JP3558402B2 - 画像読み取り装置 - Google Patents

画像読み取り装置 Download PDF

Info

Publication number
JP3558402B2
JP3558402B2 JP07361895A JP7361895A JP3558402B2 JP 3558402 B2 JP3558402 B2 JP 3558402B2 JP 07361895 A JP07361895 A JP 07361895A JP 7361895 A JP7361895 A JP 7361895A JP 3558402 B2 JP3558402 B2 JP 3558402B2
Authority
JP
Japan
Prior art keywords
converter
document
conversion
value
read
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07361895A
Other languages
English (en)
Other versions
JPH08307681A (ja
Inventor
修 稲毛
伸一 浅羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP07361895A priority Critical patent/JP3558402B2/ja
Publication of JPH08307681A publication Critical patent/JPH08307681A/ja
Application granted granted Critical
Publication of JP3558402B2 publication Critical patent/JP3558402B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Input (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、スキャナ、デジタル複写機、デジタルファクシミリ等における画像読み取り装置に関し、特に画像の濃度(γ)を変更する画像読み取り装置に関する。
【0002】
【従来の技術】
一般に、γ変換テーブルを用いて画像のγを変更することができ、また、例えばγ変換特性が段階的に異なる複数のγ変換テーブル(ROM)を設け、その1つを選択することにより所望のγ変換特性でγを変更することができる。
【0003】
また、光源の主走査方向の照明むらや読み取りセンサの画素毎の感度むらを補正する場合には、原稿として考えられる最も反射率が高い白色の濃度基準板を予め読み取ることにより画素毎のシェーディング補正用基準データを記憶し、原稿の読み取りデータをこのシェーディング補正用基準データで除算するいわゆるシェーディング補正が行われる。
【0004】
【発明が解決しようとする課題】
しかしながら、多数のγ変換特性を実現するためにはその数のテーブルが必要になり、また、各テーブルのγ変換特性が段階的であるので細かに異なる多数のγ変換特性を実現することができないという問題点がある。
【0005】
なお、γ変換テーブルの数を多くすることなくγ変換特性の数を増加する方法として、例えば特開昭62−220060号公報には濃度が段階的に異なる複数の濃度基準板を設け、γ変換テーブルの数×濃度基準板の数のγ変換特性を実現する方法が提案されているが、この方法にも限界があってγ変換特性はやはり段階的であり、細かに異なる複数のγ変換特性を実現することができない。
【0006】
また、複数の濃度基準板を設けるので、その数に応じて濃度基準板の幅も大きくなり、装置が大型化する。更に、正確な濃度の基準濃度板を機械毎に設けなければならないので、製造工程における管理も煩雑になり、その結果コストが上昇する。
【0007】
また、シェーディング補正を行うための基準データを取り込むための濃度基準板にバラツキがあると、シェーディング補正を正確に行うことができないという問題点がある。特に、特開昭62−220060号公報には濃度が段階的に異なる複数の濃度基準板を設けた場合には、各濃度毎の管理が更に煩雑になり、コストアップとなる。
【0008】
更に、光源と原稿および濃度基準板との各距離は同一であることが一般的であるが、機械を小型化するためにこの距離が異なるように構成する場合には濃度基準板のバラツキが大きな問題となる。また、原稿が移動する第1のモードと、原稿が固定される第2のモードとを備えると共に、第1および第2のモード時共に同一の光源で原稿を照明する装置を小型化するために、光源と濃度基準板との距離が第1および第2のモード時における光源と原稿との各距離の少なくとも一方とは異なるように構成する場合には、どのモードにおいても濃度基準板の濃度を適正化することは困難である。
【0009】
本発明は上記従来の問題点に鑑み、γ変換テーブルの数を多くすることなく、また、濃度が段階的に異なる複数の濃度基準板を設けることなく電気的な処理でγ変換特性の数を増加することができる画像読み取り装置を提供することを目的とする。
【0010】
本発明はまた、シェーディング補正を行うための基準データを取り込むための濃度基準板のバラツキを自動的に補正することができる画像読み取り装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
第1の手段は上記目的を達成するために、原稿の濃度を光電変換してアナログ電気信号に変換する光電変換手段と、前記光電変換手段により変換されたアナログ電気信号を可変の増幅率で増幅する増幅手段と、指定されたγ変換特性に応じて前記増幅率を可変的に制御する制御手段と、前記増幅手段により増幅された値をA/D変換するA/D変換器と、前記A/D変換器により変換された値をγ変換する複数種類のγ変換テーブルとを備え、前記制御手段は、指定されたγ変換特性に応じて前記増幅率を可変的に制御すると共に前記γ変換テーブルを選択し、基準濃度板の読み取り時に前記増幅率を固定することにより、前記基準濃度板を読み取ったときのアナログ電気信号を固定の増幅率で増幅し、前記A/D変換器によりA/D変換してシェーディング補正用データとして記憶し、原稿を読み取ったときのアナログ電気信号を可変の増幅率で増幅し、前記A/D変換器によりA/D変換した値を前記シェーディング補正用データに基づいてシェーディング補正することを特徴とする。
【0012】
第2の手段は、第1の手段において前記制御手段が、デジタル制御値をD/A変換して前記増幅率に応じた制御電圧を生成し、前記増幅手段に印加するD/Aコンバータと、指定されたγ変換特性に応じたデジタル制御値を前記D/Aコンバータに印加するCPUとを有することを特徴とする。
【0013】
第3の手段は、原稿の濃度を光電変換してアナログ電気信号に変換する光電変換手段と、
前記光電変換手段により変換されたアナログ電気信号を可変の基準電圧に基づいてA/D変換するA/D変換手段と、指定されたγ変換特性に応じて前記基準電圧を可変的に制御する制御手段と、前記A/D変換器により変換された値をγ変換する複数種類のγ変換テーブルとを備え、前記制御手段は、指定されたγ変換特性に応じて前記基準電圧を可変的に制御すると共に前記γ変換テーブルを選択し、基準濃度板の読み取り時に前記制御手段が前記基準電圧を固定することにより基準濃度板を読み取ったときのアナログ電気信号を前記A/D変換器によりA/D変換してシェーディング補正用データとして記憶し、原稿を読み取ったときのアナログ電気信号を可変の基準電圧で前記A/D変換器によりA/D変換して前記シェーディング補正用データに基づいてシェーディング補正することを特徴とする
【0014】
第4の手段は、第3の手段において、前記制御手段は、デジタル制御値をD/A変換して前記基準電圧に応じた制御電圧を生成し、前記増幅手段に印加するD/Aコンバータと、指定されたγ変換特性に応じたデジタル制御値を前記D/Aコンバータに印加するCPUとを有することを特徴とする。
【0015】
第5の手段は、第3の手段において、地肌除去モード時に原稿を読み取ったときの最大値を検出し、この最大値に応じて前記A/D変換器の基準電圧を設定することを特徴とする。
【0016】
第6の手段は、第1または第2の手段において、原稿が移動して前記光電変換手段が読み取る第1のモードと、原稿が固定されて前記光電変換手段が読み取る第2のモードと、前記第1および第2のモード時共に同一の光源で原稿を照明し、第1および第2のモード時では前記光源と原稿との距離が異なるように設定する手段とを備え、前記制御手段が前記増幅手段の増幅率を第1および第2のモード時においてそれぞれ異なる増幅率に適正化することを特徴とする。
【0017】
第7の手段は、第6の手段において、前記光源と濃度基準板との距離が第1および第2のモード時における前記光源と原稿との各距離の少なくとも一方とは異なり、前記制御手段が前記基準濃度板の最初の読み取り時に前記増幅手段により増幅された値をシェーディング補正用データとして記憶し、前記増幅手段の増幅率を可変的に制御して第1および第2のモード時では異なる増幅率に適正化し、その増幅率で原稿を読み取って前記シェーディング補正用データで補正することを特徴とする。
【0018】
第8の手段は、第3または第4の手段において、原稿が移動して前記光電変換手段が読み取る第1のモードと、原稿が固定されて前記光電変換手段が読み取る第2のモードと、前記第1および第2のモード時共に同一の光源で原稿を照明し、第1および第2のモード時では前記光源と原稿との距離が異なるように設定する手段とを備え、前記制御手段が前記A/D変換手段の基準電圧を第1および第2のモード時においてそれぞれ異なる基準電圧に適正化することを特徴とする。
【0019】
第9の手段は、第8の手段において、前記光源と濃度基準板との距離が第1および第2のモード時における前記光源と原稿との各距離の少なくとも一方とは異なり、前記制御手段が前記基準濃度板の最初の読み取り時に前記A/D変換手段によりA/D変換された値をシェーディング補正用データとして記憶し、前記前記A/D変換手段の基準電圧を可変的に制御して第1および第2のモード時では異なる基準電圧に適正化し、その基準電圧で原稿を読み取って前記シェーディング補正用データで補正することを特徴とする。
【0030】
【作用】
第1の手段では、基準濃度板の読み取り時に固定の増幅率で増幅され、この値に基づいて原稿濃度がシェーディング補正される
【0031】
第2の手段では、D/Aコンバータを用いて増幅率が可変的に制御されるので、D/Aコンバータの分解能に応じた数の増幅率が選択可能となる。
【0032】
第3の手段では、基準濃度板の読み取り時に固定の基準電圧でA/D変換され、この値に基づいて原稿濃度がシェーディング補正される
【0033】
第4の手段では、指定されたγ変換特性に応じてA/D変換手段の基準電圧が可変的に制御されるので、基準電圧に応じて線形のγ変換特性の傾きを変えることができる
【0034】
第5の手段では、地肌除去モード時に原稿を読み取ったときの最大値を検出し、この最大値に応じて前記A/D変換器の基準電圧が設定される。
【0035】
第6の手段では、原稿が移動する第1の読み取りモードと、原稿が固定された第2の読み取りモードとを備えると共に、第1および第2のモード時共に同一の光源で原稿を照明し、更に、第1および第2のモード時では光源と原稿との距離が異なる画像読み取り装置において、増幅率を第1および第2のモード時においてそれぞれ異なる増幅率に適正化するので、濃度基準板のバラツキを自動的に補正することができる
【0036】
第7の手段では、光源と濃度基準板との距離が第1および第2のモード時における光源と原稿との各距離の少なくとも一方とは異なる場合にも、濃度基準板にばらつきがあっても正確にシェーディング補正を行うことができる
【0037】
第8の手段では、原稿が移動する第1の読み取りモードと、原稿が固定された第2の読み取りモードとを備えると共に、第1および第2のモード時共に同一の光源で原稿を照明し、更に、第1および第2のモード時では光源と原稿との距離が異なる画像読み取り装置において、基準電圧を第1および第2のモード時においてそれぞれ異なる基準電圧に適正化するので、濃度基準板のバラツキを自動的に補正することができる
【0038】
第9の手段では、光源と濃度基準板との距離が第1および第2のモード時における光源と原稿との各距離の少なくとも一方とは異なる場合にも、濃度基準板にばらつきがあっても正確にシェーディング補正を行うことができる
【0049】
【実施例】
以下、図面を参照して本発明の実施例を説明する。図1は本発明に係る画像読み取り装置の一実施例を示すブロック図、図2は図1の画像読み取り装置を示す外観図、図3は図2の自動給紙装置と読み取り光学系を示す構成図、図4は図3の読み取り位置近傍を詳しく示す構成図、図5は図1の画像読み取り装置を備えた回路の全体構成を示すブロック図、図6は原稿読み取り時の図1の増幅部の増幅率(及び図11のA/Dコンバータの基準電圧)を示す説明図、図7は図1の増幅部(及び図11のA/Dコンバータ)によるγ変換特性を示す説明図、図8は図1及び図11の画像処理部におけるγ変換テーブルの特性を示す説明図、図9は図7および図8を組み合わせたγ変換特性を示す説明図である。
【0050】
先ず、図2〜図5を参照して画像読み取り装置の全体構成を説明する。図2に示す本体10には開閉可能な自動給紙装置11と排紙トレイ12が設けられ、ユーザが自動給紙装置11を用いて原稿移動(読み取り光学系は固定)による読み取りと、自動給紙装置11を開いて原稿を本体10の原稿ガラス13上に載置して原稿固定(読み取り光学系が移動)の読み取りを選択的に行うことができるように構成されている。
【0051】
図3を参照して自動給紙装置11について説明すると、原稿載置面20に沿って給紙コロ21が設けられ、また、原稿を原稿載置面20から装置本体10側の原稿ガラス13上の読み取り位置Aを介して排紙トレイ12に至る搬送路22が設けられている。原稿載置面20上の原稿は、搬送路22に設けられた上下一対の分離コロ23aおよび送りコロ23bと、搬送ローラ24、25により読み取り位置Aに搬送され、また、読み取り位置Aの下流に設けられた搬送ローラ対26と排紙ローラ対27により排紙トレイ12に排出される。
【0052】
図4に詳しく示すように、読み取り位置Aには原稿ガラス13上に沿うように配置されるシート状の1つの白色の濃度基準板31と、この濃度基準板31を覆うように配置されるシート状の黒色部材32より成る押さえ板33が設けられている。また、搬送ローラ25の上流側には搬送路22内の原稿の有無を検出するためのセンサ34が設けられている。
【0053】
自動給紙装置11を用いて原稿を読み取る場合には、図5に示すようにユーザの指示に基づいて図示省略のホストコンピュータが読み取り指令をインタフェース36を介してCPU37に送ると、CPU37にROM38のプログラムおよびデータとRAM45の作業エリアによりモータ駆動回路39に対して制御信号を送ることによりモータ40を駆動すると共に、光源点灯装置41に対して制御信号を送ることにより光源14を点灯させる。モータ40が駆動されると、給紙コロ21、分離コロ23a、送りコロ23bが回転して原稿載置面20上の原稿が搬送路22に送り込まれ、読み取り位置Aを経由して搬送ローラ25〜27により排紙トレイ12に排出される。
【0054】
図3および図4において、読み取り位置Aを通過する原稿及び濃度基準板31は光源14により照明され、その反射光が第1ミラー15、第2ミラー16、第3ミラー17により順次反射され、レンズ18により光電変換素子19上に結像されて読み取られる。この原稿移動による読み取りの場合には、光源14およびミラー15〜17は移動しない。これに対し、自動給紙装置11を開いて原稿を本体10上に載置して読み取る場合には、光源14およびミラー15が搭載されたキャリッジ(図示省略)とミラー16、17が搭載されたキャリッジ(図示省略)が独立して副走査方向に移動する。
【0055】
図1は図5に示す画像読み取り部43を詳細に示している。光電変換素子19により光電変換された1ライン分のアナログ電気信号は、偶数画素毎、奇数画素毎にそれぞれサンプルホールド部100、101によりサンプルホールドされ、次いでマルチプレクス部102により1ライン分として合成される。なお、光電変換素子19の出力が1系統の場合にはサンプルホールド部100、101は1系統でよく、また、マルチプレクス部102も不要である。
【0056】
マルチプレクス部102により合成された信号は、増幅部103により可変の増幅率Gで増幅された後にA/Dコンバータ104に印加される。そして、A/Dコンバータ104により変換されたデジタル信号は、濃度基準板31の読み取り時には画像処理部42内のFIFOメモリに格納され、この値に基づいて原稿の読み取り時の信号がシェーディング補正される。次いで、このシェーディング補正後の値は画像処理部42内のγ変換テーブルによりγ補正され、次いで次段の画像処理(変倍処理、MTF補正等)が施される。
【0057】
増幅部103の増幅率Gは、CPU37によりD/Aコンバータ105を介して制御される。ここで、原稿や濃度基準板31を読み取った場合のアナログ信号の値は、白を読み取ったときには大きく、黒を読み取ったときには小さくなる。そして、この増幅率Gは濃度基準板31の読み取り時には
G=G1(固定)
に設定され、原稿の読み取り時には図6において実線で示すように
G=G2=α×G1(可変)
に設定される。一例として反射率が90%の場合にA/Dコンバータ104の出力が飽和するものとし、αを5段階で変化させると、図7に示すように
(e)α=0.8:反射率が112%(仮想)の場合にA/Dコンバータ104が飽和し、
(d)α=0.9:反射率が100%の場合にA/Dコンバータ104が飽和し、
(c)α=1.0:反射率が90%の場合にA/Dコンバータ104が飽和し、
(b)α=1.1:反射率が82%の場合にA/Dコンバータ104が飽和し、
(a)α=1.2:反射率が72%の場合にA/Dコンバータ104が飽和する。
【0058】
したがって、同じ濃度を読み取った場合にもαを変化させることによりA/Dコンバータ104の出力値がαに比例して異なるので、傾きが異なる線形のγ変換特性を得ることができる。また、その種類は実際には5段階ではなく、D/Aコンバータ105の分解能までほぼ連続的に細かく異なる変換特性を得ることができる。
【0059】
また、画像処理部42内のγ変換テーブルとしては例えば図8に示すように3種類のテーブル(A)〜(C)が設けられている。このテーブル(A)〜(C)は入力値「0」および「255」をそのまま出力する特性であって、テーブル(A)はγ変換を行わず入力値をそのまま出力する線形の特性であり、テーブル(B)は中間濃度をやや白く、テーブル(C)は中間濃度をやや黒く変換する非線形の特性である。
【0060】
また、図7に示す変換特性(a)〜(e)は、増幅部103の増幅率Gを変化させて傾きが異なる線形のγ変換特性であるので、変換特性(a)〜(e)とテーブル(A)〜(C)を組み合わせると図9に示すように線形、非線形の種々の5×3通りの変換特性を実現することができる。
【0061】
次に、上記実施例の動作を図10のフローチャートを参照して説明すると、先ず、CPU37はユーザ(ホストコンピュータ側)から信号の可変量、言い換えれば前記αに対する指示があるかどうかチェックし(ステップS101)、ユーザにより可変量αが指示され、その可変量に応じて指示されたγ変換特性をホストコンピュータからインタフェース36を介して認識すると、増幅部103の増幅率Gとテーブル(A)〜(C)を決定する(ステップS102)。なお、γ変換特性の指示はユーザが直接操作部を介して行うようにしても、特に指示しなくとも、あらかじめホストコンピュータに記憶された手順にしたがって指示するようにしてもよい(ステップS103)。次いで、
(1)CPU37は濃度基準板31の読み取り時に固定の増幅率G1に対応する値D1をD/Aコンバータ105にセットする(ステップS104)。
【0062】
(2)D/Aコンバータ105は値D1に対応した電圧V1を増幅部103に出力する(ステップS105〜106)。
【0063】
(3)増幅部103は電圧V1に対応した増幅率G1で濃度基準板31の読み取り値を増幅する(ステップS107)。
【0064】
(4)増幅部103により増幅された各画素の信号がA/Dコンバータ104によりデジタル化され、シェーディング補正用のFIFOメモリに格納される(ステップS108)。
【0065】
(5)CPU37は原稿読み取り時に、決定したγ変換特性に応じた増幅率G2に対応する値D2をD/Aコンバータ105にセットする(ステップS109)。ここで、この値D1、D2の範囲は、D/Aコンバータ105が8ビットの場合には「0」〜「255」である。
【0066】
(6)D/Aコンバータ105は値D2に対応した電圧V2を増幅部103に出力する(ステップS110)。
【0067】
(7)増幅部103は電圧V2に対応した増幅率G2で原稿の読み取り値を増幅する(ステップS111)。
【0068】
(8)増幅部103により増幅された各画素の信号がA/Dコンバータ104によりデジタル化され、FIFOメモリに格納された各画素の値に基づいてシェーディング補正される(ステップS112)。
【0069】
(9)CPU37は、決定したγ変換特性に応じてテーブル(A)〜(C)の1つを選択し、シェーディング補正された値がテーブル(A)〜(C)の1つによりγ変換される(ステップS113)。
【0070】
次に、図11と第1の実施例で説明した図6〜図9を参照して第2の実施例について説明する。図11に示す実施例では、増幅部103の増幅率は一定であり、代わりにA/Dコンバータ104の基準電圧Vref をCPU37、D/Aコンバータ105および基準電圧発生部200を介して変化させることにより、傾きが異なる線形のγ変換特性を得るように構成されている。他の構成部材は第1の実施例と同一である。
【0071】
さて、A/Dコンバータ104によるA/D変換特性は、次式で表される。
【0072】
Dout =(Vin/Vref )×FS
但し、Dout :デジタル出力値
Vin :アナログ入力値
FS :フルスケール値
したがって、フルスケール値FSはA/Dコンバータ104が8ビットの場合には「255」であり、また、Vin=Vref の時にDout =255である。また、例えば8ビットのA/Dコンバータ104を使用してVref =2.5Vに設定すると、アナログ入力値Vinが2.5/255=9.8mV以下のときにはデジタル出力値Dout は現れない。
【0073】
そこで、この第2の実施例では、A/Dコンバータ104の基準電圧Vref を濃度基準板31の読み取り時には
Vref =V1(固定)
に設定し、原稿の読み取り時には図6において破線で示すように
Vref =V2=β×V1(可変)
に設定する。一例として反射率が90%の場合にA/Dコンバータ104の出力が飽和するものとし、βを5段階で変化させると、図7に示すように
(a)β=0.8:反射率が72%の場合にA/Dコンバータ104が飽和し、
(d)β=0.9:反射率が81%の場合にA/Dコンバータ104が飽和し、
(c)β=1.0:反射率が90%の場合にA/Dコンバータ104が飽和し、
(d)β=1.1:反射率が100%の場合にA/Dコンバータ104が飽和し、
(e)β=1.2:反射率が108%(仮想)の場合にA/Dコンバータ104が飽和する。
【0074】
したがって、同じ濃度を読み取った場合にもβを変化させることによりA/Dコンバータ104の出力値がβに比例して異なるので、D/Aコンバータ105の分解能まで傾きがほぼ連続的に細かく異なるγ変換特性を得ることができる。
【0075】
また、画像処理部42内のγ変換テーブルとしては例えば図8に示すように3種類のテーブル(A)〜(C)を設けることにより、変換特性(a)〜(e)とテーブル(A)〜(C)を組み合わせると図9に示すように5×3通りの変換特性を実現することができる。
【0076】
次に、第2の実施例の動作を図12のフローチャートを参照して説明すると、先ず、CPU37はユーザ(ホストコンピュータ側)から基準電圧の可変量、言い換えれば前記βに対する指示があるかどうかチェックし(ステップS201)、ユーザにより可変量βが指示され、その可変量にしたがって基準電圧Vref をホストコンピュータからインタフェース36を介して認識すると、基準電圧Vref とテーブル(A)〜(C)を決定する。なお、基準電圧の指示は、ユーザが直接操作部を介して行うようにしても、特に指示しなくとも、あらかじめホストコンピュータに記憶された手順にしたがって指示するようにしてもよい(ステップS203)。次いで、
(1)CPU37は濃度基準板31の読み取り時に固定の基準電圧V1に対応する値D1をD/Aコンバータ105にセットする(ステップS204)。
【0077】
(2)D/Aコンバータ105は値D1をD/A変換し(ステップS205)、基準電圧発生部200はこのD/A変換値を電圧V1を生成し、基準電圧Vref としてA/Dコンバータ104に印加する(ステップS206)。
【0078】
(3)増幅部103は固定の増幅率で濃度基準板31の読み取り値を増幅し(ステップS207)、A/Dコンバータ104は電圧V1を基準電圧Vref としてデジタル化する。
【0079】
(4)A/Dコンバータ104によりデジタル化された各画素の値がシェーディング補正用のFIFOメモリに格納される(ステップS208)。
【0080】
(5)CPU37は原稿読み取り時に、決定したγ変換特性に応じた基準電圧V2に対応する値D2をD/Aコンバータ105にセットする(ステップS209)。ここで、この値D1、D2の範囲は、D/Aコンバータ105が8ビットの場合には「0」〜「255」である。
【0081】
(6)D/Aコンバータ105は値D2に対応した電圧V2をD/A変換し、基準電圧発生部200はこのD/A変換値を電圧V2を生成し(ステップS210)、基準電圧Vref としてA/Dコンバータ104に印加する(ステップS211)。
【0082】
(7)増幅部103は固定の増幅率で原稿の読み取り値を増幅し(ステップS212)、A/Dコンバータ104は電圧V2を基準電圧Vref としてデジタル化する(ステップS213)。
【0083】
(8)A/Dコンバータ104によりデジタル化された各画素の値が、FIFOメモリに格納された各画素の値に基づいてシェーディング補正される(ステップS214)。
【0084】
(9)CPU37は、決定したγ変換特性に応じてテーブル(A)〜(C)の1つを選択し、シェーディング補正された値がテーブル(A)〜(C)の1つによりγ変換される(ステップS215)。
【0085】
図13は第2の実施例によるγ変換モードに対して自動地肌消去モードを追加した第3の実施例を示している。操作部204はγ変換モードまたは自動地肌消去モードを選択可能に構成され、γ変換モードが選択された場合には第2の実施例と同様に、CPU37から指定変換特性に応じた基準電圧Vref の値が出力され、この値がセレクタ202により選択され、D/Aコンバータ105および基準電圧発生部200により基準電圧Vref が生成されてA/Dコンバータ104に印加される。
【0086】
これに対し、自動地肌消去モードが選択された場合には例えば原稿をプリスキャンしてA/Dコンバータ104の出力値の最大値をピークホールド(P/H)部201によりホールド(およびメモリに記憶)することにより、原稿の最も明るい領域の濃度すなわち地肌濃度を検出する。そして、原稿の本スキャン時にP/H部201により検出された地肌濃度値がセレクタ202により選択され、D/Aコンバータ105および基準電圧発生部200により基準電圧Vref が生成されてA/Dコンバータ104に印加される。したがって、この場合には地肌濃度以上の明るい濃度値がA/Dコンバータ104に入力すると、A/Dコンバータ104が飽和して最大値(真っ白=255)として出力するので、原稿の地肌が消去される。
【0087】
図14は第1及び第2の実施例を組み合わせたγ変換モードに対して自動地肌消去モードを追加した第4の実施例を示している。操作部204により自動地肌消去モードとγ変換モードの両方が選択された場合には、先ず、図13に示す第3の実施例と同様に、例えば原稿をプリスキャンしてP/H部201により地肌濃度を検出する。そして、原稿の本スキャン時にP/H部201により検出された地肌濃度値がセレクタ202により選択され、D/Aコンバータ105によりD/A変換され、このD/A変換値がセレクタ203により基準電圧発生部200に印加され、基準電圧Vref が生成されてA/Dコンバータ104に設定される。
【0088】
そして、この原稿の地肌を消去する基準電圧Vref の設定が完了すると、指定されたγ変換特性に応じた増幅部103の増幅率Gに応じた制御信号がCPU37から出力されてセレクタ202により選択され、D/Aコンバータ105によりD/A変換され、このD/A変換値(増幅率G)がセレクタ203により増幅部103に印加されて原稿濃度がγ変換される。また、自動地肌消去モードが選択されない場合には、A/Dコンバータ104の基準電圧Vref と増幅部103の増幅率Gの一方のみを利用して原稿濃度をγ変換する。
【0089】
次に、図15を参照して図1に示す増幅率可変型の回路において濃度基準板31の基準濃度を補正する第5の実施例について説明する。先ず、CPU37は増幅部103の増幅量がある増幅量(初期値)α1になるようにD/Aコンバータ105が出力する増幅量の制御値を設定して濃度基準板31を読み取り(ステップS301)、A/Dコンバータ104が出力する1ライン分のデジタル値D1を画素毎にシェーディング基準データとしてメモリに格納する(ステップS302)。この場合、例えば100ライン分の読み取り値の各画素について平均値を算出する。
【0090】
次いで、CPU37は増幅器103の増幅量がある増幅量α2になるようにD/Aコンバータ105が出力する増幅量の制御値を設定して濃度基準板31を読み取り(ステップS303)、その時のデジタル量D2を取り込んでD2=β×D1か否かを判別する(ステップS304)。ここで、係数βは原稿読み取り位置A、濃度基準板31の読み取り位置、濃度等の条件により求められた最適値であり、また、図6において説明したように増幅部103の増幅量は制御電圧に略比例する。
【0091】
そして、ステップS304においてD2=β×D1でない場合にはD2=β×D1に近づく方向に増幅量α2(すなわち係数β)を変化させ(ステップS305)、1ライン分を読み取る時間以上の所定時間経過後にステップS306からステップS303に戻って再び濃度基準板31を読み取る。このようにして係数βを変化させることにより増幅量α2を適正化し、D2=β×D1になるとその時の増幅量α2で原稿画像を読み取り(ステップS307)、ステップS302において読み取った基準データで画素毎に除算することによりシェーディング補正する。
【0092】
次に、図16を参照して図11に示す基準電圧可変型の回路において濃度基準板31の基準濃度を補正する第6の実施例について説明する。先ず、CPU37はA/Dコンバータ104の基準電圧Vref がある基準電圧(初期値)V1になるようにD/Aコンバータ105が出力する基準電圧Vref の制御値を設定して濃度基準板31を読み取り(ステップS401)、A/Dコンバータ104が出力する1ライン分のデジタル値D1を画素毎にシェーディング基準データとしてメモリに格納する(ステップS402)。この場合にも同様に、例えば100ライン分の読み取り値の各画素について平均値を算出する。
【0093】
次いで、CPU37はA/Dコンバータ104の基準電圧Vref がある基準電圧V2になるようにD/Aコンバータ105が出力する基準電圧Vref の制御値を設定して濃度基準板31を読み取り(ステップS403)、その時のデジタル量D2を取り込んでD2=β×D1か否かを判別する(ステップS404)。この場合にも同様に、係数βは原稿読み取り位置A、濃度基準板31の読み取り位置、濃度等の条件により求められた最適値である。
【0094】
そして、ステップS404においてD2=β×D1でない場合にはD2=β×D1に近づく方向に基準電圧V2(すなわち係数β)を変化させ(ステップS405)、1ライン分を読み取る時間以上の所定時間経過後にステップS406からステップS303に戻って再び濃度基準板31を読み取る。このようにして係数βを変化させることにより基準電圧V2を適正化し、D2=β×D1になるとその時の基準電圧V2で原稿画像を読み取り(ステップS407)、ステップS402において読み取った基準データで画素毎に除算することによりシェーディング補正する。したがって、図15、図16に示す実施例によれば、濃度基準板31のバラツキを自動的に補正することができる。
【0095】
図17は第7の実施例における読み取り位置近傍を詳しく示し、図14に示す画像読み取り部の変形例を示している。ここで、図14に示す構成では、自動給紙装置11を用いて原稿移動(読み取り光学系は固定)による読み取りと、ユーザが自動給紙装置11を開いて原稿を本体10の原稿ガラス13上に載置して原稿固定(読み取り光学系が移動)の読み取りを行うように構成されているが、各モード時の読み取り位置Aは同一、すなわち、どちらのモードにおいても光源14と原稿および濃度基準板31との距離は同一である。
【0096】
これに対し、図17に示す構成では、自動給紙装置11を用いて原稿移動(読み取り光学系は固定)による読み取るモード(以下、ADFモード)時には、原稿が搬送ローラ25により濃度基準板31の読み取り位置Bを通過し、この位置Bより下流のADFモード時の読み取り位置Aに搬送され、光源14により照明されて読み取られる。また、ユーザが自動給紙装置11を開いて原稿を本体10の原稿ガラス13上に載置して原稿固定(読み取り光学系が移動)で読み取るモード(以下、ブックモード)時には原稿は読み取り位置Bより右側の読み取り位置Cから走査を開始する。なお、この実施例では、原稿ガラス13は濃度基準板31の設置位置を含む部分31aと、当該設置位置よりも光走査方向上流側の分31bとに分かれている。
【0097】
また、光源14はADFモード時には読み取り位置Bで濃度基準板31を照明した後、左側の原稿読み取り位置Aまで移動して停止することにより原稿を照明し、他方、ブックモード時には読み取り位置Bで濃度基準板31を照明した後、右側に移動を継続(又は原稿読み取り位置Cで一旦停止して移動を再開)することにより原稿を照明する。この場合、光源14との距離は、濃度基準板31の読み取り位置B<ADFモード時の原稿読み取り位置A<ブックモード時に原稿読み取り位置Cである。
【0098】
したがって、このようにADFモード時とブックモード時において濃度基準板31を兼用し、光源14と濃度基準板31および各モード時の原稿との距離が異なる場合には、一方のモード時には適正な濃度の濃度基準板31を用いても他方のモード時には適正ではなくなる。そこで、図15に示す増幅部103の増幅率Gの適正化処理又は図16に示すA/Dコンバータ104の基準電圧Vref の適正化処理をADFモード時とブックモード時において別個に行うことにより、濃度基準板31を兼用してもどのモード時においても濃度基準板31の濃度を適正な濃度として補正することができる。
【0099】
また、第1、第2の実施例において説明したように増幅部103の増幅率GやA/Dコンバータ104の基準電圧Vref を変化させてγ変換する場合にも、1つのγ変換特性がADFモード時とブックモード時において同一になるように自動的に調整することができ、また、一方のモード用の特性を他のモード時に使用することにより更に多数の特性を実現することができる。
【0100】
ここで、図18(a)に示すγ変換特性(a)〜(d)をADFモード時のもの(図6と同一)として説明すると、原稿と光源14との距離が遠いブックモードにおいて増幅率Gを調整しないと例えば図18(b)に示すように傾きが寝た特性となる。そこで、各モードにおいて増幅率Gを調整することにより1つのγ変換特性が同一になるように調整することができる。また、図19に示すように、各モードにおいてA/Dコンバータ104の基準電圧Vref を調整することにより1つのγ変換特性が同一になるように調整することができる。
【0101】
【発明の効果】
以上説明したように本発明によれば、γ変換テーブルの数を多くすることなく、また、濃度が段階的に異なる複数の濃度基準板を設けることなく電気的な処理でγ変換特性の数を増加することができる。
また、本発明によれば、シェーディング補正を行うための基準データを取り込むための濃度基準板のバラツキを自動的に補正することができる。
【図面の簡単な説明】
【図1】本発明に係る画像読み取り装置の一実施例を示すブロック図である。
【図2】図1の画像読み取り装置を示す外観図である。
【図3】図2の自動給紙装置と読み取り光学系を示す構成図である。
【図4】図3の読み取り位置近傍を詳しく示す構成図である。
【図5】図1の画像読み取り装置を備えた回路の全体構成を示すブロック図である。
【図6】原稿読み取り時の図1の増幅部の増幅率及び図11のA/Dコンバータの基準電圧を示す説明図である。
【図7】図1の増幅部及び図11のA/Dコンバータによるγ変換特性を示す説明図である。
【図8】図1及び図11の画像処理部におけるγ変換テーブルの特性を示す説明図である。
【図9】図7および図8を組み合わせたγ変換特性を示す説明図である。
【図10】第1の実施例の動作手順を示すフローチャートである。
【図11】第2の実施例の画像読み取り装置を示すブロック図である。
【図12】第2の実施例の動作手順を示すフローチャートである。
【図13】第2の実施例によるγ変換モードに対して自動地肌消去モードを追加した第3の実施例を示すブロック図である。
【図14】第1及び第2の実施例を組み合わせたγ変換モードに対して自動地肌消去モードを追加した第4の実施例を示すブロック図である。
【図15】第5の実施例の動作手順を示すフローチャートである。
【図16】第6の実施例の動作手順を示すフローチャートである。
【図17】第7の実施例の読み取り位置近傍を詳しく示す構成図である。
【図18】第7の実施例におけるADFモード時とブックモード時のγ変換特性を示す説明図である。
【図19】第7の実施例の変形例におけるADFモード時とブックモード時のγ変換特性を示す説明図である。
【符号の説明】
19 光電変換素子
37 CPU
42 画像処理部(シェーディング補正部、γ変換テーブル)
100,101 サンプルホールド部
102 マルチプレクス
103 増幅部
104 A/Dコンバータ
105 D/Aコンバータ
200 基準電圧発生部

Claims (9)

  1. 原稿の濃度を光電変換してアナログ電気信号に変換する光電変換手段と、
    前記光電変換手段により変換されたアナログ電気信号を可変の増幅率で増幅する増幅手段と、
    指定されたγ変換特性に応じて前記増幅率を可変的に制御する制御手段と、
    前記増幅手段により増幅された値をA/D変換するA/D変換器と、
    前記A/D変換器により変換された値をγ変換する複数種類のγ変換テーブルと、
    を備え、
    前記制御手段は、指定されたγ変換特性に応じて前記増幅率を可変的に制御すると共に前記γ変換テーブルを選択し、基準濃度板の読み取り時に前記増幅率を固定することにより、前記基準濃度板を読み取ったときのアナログ電気信号を固定の増幅率で増幅し、前記A/D変換器によりA/D変換してシェーディング補正用データとして記憶し、原稿を読み取ったときのアナログ電気信号を可変の増幅率で増幅し、前記A/D変換器によりA/D変換した値を前記シェーディング補正用データに基づいてシェーディング補正することを特徴とする画像読み取り装置。
  2. 前記制御手段は、デジタル制御値をD/A変換して前記増幅率に応じた制御電圧を生成し、前記増幅手段に印加するD/Aコンバータと、指定されたγ変換特性に応じたデジタル制御値を前記D/Aコンバータに印加するCPUとを有することを特徴とする請求項1記載の画像読み取り装置。
  3. 原稿の濃度を光電変換してアナログ電気信号に変換する光電変換手段と、
    前記光電変換手段により変換されたアナログ電気信号を可変の基準電圧に基づいてA/D変換するA/D変換手段と、
    指定されたγ変換特性に応じて前記基準電圧を可変的に制御する制御手段と、
    前記A/D変換器により変換された値をγ変換する複数種類のγ変換テーブルと、
    を備え、
    前記制御手段は、指定されたγ変換特性に応じて前記基準電圧を可変的に制御すると共に前記γ変換テーブルを選択し、基準濃度板の読み取り時に前記制御手段が前記基準電圧を固定することにより基準濃度板を読み取ったときのアナログ電気信号を前記A/D変換器によりA/D変換してシェーディング補正用データとして記憶し、原稿を読み取ったときのアナログ電気信号を可変の基準電圧で前記A/D変換器によりA/D変換して前記シェーディング補正用データに基づいてシェーディング補正することを特徴とする画像読み取り装置。
  4. 前記制御手段は、デジタル制御値をD/A変換して前記基準電圧に応じた制御電圧を生成し、前記増幅手段に印加するD/Aコンバータと、指定されたγ変換特性に応じたデジタル制御値を前記D/Aコンバータに印加するCPUとを有することを特徴とする請求項3記載の画像読み取り装置。
  5. 地肌除去モード時に原稿を読み取ったときの最大値を検出し、この最大値に応じて前記A/D変換器の基準電圧を設定することを特徴とする請求項3に記載の画像読み取り装置。
  6. 原稿が移動して前記光電変換手段が読み取る第1のモードと、
    原稿が固定されて前記光電変換手段が読み取る第2のモードと、
    前記第1および第2のモード時共に同一の光源で原稿を照明し、第1および第2のモード時では前記光源と原稿との距離が異なるように設定する手段とを備え、
    前記制御手段が前記増幅手段の増幅率を第1および第2のモード時においてそれぞれ異なる増幅率に適正化することを特徴とする請求項1または2に記載の画像読み取り装置。
  7. 前記光源と濃度基準板との距離が第1および第2のモード時における前記光源と原稿との各距離の少なくとも一方とは異なり、前記制御手段が前記基準濃度板の最初の読み取り時に前記増幅手段により増幅された値をシェーディング補正用データと して記憶し、前記増幅手段の増幅率を可変的に制御して第1および第2のモード時では異なる増幅率に適正化し、その増幅率で原稿を読み取って前記シェーディング補正用データで補正することを特徴とする請求項6記載の画像読み取り装置。
  8. 原稿が移動して前記光電変換手段が読み取る第1のモードと、
    原稿が固定されて前記光電変換手段が読み取る第2のモードと、
    前記第1および第2のモード時共に同一の光源で原稿を照明し、第1および第2のモード時では前記光源と原稿との距離が異なるように設定する手段とを備え、
    前記制御手段が前記A/D変換手段の基準電圧を第1および第2のモード時においてそれぞれ異なる基準電圧に適正化することを特徴とする請求項3または4に記載の画像読み取り装置。
  9. 前記光源と濃度基準板との距離が第1および第2のモード時における前記光源と原稿との各距離の少なくとも一方とは異なり、前記制御手段が前記基準濃度板の最初の読み取り時に前記A/D変換手段によりA/D変換された値をシェーディング補正用データとして記憶し、前記前記A/D変換手段の基準電圧を可変的に制御して第1および第2のモード時では異なる基準電圧に適正化し、その基準電圧で原稿を読み取って前記シェーディング補正用データで補正することを特徴とする請求項8記載の画像読み取り装置。
JP07361895A 1995-03-07 1995-03-30 画像読み取り装置 Expired - Fee Related JP3558402B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07361895A JP3558402B2 (ja) 1995-03-07 1995-03-30 画像読み取り装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4670395 1995-03-07
JP7-46703 1995-03-07
JP07361895A JP3558402B2 (ja) 1995-03-07 1995-03-30 画像読み取り装置

Publications (2)

Publication Number Publication Date
JPH08307681A JPH08307681A (ja) 1996-11-22
JP3558402B2 true JP3558402B2 (ja) 2004-08-25

Family

ID=26386816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07361895A Expired - Fee Related JP3558402B2 (ja) 1995-03-07 1995-03-30 画像読み取り装置

Country Status (1)

Country Link
JP (1) JP3558402B2 (ja)

Also Published As

Publication number Publication date
JPH08307681A (ja) 1996-11-22

Similar Documents

Publication Publication Date Title
JP3311414B2 (ja) 画像読み取り装置
EP0868072B1 (en) Shading correction for an image scanner
EP0999697B1 (en) An image scanner having image correcting function
JP3558402B2 (ja) 画像読み取り装置
JP2004104239A (ja) 画像読み取り装置及び画像形成装置
JP3262609B2 (ja) 画像読取装置
EP0895409A2 (en) Image reading apparatus
JP3768459B2 (ja) 画像読み取り装置及び画像処理装置
JPH11355532A (ja) 画像読み取り装置
JP2002057899A (ja) 画像読取装置及び画像形成装置
JP2002044438A (ja) 画像読取装置および画像読取方法
JP4616716B2 (ja) 画像読み取り装置及び画像形成装置
JP3973667B2 (ja) 画像読取装置
JP3739076B2 (ja) 画像読取装置および画像形成装置
JP3347787B2 (ja) 画像読取装置における画像濃度補正方法
JP2010050910A (ja) 画像読み取り装置、画像形成装置、画像読み取り方法、及びコンピュータプログラム
JP2004112300A (ja) 画像読取装置
JP4022178B2 (ja) 画像読取装置
JP4124394B2 (ja) カラー画像読取装置および画像形成装置
JP4070026B2 (ja) 画像処理装置及び同装置に用いるプログラム
JP3544794B2 (ja) 画像処理装置
JPH03171966A (ja) 画像読取装置
JP3112962B2 (ja) 画像読取装置
JP2003046774A (ja) 画像読取装置
JPH09252383A (ja) 画像読取装置および画像形成装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees