer is increased to, for example, 1 mm or more. Is a closed cell that is distributed side by side in the cross-sectional direction, the surface pressure of the contact portion does not increase so much in proportion to the compression of the foam layer, and as a result, the in-plane shape of the wafer cannot be absorbed in the backing pad, As a result, the substrate is pressed and supported on the substrate layer side, and it is not possible to carry out copying polishing with uniform removal allowance.
[0017]
An object of the present invention is to provide a wafer polishing method capable of performing copying polishing with a uniform machining allowance in view of the drawbacks of the prior art.
[0018]
[Means for Solving the Problems]
Since the present invention is to achieve the foregoing object, a wafer template assembly was interposed a backing material donut hole of sticking the blank to the machining plate rotates, the wafer is uniformly polished balls or allowance to maintain the shape In the profile polishing method, the thickness deviation of the wafer (the difference between the max value and min value of the wafer in-plane thickness; Total Thickness Variation: TTV) and the thickness variation between the wafers, more specifically, Is a sheet-like elastic body having a thickness of 1 to 2 mm in the donut hole of the blank material, and is formed of an artificial leather sheet or a non-woven fabric of polyester fiber thereon, the thickness of which is larger than the thickness deviation of the wafer, And a backing pad set smaller than the thickness of the sheet-like elastic body is interposed, and the thickness of the backing pad But it is characterized by polishing the wafer with the set template assembly to 3 00~800μm.
[0019]
Sponge-like silicone is preferably used as the sponge-like elastic body. Silicone rubber sponge is particularly preferable because it is a member that easily absorbs the wafer shape, is easily available, and can be used easily. Silicone rubber sponge is also referred to simply as silicone sponge, and is a sponge mainly made of modified silicone rubber, and is a material with high flexibility.
[0020]
That is, the present invention does not directly use a sheet-like elastic body as a backing material, but a conventionally known backing material is used, and an independent sheet-like elastic body is interposed between the processing plate and the backing material. Is.
[0021]
In addition, it is preferable to use the sheet-like elastic body whose apparent specific gravity is set to 0.2 to 0.4 g / cm 3 .
In the case of such an invention, the sheet-like elastic body is preferably set to have an Asker C hardness of 15 to 35 (SRIS-C), and the backing pad is a non-woven fabric such as an artificial leather sheet or polyester fiber. The thickness is formed, and the thickness is larger than the thickness deviation of the wafer and smaller than the thickness of the sheet-like elastic body, preferably 300 to 800 μm, more preferably 500 to 600 μm.
[0022]
According to this invention, since the unevenness on the back side of the wafer is polished while being absorbed by the sheet-like elastic body via the backing pad, it is possible to carry out the follow-up polishing with a uniform removal allowance with high accuracy.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only.
[0024]
FIG. 2 shows a single wafer type waxless chemical mechanical polishing apparatus according to an example and a comparative example of the present invention. A wax-free polishing apparatus using a backing pad has a polishing cloth 2 (polishing pad) as shown in FIG. ) And a plurality of processes in which a doughnut-shaped blank material 13 holding one wafer 10 is bonded to one hole 13a via a backing pad 6 on the lower surface side. A plate 4 and a slurry tube 5 for supplying a slurry (polishing suspension) to the polishing cloth 2, and the wafer 10 is pressed against the polishing cloth 2 on the rotary table 1 side through the polishing cloth 2 to make the unevenness of the wafer. The blank 13 used in the apparatus is made of glass epoxy resin, polycarbonate sheet, polyester sheet or the like. .
[0025]
The backing pad 6 is formed of a backing pad, for example, a polyurethane resin porous body, in which a non-woven fabric such as an artificial leather sheet or polyester fiber is impregnated with polyurethane resin and the surface thereof has a fine foam structure.
In the present invention shown in the right (A) of the figure, a sheet-like elastic body 7 is interposed between the processing plate 4 and the backing pad 6, and the prior art shown in the left (B) of the figure is the processing plate 4. A sheet-like elastic body 7 is not interposed between the backing pad 6 and the backing pad 6.
[0026]
The wafer 10 is held integrally with the backing pad 6 (with the sheet-like elastic body 7 interposed) with the rotational center of the processing plate 4 being coincident, and a plurality of processings are performed with respect to the rotational center of the turntable 1. The center of rotation of the plate 4 is disposed at a position displaced in the radial direction, and both are rotated in the direction of the arrows so that the wafer 10 fitted in the hole 13a of the blank 13 is relatively with respect to the polishing pad 2. Polishing while rotating and revolving.
[0027]
Using such an apparatus, chemical mechanical polishing is performed while supplying a polishing solution (slurry) in which SiO 2 fine particles are suspended in a weak alkaline solution between the polishing cloth 2 and the wafer 10.
FIG. 1 shows the polishing steps of the present invention and the prior art. Each step of (A) showing the present invention and (B) showing the prior art is (a) is a wafer cross-sectional shape before polishing, and (b) Is a state in which the wafer is incorporated in the template assembly, (C) is an initial stage of polishing, (D) is during polishing, and (E) is a wafer cross-sectional shape after polishing.
As is clear from this figure, in the present invention of (A), the peripheral convex portion on the wafer back side is efficiently absorbed by the sheet-like elastic body 7 through the backing pad 6, and the center concave shape on the wafer back side is maintained. Thus, the wafer 10 can be polished and the machining allowance becomes uniform.
[0028]
On the other hand, in the prior art (B), the peripheral convex portion on the wafer rear side is pressed against the processing plate 4 via the backing pad 6, the concaves on the wafer rear side are reduced, and the concaves on the polishing side are enlarged accordingly. Since the wafer 10 is polished, the flatness increases as a result, but the in-plane machining allowance is not uniform. Moreover, what was high flatness before grinding | polishing may be deteriorated conversely by the press relationship with a process plate.
The wafer shape and thickness (outer wall thickness 800 μm, center wall thickness 700 μm, etc.) shown in FIG. 1 are reference values used to explain the difference from the prior art. It is not shown.
[0029]
Next, the following confirmation experiment of the present invention was carried out using the apparatus.
First, the blank material 13 of the template assembly is a glass epoxy material with an outer diameter of 335 mm, an inner diameter of 301.5 mm, and a thickness of 2.27 mm (however, this is a case where a 1 mm silicon rubber sponge is used as the sheet-like elastic body, When a silicon rubber sponge is not used or when a thick one is used, the wafer is affixed to the processing plate 4 using a donut shape that is arbitrarily adjusted so that the wafer protrudes about 200 μm.
[0030]
In the hole 13a of the blank material 13, a silicon rubber sponge sheet 7 having a hardness of 25 (SRIS-C) as an elastic body is formed into a circle having a diameter of 300 mm and a thickness of 1 mm, and a porous polyurethane resin having a thickness of 560 μm. More specifically, an R301 backing pad 6 manufactured by Rodel was interposed.
SRIS-C is so-called Asker C hardness, which is measured using a spring type hardness tester according to JISK6301.
The silicon rubber sponge sheet 7 uses a member whose apparent specific gravity is set to 0.2 to 0.4 g / cm 3 .
[0031]
Using the above template assembly, the wafer after etching having a diameter of 300 mmφ, a wafer center thickness of 775 μm ± 25 μm, and a TTV of about 1.8 μm is made about 2 μm in the process shown in FIG. When 100 wafers were polished, the removal allowance TTV of the wafer after polishing was 0.3 μm, and the shape change rate (shape change rate = removal allowance TTV / average allowance allowance × 100) indicating the uniformity of the allowance was 15% or less. Thus, it was possible to carry out the preferred copying polishing. Example 1
Here, the machining allowance TTV measures the thickness of a plurality of points in the surface of the wafer before processing, measures the same point after processing, and determines the machining allowance of each point from the difference. The difference between the max value and min value of the machining allowance in this plane was taken as the machining allowance TTV.
Other examples and comparative examples of the present invention are shown below, but the wafer and polishing conditions are the same as in Example 1 except that the template assembly is changed.
[0032]
When the thickness of the silicon rubber sponge sheet of Example 1 was increased to 2 mm and 100 sheets were polished using a silicon rubber sponge sheet having a hardness of 35 (SRIS-C) as an elastic body, a shape showing the uniformity of the machining allowance It was possible to carry out a more preferable copying polishing with a change rate of 10% or less. (Example 2)
Therefore, when the thickness of the silicon rubber sponge sheet was increased to 3 mm and 100 sheets were polished, the shape change rate indicating the uniformity of the machining allowance was 10% or less. Etc. occurred and could not be stably polished. (Comparative Example 1)
[0033]
Next, when the silicon rubber sponge sheet of Example 1 was polished using a silicon rubber sponge sheet having a hardness of 15 (SRIS-C) as an elastic body, the shape showing the uniformity of the removal allowance of 100-sheet polishing wafers It was possible to carry out preferable copying polishing with a change rate of 20% or less. Example 3
Next, when the silicon rubber sponge sheet of Example 1 was used and polished using a 350 μm thick R301 backing material manufactured by Rodel, the shape change rate indicating the uniformity of the removal allowance of the 100-sheet polishing wafer was obtained. It was possible to carry out preferable copying polishing of 20% or less. Example 4
[0034]
Next, when the silicon rubber sponge sheet of Example 1 was used and polishing was performed using a R301 backing material having a thickness of 750 μm manufactured by Rodel, the shape change rate indicating the uniformity of the removal allowance of the 100-sheet polishing wafer was obtained. It was possible to carry out preferable copying polishing of 15% or less. (Example 5)
[0035]
Next, as shown in FIG. 1 (A), when the silicon rubber sponge sheet of Example 1 was used and polishing was carried out using a 1 mm thick R301 backing material manufactured by Rodel, 100 wafers were removed. The rate of change in shape, which shows the uniformity of the cost, increased significantly to about 25%. (Comparative Example 2)
This is considered that the effect of the silicone rubber sponge sheet did not appear so much.
[0036]
Finally, as shown in FIG. 1B, when a similar polishing was performed using a backing material having a thickness of 250 μm disclosed in Japanese Patent Laid-Open No. Hei 6-23664, a shape showing the uniformity of the removal allowance of a 100-sheet polishing wafer. The rate of change increased significantly to about 50%. (Comparative Example 3)
[0037]
In this example, a wafer that was lapped and etched before polishing was used. However, even when a wafer after surface grinding or a wafer with poor TTV before polishing was used, the shape change rate was greatly reduced. It was the same even if the polishing allowance was increased.
In the conventional polishing using a backing pad, the shape change rate was 20 to 40% even if the thickness was 1 mm or more. In the case of the present invention consisting of a combination of “sheet-like elastic body and backing pad”, The shape change rate was 10 to 20%, which was greatly reduced.
[0038]
【The invention's effect】
As described above, according to the present invention, it is possible to perform polishing with a uniform machining allowance without changing the shape of the wafer. In particular, it is possible to perform profile polishing with a stable shape change rate of about 15%. As a result, the wafer having a high degree of flatness in the previous step can be mirror-finished as it is.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a template assembly of the present invention (A) and a prior art (B) and an operation view showing a process step.
FIG. 2 is an overall view showing a single wafer waxless chemical mechanical polishing apparatus applied to the present invention.
[Explanation of symbols]
4 Processing plate 6 Backing pad 7 Silicon rubber sponge sheet 10 Wafer 13 Blank material

Claims (4)

回転する加工プレートに貼付けたブランク材のドーナツ穴にバッキング材を介装させたテンプレートアッセンブリでウエーハを研磨する研磨方法において、ブランク材のドーナツ穴へ1〜2mmの肉厚のスポンジ状のシート状弾性体を敷き、その上に人工皮革シートやポリエステル繊維の不織布で形成され、その厚みを前記ウエーハの肉厚偏差より大で、かつシート状弾性体の厚みより小さく設定したバッキングパッドを介装させ、該バッキングパッドの厚みが、300〜800μmに設定されたテンプレートアッセンブリでウエーハを研磨することを特徴とするウエーハ研磨方法。In a polishing method in which a wafer is polished with a template assembly in which a backing material is interposed in a donut hole of a blank material affixed to a rotating processing plate, a 1-2 mm thick sponge-like sheet-like elasticity is applied to the donut hole of the blank material The body is laid and formed with an artificial leather sheet or a non-woven fabric of polyester fiber, and a backing pad having a thickness larger than the thickness deviation of the wafer and smaller than the thickness of the sheet-like elastic body is interposed. wafer polishing method characterized in that the thickness of said backing pad to polish the wafer at the set template assembly to 3 00~800μm. 前記シート状弾性体の硬さがアスカーC硬度で15〜35(SRIS−C)に設定された請求項1記載のウエーハ研磨方法。  The wafer polishing method according to claim 1, wherein the hardness of the sheet-like elastic body is set to 15 to 35 (SRIS-C) in Asker C hardness. 前記シート状弾性体の見かけ比重が、0.2〜0.4g/cm3 に設定された請求項1若しくは2記載のウエーハ研磨方法。  The wafer polishing method according to claim 1 or 2, wherein an apparent specific gravity of the sheet-like elastic body is set to 0.2 to 0.4 g / cm3. 前記スポンジ状の弾性体がシリコンゴムスポンジである請求項1記載のウエーハ研磨方法。  The wafer polishing method according to claim 1, wherein the sponge-like elastic body is a silicon rubber sponge.
JP11600398A 1998-04-10 1998-04-10 Wafer polishing method Expired - Lifetime JP3820432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11600398A JP3820432B2 (en) 1998-04-10 1998-04-10 Wafer polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11600398A JP3820432B2 (en) 1998-04-10 1998-04-10 Wafer polishing method

Publications (2)

Publication Number Publication Date
JPH11291163A JPH11291163A (en) 1999-10-26
JP3820432B2 true JP3820432B2 (en) 2006-09-13

Family

ID=14676439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11600398A Expired - Lifetime JP3820432B2 (en) 1998-04-10 1998-04-10 Wafer polishing method

Country Status (1)

Country Link
JP (1) JP3820432B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088456A (en) * 2007-10-03 2009-04-23 Toray Ind Inc Backing material, holding member for workpiece to be polished, method for polishing semiconductor using holding member, and semiconductor wafer
CN102875769A (en) * 2011-07-15 2013-01-16 株式会社Lg化学 Poly-urethane resin composition and poly-urethane mounting pad
JP5777816B2 (en) * 2011-08-17 2015-09-09 エルジー・ケム・リミテッド Polyurethane resin composition for support pad and polyurethane support pad using the same

Also Published As

Publication number Publication date
JPH11291163A (en) 1999-10-26

Similar Documents

Publication Publication Date Title
US7582221B2 (en) Wafer manufacturing method, polishing apparatus, and wafer
JP5303491B2 (en) Polishing head and polishing apparatus
JPH09139366A (en) Polisher and retainer ring shape adjusting method
JPH09155730A (en) Holding tool used for polishing workpiece and its manufacture
JPH11277408A (en) Cloth, method and device for polishing mirror finished surface of semi-conductor wafer
US6764392B2 (en) Wafer polishing method and wafer polishing device
JPWO2002005337A1 (en) Mirror chamfering wafer, polishing cloth for mirror chamfering, mirror chamfering polishing apparatus and method
JP3664676B2 (en) Wafer polishing method and polishing pad for wafer polishing
US5827395A (en) Polishing pad used for polishing silicon wafers and polishing method using the same
JPH08197415A (en) Wafer polishing device
JP3975047B2 (en) Polishing method
JP2003037089A (en) Method for polishing wafer
JP3820432B2 (en) Wafer polishing method
JP2005005315A (en) Method for polishing wafer
JPH07164307A (en) Polishing member and wafer polishing device
JPH09254021A (en) Highly flat grinding method and highly flat grinding device
JP3821944B2 (en) Wafer single wafer polishing method and apparatus
WO2009110180A1 (en) Method for manufacturing template and polishing method wherein the template is used
JP2002355748A (en) Chemical-mechanical polishing method and chemical- mechanical polishing device
US8662961B2 (en) Polishing pad seasoning method, seasoning plate, and semiconductor polishing device
JP2010179425A (en) Abrasive pad
JP4982037B2 (en) Dressing plate for polishing cloth, dressing method for polishing cloth, and polishing method for workpiece
JP2575489B2 (en) Wafer polishing method and polishing apparatus
WO2017125987A1 (en) Wafer polishing method, back pad manufacturing method, back pad, and polishing head provided with back pad
JP2001277102A (en) Auxiliary pad and polishing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4