JP3558314B2 - Electric wheelchair - Google Patents

Electric wheelchair Download PDF

Info

Publication number
JP3558314B2
JP3558314B2 JP05973496A JP5973496A JP3558314B2 JP 3558314 B2 JP3558314 B2 JP 3558314B2 JP 05973496 A JP05973496 A JP 05973496A JP 5973496 A JP5973496 A JP 5973496A JP 3558314 B2 JP3558314 B2 JP 3558314B2
Authority
JP
Japan
Prior art keywords
signal
acceleration
target
manual torque
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05973496A
Other languages
Japanese (ja)
Other versions
JPH09248319A (en
Inventor
弘志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP05973496A priority Critical patent/JP3558314B2/en
Publication of JPH09248319A publication Critical patent/JPH09248319A/en
Application granted granted Critical
Publication of JP3558314B2 publication Critical patent/JP3558314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carriages For Children, Sleds, And Other Hand-Operated Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は手動による操作力に補助力を付加する電動機を有する電動車椅子に関する。
【0002】
【従来の技術】
従来の電動車椅子において、乗る人の手で車椅子を操作するためのハンドリングが付設された主輪を持ち、ハンドリングに加わった操作力の方向と大きさを検出し、所定値を超えた操作力に応じて主輪に補助力を付加する電動機と、この電動機を駆動制御する駆動制御手段をそれぞれ左右一対に備えた電動車椅子は特開平6−304205号公報に開示されているように知られている。
【0003】
図12に従来の電動車椅子の全体ブロック構成図を示す。
図12において、電動車椅子1は、右主輪回転速度センサ103、左主輪回転速度センサ106、右手動トルクセンサ11R、左手動トルクセンサ11L、回転方向判別手段(107、112)、車速演算手段(108、111)、A/D変換器(109、110)、右制御信号処理手段120と左制御信号処理手段121とからなる制御手段102、右駆動制御手段113、左駆動制御手段114右電動機駆動手段115、左電動機駆動手段116、右電動機117、左電動機118とから構成されている。
【0004】
電動車椅子1はマイクロコンピュータ(以下マイコンと略記)等を備え、ここで行う各種の演算および制御はマイコンを中心にして行われている。
【0005】
右主輪回転速度センサ103は右主輪の回転速度を検出して右主輪回転速度信号Uを回転方向判別手段107と車速演算手段108とに出力する。
【0006】
回転方向判別手段107は右主輪回転速度信号Uから右主輪の回転方向をマイコン等で判別して右主輪回転方向判別信号Dを右制御信号処理手段120に出力する。
車速演算手段108は右主輪回転速度センサ103の右主輪回転速度信号Uから車速をマイコン等で演算して右車速信号Vを右制御信号処理手段120に出力する。
【0007】
右手動トルクセンサ11Rは右主輪に布設したハンドリングに操作した操作力の大きさと方向を検出して右手動トルクアナログ信号TPRをA/D変換器109に出力する。
A/D変換器109は右手動トルクアナログ信号TPRをデジタル信号に変換して右手動トルク信号Tを右制御信号処理手段120に出力する。
【0008】
左主輪回転速度センサ106、左手動トルクセンサ11L、回転方向判別手段112、車速演算手段111、A/D変換器110は上述した右主輪回転速度センサ103、右手動トルクセンサ11R、回転方向判別手段107、車速演算手段108、A/D変換器109と構成および作用が同一である。
【0009】
右制御信号処理手段120は、右主輪回転方向判別信号D、右車速信号V、右手動トルク信号Tとに応じた補助力を右の主輪に付加するための制御信号Sを右駆動制御手段113に出力し、また左制御信号処理手段121は、左主輪回転方向判別信号D、左車速信号V、左手動トルク信号Tとに応じた補助力を左の主輪に付加するための制御信号Sを左駆動制御手段114に出力する。
【0010】
右駆動制御手段113は制御信号Sに基づいてパルス幅変調(PWM)の右駆動制御信号PWRを右電動機駆動手段115に出力し、また左駆動制御手段114は制御信号Sに基づいてパルス幅変調(PWM)の左駆動制御信号PWLを左電動機駆動手段116に出力する。
【0011】
右電動機駆動手段115は右駆動制御信号PWRに基づいて例えば4つの電界効果トランジスタ(FET)で構成するバイポーラ駆動回路で右電動機117を駆動し、また左電動機駆動手段116は左駆動制御信号PWLに基づいて例えば4つの電界効果トランジスタ(FET)で構成するバイポーラ駆動回路で左電動機118を駆動する。
【0012】
図13に車速信号V(VLW,VMD,VHI)をパラメータとした手動トルク信号(T)―制御信号(S)特性図を示す。
図13において、車速信号VのVLW,VMDおよびVHIはそれぞれ低車速領域、中車速領域および高車速領域を示し、手動トルク信号Tが同じであっても、車速信号Vが増加(VLW→VMD→VHI)するに伴い、制御信号Sは減少するよう予め設定されている。
また、小さな操作力に電動機が追従して電動車椅子の車両の直進性を損なうことのないよう所定値以下の手動トルク信号Tに対する制御信号Sを零とする不感帯を設けてある。
【0013】
このように、電動車椅子の制御信号処理手段は、低車速領域(VLW)では手動トルク信号Tに対して大きな補助力が得られるよう大きな制御信号Sを出力し、一方、高車速領域(VHI)では手動トルク信号Tに対して補助力を抑えるように小さな制御信号Sを出力して良好な車両の操作性が得られるよう構成されている。
【0014】
【発明が解決しようとする課題】
従来の電動車椅子は乗員の手によってハンドリングに加える操作力と車速とに基づいて電動機による補助力を決定するため、走行抵抗(走行路の傾斜等)によって電動機による補助力の過不足が生じて走行フィーリングを損なうという課題がある。
【0015】
この発明はこのような課題を解決するためになされたもので、その目的は、走行抵抗を検出してハンドリングに加える操作力と車速と走行抵抗とに基づいて電動機による補助力を制御することによって走行抵抗が変化しても適切な補助力を発生して走行フィーリングの良好な電動車椅子を提供することにある。
【0016】
【課題を解決するための手段】
上記課題を解決するために請求項1に係る電動車椅子は、制御信号処理手段に、回転速度センサおよび手動トルクセンサからの信号の値に基づいて電動機による補助力の大きさと方向を決める目標信号を設定する目標信号設定手段と、手動トルクセンサから得られる手動トルク信号に基づいて目標加速度信号を設定する目標加速度設定手段と、回転速度センサから得られる車速信号から加速度を演算して加速度信号を出力する加速度演算手段と、目標加速度信号と加速度信号との加速度差分を演算して加速度差分信号を出力する差分演算手段と、加速度差分信号に基づいて補正係数を設定する補正係数設定手段と、補正係数に基づいて目標信号を補正演算する目標信号補正演算手段と、を備えたことを特徴とする。
【0017】
このように、電動車椅子の制御信号処理手段に目標信号設定手段と、目標加速度設定手段と、加速度演算手段と、差分演算手段と、補正係数設定手段と、目標信号補正演算手段とを備えたので、走行抵抗が変化しても過不足のない適切な電動機による補助力を発生することができる。
【0018】
また、請求項2に係る電動車椅子は、制御手段に、左右の回転速度センサから得られる車速信号から平均車速を演算して平均車速信号を出力する平均車速演算手段と、平均車速信号から加速度を演算して加速度信号を出力する加速度演算手段と、を備え、かつ回転速度センサおよび手動トルクセンサからの信号の値に基づいて電動機による補助力の大きさと方向を決める目標信号を設定する目標信号設定手段と、手動トルクセンサから得られる手動トルク信号に基づいて目標加速度信号を設定する目標加速度設定手段と、目標加速度信号と加速度信号との加速度差分を演算して加速度差分信号を出力する差分演算手段と、加速度差分信号に基づいて補正係数を設定する補正係数設定手段と、補正係数に基づいて目標信号を補正演算する目標信号補正演算手段と、からなる制御信号処理手段を備えたことを特徴とする。
【0019】
このように、電動車椅子の制御手段に、平均車速演算手段と、加速度演算手段とを備え、かつ目標信号設定手段と、目標加速度設定手段と、差分演算手段と、補正係数設定手段と、目標信号補正演算手段と、からなる制御信号処理手段を備えたので、左右バランスのとれた補助力を付加することができ、電動車椅子の直進性を良くすることができ、また走行抵抗が変化しても過不足のない適切な電動機による補助力を発生することができる。
【0020】
さらに、請求項3に係る電動車椅子は、制御信号処理手段に、回転速度センサおよび手動トルクセンサからの信号の値に基づいて電動機による補助力の大きさと方向を決める目標信号を設定する目標信号設定手段と、手動トルクセンサから得られる手動トルク信号に基づいて目標加速度信号を設定する目標加速度設定手段と、回転速度センサから得られる車速信号から加速度を演算して加速度信号を出力する加速度演算手段と、目標加速度信号と加速度信号との加速度差分を演算して加速度差分信号を出力する差分演算手段と、加速度差分信号に基づいて補正係数を設定する補正係数設定手段と、補正係数に基づいて手動トルクセンサから得られる手動トルク信号を補正演算して補正手動トルク信号を目標信号設定手段に出力する手動トルク補正演算手段と、を備えたことを特徴とする。
【0021】
このように、電動車椅子の制御信号処理手段に、目標信号設定手段と、目標加速度設定手段と、加速度演算手段と、差分演算手段と、補正係数設定手段と、手動トルク補正演算手段とを備えたので、走行抵抗が変化しても過不足のないより適切な電動機による補助力を発生することができる。
【0022】
また、請求項4に係る電動車椅子は、制御信号処理手段に、回転速度センサおよび手動トルクセンサからの信号の値に基づいて電動機による補助力の大きさと方向を決める目標信号を設定する目標信号設定手段と、手動トルクセンサから得られる手動トルク信号に基づいて目標加速度信号を設定する目標加速度設定手段と、回転速度センサから得られる車速信号から加速度を演算して加速度信号を出力する加速度演算手段と、目標加速度信号と加速度信号との加速度差分を演算して加速度差分信号を出力する差分演算手段と、加速度差分信号に基づいてホールド時間制御信号を出力するホールド時間制御手段と、目標信号設定手段からの目標信号が急激に減少した場合、目標信号をなだらかに減少させるように、減少する目標信号をホールド時間制御信号に基づいてホールドして処理をするホールド処理手段を備えたことを特徴とする。
【0023】
このように、電動車椅子の制御信号処理手段に、目標信号設定手段と、目標加速度設定手段と、加速度演算手段と、差分演算手段と、ホールド時間制御手段と、ホールド処理手段を備えたので、目標信号設定手段からの目標信号が急激に減少した場合、減少する目標信号を走行抵抗に応じてホールド処理してなだらかに減少させるようにすることができ、電動車椅子の走行性を向上させることができる。
【0024】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。
なお、図1から図4は符号の向きに見るものとする。
図1は本発明に係る電動車椅子の正面図であり、電動車椅子1(以下「車椅子1」と略記する)は、ステップ2を含む車体フレーム3に、左右の前部補助輪4,4及び左右の主輪5,5を回転自在に取付け、主輪5,5にハンドリング6,6を付設したもので、外観は普通の手動式車椅子と同形であるが、電動のためのモータを主輪5,5に内蔵(詳細は後述)し、バッテリ8、制御部9及びトルクセンサ11,11を備えた点が相違する。
【0025】
図2は本発明に係る車椅子の側面図であり、乗員Mは車体フレーム3に取付けたシート(図示せず)に座り、ステップ2に足を載せた状態で、手でハンドリング6を操作することができる。
主輪5はハブ5aとスポーク5bとタイヤリム5cとタイヤ5dとからなる。
【0026】
前部補助輪4はいわゆる自在輪であり、車体フレーム3のサブフレーム3aに取付けたブロック4aと、このブロック4aに縦軸廻りに揺動可能に取付けた揺動アーム4bと、この揺動アーム4bに軸支した補助輪4cとからなり、車椅子の前進方向に応じて揺動し、方向変換を円滑にする。
ブロック4aをサブフレーム3aに沿って位置を変更することもできる。
図示せぬシートの可能にバッテリ8及び制御部9が取付けれていることをも示す。
【0027】
図3は本発明に係るトルク検出機構の原理図であり、トルク検出機構20は、タイヤリム5cに8本のスプリング21で吊ったハンドリング6と、このハンドリング6に一端が係止され、他端が車輪中央に伸びたワイヤ22,22と、このワイヤを中継するタイヤリム5c側の中継プーリ23,23と、前記トルクセンサ11(図1参照)にワイヤ22,22の引き力を伝達する伝動部材(後述)と、トルクセンサ11とからなる。
【0028】
先に図3の作用を説明すると、スプリング21でニュートラル状態にあるハンドリング6を時計廻りに強制回動(矢印▲1▼)すると、ワイヤ22,22が引かれる(矢印▲2▼▲2▼)。
ワイヤ22,22が引かれる度合はハンドリング6を廻す力(トルク)が強いほど大きくなる。
【0029】
図4は本発明に係る主輪のハブの拡大断面図であり、ワイヤ22の他端とトルクセンサ11とを繋ぐ伝動部材を説明すると、この伝動部材は、ベアリング31のアウタレース32に形成した鍔33,33と、ベアリング31のインナレース34にナット35にて一端を係止したロッド36とからなり、ロッド36は回転せず、前記鍔33,33がワイヤ22,22とともに回転する。
ワイヤ22を引くことにより、ロッド36が引かれ、トリクセンサ11がその度合を検出する。
なお、トルクセンサ11は車体フレーム側のボス41にナット42、ブラケット43及びビス44にて固定する。
【0030】
次にハブに内蔵したモータ及び2段遊星減速機構の説明をする。
モータ50は、ホイルインモータと称するものであり、前記ボス41及びこのボス41に一体的に取付けたチューブ45に固定したモータハウジング51と、このモータハウジング51に取付けたコイル52と、このコイル52を取り囲むマグネット53と、これらのマグネット53を支えるロータ54とからなる。
詳しくは、ロータ54はマグネット53を直接支えるカップ54aとこのカップ54aを支えるシリンダ54bとからなる。
【0031】
前記シリンダ54bの一端に刻設した第1サンギヤ61と、前記ハウジング51の一端部に刻設した第1インナギヤ62と、これら第1サンギヤ61と第1インナギヤ62とに噛合する第1プラネタリギヤ63と、この第1プラネタリギヤ63から延びる第1キャリア64とで第1遊星減速機構60を構成し、第1キャリア64の一端に刻設した第2サンギヤ71と、前記ハウジング51の一端部に刻設した第2インナギヤ72と、これら第2サンギヤ71と第2インナギヤ72とに噛合する第2プラネタリギヤ73と、この第2プラネタリギヤ73から延びる第2キャリア(ハブ5aと兼用)とで第2遊星減速機構70を構成する。
第1・第2遊星減速機構60,70で数百〜数千分の一に減速することにより、モータの高回転を走行に適した低回転に変換する。
【0032】
本発明に係る電動車椅子の全体ブロック構成図は、従来の技術として図12に示した電動車椅子の全体ブロック構成図と基本的に同じであるが、電動車椅子の制御手段を構成する左右の制御信号処理手段に目標加速度設定手段と加速度演算手段と補正係数設定手段とを設け、走行路の走行抵抗を検出して電動機による補助力を制御する点が従来と異なる。
図12において、右制御信号処理手段120と左制御信号処理手段121以外のブロックの構成および作用は従来例として説明したので、ここでは説明を省略する。
【0033】
また、本発明に係る実施の形態例として図5と図7と図8と図9とに示す左右の制御信号処理手段は構成および作用が同一なので、以下右制御信号処理手段の構成および作用の説明を行い、左制御信号処理手段の説明は省略する。
【0034】
電動車椅子1はマイクロコンピュータ(以下マイコンと略記)等を備え、本発明に係る右制御信号処理手段(122,124,126,128)と左制御信号処理手段(123,125,127,129)で行う各種の演算および制御はこのマイコンを中心にして行う。
【0035】
図5は請求項1に係る電動車椅子の制御信号処理手段の要部ブロック構成図である。
図5において、右制御信号処理手段122は、目標信号設定手段140と、目標加速度設定手段141と、加速度演算手段142と、差分演算手段143と、補正係数設定手段144と、目標信号補正演算手段145とから構成する。
【0036】
目標信号設定手段140は、RAMまたは書換え可能なROM等のメモリを備え、メモリには右手動トルク信号Tと、右主輪回転方向判断信号Dと、右車速信号Vとのそれぞれの値に応じた目標信号TMRが右手動トルク信号Tと、右主輪回転方向判断信号Dと、右車速信号Vとのそれぞれの値に応じた番地に記憶されていて、手動トルク信号Tと、右主輪回転方向判断信号Dと、右車速信号Vとのそれぞれの値をメモリの読出し番地として目標信号TMRをメモリより読み出して目標信号補正演算手段145に出力する。
【0037】
目標信号設定手段140は、従来の技術として図13に示した、車速信号V(VLW,VMD,VHI)をパラメータとした手動トルク信号(T)―制御信号(S){目標信号(TMR)}特性を持ち、車速信号VのVLW,VMDおよびVHIはそれぞれ低車速領域、中車速領域および高車速領域を示し、手動トルク信号Tが同じであっても、車速信号Vが増加(VLW→VMD→VHI)するに伴い、目標信号TMRは減少するよう予め設定されており、また、小さな操作力に電動機が追従して電動車椅子の車両の直進性を損なうことのないよう所定値以下の手動トルク信号Tに対する目標信号TMRを零とする不感帯を設けてある。
【0038】
目標加速度設定手段141は、RAMまたは書換え可能なROM等のメモリを備え、メモリには右手動トルク信号Tの値に応じた目標加速度信号ATRを右手動トルク信号Tの値に応じた番地に記憶して右手動トルク信号Tの値に応じた値をメモリの読出し番地として目標加速度信号ATRをメモリより読み出して差分演算手段143に出力する。
【0039】
加速度演算手段142は右車速信号Vから加速度を演算して差分演算手段143に加速度信号AVRを出力する。
【0040】
差分演算手段143は、目標加速度信号ATRと加速度信号AVRとの差分を演算して加速度差分信号△Aを補正係数設定手段144に出力する。
【0041】
補正係数設定手段144はRAMまたは書換え可能なROM等のメモリを備え、メモリには加速度差分信号△Aの値に応じた図6に示す特性の補正係数Kを加速度差分信号△Aの値に応じた番地に記憶して加速度差分信号△Aの値に応じた値をメモリの読出し番地として補正係数Kをメモリより読み出して目標信号補正演算手段145に出力する。
【0042】
図6は本発明に係る補正係数(K)−加速度差分信号(△A)特性図である。
図6において、補正係数K(K)は速度差分信号(+△A)と加速度差分信号(−△A)とに対して対称な特性をしており、所定値以下の加速度差分信号△Aに対して“1”である。
また、加速度差分信号△Aが所定値を超えて増加するに従って補正係数Kの増加率は大きくなる。
【0043】
目標信号補正演算手段145は目標信号設定手段140からの目標信号TMRと補正係数Kとの積演算を行い制御信号Sを右駆動制御手段113に出力する。
【0044】
目標加速度設定手段のメモリに、例えば平坦で舗装されている走行路において良好な走行フィーリングが得られる手動トルク信号Tの値に対する目標加速度信号A特性を書込んでおく。
加速するために乗員の手によってハンドリングに加えられた操作力は手動トルクセンサで検出されて手動トルク信号Tとして目標加速度設定手段に入力される。
【0045】
目標加速度設定手段は入力された手動トルク信号Tに対応した目標加速度信号Aを差分演算手段に出力する。
加速するためにハンドリングに加えられた操作力によって車椅子が加速され、加速度演算手段は主輪回転速度センサからの車速信号Vを演算して加速度信号Aを求め、この加速度信号Aを差分演算手段に出力する。
【0046】
目標加速度設定手段から差分演算手段に出力された目標加速度信号Aは平坦で舗装されている走行路において良好な走行フィーリングが得られる手動トルク信号Tの値に対する目標加速度信号A特性値であり、加速度演算手段から差分演算手段に出力された加速度信号Aは、例えば上り坂の場合、走行抵抗が大きく、目標加速度信号Aに対して小さい値になる。
差分演算手段は目標加速度信号Aと小さい値の加速度信号Aとの差分を演算して加速度差分信号△Aを求め、この加速度差分信号△Aを補正係数設定手段に出力する。
【0047】
補正係数設定手段は図6の補正係数(K)−加速度差分信号(△A)特性に示すように加速度差分信号△Aが大きい程大きな補正係数Kを目標信号補正演算手段に出力する。
目標信号補正演算手段は目標信号設定手段から出力された目標信号Tと補正係数Kとの積演算を行い、その結果を制御信号Sとして駆動制御手段に出力する。
目標信号補正演算手段から出力された制御信号Sに応じた補助力を電動機で発生し、この補助力を車椅子の主輪に付加して車椅子を加速する。
【0048】
そして、加速された車椅子の主輪回転速度センサからの車速信号Vを加速度演算手段に帰還させ、加速度演算手段は車速信号Vを演算して加速度信号Aを求め、この加速度信号Aを差分演算手段に出力する。
差分演算手段は目標加速度信号Aと帰還された加速度信号Aとの差分が演算され、加速度差分信号△Aを補正係数設定手段に出力する。
【0049】
以上に説明したように、制御信号処理手段は目標加速度信号Aと帰還した加速度信号Aが等しくなるように制御する。
【0050】
このように、電動車椅子の制御信号処理手段に目標信号設定手段と、目標加速度設定手段と、加速度演算手段と、差分演算手段と、補正係数設定手段と、目標信号補正演算手段とを備え、走行抵抗が変化しても過不足のない適切な電動機による補助力を発生することができる。
【0051】
図7は請求項2に係る電動車椅子の制御手段の要部ブロック構成図である。
図7において、制御手段130は、右制御信号処理手段124と、左制御信号処理手段125と、平均車速演算手段162と、加速度演算手段163とから構成し、右制御信号処理手段124は目標信号設定手段152と、目標加速度設定手段153と、、差分演算手段154と、補正係数設定手段155と、目標信号補正演算手段156とを備える。
【0052】
右制御信号処理手段124の目標信号設定手段152と、目標加速度設定手段153と、差分演算手段154と、補正係数設定手段155と、目標信号補正演算手段156は、図5に示す請求項1に係る右制御信号処理手段122の目標信号設定手段140と、目標加速度設定手段141と、差分演算手段143と、補正係数設定手段144と、目標信号補正演算手段145と構成、作用が同一なので詳細な動作説明は省略する。
【0053】
平均車速演算手段162は、右主輪回転方向判別信号Dおよび右車速信号Vと、左主輪回転方向判別信号Dおよび左車速信号Vとから平均車速を演算して平均車速信号Vを加速度演算手段163に出力する。
平均車速演算手段162において、主輪回転方向判別信号Dが車椅子の前進方向を意味する場合、車速信号Vは正の符号を持ち、主輪回転方向判別信号Dが車椅子の後進方向を意味する場合、車速信号Vは負の符号を持持つ。
加速度演算手段163は平均車速演算手段162から出力された平均車速信号Vから加速度を演算して加速度信号Aを差分演算手段154に出力する。
【0054】
差分演算手段154は目標加速度信号ATRと加速度信号AVRとの差分を演算して加速度差分信号△Aを補正係数設定手段155に出力し、補正係数設定手段155は加速度差分信号△Aの値に応じた補正係数Kを目標信号補正演算手段156に出力する。
【0055】
目標信号補正演算手段156は目標信号設定手段152からの目標信号TMRと補正係数Kとの積演算を行い制御信号Sを右駆動制御手段113に出力する。
目標信号補正演算手段156から出力された制御信号Sに応じた補助力を右電動機117で発生し、この補助力を車椅子の右主輪に付加して車椅子1を加速する。
左制御信号処理手段125も右制御信号処理手段124と全く同様の動作を行う。
【0056】
そして、加速された車椅子1の右主輪回転速度センサ103からの右車速信号Vと左主輪回転速度センサ106からの左車速信号Vとを平均車速演算手段162に帰還させ、平均車速演算手段162は右車速信号Vと左車速信号Vとから平均車速を演算して平均車速信号Vを加速度演算手段163に出力する。
【0057】
加速度演算手段163は平均車速演算手段162から出力された平均車速信号Vから加速度を演算して加速度信号Aを差分演算手段154に出力し、差分演算手段154は目標加速度信号ATRと加速度信号AVRとの差分を演算して加速度差分信号△Aを補正係数設定手段155に出力し、補正係数設定手段155は加速度差分信号△Aの値に応じた補正係数Kを目標信号補正演算手段156に出力する。
左制御信号処理手段125も右制御信号処理手段124と全く同様の動作を行う。
【0058】
以上に説明したように、制御信号処理手段は目標加速度信号Aと帰還した加速度信号Aが等しくなるように制御する。
【0059】
このように、電動車椅子の制御手段に、平均車速演算手段と、加速度演算手段とを備え、かつ目標信号設定手段と、目標加速度設定手段と、差分演算手段と、補正係数設定手段と、目標信号補正演算手段と、からなる制御信号処理手段を備え、左右バランスのとれた補助力を付加することができ、電動車椅子の直進性を良くすることができ、また走行抵抗が変化しても過不足のない適切な電動機による補助力を発生することができる。
【0060】
図8は請求項3に係る電動車椅子の制御信号処理手段の要部ブロック構成図である。
図8において、右制御信号処理手段126は、目標信号設定手段164と、目標加速度設定手段165と、加速度演算手段166と、差分演算手段167と、補正係数設定手段168と、手動トルク補正演算手段169とから構成する。
【0061】
右制御信号処理手段126の目標信号設定手段164と、目標加速度設定手段165と、加速度演算手段166と、差分演算手段167と、補正係数設定手段168とは、図5に示す請求項1に係る右制御信号処理手段122の目標信号設定手段140と、目標加速度設定手段141と、加速度演算手段142と、差分演算手段143と、補正係数設定手段144と、構成、作用が同一なので詳細な動作説明は省略する。
【0062】
補正係数設定手段168は差分演算手段167から出力される加速度差分信号△Aに応じた補正係数Kを手動トルク補正演算手段169に出力する。
手動トルク補正演算手段169は右手動トルクセンサ11Rからの右手動トルク信号Tと補正係数Kとの積演算を行い、補正手動トルク信号THRを目標信号設定手段164に出力する。
【0063】
目標信号設定手段164は従来の技術として図13に示す車速信号V(VLW,VMD,VHI)をパラメータとした手動トルク信号(T)―制御信号(S){目標信号(TMR)}特性において、手動トルク信号(T)は手動トルク補正演算手段169によって右手動トルク信号Tに、図6に示す加速度差分信号△Aに応じた補正係数Kを乗じた補正手動トルク信号THRとする特性の目標信号TMRを制御信号Sとして右駆動制御手段113に出力する。
【0064】
目標信号設定手段164から出力された制御信号Sに応じた補助力を右電動機117で発生し、この補助力を車椅子1の右主輪に付加して車椅子1を加速する。
左制御信号処理手段127も右制御信号処理手段126と全く同様の動作を行う。
【0065】
そして、加速された車椅子1の右主輪回転速度センサ103からの右車速信号Vを加速度演算手段166に帰還させ、加速度演算手段166は右車速信号Vから加速度を演算して加速度信号AVRを求め、この加速度信号AVRを差分演算手段167に出力し、差分演算手段167は目標加速度信号ATRと帰還された加速度信号AVRとの差分が演算され、加速度差分信号△Aを補正係数設定手段168に出力する。
【0066】
以上に説明したように、制御信号処理手段126は目標加速度信号ATRと帰還した加速度信号AVRが等しくなるように制御する。
【0067】
このように、電動車椅子の制御信号処理手段に目標信号設定手段と、目標加速度設定手段と、加速度演算手段と、差分演算手段と、補正係数設定手段と、手動トルク補正演算手段とを備え、走行抵抗が変化しても過不足のない適切な電動機による補助力を発生することができる。
【0068】
図9は請求項4に係る電動車椅子の制御信号処理手段の要部ブロック構成図である。
図9において、右制御信号処理手段128は、目標信号設定手段176と、目標加速度設定手段177と、加速度演算手段178と、差分演算手段179と、ホールド時間制御手段180と、ホールド処理手段181とから構成する。
【0069】
右制御信号処理手段128の目標信号設定手段176と、目標加速度設定手段177と、加速度演算手段178と、差分演算手段179とは、図5に示す請求項1に係る右制御信号処理手段122の目標信号設定手段140と、目標加速度設定手段141と、加速度演算手段142と、差分演算手段143と構成、作用が同一なので詳細な動作説明は省略する。
【0070】
乗員の手によってハンドリングに加える操作力は一定の連続量ではなく、加速するための操作力をハンドリングに作用させ、作用させ終わった後、一旦ハンドリングへの操作力が零になり、再び加速するための操作力をハンドリングに作用させるという具合に一般にはパルス的な不連続量である。
ハンドリングに加えられるパルス的な不連続量である操作力を手動トルクセンサで検出した手動トルク信号Tは、パルス的な不連続信号となり、電動機による補助力もパルス的で不連続となる。
【0071】
図12に示した従来の電動車椅子はハンドリングに加える操作力が無くなると直に補助力が無くなるため特に上り坂等の走行抵抗が大きい場合、滑らかな車椅子の走行が困難である。
右制御信号処理手段128は、目標信号設定手段176と、目標加速度設定手段177と、加速度演算手段178と、差分演算手段179と、ホールド時間制御手段180と、ホールド処理手段181とを備え、上り坂等の走行抵抗が大きい走行路であっても滑らかな車椅子の走行を可能にする。
【0072】
ホールド時間制御手段180は差分演算手段179からの加速度差分信号△Aに応じたホールド時間制御信号HTRをホールド処理手段181に出力し、ホールド処理手段181は目標信号設定手段176からの目標信号TMRが急激に減少しても目標信号をなだらかに減少させるように、減少する目標信号TMRをホールド処理をする。
【0073】
図10は請求項4に係るホールド時間(t)−加速度差分信号(△A)特性図である。
図10において、小さな操作力に電動機が追従して電動車椅子の車両の直進性を損なうことのないよう所定値以下の加速度差分信号△Aに対するホールド時間tを零とする不感帯があり、所定値を超える加速度差分信号△Aに対するホールド時間tは、加速度差分信号△Aの増加に伴いその増加率が大きくなる。
【0074】
図11は請求項4に係るホールド処理手段の模式動作説明図である。
図11において、ホールド処理手段181は、目標信号設定手段176からの目標信号TMR(T)が急激に減少しても目標信号をなだらかに減少させるように、減少する目標信号TMを加速度差分信号△Aに応じたホールド処理をして制御信号S(S)を右駆動制御手段113に出力する。
制御信号Sは許容目標信号減衰量を△Tとしてホールド処理手段でのホールド時間tを加速度差分信号△Aに対して図10に示す特性でなだらかに減少するように制御された信号である。
また制御信号Sはその振幅値Tが所定の閾値以下になり、零に収束するにつれて許容目標信号減衰量△Tを小さくしてなだらかに零に漸近する。
【0075】
このように、電動車椅子の制御信号処理手段に、目標信号設定手段と、目標加速度設定手段と、加速度演算手段と、差分演算手段と、ホールド時間制御手段と、ホールド処理手段を備え、目標信号設定手段からの目標信号が急激に減少した場合、減少する目標信号を走行抵抗に応じてホールド処理してなだらかに減少させるようにすることができ、電動車椅子の走行性を向上させることができる。
なお、上記実施形態は本発明の一実施例であり、本発明は上記実施形態に限定されるものではない。
【0076】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
【0077】
請求項1に係る電動車椅子は、制御信号処理手段に、回転速度センサおよび手動トルクセンサからの信号の値に基づいて電動機による補助力の大きさと方向を決める目標信号を設定する目標信号設定手段と、手動トルクセンサから得られる手動トルク信号に基づいて目標加速度信号を設定する目標加速度設定手段と、回転速度センサから得られる車速信号から加速度を演算して加速度信号を出力する加速度演算手段と、目標加速度信号と加速度信号との加速度差分を演算して加速度差分信号を出力する差分演算手段と、加速度差分信号に基づいて補正係数を設定する補正係数設定手段と、補正係数に基づいて目標信号を補正演算する目標信号補正演算手段とを備え、走行抵抗が変化しても過不足のない適切な電動機による補助力を発生することができるので、走行フィーリングの良好な電動車椅子を提供することができる。
【0078】
また、請求項2に係る電動車椅子は、制御手段に、左右の回転速度センサから得られる車速信号から平均車速を演算して平均車速信号を出力する平均車速演算手段と、平均車速信号から加速度を演算して加速度信号を出力する加速度演算手段とを備え、かつ回転速度センサおよび手動トルクセンサからの信号の値に基づいて電動機による補助力の大きさと方向を決める目標信号を設定する目標信号設定手段と、手動トルクセンサから得られる手動トルク信号に基づいて目標加速度信号を設定する目標加速度設定手段と、目標加速度信号と加速度信号との加速度差分を演算して加速度差分信号を出力する差分演算手段と、加速度差分信号に基づいて補正係数を設定する補正係数設定手段と、補正係数に基づいて目標信号を補正演算する目標信号補正演算手段とからなる制御信号処理手段を備え、左右バランスのとれた補助力を付加することができ、また走行抵抗が変化しても過不足のない適切な電動機による補助力を発生することができるので、直進性に優れた走行フィーリングの良好な電動車椅子を提供することができる。
【0079】
さらに、請求項3に係る電動車椅子は、制御信号処理手段に、回転速度センサおよび手動トルクセンサからの信号の値に基づいて電動機による補助力の大きさと方向を決める目標信号を設定する目標信号設定手段と、手動トルクセンサから得られる手動トルク信号に基づいて目標加速度信号を設定する目標加速度設定手段と、回転速度センサから得られる車速信号から加速度を演算して加速度信号を出力する加速度演算手段と、目標加速度信号と加速度信号との加速度差分を演算して加速度差分信号を出力する差分演算手段と、加速度差分信号に基づいて補正係数を設定する補正係数設定手段と、補正係数に基づいて手動トルクセンサから得られる手動トルク信号を補正演算して補正手動トルク信号を目標信号設定手段に出力する手動トルク補正演算手段とを備え、走行抵抗が変化しても過不足のないより適切な電動機による補助力を発生することができるので、走行フィーリングのより良好な電動車椅子を提供することができる。
【0080】
また、請求項4に係る電動車椅子は、制御信号処理手段に、回転速度センサおよび手動トルクセンサからの信号の値に基づいて電動機による補助力の大きさと方向を決める目標信号を設定する目標信号設定手段と、手動トルクセンサから得られる手動トルク信号に基づいて目標加速度信号を設定する目標加速度設定手段と、回転速度センサから得られる車速信号から加速度を演算して加速度信号を出力する加速度演算手段と、目標加速度信号と加速度信号との加速度差分を演算して加速度差分信号を出力する差分演算手段と、加速度差分信号に基づいてホールド時間制御信号を出力するホールド時間制御手段と、目標信号設定手段からの目標信号が急激に減少した場合、目標信号をなだらかに減少させるように、減少する目標信号をホールド時間制御信号に基づいてホールドして処理をするホールド処理手段を備え、走行抵抗の変化に対応した適切な電動機による補助力を発生することができるので、滑らかな走行フィーリングを有する電動車椅子を提供することができる。
【0081】
よって、直進性に優れ、滑らかな走行フィーリングを有する電動車椅子を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る電動車椅子の正面図
【図2】本発明に係る車椅子の側面図
【図3】本発明に係るトルク検出機構の原理図
【図4】本発明に係る主輪のハブの拡大断面図
【図5】請求項1に係る電動車椅子の制御信号処理手段の要部ブロック構成図
【図6】本発明に係る補正係数(K)−加速度差分信号(△A)特性図
【図7】請求項2に係る電動車椅子の制御手段の要部ブロック構成図
【図8】請求項3に係る電動車椅子の制御信号処理手段の要部ブロック構成図
【図9】請求項4に係る電動車椅子の制御信号処理手段の要部ブロック構成図
【図10】請求項4に係るホールド時間(t)−加速度差分信号(△A)特性図
【図11】請求項4に係るホールド処理手段の模式動作説明図
【図12】従来の電動車椅子の全体ブロック構成図
【図13】車速信号V(VLW,VMD,VHI)をパラメータとした手動トルク信号(T)―制御信号(S)特性図
【符号の説明】
1…電動車椅子、2…ステップ、3…車体フレーム、3a…サブフレーム、4…前部補助輪、4a…ブロック、4b…揺動アーム、4c…補助輪、5…主輪、5a…ハブ、5b…スポーク、5c…タイヤリム、5d…タイヤ、6…ハンドリング、8…バッテリ、11R…右手動トルクセンサ、11L…左手動トルクセンサ、20…トルク検出機構、21…スプリング、22…ワイヤ、23…中継プーリ、31…ベアリング、32…アウタレース、33…鍔、34…インナレース、35…ナット、36…ロッド、41…ボス、42…ナット、 43…ブラケット、44…ビス、45…チューブ、50…モータ、 51…モータハウジング、52…コイル、53…マグネット、 54…ロータ、54a…カップ、54b…シリンダ、60…第1遊星減速機構、61…第1サンギヤ、62…第1インナギヤ、 63…第1プラネタリギヤ、64…第1キャリア、70…第2遊星減速機構、71…第2サンギヤ、 72…第2インナギヤ、73…第2プラネタリギヤ、102,130…制御手段、103…右主輪回転速度センサ、106…左主輪回転速度センサ、107…回転方向判別手段、108…車速演算手段、109…A/D変換器、110…A/D変換器、111…車速演算手段、112…回転方向判別手段、113…右駆動制御手段、114…左駆動制御手段、115…右電動機駆動手段、116…左電動機駆動手段、117…右電動機、118…左電動機、120,122,124,126,128…右制御信号処理手段、121,123,125,127,129…左制御信号処理手段、140,146,152,157,164,170,176,182…目標信号設定手段、141,147,153,158,165,171,177,183…目標加速度設定手段、142,148,163,166,172,178,184…加速度演算手段、143,149,154,159,167,173,179,185…差分演算手段、144,150,155,160,168,174…補正係数設定手段、145,151,156,161…目標信号補正演算手段、162…平均車速演算手段、169,175…手動トルク補正演算手段、180,186…ホールド時間制御手段、181,187…ホールド処理手段、ATL,ATR…目標加速度信号、A,AVL,AVR…加速度信号、D…左主輪回転方向判別信号、D…右主輪回転方向判断信号、FET…電界効果トランジスタ、HTL…ホールド時間制御信号、HTR…ホールド時間制御信号、M…乗員、K,K…補正係数、PDL…左電動機駆動信号、PDR…右電動機駆動信号、PWL…左動制御信号、PWR…右動制御信号、PWM…パルス幅変調器、S,S,S…制御信号、T…手動トルク信号、T…信号振幅値、THL,THR…補正手動トルク信号、T…左手動トルク信号、T,TML,TMR…目標信号、TPL…左手動トルクアナログ信号、TPR…右手動トルクアナログ信号、T…左手動トルク信号、T…右手動トルク信号、t…ホールド時間、U…右輪回転速度信号、V…車速信号、V…平均車速信号、VHI…高車速領域、VLW…低車速領域、VMD…中車速領域、V…右車速信号、V…左車速信号、△A,△A,△A…加速度差分信号、△T…許容目標信号減衰量。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric wheelchair having an electric motor that adds an auxiliary force to a manual operation force.
[0002]
[Prior art]
A conventional wheelchair has a main wheel with handling for operating the wheelchair with the hand of the rider, detects the direction and magnitude of the operating force applied to the handling, and the operating force exceeds the predetermined value Accordingly, an electric wheelchair provided with a pair of left and right motors for adding auxiliary force to the main wheels and drive control means for driving and controlling the motors is known as disclosed in JP-A-6-304205. .
[0003]
FIG. 12 shows an overall block diagram of a conventional electric wheelchair.
In FIG. 12, the electric wheelchair 1 includes a right main wheel rotation speed sensor 103, a left main wheel rotation speed sensor 106, a right manual torque sensor 11R, a left manual torque sensor 11L, a rotation direction determination unit (107, 112), a vehicle speed calculation unit. (108, 111), A / D converter (109, 110), control means 102 comprising right control signal processing means 120 and left control signal processing means 121, right drive control means 113, left drive control means 114 right motor The driving unit 115, the left motor driving unit 116, the right motor 117, and the left motor 118 are configured.
[0004]
The electric wheelchair 1 includes a microcomputer (hereinafter abbreviated as a microcomputer) and the like, and various calculations and controls performed here are performed centering on the microcomputer.
[0005]
The right main wheel rotation speed sensor 103 detects the rotation speed of the right main wheel and detects the right main wheel rotation speed signal U. R Is output to the rotation direction discriminating means 107 and the vehicle speed calculating means 108.
[0006]
The rotation direction discriminating means 107 is a right main wheel rotation speed signal U. R To determine the rotation direction of the right main wheel with a microcomputer or the like and determine the right main wheel rotation direction determination signal D R Is output to the right control signal processing means 120.
The vehicle speed calculation means 108 is a right main wheel rotation speed signal U of the right main wheel rotation speed sensor 103. R The vehicle speed is calculated by a microcomputer etc. from the right vehicle speed signal V R Is output to the right control signal processing means 120.
[0007]
The right manual torque sensor 11R detects the magnitude and direction of the operating force applied to the handling laid on the right main wheel, and detects the right manual torque analog signal T. PR Is output to the A / D converter 109.
The A / D converter 109 outputs the right manual torque analog signal T PR Is converted into a digital signal and the right manual torque signal T R Is output to the right control signal processing means 120.
[0008]
The left main wheel rotation speed sensor 106, the left manual torque sensor 11L, the rotation direction determination means 112, the vehicle speed calculation means 111, and the A / D converter 110 are the right main wheel rotation speed sensor 103, the right manual torque sensor 11R, and the rotation direction described above. The configuration and operation are the same as the determination unit 107, the vehicle speed calculation unit 108, and the A / D converter 109.
[0009]
The right control signal processing means 120 is a right main wheel rotation direction discrimination signal D. R , Right vehicle speed signal V R , Right manual torque signal T R A control signal S for adding an auxiliary force according to the above to the right main wheel R Is output to the right drive control means 113, and the left control signal processing means 121 outputs the left main wheel rotation direction discrimination signal D. L , Left vehicle speed signal V L , Left manual torque signal T L A control signal S for adding an auxiliary force corresponding to the left main wheel to the left main wheel L Is output to the left drive control means 114.
[0010]
The right drive control means 113 receives the control signal S R Based on the right drive control signal P of pulse width modulation (PWM) WR Is output to the right motor drive means 115, and the left drive control means 114 is controlled by the control signal S. L Based on the left drive control signal P of the pulse width modulation (PWM) WL Is output to the left motor driving means 116.
[0011]
The right motor driving means 115 receives the right drive control signal P WR For example, the right motor 117 is driven by a bipolar drive circuit composed of, for example, four field effect transistors (FETs), and the left motor drive means 116 outputs a left drive control signal P. WL For example, the left motor 118 is driven by a bipolar drive circuit composed of, for example, four field effect transistors (FETs).
[0012]
FIG. 13 shows a vehicle speed signal V (V LW , V MD , V HI ) Shows a characteristic diagram of manual torque signal (T) -control signal (S) with parameters.
In FIG. 13, V of the vehicle speed signal V LW , V MD And V HI Indicates a low vehicle speed region, a medium vehicle speed region, and a high vehicle speed region, respectively, and even if the manual torque signal T is the same, the vehicle speed signal V increases (V LW → V MD → V HI ), The control signal S is preset so as to decrease.
In addition, a dead zone is provided in which the control signal S with respect to the manual torque signal T equal to or less than a predetermined value is zero so that the electric motor follows the small operating force and does not impair the straight traveling performance of the vehicle of the electric wheelchair.
[0013]
In this way, the control signal processing means of the electric wheelchair is used in the low vehicle speed region (V LW ) Outputs a large control signal S so as to obtain a large assisting force with respect to the manual torque signal T, while the high vehicle speed region (V HI ) Is configured to output a small control signal S so as to suppress the auxiliary force with respect to the manual torque signal T and to obtain good vehicle operability.
[0014]
[Problems to be solved by the invention]
Since conventional electric wheelchairs determine the assisting force by the motor based on the operating force applied to the handling by the occupant and the vehicle speed, the driving resistance (inclination of the travel path, etc.) causes the assisting force by the motor to be excessive and insufficient. There is a problem of impairing feeling.
[0015]
The present invention has been made to solve such a problem, and its object is to detect the running resistance and control the auxiliary force by the electric motor based on the operating force applied to the handling, the vehicle speed, and the running resistance. An object of the present invention is to provide an electric wheelchair that generates an appropriate assisting force even when the running resistance changes and has a good running feeling.
[0016]
[Means for Solving the Problems]
In order to solve the above-described problem, the electric wheelchair according to claim 1 provides a control signal processing means with a target signal that determines the magnitude and direction of the auxiliary force by the electric motor based on the values of the signals from the rotation speed sensor and the manual torque sensor. Target signal setting means for setting, target acceleration setting means for setting a target acceleration signal based on a manual torque signal obtained from a manual torque sensor, and calculating an acceleration from a vehicle speed signal obtained from a rotation speed sensor and outputting an acceleration signal An acceleration calculation means for calculating an acceleration difference between the target acceleration signal and the acceleration signal and outputting an acceleration difference signal, a correction coefficient setting means for setting a correction coefficient based on the acceleration difference signal, and a correction coefficient And target signal correction calculation means for correcting and calculating the target signal based on the above.
[0017]
As described above, the control signal processing means of the electric wheelchair includes the target signal setting means, the target acceleration setting means, the acceleration calculation means, the difference calculation means, the correction coefficient setting means, and the target signal correction calculation means. Even if the running resistance changes, it is possible to generate an auxiliary force by an appropriate electric motor that is not excessive or insufficient.
[0018]
In the electric wheelchair according to claim 2, the control means calculates an average vehicle speed from a vehicle speed signal obtained from the left and right rotational speed sensors and outputs an average vehicle speed signal; and an acceleration from the average vehicle speed signal. A target signal setting for setting a target signal for determining the magnitude and direction of the auxiliary force by the motor based on the values of signals from the rotation speed sensor and the manual torque sensor. Means, target acceleration setting means for setting a target acceleration signal based on a manual torque signal obtained from a manual torque sensor, and difference calculation means for calculating an acceleration difference between the target acceleration signal and the acceleration signal and outputting an acceleration difference signal A correction coefficient setting means for setting a correction coefficient based on the acceleration difference signal, and a target signal for correcting the target signal based on the correction coefficient. Characterized by comprising a correction calculation means, a control signal processing means comprising.
[0019]
Thus, the control means of the electric wheelchair includes the average vehicle speed calculation means and the acceleration calculation means, and the target signal setting means, the target acceleration setting means, the difference calculation means, the correction coefficient setting means, the target signal Since the control signal processing means including the correction calculation means is provided, it is possible to add a left-right balanced auxiliary force, improve the straightness of the electric wheelchair, and even if the running resistance changes Auxiliary force can be generated by an appropriate electric motor without excess or deficiency.
[0020]
Furthermore, the electric wheelchair according to claim 3 sets in the control signal processing means a target signal for setting a target signal for determining the magnitude and direction of the assisting force by the electric motor based on the values of the signals from the rotational speed sensor and the manual torque sensor. Means, target acceleration setting means for setting a target acceleration signal based on a manual torque signal obtained from a manual torque sensor, acceleration calculation means for calculating acceleration from a vehicle speed signal obtained from a rotation speed sensor and outputting an acceleration signal A difference calculating means for calculating an acceleration difference between the target acceleration signal and the acceleration signal and outputting an acceleration difference signal; a correction coefficient setting means for setting a correction coefficient based on the acceleration difference signal; and a manual torque based on the correction coefficient Manual torque that corrects the manual torque signal obtained from the sensor and outputs the corrected manual torque signal to the target signal setting means A positive operation means, characterized by comprising a.
[0021]
As described above, the control signal processing means of the electric wheelchair includes the target signal setting means, the target acceleration setting means, the acceleration calculation means, the difference calculation means, the correction coefficient setting means, and the manual torque correction calculation means. Therefore, even if the running resistance changes, it is possible to generate auxiliary force by a more appropriate electric motor that is not excessive or insufficient.
[0022]
The electric wheelchair according to claim 4 is a target signal setting for setting a target signal for determining the magnitude and direction of the auxiliary force by the electric motor based on the values of the signals from the rotation speed sensor and the manual torque sensor in the control signal processing means. Means, target acceleration setting means for setting a target acceleration signal based on a manual torque signal obtained from a manual torque sensor, acceleration calculation means for calculating acceleration from a vehicle speed signal obtained from a rotation speed sensor and outputting an acceleration signal A difference calculating means for calculating an acceleration difference between the target acceleration signal and the acceleration signal and outputting an acceleration difference signal; a hold time control means for outputting a hold time control signal based on the acceleration difference signal; and a target signal setting means Hold the decreasing target signal so that the target signal gently decreases when the target signal decreases rapidly. Characterized by comprising the hold processing means for the holding and processed on the basis of the between control signals.
[0023]
As described above, the control signal processing means of the electric wheelchair includes the target signal setting means, the target acceleration setting means, the acceleration calculation means, the difference calculation means, the hold time control means, and the hold processing means. When the target signal from the signal setting means suddenly decreases, the target signal to be decreased can be held and reduced according to the running resistance, and the running performance of the electric wheelchair can be improved. .
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
1 to 4 are viewed in the direction of the reference numerals.
FIG. 1 is a front view of an electric wheelchair according to the present invention. An electric wheelchair 1 (hereinafter abbreviated as “wheelchair 1”) includes a body frame 3 including a step 2 and left and right front auxiliary wheels 4, 4 and left and right. The main wheels 5 and 5 are rotatably attached, and the main wheels 5 and 5 are provided with handlings 6 and 6. The appearance is the same as that of an ordinary manual wheelchair. , 5 (details will be described later), and the battery 8, the control unit 9, and the torque sensors 11, 11 are different.
[0025]
FIG. 2 is a side view of the wheelchair according to the present invention, in which an occupant M sits on a seat (not shown) attached to the vehicle body frame 3 and operates the handling 6 with his / her hand on the step 2. Can do.
The main wheel 5 includes a hub 5a, a spoke 5b, a tire rim 5c, and a tire 5d.
[0026]
The front auxiliary wheel 4 is a so-called free wheel, a block 4a attached to the sub-frame 3a of the vehicle body frame 3, a swing arm 4b attached to the block 4a so as to be swingable about the vertical axis, and the swing arm. It consists of an auxiliary wheel 4c that is pivotally supported by 4b, and swings in accordance with the forward direction of the wheelchair to facilitate direction change.
The position of the block 4a can be changed along the subframe 3a.
It also shows that the battery 8 and the control unit 9 are attached to a sheet (not shown).
[0027]
FIG. 3 is a principle diagram of the torque detection mechanism according to the present invention. The torque detection mechanism 20 includes a handling 6 suspended from the tire rim 5c by eight springs 21, one end locked to the handling 6, and the other end. Wires 22, 22 extending in the center of the wheel, relay pulleys 23, 23 on the tire rim 5 c side that relays the wires, and a transmission member that transmits the pulling force of the wires 22, 22 to the torque sensor 11 (see FIG. 1) And a torque sensor 11.
[0028]
3 will be described first. When the handling 6 in the neutral state is forcibly turned clockwise (arrow 1) by the spring 21, the wires 22 and 22 are pulled (arrow 2). .
The degree to which the wires 22 and 22 are pulled increases as the force (torque) that turns the handling 6 increases.
[0029]
FIG. 4 is an enlarged cross-sectional view of the hub of the main wheel according to the present invention. A transmission member that connects the other end of the wire 22 and the torque sensor 11 will be described. This transmission member is formed on the outer race 32 of the bearing 31. 33 and 33, and a rod 36 whose one end is locked to the inner race 34 of the bearing 31 by a nut 35. The rod 36 does not rotate, and the rods 33 and 33 rotate together with the wires 22 and 22.
By pulling the wire 22, the rod 36 is pulled, and the trick sensor 11 detects the degree.
The torque sensor 11 is fixed to the boss 41 on the vehicle body frame side with a nut 42, a bracket 43 and a screw 44.
[0030]
Next, the motor and the two-stage planetary speed reduction mechanism built in the hub will be described.
The motor 50 is referred to as a wheel-in motor. The motor housing 51 is fixed to the boss 41 and the tube 45 attached integrally to the boss 41, the coil 52 is attached to the motor housing 51, and the coil 52 is used. And a rotor 54 that supports these magnets 53.
Specifically, the rotor 54 includes a cup 54a that directly supports the magnet 53 and a cylinder 54b that supports the cup 54a.
[0031]
A first sun gear 61 carved at one end of the cylinder 54b, a first inner gear 62 carved at one end of the housing 51, and a first planetary gear 63 meshing with the first sun gear 61 and the first inner gear 62; The first planetary reduction mechanism 60 is constituted by the first carrier 64 extending from the first planetary gear 63, and the second sun gear 71 engraved at one end of the first carrier 64 and the one end of the housing 51 are engraved. The second planetary reduction mechanism 70 is composed of the second inner gear 72, the second planetary gear 73 meshing with the second sun gear 71 and the second inner gear 72, and the second carrier (also used as the hub 5a) extending from the second planetary gear 73. Configure.
The first and second planetary speed reduction mechanisms 60 and 70 reduce the speed to several hundred to several thousandths, thereby converting the high rotation of the motor into a low rotation suitable for traveling.
[0032]
The overall block configuration diagram of the electric wheelchair according to the present invention is basically the same as the overall block configuration diagram of the electric wheelchair shown in FIG. 12 as the conventional technique, but the left and right control signals constituting the control means of the electric wheelchair The processing means is provided with target acceleration setting means, acceleration calculation means, and correction coefficient setting means, and differs from the conventional point in that the driving resistance of the road is detected to control the auxiliary force by the electric motor.
In FIG. 12, since the configuration and operation of the blocks other than the right control signal processing means 120 and the left control signal processing means 121 have been described as conventional examples, description thereof is omitted here.
[0033]
Since the left and right control signal processing means shown in FIGS. 5, 7, 8, and 9 have the same configuration and operation as the embodiment of the present invention, the configuration and operation of the right control signal processing means will be described below. Explanation will be given, and explanation of the left control signal processing means will be omitted.
[0034]
The electric wheelchair 1 includes a microcomputer (hereinafter abbreviated as a microcomputer) and the like, and includes a right control signal processing means (122, 124, 126, 128) and a left control signal processing means (123, 125, 127, 129) according to the present invention. Various calculations and controls are performed with this microcomputer as the center.
[0035]
FIG. 5 is a block diagram of the main part of the control signal processing means of the electric wheelchair according to claim 1.
In FIG. 5, the right control signal processing means 122 includes a target signal setting means 140, a target acceleration setting means 141, an acceleration calculation means 142, a difference calculation means 143, a correction coefficient setting means 144, and a target signal correction calculation means. 145.
[0036]
The target signal setting means 140 includes a memory such as a RAM or a rewritable ROM, and the right manual torque signal T is stored in the memory. R And the right main wheel rotation direction determination signal D R And right vehicle speed signal V R And target signal T corresponding to each value MR Is the right manual torque signal T R And the right main wheel rotation direction determination signal D R And right vehicle speed signal V R And the manual torque signal T. R And the right main wheel rotation direction determination signal D R And right vehicle speed signal V R And the target signal T as the memory read address. MR Is read from the memory and output to the target signal correction calculating means 145.
[0037]
The target signal setting means 140 is a vehicle speed signal V (V LW , V MD , V HI ) As a parameter Manual torque signal (T) -control signal (S) {target signal (T MR )} Characteristics, V of vehicle speed signal V LW , V MD And V HI Indicates a low vehicle speed region, a medium vehicle speed region, and a high vehicle speed region, respectively, and even if the manual torque signal T is the same, the vehicle speed signal V increases (V LW → V MD → V HI ), The target signal T MR Is set in advance to decrease, and the target signal T with respect to the manual torque signal T equal to or less than a predetermined value so that the electric motor follows the small operating force and does not impair the straight traveling performance of the vehicle of the electric wheelchair. MR There is a dead zone where is zero.
[0038]
The target acceleration setting means 141 includes a memory such as a RAM or a rewritable ROM, and the right manual torque signal T is stored in the memory. R Target acceleration signal A according to the value of TR To the right manual torque signal T R The right manual torque signal T is stored in the address according to the value of R The target acceleration signal A with the value corresponding to the value of the memory as the read address of the memory TR Is read from the memory and output to the difference calculation means 143.
[0039]
The acceleration calculation means 142 is a right vehicle speed signal V R The acceleration is calculated from the acceleration signal A to the difference calculation means 143. VR Is output.
[0040]
The difference calculation means 143 is configured to output the target acceleration signal A TR And acceleration signal A VR Acceleration difference signal △ A R Is output to the correction coefficient setting means 144.
[0041]
The correction coefficient setting unit 144 includes a memory such as a RAM or a rewritable ROM, and the memory includes an acceleration difference signal ΔA. R Correction coefficient K shown in FIG. R Acceleration difference signal △ A R Acceleration difference signal ΔA stored in the address corresponding to the value of R The correction coefficient K with the value corresponding to the value of the memory as the read address of the memory R Is read from the memory and output to the target signal correction calculating means 145.
[0042]
FIG. 6 shows a correction coefficient (K) -acceleration difference signal (ΔA) according to the present invention. R FIG.
In FIG. 6, the correction coefficient K (K R ) Is the speed difference signal (+ ΔA) R ) And acceleration difference signal (-ΔA) R ) And an acceleration difference signal ΔA below a predetermined value. R Is “1”.
Further, the acceleration difference signal ΔA R As the value increases beyond a predetermined value, the increase rate of the correction coefficient K increases.
[0043]
The target signal correction calculation means 145 is a target signal T from the target signal setting means 140. MR And correction coefficient K R And the control signal S R Is output to the right drive control means 113.
[0044]
In the memory of the target acceleration setting means, for example, the target acceleration signal A for the value of the manual torque signal T that provides a good running feeling on a flat and paved running road T Write the characteristics.
The operating force applied to the handling by the occupant's hand for acceleration is detected by a manual torque sensor and input to the target acceleration setting means as a manual torque signal T.
[0045]
The target acceleration setting means is a target acceleration signal A corresponding to the input manual torque signal T. T Is output to the difference calculation means.
The wheelchair is accelerated by the operating force applied to the handling for acceleration, and the acceleration calculation means calculates the vehicle speed signal V from the main wheel rotation speed sensor to calculate the acceleration signal A V And the acceleration signal A V Is output to the difference calculation means.
[0046]
Target acceleration signal A output from the target acceleration setting means to the difference calculation means T Is the target acceleration signal A for the value of the manual torque signal T that provides a good running feeling on a flat and paved road. T Acceleration signal A which is a characteristic value and is output from the acceleration calculation means to the difference calculation means V For example, in the case of uphill, the running resistance is large and the target acceleration signal A T It becomes a small value for.
The difference calculation means is the target acceleration signal A T And a small acceleration signal A V Is calculated to obtain an acceleration difference signal ΔA, and the acceleration difference signal ΔA is output to the correction coefficient setting means.
[0047]
As indicated by the correction coefficient (K) -acceleration difference signal (ΔA) characteristic of FIG. 6, the correction coefficient setting means outputs a larger correction coefficient K to the target signal correction calculation means as the acceleration difference signal ΔA increases.
The target signal correction calculation means is a target signal T output from the target signal setting means. M And the correction coefficient K, and the result is output as a control signal S to the drive control means.
An auxiliary force corresponding to the control signal S output from the target signal correction calculation means is generated by the electric motor, and this auxiliary force is applied to the main wheel of the wheelchair to accelerate the wheelchair.
[0048]
Then, the vehicle speed signal V from the main wheel rotation speed sensor of the accelerated wheelchair is fed back to the acceleration calculation means, and the acceleration calculation means calculates the vehicle speed signal V to obtain the acceleration signal A V And the acceleration signal A V Is output to the difference calculation means.
The difference calculation means is the target acceleration signal A T Acceleration signal A and feedback V And the acceleration difference signal ΔA is output to the correction coefficient setting means.
[0049]
As described above, the control signal processing means is used for the target acceleration signal A. T Acceleration signal A and feedback V Are controlled to be equal.
[0050]
As described above, the control signal processing means of the electric wheelchair includes the target signal setting means, the target acceleration setting means, the acceleration calculation means, the difference calculation means, the correction coefficient setting means, and the target signal correction calculation means. Even if the resistance changes, it is possible to generate an auxiliary force by an appropriate electric motor without excess or deficiency.
[0051]
FIG. 7 is a block diagram of a main part of the control means of the electric wheelchair according to claim 2.
In FIG. 7, the control means 130 comprises a right control signal processing means 124, a left control signal processing means 125, an average vehicle speed calculation means 162, and an acceleration calculation means 163. The right control signal processing means 124 is a target signal. Setting means 152, target acceleration setting means 153, difference calculation means 154, correction coefficient setting means 155, and target signal correction calculation means 156 are provided.
[0052]
The target signal setting means 152, the target acceleration setting means 153, the difference calculation means 154, the correction coefficient setting means 155, and the target signal correction calculation means 156 of the right control signal processing means 124 are shown in FIG. Since the target signal setting means 140, the target acceleration setting means 141, the difference calculation means 143, the correction coefficient setting means 144, and the target signal correction calculation means 145 of the right control signal processing means 122 are the same in configuration and operation, they are detailed. A description of the operation is omitted.
[0053]
The average vehicle speed calculation means 162 receives the right main wheel rotation direction discrimination signal D. R And right vehicle speed signal V R And left main wheel rotation direction discrimination signal D L And left vehicle speed signal V L Calculate the average vehicle speed from the average vehicle speed signal V A Is output to the acceleration calculation means 163.
In the average vehicle speed calculation means 162, when the main wheel rotation direction determination signal D means the forward direction of the wheelchair, the vehicle speed signal V has a positive sign and the main wheel rotation direction determination signal D means the backward direction of the wheelchair. The vehicle speed signal V has a negative sign.
The acceleration calculation means 163 is an average vehicle speed signal V output from the average vehicle speed calculation means 162. A Acceleration is calculated from the acceleration signal A V Is output to the difference calculation means 154.
[0054]
The difference calculation means 154 is a target acceleration signal A TR And acceleration signal A VR Acceleration difference signal △ A R Is output to the correction coefficient setting means 155, and the correction coefficient setting means 155 outputs the acceleration difference signal ΔA. R Correction coefficient K according to the value of R Is output to the target signal correction calculation means 156.
[0055]
The target signal correction calculating means 156 is a target signal T from the target signal setting means 152. MR And correction coefficient K R And the control signal S R Is output to the right drive control means 113.
The control signal S output from the target signal correction calculation means 156 R The right electric motor 117 generates an assisting force corresponding to the above, and this assisting force is applied to the right main wheel of the wheelchair to accelerate the wheelchair 1.
The left control signal processing unit 125 performs the same operation as the right control signal processing unit 124.
[0056]
Then, the right vehicle speed signal V from the right main wheel rotation speed sensor 103 of the wheelchair 1 that has been accelerated. R And the left vehicle speed signal V from the left main wheel rotation speed sensor 106 L Are returned to the average vehicle speed calculation means 162, and the average vehicle speed calculation means 162 R And left vehicle speed signal V L Calculate the average vehicle speed from the average vehicle speed signal V A Is output to the acceleration calculation means 163.
[0057]
The acceleration calculation means 163 is an average vehicle speed signal V output from the average vehicle speed calculation means 162. A Acceleration is calculated from the acceleration signal A V Is output to the difference calculation means 154, and the difference calculation means 154 outputs the target acceleration signal A. TR And acceleration signal A VR Acceleration difference signal △ A R Is output to the correction coefficient setting means 155, and the correction coefficient setting means 155 outputs the acceleration difference signal ΔA. R Correction coefficient K according to the value of R Is output to the target signal correction calculation means 156.
The left control signal processing unit 125 performs the same operation as the right control signal processing unit 124.
[0058]
As described above, the control signal processing means is used for the target acceleration signal A. T Acceleration signal A and feedback V Are controlled to be equal.
[0059]
Thus, the control means of the electric wheelchair includes the average vehicle speed calculation means and the acceleration calculation means, and the target signal setting means, the target acceleration setting means, the difference calculation means, the correction coefficient setting means, the target signal And a control signal processing means comprising a correction calculating means, can add a left-right balanced auxiliary force, can improve the straightness of the electric wheelchair, and is excessive or insufficient even if the running resistance changes It is possible to generate an assisting force by an appropriate electric motor without any problem.
[0060]
FIG. 8 is a block diagram of the main part of the control signal processing means of the electric wheelchair according to claim 3.
In FIG. 8, the right control signal processing means 126 includes a target signal setting means 164, a target acceleration setting means 165, an acceleration calculating means 166, a difference calculating means 167, a correction coefficient setting means 168, and a manual torque correction calculating means. 169.
[0061]
The target signal setting means 164, the target acceleration setting means 165, the acceleration calculation means 166, the difference calculation means 167, and the correction coefficient setting means 168 of the right control signal processing means 126 according to claim 1 shown in FIG. Since the target signal setting means 140, the target acceleration setting means 141, the acceleration calculating means 142, the difference calculating means 143, and the correction coefficient setting means 144 of the right control signal processing means 122 have the same configuration and operation, a detailed operation description will be given. Is omitted.
[0062]
The correction coefficient setting means 168 is an acceleration difference signal ΔA output from the difference calculation means 167. R Correction coefficient K according to R Is output to the manual torque correction calculation means 169.
The manual torque correction calculation means 169 receives the right manual torque signal T from the right manual torque sensor 11R. R And correction coefficient K R And the corrected manual torque signal T HR Is output to the target signal setting means 164.
[0063]
The target signal setting means 164 is a vehicle speed signal V (V shown in FIG. LW , V MD , V HI ) As a parameter Manual torque signal (T) -control signal (S) {target signal (T MR )} Characteristic, the manual torque signal (T) is converted into the right manual torque signal T by the manual torque correction calculation means 169. R , The acceleration difference signal ΔA shown in FIG. R Correction coefficient K according to R Corrected manual torque signal T multiplied by HR Target signal T with the characteristic MR Control signal S R To the right drive control means 113.
[0064]
The control signal S output from the target signal setting means 164 R The auxiliary electric power corresponding to is generated by the right electric motor 117, and this auxiliary power is applied to the right main wheel of the wheelchair 1 to accelerate the wheelchair 1.
The left control signal processing means 127 performs the same operation as the right control signal processing means 126.
[0065]
Then, the right vehicle speed signal V from the right main wheel rotation speed sensor 103 of the wheelchair 1 that has been accelerated. R Is returned to the acceleration calculation means 166, and the acceleration calculation means 166 receives the right vehicle speed signal V. R Acceleration is calculated from the acceleration signal A VR And the acceleration signal A VR Is output to the difference calculation means 167, and the difference calculation means 167 outputs the target acceleration signal A. TR Acceleration signal A and feedback VR And the acceleration difference signal ΔA R Is output to the correction coefficient setting means 168.
[0066]
As described above, the control signal processing means 126 is controlled by the target acceleration signal A. TR Acceleration signal A and feedback VR Are controlled to be equal.
[0067]
As described above, the control signal processing means of the electric wheelchair includes the target signal setting means, the target acceleration setting means, the acceleration calculation means, the difference calculation means, the correction coefficient setting means, and the manual torque correction calculation means. Even if the resistance changes, it is possible to generate an auxiliary force by an appropriate electric motor without excess or deficiency.
[0068]
FIG. 9 is a block diagram of the main part of the control signal processing means of the electric wheelchair according to claim 4.
In FIG. 9, the right control signal processing means 128 includes a target signal setting means 176, a target acceleration setting means 177, an acceleration calculation means 178, a difference calculation means 179, a hold time control means 180, and a hold processing means 181. Consists of.
[0069]
The target signal setting means 176, the target acceleration setting means 177, the acceleration calculating means 178, and the difference calculating means 179 of the right control signal processing means 128 are the same as those of the right control signal processing means 122 according to claim 1 shown in FIG. Since the target signal setting unit 140, the target acceleration setting unit 141, the acceleration calculation unit 142, and the difference calculation unit 143 have the same configuration and operation, detailed description of the operation is omitted.
[0070]
The operating force applied to the handling by the occupant's hand is not a constant continuous amount, but the operating force for acceleration is applied to the handling, and after it has been applied, the operating force for handling once becomes zero and accelerates again. In general, it is a pulse-like discontinuous amount so that the operating force of the above is applied to the handling.
The manual torque signal T detected by the manual torque sensor, which is a pulse discontinuity applied to the handling, becomes a pulse discontinuity signal, and the assist force by the motor is also pulsed and discontinuous.
[0071]
Since the conventional electric wheelchair shown in FIG. 12 loses its assisting force immediately when the operating force applied to handling is lost, it is difficult to run a smooth wheelchair especially when the running resistance such as uphill is large.
The right control signal processing means 128 includes target signal setting means 176, target acceleration setting means 177, acceleration calculation means 178, difference calculation means 179, hold time control means 180, and hold processing means 181. Smooth wheelchair travel is possible even on roads with large travel resistance such as slopes.
[0072]
The hold time control means 180 is an acceleration difference signal ΔA from the difference calculation means 179. R Hold time control signal H according to TR Is output to the hold processing unit 181, and the hold processing unit 181 outputs the target signal T from the target signal setting unit 176. MR The target signal T that decreases so that the target signal gently decreases even if the value decreases rapidly. MR Hold process.
[0073]
FIG. 10 shows a hold time (t H ) -Acceleration difference signal (ΔA) characteristic diagram.
In FIG. 10, the hold time t with respect to the acceleration difference signal ΔA of a predetermined value or less so that the electric motor follows the small operating force and does not impair the straightness of the vehicle of the electric wheelchair. H There is a dead band with zero, and the hold time t for the acceleration difference signal ΔA exceeding a predetermined value H Increases as the acceleration differential signal ΔA increases.
[0074]
FIG. 11 is a schematic operation explanatory view of the hold processing means according to claim 4.
In FIG. 11, the hold processing unit 181 includes a target signal T from the target signal setting unit 176. MR (T M ) Decreases the target signal TM so that the target signal gently decreases even if it decreases rapidly. R The hold signal is processed according to the control signal S R (S) is output to the right drive control means 113.
The control signal S is a hold time t in the hold processing means where the allowable target signal attenuation is ΔT. H Is a signal that is controlled so as to decrease gently with the characteristics shown in FIG. 10 with respect to the acceleration difference signal ΔA.
The control signal S has an amplitude value T A As the value becomes equal to or less than a predetermined threshold value and converges to zero, the allowable target signal attenuation ΔT is decreased and gradually approaches zero.
[0075]
As described above, the control signal processing means of the electric wheelchair includes the target signal setting means, the target acceleration setting means, the acceleration calculation means, the difference calculation means, the hold time control means, and the hold processing means. When the target signal from the means rapidly decreases, the decreasing target signal can be held and reduced according to the running resistance, so that the running performance of the electric wheelchair can be improved.
The above embodiment is an example of the present invention, and the present invention is not limited to the above embodiment.
[0076]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
[0077]
The electric wheelchair according to claim 1 has a target signal setting means for setting a target signal for determining the magnitude and direction of the auxiliary force by the electric motor based on the values of the signals from the rotation speed sensor and the manual torque sensor in the control signal processing means. Target acceleration setting means for setting a target acceleration signal based on a manual torque signal obtained from a manual torque sensor; acceleration calculation means for calculating an acceleration from a vehicle speed signal obtained from a rotation speed sensor; A difference calculating means for calculating an acceleration difference between the acceleration signal and the acceleration signal and outputting the acceleration difference signal, a correction coefficient setting means for setting a correction coefficient based on the acceleration difference signal, and correcting the target signal based on the correction coefficient Target signal correction calculating means for calculating, and generating an assist force by an appropriate electric motor that is not excessive or insufficient even if the running resistance changes. Since it is, it is possible to provide a good electric wheelchair of traveling feeling.
[0078]
In the electric wheelchair according to claim 2, the control means calculates an average vehicle speed from a vehicle speed signal obtained from the left and right rotational speed sensors and outputs an average vehicle speed signal; and an acceleration from the average vehicle speed signal. And a target signal setting means for setting a target signal for determining the magnitude and direction of the auxiliary force by the electric motor based on the values of the signals from the rotation speed sensor and the manual torque sensor. And target acceleration setting means for setting a target acceleration signal based on a manual torque signal obtained from a manual torque sensor, and difference calculation means for calculating an acceleration difference between the target acceleration signal and the acceleration signal and outputting an acceleration difference signal Correction coefficient setting means for setting a correction coefficient based on the acceleration difference signal, and a target signal for correcting the target signal based on the correction coefficient It has control signal processing means consisting of positive arithmetic means, can add left and right balanced auxiliary force, and can generate auxiliary force by an appropriate electric motor that is not excessive or insufficient even if running resistance changes As a result, it is possible to provide an electric wheelchair that is excellent in straight running performance and excellent in driving feeling.
[0079]
Furthermore, the electric wheelchair according to claim 3 sets in the control signal processing means a target signal for setting a target signal for determining the magnitude and direction of the assisting force by the electric motor based on the values of the signals from the rotational speed sensor and the manual torque sensor. Means, target acceleration setting means for setting a target acceleration signal based on a manual torque signal obtained from a manual torque sensor, acceleration calculation means for calculating acceleration from a vehicle speed signal obtained from a rotation speed sensor and outputting an acceleration signal A difference calculating means for calculating an acceleration difference between the target acceleration signal and the acceleration signal and outputting an acceleration difference signal; a correction coefficient setting means for setting a correction coefficient based on the acceleration difference signal; and a manual torque based on the correction coefficient Manual torque that corrects the manual torque signal obtained from the sensor and outputs the corrected manual torque signal to the target signal setting means And a positive operation means, since the assist force than by a suitable motor running resistance just enough be varied can be generated, it is possible to provide a better electric wheelchair driving feeling.
[0080]
The electric wheelchair according to claim 4 is a target signal setting for setting a target signal for determining the magnitude and direction of the auxiliary force by the electric motor based on the values of the signals from the rotation speed sensor and the manual torque sensor in the control signal processing means. Means, target acceleration setting means for setting a target acceleration signal based on a manual torque signal obtained from a manual torque sensor, acceleration calculation means for calculating acceleration from a vehicle speed signal obtained from a rotation speed sensor and outputting an acceleration signal A difference calculating means for calculating an acceleration difference between the target acceleration signal and the acceleration signal and outputting an acceleration difference signal; a hold time control means for outputting a hold time control signal based on the acceleration difference signal; and a target signal setting means Hold the decreasing target signal so that the target signal gently decreases when the target signal decreases rapidly. An electric wheelchair having a smooth running feeling is provided, because it has a hold processing means for holding and processing based on a control signal between the two, and can generate an assisting force by an appropriate electric motor corresponding to a change in running resistance. can do.
[0081]
Therefore, it is possible to provide an electric wheelchair that is excellent in straightness and has a smooth running feeling.
[Brief description of the drawings]
FIG. 1 is a front view of an electric wheelchair according to the present invention.
FIG. 2 is a side view of a wheelchair according to the present invention.
FIG. 3 is a principle diagram of a torque detection mechanism according to the present invention.
FIG. 4 is an enlarged sectional view of a hub of a main wheel according to the present invention.
FIG. 5 is a block diagram of the main part of the control signal processing means of the electric wheelchair according to claim 1;
FIG. 6 shows a correction coefficient (K) -acceleration difference signal (ΔA) according to the present invention. R ) Characteristics
FIG. 7 is a block diagram of the main part of the control means for the electric wheelchair according to claim 2;
FIG. 8 is a block diagram of the main part of the control signal processing means of the electric wheelchair according to claim 3;
FIG. 9 is a block diagram of the main part of the control signal processing means of the electric wheelchair according to claim 4;
FIG. 10 shows a hold time (t according to claim 4; H )-Acceleration difference signal (△ A) characteristic diagram
FIG. 11 is a schematic operation explanatory view of the hold processing means according to claim 4;
FIG. 12 is an overall block diagram of a conventional electric wheelchair.
FIG. 13 shows a vehicle speed signal V (V LW , V MD , V HI ) Parameter of manual torque signal (T) -control signal (S)
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electric wheelchair, 2 ... Step, 3 ... Body frame, 3a ... Sub frame, 4 ... Front auxiliary wheel, 4a ... Block, 4b ... Swing arm, 4c ... Auxiliary wheel, 5 ... Main wheel, 5a ... Hub, 5b ... spoke, 5c ... tire rim, 5d ... tire, 6 ... handling, 8 ... battery, 11R ... right manual torque sensor, 11L ... left manual torque sensor, 20 ... torque detection mechanism, 21 ... spring, 22 ... wire, 23 ... Relay pulley, 31 ... bearing, 32 ... outer race, 33 ... 鍔, 34 ... inner race, 35 ... nut, 36 ... rod, 41 ... boss, 42 ... nut, 43 ... bracket, 44 ... screw, 45 ... tube, 50 ... Motor: 51 ... Motor housing, 52 ... Coil, 53 ... Magnet, 54 ... Rotor, 54a ... Cup, 54b ... Cylinder, 60 ... First planetary reduction Mechanism: 61 ... first sun gear, 62 ... first inner gear, 63 ... first planetary gear, 64 ... first carrier, 70 ... second planetary reduction mechanism, 71 ... second sun gear, 72 ... second inner gear, 73 ... second Planetary gear, 102, 130 ... control means, 103 ... right main wheel rotation speed sensor, 106 ... left main wheel rotation speed sensor, 107 ... rotation direction discrimination means, 108 ... vehicle speed calculation means, 109 ... A / D converter, 110 ... A / D converter, 111: vehicle speed calculation means, 112: rotation direction discrimination means, 113: right drive control means, 114 ... left drive control means, 115 ... right motor drive means, 116 ... left motor drive means, 117 ... right Motor 118, Left motor 120, 122, 124, 126, 128 Right control signal processing means 121, 123, 125, 127, 129 Left control signal processor Stage, 140, 146, 152, 157, 164, 170, 176, 182, ... target signal setting means, 141, 147, 153, 158, 165, 171, 177, 183 ... target acceleration setting means, 142, 148, 163 166, 172, 178, 184 ... acceleration calculation means, 143, 149, 154, 159, 167, 173, 179, 185 ... difference calculation means, 144, 150, 155, 160, 168, 174 ... correction coefficient setting means, 145 151, 156, 161 ... target signal correction calculation means, 162 ... average vehicle speed calculation means, 169, 175 ... manual torque correction calculation means, 180, 186 ... hold time control means, 181, 187 ... hold processing means, A TL , A TR ... Target acceleration signal, A V , A VL , A VR ... Acceleration signal, D L ... Left main wheel rotation direction discrimination signal, D R ... right main wheel rotation direction judgment signal, FET ... field effect transistor, H TL ... Hold time control signal, H TR ... Hold time control signal, M ... Crew, K L , K R ... Correction coefficient, P DL ... Left motor drive signal, P DR ... Right motor drive signal, P WL ... Left motion control signal, P WR ... right motion control signal, PWM ... pulse width modulator, S, S L , S R ... Control signal, T ... Manual torque signal, T A ... Signal amplitude value, T HL , T HR ... corrected manual torque signal, T L ... Left manual torque signal, T M , T ML , T MR ... Target signal, T PL ... Left manual torque analog signal, T PR ... Right manual torque analog signal, T L ... Left manual torque signal, T R ... Right manual torque signal, t H ... Hold time, U R ... Right wheel rotation speed signal, V ... Vehicle speed signal, V A ... Average vehicle speed signal, V HI ... High vehicle speed range, V LW ... Low vehicle speed range, V MD ... Medium vehicle speed range, V R ... Right vehicle speed signal, V L ... Left vehicle speed signal, △ A, △ A L , △ A R ... Acceleration difference signal, ΔT ... Allowable target signal attenuation.

Claims (4)

車体を人力で操作するためのハンドリングを付設した主輪と、この主輪の回転速度を検出する主輪回転速度センサと、前記ハンドリングに加える操作力を検出する手動トルクセンサと、前記主輪に補助力を付加する電動機と、前記電動機を駆動制御する駆動制御手段と、この駆動制御手段からの信号によって前記電動機を駆動する電動機駆動手段と、をそれぞれ左右一対に備えると共に、
前記回転速度センサおよび前記手動トルクセンサからの信号を処理して前記電動機による補助力の大きさと方向を制御する制御信号処理手段をそれぞれ左右一対に備える制御手段から構成する電動車椅子において、
前記制御信号処理手段に、前記回転速度センサおよび前記手動トルクセンサからの信号の値に基づいて前記電動機による補助力の大きさと方向を決める目標信号を設定する目標信号設定手段と、前記手動トルクセンサから得られる手動トルク信号に基づいて目標加速度信号を設定する目標加速度設定手段と、前記回転速度センサから得られる車速信号から加速度を演算して加速度信号を出力する加速度演算手段と、目標加速度信号と加速度信号との加速度差分を演算して加速度差分信号を出力する差分演算手段と、加速度差分信号に基づいて補正係数を設定する補正係数設定手段と、補正係数に基づいて目標信号を補正演算する目標信号補正演算手段と、を備えたことを特徴とする電動車椅子。
A main wheel provided with handling for manipulating the vehicle body manually, a main wheel rotation speed sensor for detecting the rotation speed of the main wheel, a manual torque sensor for detecting an operation force applied to the handling, and the main wheel An electric motor for adding auxiliary force, a drive control means for driving and controlling the electric motor, and a motor driving means for driving the electric motor by a signal from the drive control means are provided in a pair of left and right, respectively.
In the electric wheelchair constituted by the control means provided with a pair of left and right control signal processing means for processing the signals from the rotational speed sensor and the manual torque sensor and controlling the magnitude and direction of the auxiliary force by the electric motor,
Target signal setting means for setting, in the control signal processing means, a target signal for determining the magnitude and direction of the auxiliary force by the electric motor based on values of signals from the rotational speed sensor and the manual torque sensor; and the manual torque sensor Target acceleration setting means for setting a target acceleration signal based on a manual torque signal obtained from the above, acceleration calculation means for calculating an acceleration from a vehicle speed signal obtained from the rotational speed sensor and outputting an acceleration signal, a target acceleration signal, A difference calculating means for calculating an acceleration difference from the acceleration signal and outputting an acceleration difference signal, a correction coefficient setting means for setting a correction coefficient based on the acceleration difference signal, and a target for correcting and calculating the target signal based on the correction coefficient An electric wheelchair comprising: a signal correction calculation unit.
車体を人力で操作するためのハンドリングを付設した主輪と、この主輪の回転速度を検出する主輪回転速度センサと、前記ハンドリングに加える操作力を検出する手動トルクセンサと、前記主輪に補助力を付加する電動機と、前記電動機を駆動制御する駆動制御手段と、この駆動制御手段からの信号によって前記電動機を駆動する電動機駆動手段と、をそれぞれ左右一対に備えると共に、
前記回転速度センサおよび前記手動トルクセンサからの信号を処理して前記電動機による補助力の大きさと方向を制御する制御信号処理手段をそれぞれ左右一対に備える制御手段から構成する電動車椅子において、
前記制御手段に、左右の前記回転速度センサから得られる車速信号から平均車速を演算して平均車速信号を出力する平均車速演算手段と、平均車速信号から加速度を演算して加速度信号を出力する加速度演算手段と、を備え、
かつ前記回転速度センサおよび前記手動トルクセンサからの信号の値に基づいて前記電動機による補助力の大きさと方向を決める目標信号を設定する目標信号設定手段と、前記手動トルクセンサから得られる手動トルク信号に基づいて目標加速度信号を設定する目標加速度設定手段と、目標加速度信号と加速度信号との加速度差分を演算して加速度差分信号を出力する差分演算手段と、加速度差分信号に基づいて補正係数を設定する補正係数設定手段と、補正係数に基づいて目標信号を補正演算する目標信号補正演算手段と、からなる前記制御信号処理手段を備えたことを特徴とする電動車椅子。
A main wheel provided with handling for manipulating the vehicle body manually, a main wheel rotation speed sensor for detecting the rotation speed of the main wheel, a manual torque sensor for detecting an operation force applied to the handling, and the main wheel An electric motor for adding auxiliary force, a drive control means for driving and controlling the electric motor, and a motor driving means for driving the electric motor by a signal from the drive control means are provided in a pair of left and right, respectively.
In the electric wheelchair constituted by the control means provided with a pair of left and right control signal processing means for processing the signals from the rotational speed sensor and the manual torque sensor and controlling the magnitude and direction of the auxiliary force by the electric motor,
An average vehicle speed calculating means for calculating an average vehicle speed from the vehicle speed signals obtained from the left and right rotational speed sensors and outputting an average vehicle speed signal to the control means, and an acceleration for calculating an acceleration from the average vehicle speed signal and outputting an acceleration signal Computing means,
And target signal setting means for setting a target signal for determining the magnitude and direction of the auxiliary force by the electric motor based on signal values from the rotational speed sensor and the manual torque sensor, and a manual torque signal obtained from the manual torque sensor A target acceleration setting means for setting a target acceleration signal based on the difference, a difference calculation means for calculating an acceleration difference between the target acceleration signal and the acceleration signal and outputting an acceleration difference signal, and a correction coefficient based on the acceleration difference signal An electric wheelchair comprising the control signal processing means comprising: correction coefficient setting means for performing correction and target signal correction calculation means for correcting and calculating a target signal based on the correction coefficient.
車体を人力で操作するためのハンドリングを付設した主輪と、この主輪の回転速度を検出する主輪回転速度センサと、前記ハンドリングに加える操作力を検出する手動トルクセンサと、前記主輪に補助力を付加する電動機と、前記電動機を駆動制御する駆動制御手段と、この駆動制御手段からの信号によって前記電動機を駆動する電動機駆動手段と、をそれぞれ左右一対に備えると共に、
前記回転速度センサおよび前記手動トルクセンサからの信号を処理して前記電動機による補助力の大きさと方向を制御する制御信号処理手段をそれぞれ左右一対に備える制御手段から構成する電動車椅子において、
前記制御信号処理手段に、前記回転速度センサおよび前記手動トルクセンサからの信号の値に基づいて前記電動機による補助力の大きさと方向を決める目標信号を設定する目標信号設定手段と、前記手動トルクセンサから得られる手動トルク信号に基づいて目標加速度信号を設定する目標加速度設定手段と、前記回転速度センサから得られる車速信号から加速度を演算して加速度信号を出力する加速度演算手段と、目標加速度信号と加速度信号との加速度差分を演算して加速度差分信号を出力する差分演算手段と、加速度差分信号に基づいて補正係数を設定する補正係数設定手段と、補正係数に基づいて前記手動トルクセンサから得られる手動トルク信号を補正演算して補正手動トルク信号を前記目標信号設定手段に出力する手動トルク補正演算手段と、を備えたことを特徴とする電動車椅子。
A main wheel provided with handling for manipulating the vehicle body manually, a main wheel rotation speed sensor for detecting the rotation speed of the main wheel, a manual torque sensor for detecting an operation force applied to the handling, and the main wheel An electric motor for adding auxiliary force, a drive control means for driving and controlling the electric motor, and a motor driving means for driving the electric motor by a signal from the drive control means are provided in a pair of left and right, respectively.
In the electric wheelchair constituted by the control means provided with a pair of left and right control signal processing means for processing the signals from the rotational speed sensor and the manual torque sensor and controlling the magnitude and direction of the auxiliary force by the electric motor,
Target signal setting means for setting, in the control signal processing means, a target signal for determining the magnitude and direction of the auxiliary force by the electric motor based on values of signals from the rotational speed sensor and the manual torque sensor; and the manual torque sensor Target acceleration setting means for setting a target acceleration signal based on a manual torque signal obtained from the above, acceleration calculation means for calculating an acceleration from a vehicle speed signal obtained from the rotational speed sensor and outputting an acceleration signal, a target acceleration signal, Obtained from the manual torque sensor based on a correction coefficient, difference calculation means for calculating an acceleration difference from the acceleration signal and outputting an acceleration difference signal, correction coefficient setting means for setting a correction coefficient based on the acceleration difference signal Manual torque correction for correcting the manual torque signal and outputting the corrected manual torque signal to the target signal setting means Electric wheelchair, characterized in that it and a calculation unit.
車体を人力で操作するためのハンドリングを付設した主輪と、この主輪の回転速度を検出する主輪回転速度センサと、前記ハンドリングに加える操作力を検出する手動トルクセンサと、前記主輪に補助力を付加する電動機と、前記電動機を駆動制御する駆動制御手段と、この駆動制御手段からの信号によって前記電動機を駆動する電動機駆動手段と、をそれぞれ左右一対に備えると共に、
前記回転速度センサおよび前記手動トルクセンサからの信号を処理して前記電動機による補助力の大きさと方向を制御する制御信号処理手段をそれぞれ左右一対に備える制御手段から構成する電動車椅子において、
前記制御信号処理手段に、前記回転速度センサおよび前記手動トルクセンサからの信号の値に基づいて前記電動機による補助力の大きさと方向を決める目標信号を設定する目標信号設定手段と、前記手動トルクセンサから得られる手動トルク信号に基づいて目標加速度信号を設定する目標加速度設定手段と、前記回転速度センサから得られる車速信号から加速度を演算して加速度信号を出力する加速度演算手段と、目標加速度信号と加速度信号との加速度差分を演算して加速度差分信号を出力する差分演算手段と、加速度差分信号に基づいてホールド時間制御信号を出力するホールド時間制御手段と、前記目標信号設定手段からの目標信号が急激に減少した場合、目標信号をなだらかに減少させるように、減少する目標信号をホールド時間制御信号に基づいてホールドして処理をするホールド処理手段を備えたことを特徴とする電動車椅子。
A main wheel provided with handling for manipulating the vehicle body manually, a main wheel rotation speed sensor for detecting the rotation speed of the main wheel, a manual torque sensor for detecting an operation force applied to the handling, and the main wheel An electric motor for adding auxiliary force, a drive control means for driving and controlling the electric motor, and a motor driving means for driving the electric motor by a signal from the drive control means are provided in a pair of left and right, respectively.
In the electric wheelchair constituted by the control means provided with a pair of left and right control signal processing means for processing the signals from the rotational speed sensor and the manual torque sensor and controlling the magnitude and direction of the auxiliary force by the electric motor,
Target signal setting means for setting, in the control signal processing means, a target signal for determining the magnitude and direction of the auxiliary force by the electric motor based on values of signals from the rotational speed sensor and the manual torque sensor; and the manual torque sensor Target acceleration setting means for setting a target acceleration signal based on a manual torque signal obtained from the above, acceleration calculation means for calculating an acceleration from a vehicle speed signal obtained from the rotational speed sensor and outputting an acceleration signal, a target acceleration signal, A difference calculation means for calculating an acceleration difference from the acceleration signal and outputting an acceleration difference signal, a hold time control means for outputting a hold time control signal based on the acceleration difference signal, and a target signal from the target signal setting means In the case of a sudden decrease, the target signal that decreases is held in the hold time system so that the target signal decreases gently. Electric wheelchair, characterized in that it comprises a hold processing means for the holding and processing based on the signal.
JP05973496A 1996-03-15 1996-03-15 Electric wheelchair Expired - Fee Related JP3558314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05973496A JP3558314B2 (en) 1996-03-15 1996-03-15 Electric wheelchair

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05973496A JP3558314B2 (en) 1996-03-15 1996-03-15 Electric wheelchair

Publications (2)

Publication Number Publication Date
JPH09248319A JPH09248319A (en) 1997-09-22
JP3558314B2 true JP3558314B2 (en) 2004-08-25

Family

ID=13121746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05973496A Expired - Fee Related JP3558314B2 (en) 1996-03-15 1996-03-15 Electric wheelchair

Country Status (1)

Country Link
JP (1) JP3558314B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220289040A1 (en) * 2021-03-10 2022-09-15 Yamaha Hatsudoki Kabushiki Kaisha Electrically assisted wheelchair, drive unit, control method and computer program
US12122245B2 (en) * 2021-03-10 2024-10-22 Yamaha Hatsudoki Kabushiki Kaisha Electrically assisted wheelchair, drive unit, control method and computer program

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101244246B1 (en) * 2011-12-07 2013-04-10 인덕대학교 산학협력단 Driving method for power-assisted electric wheelchair
KR101274443B1 (en) * 2011-12-07 2013-06-18 인덕대학교 산학협력단 Power-assist device and power-assisted electric wheelchair
WO2019003260A1 (en) * 2017-06-26 2019-01-03 ヤマハ発動機株式会社 Power assist wheelchair, power assist unit for wheelchair, control device for power assist wheelchair, control method for power assist wheelchair, and program
WO2019053859A1 (en) * 2017-09-14 2019-03-21 ヤマハ発動機株式会社 Power-assisted wheelchair, power-assist unit for wheelchair, control device for power-assisted wheelchair, control method for power-assisted wheelchair, program, and terminal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220289040A1 (en) * 2021-03-10 2022-09-15 Yamaha Hatsudoki Kabushiki Kaisha Electrically assisted wheelchair, drive unit, control method and computer program
US12122245B2 (en) * 2021-03-10 2024-10-22 Yamaha Hatsudoki Kabushiki Kaisha Electrically assisted wheelchair, drive unit, control method and computer program

Also Published As

Publication number Publication date
JPH09248319A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
US5648903A (en) Four wheel steering control utilizing front/rear tire longitudinal slip difference
US5161634A (en) Electric vehicle
JP3661882B2 (en) Auxiliary powered vehicle
JP2863234B2 (en) Electric vehicle
JPH0549106A (en) Motor controller
US20110160945A1 (en) To Power Assisted Vehicles
JP2008011609A (en) Electric-driven vehicle
JP3957101B2 (en) Control device for electric vehicle
JP2004274879A (en) Driver for motorized two-wheel vehicle
JP3662658B2 (en) Electric wheelchair
JP3558314B2 (en) Electric wheelchair
JP2591185B2 (en) Vehicle running state control device
JP2023515310A (en) Towbar arrangement for control of self-propelled trailers
JPH072164A (en) Vehicle with electric motor
JP3576663B2 (en) Electric wheelchair
JP3602247B2 (en) Electric wheelchair
JPH0984215A (en) Electric car drive motor controller
JP4239711B2 (en) Vehicle turning assist device
JPH068815A (en) Target slip ratio correcting device
JPH0516872A (en) Front-rear drive two wheeler
JP2001270486A (en) Vehicle with electric motor and its control method
JP3660396B2 (en) Auxiliary powered vehicle
JP3965346B2 (en) Wheelchair with electric auxiliary power
JP7563277B2 (en) Vehicle control device
JP4135600B2 (en) Vehicle steering system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees