JP3558525B2 - How to use non-aqueous secondary batteries - Google Patents

How to use non-aqueous secondary batteries Download PDF

Info

Publication number
JP3558525B2
JP3558525B2 JP19850998A JP19850998A JP3558525B2 JP 3558525 B2 JP3558525 B2 JP 3558525B2 JP 19850998 A JP19850998 A JP 19850998A JP 19850998 A JP19850998 A JP 19850998A JP 3558525 B2 JP3558525 B2 JP 3558525B2
Authority
JP
Japan
Prior art keywords
secondary battery
discharge
voltage
capacity
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19850998A
Other languages
Japanese (ja)
Other versions
JP2000030752A (en
Inventor
肇 世利
義則 山田
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP19850998A priority Critical patent/JP3558525B2/en
Priority to US09/232,323 priority patent/US6081097A/en
Priority to DE69912177T priority patent/DE69912177T2/en
Priority to CNB991012402A priority patent/CN1193474C/en
Priority to EP99101016A priority patent/EP0948075B1/en
Publication of JP2000030752A publication Critical patent/JP2000030752A/en
Application granted granted Critical
Publication of JP3558525B2 publication Critical patent/JP3558525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、非水系二次電池の使用方法に関するものである。
【0002】
【従来の技術】
近年、携帯電話やノートパソコンなどのコードレス機器の普及がめざましく、それとともに機器の電源となる二次電池の更なる高容量化、高エネルギー密度化の要望が高まりつつある。
【0003】
二次電池として、高電圧で高エネルギー密度を有するリチウム二次電池のような非水系二次電池に対する期待が大きく、最近、正極にリチウムと遷移金属の複合酸化物を用い、負極にリチウムをインターカレート、デインターカレートできる炭素質材料を用いたリチウムイオン二次電池が実用化されている。
【0004】
通常、このような二次電池は満充電状態まで充電され、完全放電状態まで放電される。非水系二次電池を充電する方法としては、一般的に、電池電圧が設定値に達するまでは定電流で充電し、その後定電圧充電に切り換えるという定電流定電圧充電方式が採用されており、特開平5−111184号公報や特開平6−325794号公報、特開平7−240235号公報など数多く提案されている。また、満充電を検知する方法として、特開平6−189466号公報、特開平7−105980号公報、特開平7−235332号公報などが提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、非水系二次電池では満充電−完全放電を繰り返すと、十分なサイクル寿命特性が得られないという題があった。
【0006】
本発明は以上に鑑み、優れたサイクル寿命特性を得ることが可能な非水系二次電池の使用方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため本発明の非水系二次電池の使用方法は、充放電可能な正極と、電解質と、充放電可能な負極とを具備する非水系二次電池において、前記二次電池の定格容量に対する充電状態が規定値以下の領域は使用しないことを特徴とする。
【0008】
このとき、非水系二次電池の放電中に前記二次電池の閉路電圧を検出し、前記電圧の時間変化率が0.2mV/秒以上になれば前記放電を停止することを特徴とする。
【0009】
また、非水系二次電池を第1電流値で放電し、前記放電中に時間間隔t1だけ第2電流値で放電し、前記第2電流値での放電開始から時間t2 (ただし、t 2 <t 1 後の前記二次電池の閉路電圧V2と、時間t1後の閉路電圧V1との差(V2−V1)が規定値以上になれば放電を停止することを特徴とする。
【0010】
以上でいる非水系二次電池は、リチウムと遷移金属との複合酸化物を正極活物質とし、リチウムをインターカレート/デインターカレートできる炭素質材料を負極活物質として用いたことを特徴とする。
【0011】
【発明の実施の形態】
以上に記載したリチウムイオン二次電池は、定格容量に対する充電状態が非常に低い状態(定格容量に対して、ほぼ10%以下の充電状態)では、電池の内部インピーダンスが大きくなる。ここで、定格容量とは現行の充電方式で充電した場合の容量である。
【0012】
公知の方法で上記二次電池の複素インピーダンス測定を行い、その結果を図1に示した。図1に示したインピーダンスの実数成分−虚数成分図において、10Hzから0.1Hzの低周波数領域に円弧が出現するが、定格容量に対して10%以下の充電状態では前述の円弧が大きくなる。これは定格容量に対して10%以下の充電状態では反応抵抗が大きくなることを示しており、そのような反応抵抗の大きい領域に対して充放電を繰り返すと、電極活物質と電解液との界面で通常の充電反応以外の副反応が発生し、電池特性を損なう原因となると考えられる。
【0013】
したがって、反応抵抗の大きい領域は使用せず、反応抵抗が小さくなった領域のみを使用すれば、優れたサイクル寿命特性を得ることができる。
【0014】
反応抵抗の大きい領域を使用しないためには、放電時に、反応抵抗が大きくなる前に放電を停止すればよい。その方法として、二次電池の放電中に電池電圧を検出し、電池電圧の時間変化率が0.2mV/秒以上の値になれば放電を停止する方法が簡易である。
【0015】
また、二次電池の放電中に異なる電流での放電を短時間挿入し、その短時間での放電期間中の電池電圧を測定する。このとき、IRドロップによる電圧変化分を除いた電池電圧の挙動は、前述の反応抵抗の影響を受けるので、反応抵抗が大きければ、その電池電圧の変化量も大きくなる。ところが、IRドロップによる電圧変化そのものを検出することは困難であるので、ごく短時間での放電による電圧変化をIRドロップによる電圧変化の代用としても問題はない。
【0016】
したがって、図2に示したように、電流I1での放電中にI1とは異なる電流I2での放電を時間t1だけ挿入し、その電流I2での放電開始から時間t2 (ただし、t 2 <t 1 後の電池電圧V2と時間t1後の電池電圧V1との差V2−V1が規定値以上の値になれば放電を停止すればよい。このとき、電流I1とは異なる電流I2での短時間の放電を故意に挿入しなくても、例えばパソコンの場合、ハードディスクにアクセスしたときに大きな電流が流れるため、そのときの電圧挙動からV2−V1を検出することも可能である。
【0017】
さらなる方法として、二次電池の充電電気量と放電電気量を検出し、放電された電気量が充電された電気量に達する前に放電を停止するという方法でも反応抵抗の大きい領域を使用しないようにすることができる。
【0018】
また、現行のリチウムイオン二次電池は定電流定電圧充電方式を採用しているため、定電圧充電モードに入った後、4.2V程度の電圧でしばらく保持される。ところが、リチウムイオン二次電池に用いられる電解質の分解電圧が4.2V以下の場合、定電圧充電中に電解質の分解反応が起こり、これが充放電サイクルに伴う容量劣化の一因となる。したがって、定格容量に対する充電状態が規定値以上の領域を使用しなければ、さらに優れたサイクル寿命特性を得ることができる。以下に本発明の実施例について説明する。
【0019】
【実施例】
(実施例1)
まず、以下のような方法で円筒型リチウムイオン二次電池を作製した。
【0020】
正極活物質であるLiCoO2粉末100重量部とアセチレンブラック3重量部、フッ素樹脂系結着剤7重量部とを混合して正極合剤とし、カルボキシメチルセルロース水溶液に懸濁させてペースト状にした。このペーストをアルミ箔に塗着し、乾燥後圧延したものを正極板とした。
【0021】
また、負極活物質である黒鉛粉末100重量部とスチレン/ブタジエンゴム4重量部を混合したものを負極合剤とし、カルボキシメチルセルロース水溶液に懸濁させてペースト状にした。このペーストを銅箔に塗着し、乾燥後圧延したものを負極板とした。この正極板および負極板をポリプロピレン製多孔性フィルムであるセパレータを介して渦巻き状に巻回してAサイズの電槽に挿入し、封口した。なお、電解液にはエチレンカーボネートとエチルメチルカーボネートの混合溶媒にLiPF6を溶解したものを用いた。
【0022】
このようにして作製した電池を、20℃において、500mAで定電流充電し、電池電圧が4.2Vに達すれば定電圧充電に切り替え、合計2時間で充電を終了し、720mAで3.0Vまで放電して、電池容量が780mAhであることを確認し、これを定格容量とした。
【0023】
上記の電池を用いて、本発明の使用方法を用いた場合と従来の使用方法を用いた場合のサイクル寿命特性を比較した。本発明の使用方法を用いた実施例として、360mAで放電を行い、電池電圧の時間に対する変化率が規定値である0.2mV/秒以上になれば放電を停止したものをサンプル1とした。この場合、定格容量に対して約10%の容量を残して放電を停止するため、充電は500mAで定電流充電し、4.2Vに達すると定電圧充電に切り替え、合計110分でカットした。
【0024】
また、270mAで放電し、その放電中に10分ごとに650mAの放電を500ミリ秒(t 1 間挿入し、その650mAでの放電開始後500ミリ秒(t 1 後の電池電圧と10ミリ秒(t 2 後の電池電圧の差が25mV以上になれば放電を停止したものをサンプル2とした。この場合も、定格容量に対して約10%の容量を残して放電を停止するため、充電は500mAで定電流充電し、4.2Vに達すると定電圧充電に切り替え、合計110分でカットした。
【0025】
これらに対して、従来の使用方法である満充電−完全放電の繰り返し、すなわち充電は500mAで定電流充電し、4.2Vに達すると定電圧充電に切り替え、合計2時間でカットし、放電は360mAで3.0Vまで放電するというサイクルを繰り返したものを比較例とした。
【0026】
以上に示した実施例および比較例の充放電サイクルを行い、その結果得られたサイクル寿命特性を図3に示した。本実施例であるサンプル1および2では定格容量に対して約10%分の容量を使用しないので、比較例に比べてサイクル初期の電池容量は小さいが、充放電サイクルに伴う容量劣化は小さく、充放電サイクルを繰り返すうちに容量が比較例を上回るようになった。
【0027】
このように、本実施例では従来よりも優れたサイクル寿命特性が得られることを見出した。なお、電池に充電された容量および放電された容量を検出し、放電された容量が充電された容量に達する前に放電を停止するという充放電サイクルを繰り返しても同様の結果が得られた。
【0028】
(実施例2)
実施例1と同様に円筒型リチウムイオン二次電池を作製し、電池容量が780
mAhであることを確認し、これを定格容量とした。
【0029】
上記の電池を用いて、本発明の使用方法を用いた場合と従来の使用方法を用いた場合のサイクル寿命特性を比較した。本発明の使用方法を用いた実施例として、360mAで放電を行い、電池電圧の時間に対する変化率が0.2mV/秒以上になれば放電を停止することにより定格容量に対して約10%を放電しないようにし、充電は500mAで定電流充電し、4.2Vに達すると定電圧充電に切り替え、合計70分でカットして定格容量に対して約10%を充電しないようにしものをサンプル3とした。
【0030】
これに対して、従来の使用方法である満充電−完全放電の繰り返し、すなわち充電は500mAで定電流充電し、4.2Vに達すると定電圧充電に切り替え、合計2時間でカットし、放電は360mAで3.0Vまで放電するというサイクルを繰り返したものを比較例とした。
【0031】
このような実施例および比較例の充放電サイクルを行い、その結果得られたサイクル寿命特性を図4に示した。本実施例であるサンプル3では定格容量に対して約20%分の容量を使用しないので、比較例に比べてサイクル初期の電池容量は小さいが、充放電サイクルに伴う容量劣化は非常に小さく、実施例1のサンプル1および2に比べても優れたサイクル寿命特性を示した。そして、充放電サイクルを繰り返すうちに容量が比較例を上回るようになった。
【0032】
このように、本実施例では従来よりも特に優れたサイクル寿命特性が得られることを見出した。
【0033】
【発明の効果】
上記実施例から明らかなように、本発明によれば、サイクル寿命特性に優れた非水系二次電池の使用方法が得られる。
【図面の簡単な説明】
【図1】本発明で用いたリチウムイオン二次電池の複素インピーダンス図
【図2】本発明で用いたリチウムイオン二次電池の放電中に異なる電流で放電したとき
の電圧変化を示した図
【図3】本発明の第1の実施例および比較例のサイクル寿命特性を示した図
【図4】本発明の第2の実施例および比較例のサイクル寿命特性を示した図
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for using a non-aqueous secondary battery.
[0002]
[Prior art]
2. Description of the Related Art In recent years, cordless devices such as mobile phones and notebook computers have been remarkably popularized, and at the same time, demands for higher capacity and higher energy density of secondary batteries serving as power sources for the devices have been increasing.
[0003]
There is great expectation for non-aqueous secondary batteries such as lithium secondary batteries that have high voltage and high energy density as secondary batteries. Recently, a composite oxide of lithium and a transition metal has been used for the positive electrode, and lithium has been interposed for the negative electrode. Lithium ion secondary batteries using carbonaceous materials capable of calating and deintercalating have been put to practical use.
[0004]
Usually, such a secondary battery is charged to a fully charged state and discharged to a completely discharged state. As a method of charging a non-aqueous secondary battery, generally, a constant current constant voltage charging method is used in which the battery is charged with a constant current until the battery voltage reaches a set value, and then switched to a constant voltage charging. Many proposals have been made, such as JP-A-5-111184, JP-A-6-325794, and JP-A-7-240235. Further, as a method of detecting full charge, Japanese Patent Application Laid-Open Nos. 6-189466, 7-105980, and 7-235332 have been proposed.
[0005]
[Problems to be solved by the invention]
However, the nonaqueous secondary battery full charge - Repeated complete discharge, sufficient cycle life characteristic was a problem that can not be obtained.
[0006]
In view of the above, an object of the present invention is to provide a method of using a non-aqueous secondary battery capable of obtaining excellent cycle life characteristics.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, a method for using a non-aqueous secondary battery of the present invention is a non-aqueous secondary battery including a chargeable / dischargeable positive electrode, an electrolyte, and a chargeable / dischargeable negative electrode, It is characterized in that a region where the state of charge with respect to the rated capacity is equal to or less than a specified value is not used.
[0008]
At this time, detects a closed circuit voltage of the secondary battery during discharge of the nonaqueous secondary battery, the time rate of change of the previous SL voltage is characterized by stopping the discharge if more than 0.2 mV / sec .
[0009]
In addition, the non-aqueous secondary battery is discharged at the first current value, and during the discharge, the battery is discharged at the second current value for a time interval t 1, and the time t 2 from the start of the discharge at the second current value (where t 2 2 <and t 1) closed circuit voltage V 2 of the secondary battery after, that the difference between the closed circuit voltage V 1 of the following time t 1 (V 2 -V 1) is to stop discharging if a specified value or more Features.
[0010]
Wherein the non-aqueous secondary battery are the use, the composite oxide of lithium and transition metal as the positive electrode active material, using a carbonaceous material which lithium can intercalate / de-intercalate as a negative electrode active material in the above And
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the lithium ion secondary battery described above, the internal impedance of the battery increases when the state of charge with respect to the rated capacity is extremely low (about 10% or less of the state with respect to the rated capacity). Here, the rated capacity is the capacity when charged by the current charging method.
[0012]
The complex impedance of the secondary battery was measured by a known method, and the results are shown in FIG. In the real component-imaginary component diagram of the impedance shown in FIG. 1, an arc appears in a low frequency region from 10 Hz to 0.1 Hz. However, the above-described arc becomes large in a charged state of 10% or less of the rated capacity. This indicates that the reaction resistance increases in a state of charge of 10% or less of the rated capacity, and when charge and discharge are repeated in such a region where the reaction resistance is large, the reaction between the electrode active material and the electrolytic solution is increased. It is considered that a side reaction other than a normal charging reaction occurs at the interface, which causes deterioration of battery characteristics.
[0013]
Therefore, excellent cycle life characteristics can be obtained by using only the region where the reaction resistance is low without using the region where the reaction resistance is high.
[0014]
In order not to use the region where the reaction resistance is large, the discharge may be stopped before the reaction resistance becomes large during the discharge. As a method for detecting the battery voltage during discharge of the secondary battery, a method of time rate of change of batteries voltage stops discharge if the value of more than 0.2 mV / sec is simple.
[0015]
Further, a discharge with a different current is inserted for a short time during the discharge of the secondary battery, and the battery voltage is measured during the short-time discharge. At this time, the behavior of the battery voltage excluding the voltage change due to the IR drop is affected by the above-described reaction resistance. Therefore, if the reaction resistance is large, the amount of change in the battery voltage is also large. However, since it is difficult to detect the voltage change due to the IR drop itself, there is no problem even if the voltage change due to the discharge in a very short time is used as a substitute for the voltage change due to the IR drop.
[0016]
Accordingly, as shown in FIG. 2, current inserted by the discharge time t 1 at different current I 2 and I 1 during discharge at I 1, the discharge start from the time t 2 at the current I 2 ( However, t 2 <t 1) the difference V 2 -V 1 between the battery voltages V 1 after the battery voltage V 2 and time t 1 may be stop discharging if the value of the specified value or more after. At this time, even if a short-time discharge at a current I 2 different from the current I 1 is not intentionally inserted, for example, in the case of a personal computer, a large current flows when accessing the hard disk. it is also possible to detect the V 2 -V 1.
[0017]
As a further method, the method of detecting the amount of charge and discharge of the secondary battery and stopping the discharge before the amount of discharge reaches the amount of charge does not use a region having a large reaction resistance. Can be
[0018]
In addition, since the current lithium ion secondary battery employs a constant current constant voltage charging method, a voltage of about 4.2 V is maintained for a while after entering a constant voltage charging mode. However, when the decomposition voltage of the electrolyte used for the lithium ion secondary battery is 4.2 V or less, a decomposition reaction of the electrolyte occurs during the constant voltage charging, which causes a capacity deterioration accompanying a charge / discharge cycle. Therefore, unless the region where the state of charge with respect to the rated capacity is equal to or more than the specified value is used, more excellent cycle life characteristics can be obtained. Hereinafter, examples of the present invention will be described.
[0019]
【Example】
(Example 1)
First, a cylindrical lithium ion secondary battery was manufactured by the following method.
[0020]
100 parts by weight of LiCoO 2 powder, which is a positive electrode active material, 3 parts by weight of acetylene black, and 7 parts by weight of a fluororesin binder were mixed to form a positive electrode mixture, which was suspended in an aqueous solution of carboxymethyl cellulose to form a paste. This paste was applied to an aluminum foil, dried and rolled to obtain a positive electrode plate.
[0021]
A mixture of 100 parts by weight of graphite powder, which is a negative electrode active material, and 4 parts by weight of styrene / butadiene rubber was used as a negative electrode mixture, and suspended in an aqueous carboxymethyl cellulose solution to form a paste. This paste was applied to a copper foil, dried and rolled to obtain a negative electrode plate. The positive electrode plate and the negative electrode plate were spirally wound through a separator made of a porous film made of polypropylene, inserted into an A-size container, and sealed. The electrolyte used was a solution in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and ethyl methyl carbonate.
[0022]
The battery thus prepared was charged at a constant current of 500 mA at 20 ° C., and switched to a constant voltage charge when the battery voltage reached 4.2 V. The charging was completed in a total of 2 hours, and reached a voltage of 3.0 mA at 720 mA. After discharging, it was confirmed that the battery capacity was 780 mAh, and this was defined as the rated capacity.
[0023]
Using the above-mentioned batteries, the cycle life characteristics when using the method of use of the present invention and when using the conventional method of use were compared. As an example using the method of use of the present invention, Sample 1 was discharged at 360 mA and stopped when the rate of change of the battery voltage with respect to time became 0.2 mV / sec or more, which is a specified value . In this case, in order to stop discharging while leaving about 10% of the capacity of the rated capacity, charging was performed at a constant current of 500 mA, and switching to constant voltage charging was performed when the voltage reached 4.2 V, and cutting was performed in 110 minutes in total.
[0024]
Further, the battery was discharged at 270 mA, and a discharge of 650 mA was inserted every 10 minutes for 500 milliseconds (t 1 ) during the discharge, and the battery voltage 500 milliseconds (t 1 ) after the start of the discharge at 650 mA and 10 When the difference between the battery voltages after milliseconds (t 2 ) became 25 mV or more, the discharge was stopped, and Sample 2 was used. In this case as well, in order to stop discharging while leaving about 10% of the capacity of the rated capacity, charging was performed at a constant current of 500 mA, and switching to constant voltage charging was performed when the voltage reached 4.2 V, and cutting was performed in 110 minutes in total. .
[0025]
On the other hand, repetition of the conventional method of full charge-complete discharge, that is, charge is performed at a constant current of 500 mA, and is switched to constant voltage charge when the voltage reaches 4.2 V. Cutting is performed in a total of 2 hours. What repeated the cycle of discharging to 3.0 V at 360 mA was used as a comparative example.
[0026]
The charge and discharge cycles of the examples and comparative examples described above were performed, and the cycle life characteristics obtained as a result are shown in FIG. In Samples 1 and 2 of this example, the capacity of about 10% of the rated capacity was not used, so that the battery capacity at the beginning of the cycle was smaller than that of the comparative example, but the capacity deterioration due to the charge / discharge cycle was small. As the charge and discharge cycle was repeated, the capacity exceeded that of the comparative example.
[0027]
As described above, in the present example, it was found that cycle life characteristics superior to those of the related art were obtained. Similar results were obtained by detecting the charged capacity and the discharged capacity of the battery, and repeating the charge / discharge cycle of stopping the discharge before the discharged capacity reached the charged capacity.
[0028]
(Example 2)
A cylindrical lithium ion secondary battery was manufactured in the same manner as in Example 1, and the battery capacity was 780.
It was confirmed to be mAh, and this was defined as the rated capacity.
[0029]
Using the above-mentioned batteries, the cycle life characteristics when using the method of use of the present invention and when using the conventional method of use were compared. As an example using the method of use of the present invention, the battery is discharged at 360 mA, and when the rate of change of the battery voltage with respect to time becomes 0.2 mV / sec or more, the discharge is stopped to reduce about 10% of the rated capacity. To prevent discharging, charge the battery at a constant current of 500 mA, switch to constant voltage charging when it reaches 4.2 V, cut in 70 minutes in total, and do not charge about 10% of the rated capacity. And
[0030]
On the other hand, repetition of full charge-complete discharge, which is a conventional usage method, that is, charge is performed at a constant current of 500 mA, and is switched to constant voltage charge when the voltage reaches 4.2 V. Cutting is performed in a total of 2 hours. What repeated the cycle of discharging to 3.0 V at 360 mA was used as a comparative example.
[0031]
The charge and discharge cycles of the examples and comparative examples were performed, and the cycle life characteristics obtained as a result are shown in FIG. Since the capacity of about 20% of the rated capacity is not used in the sample 3 of the present embodiment, the battery capacity at the beginning of the cycle is smaller than that of the comparative example, but the capacity deterioration accompanying the charge / discharge cycle is very small. The cycle life characteristics superior to those of the samples 1 and 2 of the example 1 were also exhibited. And the capacity came to exceed the comparative example while repeating the charge / discharge cycle.
[0032]
As described above, in the present example, it was found that a cycle life characteristic which was particularly superior to that of the related art was obtained.
[0033]
【The invention's effect】
As is clear from the above examples, according to the present invention, a method of using a non-aqueous secondary battery having excellent cycle life characteristics can be obtained.
[Brief description of the drawings]
FIG. 1 is a complex impedance diagram of a lithium ion secondary battery used in the present invention. FIG. 2 is a diagram showing a voltage change when discharging with a different current during discharging of the lithium ion secondary battery used in the present invention. FIG. 3 is a diagram showing cycle life characteristics of a first embodiment and a comparative example of the present invention. FIG. 4 is a diagram showing cycle life characteristics of a second embodiment and a comparative example of the present invention.

Claims (3)

充放電可能な正極と、電解質と、充放電可能な負極とを具備する非水系二次電池の使用方法であって、
前記二次電池の放電中に前記二次電池の閉路電圧を検出し、前記閉路電圧の時間変化率が0.2mV/秒以上になれば前記放電を停止することによって、前記二次電池の定格容量に対する充電状態が規定値以下の領域は使用しないことを特徴とする非水系二次電池の使用方法。
A method for using a non-aqueous secondary battery including a chargeable and dischargeable positive electrode, an electrolyte, and a chargeable and dischargeable negative electrode,
The discharging voltage of the secondary battery is detected during the discharging of the secondary battery, and the discharging is stopped when the rate of change of the closing voltage with time becomes 0.2 mV / sec or more. A method of using a non-aqueous secondary battery, wherein a region in which a charge state with respect to a capacity is equal to or less than a specified value is not used.
充放電可能な正極と、電解質と、充放電可能な負極とを具備する非水系二次電池の使用方法であって、A method for using a non-aqueous secondary battery including a chargeable and dischargeable positive electrode, an electrolyte, and a chargeable and dischargeable negative electrode,
前記二次電池を第1電流値で放電し、前記放電中に時間間隔tDischarging the secondary battery at a first current value; 1One だけ第2電流値で放電し、前記第2電流値での放電開始から時間tOnly at the second current value and time t from the start of the discharge at the second current value. 2Two (ただし、t(However, t 2Two <t<T 1One )後の前記二次電池の閉路電圧V) The closing voltage V of the secondary battery after 2Two と、時間tAnd time t 1One 後の閉路電圧VClosed circuit voltage V 1One との差(VDifference (V 2Two −V-V 1One )が規定値以上になれば放電を停止することによって、前記二次電池の定格容量に対する充電状態が規定値以下の領域は使用しないことを特徴とする非水系二次電池の使用方法。The method of using a non-aqueous secondary battery according to claim 1, wherein the discharge is stopped when the value of the secondary battery becomes equal to or more than a specified value, so that a region in which the charged state with respect to the rated capacity of the secondary battery is equal to or less than the specified value is not used.
前記非水系二次電池は、リチウムと遷移金属との複合酸化物を正極活物質とし、リチウムをインターカレート/デインターカレートできる炭素質材料を負極活物質として用いたことを特徴とする請求項1または記載の非水系二次電池の使用方法 The non-aqueous secondary battery uses a composite oxide of lithium and a transition metal as a positive electrode active material, and uses a carbonaceous material capable of intercalating / deintercalating lithium as a negative electrode active material. using the nonaqueous secondary battery of claim 1 or 2 wherein.
JP19850998A 1998-01-19 1998-07-14 How to use non-aqueous secondary batteries Expired - Fee Related JP3558525B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19850998A JP3558525B2 (en) 1998-07-14 1998-07-14 How to use non-aqueous secondary batteries
US09/232,323 US6081097A (en) 1998-01-19 1999-01-18 Method for charging lithium secondary battery
DE69912177T DE69912177T2 (en) 1998-01-19 1999-01-19 Method for regulating the charging / discharging of a secondary battery
CNB991012402A CN1193474C (en) 1998-01-19 1999-01-19 Method for managing charge/discharge of secondary battery
EP99101016A EP0948075B1 (en) 1998-01-19 1999-01-19 Method for managing charge/discharge of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19850998A JP3558525B2 (en) 1998-07-14 1998-07-14 How to use non-aqueous secondary batteries

Publications (2)

Publication Number Publication Date
JP2000030752A JP2000030752A (en) 2000-01-28
JP3558525B2 true JP3558525B2 (en) 2004-08-25

Family

ID=16392329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19850998A Expired - Fee Related JP3558525B2 (en) 1998-01-19 1998-07-14 How to use non-aqueous secondary batteries

Country Status (1)

Country Link
JP (1) JP3558525B2 (en)

Also Published As

Publication number Publication date
JP2000030752A (en) 2000-01-28

Similar Documents

Publication Publication Date Title
EP0948075B1 (en) Method for managing charge/discharge of secondary battery
KR19990007966A (en) Rechargeable Lithium Battery with Improved Reversible Capacity
JP2949705B2 (en) Method for recovering discharge capacity of non-aqueous electrolyte secondary battery and circuit therefor
JP3558523B2 (en) Charging method for non-aqueous secondary batteries
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
JP2009123424A (en) Nonaqueous electrolyte secondary battery
JP2001307781A (en) Lithium secondary battery and its charging/discharging method
JP2004152580A (en) Secondary battery with temperature protection element unit and secondary battery pack
JP2000164206A (en) Nonaqueous electrolyte secondary battery for assembled battery
JP5122899B2 (en) Discharge control device
JP3402237B2 (en) Non-aqueous electrolyte secondary battery
JP3558515B2 (en) Charging method for non-aqueous secondary batteries
JP3558525B2 (en) How to use non-aqueous secondary batteries
JPH0547384A (en) Nonaqueous electrolyte secondary battery
JP3680306B2 (en) Positive electrode plate for lithium battery and lithium battery
JPH08115745A (en) Nonaqueous electrolyte battery
JP4374833B2 (en) Lithium secondary battery and its non-aqueous electrolyte and method for ensuring its safety
JP2000040499A (en) Nonaqueous electrolyte secondary battery
JP2004235007A (en) Nonaqueous electrolyte secondary battery
JP2004297974A (en) Charger
JP3503361B2 (en) Non-aqueous electrolyte secondary battery
JPH10321262A (en) Method for charging non-aqueous secondary battery
JP2006120650A (en) Lithium secondary battery
Megahed et al. Lithium-ion coin cells for electronic applications
MATSUMOTO et al. Trends in secondary batteries for portable electronic equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040406

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees