JP3557199B2 - Atm通信システム及びatm通信方法 - Google Patents

Atm通信システム及びatm通信方法 Download PDF

Info

Publication number
JP3557199B2
JP3557199B2 JP2002257118A JP2002257118A JP3557199B2 JP 3557199 B2 JP3557199 B2 JP 3557199B2 JP 2002257118 A JP2002257118 A JP 2002257118A JP 2002257118 A JP2002257118 A JP 2002257118A JP 3557199 B2 JP3557199 B2 JP 3557199B2
Authority
JP
Japan
Prior art keywords
atm
network
connection
terminal
address
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002257118A
Other languages
English (en)
Other versions
JP2003143187A (ja
Inventor
健 斉藤
茂雄 松澤
浩 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002257118A priority Critical patent/JP3557199B2/ja
Publication of JP2003143187A publication Critical patent/JP2003143187A/ja
Application granted granted Critical
Publication of JP3557199B2 publication Critical patent/JP3557199B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ATM通信システム及びATM通信方法に関する。
【0002】
【従来の技術】
近年、画像通信、高速データ通信などの多様な通信の要求が高まり、効率的で柔軟性に富む通信サービスを提供するために通信網の統合化(B−ISDN)が望まれている。その実現方法としてATM(Asynchronous Transfer Mode:非同期転送モード)交換が有望視されている。ATM交換方式は、情報をその属性に関わらずセルと呼ばれる固定長パケットに収め、このセルを交換の単位として用いることにより、通信サービスを実現しようというものである。
【0003】
CCITTでは、このATM交換方式を正式な次世代交換方式であると定め、B−ISDNを正式にATM交換方式を用いて実現することを決定した。これに伴い、公衆網および企業網がATM交換方式をベースに構築され、これが次世代のマルチメディア通信や広帯域通信などのニーズを実現する可能性が高い。
【0004】
このATM交換方式をLAN(ローカルエリアネットワーク)の分野に適用しようという動きがある。これは、従来イーサネットを代表としたLANの通信方式をATM交換方式(以下、ATM通信方式とも呼ぶ)にて実現しようというもので、既にアメリカなどでは標準化の動きも始まっている。
【0005】
ATM交換方式をLANに適用した場合、以下に述べるような利点が考えられる。
【0006】
(1)広帯域通信を実現できる
現在のLANの実質的標準といえるイーサネットの通信速度は、10Mbps である。FDDI(100Mbps )など、より高速のLANも登場しつつあるが、これらは共にシェアードメディア(その帯域を全ての端末が共用する方式)である。これに対し、150Mbps/620Mbps を標準としたATM交換方式の導入は、基本的にスター型の構成であるため、その帯域を端末が独占的に使用することができ、LANのスループットを飛躍的に向上する可能性がある。
【0007】
(2)マルチメディアに適している
現在のLANでは、ファイル転送やトランザクション処理などのいわゆるデータ通信をサポートしてきたが、その方式の関係から音声・画像などに代表されるリアルタイム通信のサポートができないか、もしくはできてもそのオーバヘッドが非常に重く、サポート帯域は非常に小さい。
【0008】
これに対し、ATM交換方式はハードウエアによる統一的処理、網の信頼性の飛躍的向上などにより、音声・画像などのリアルタイム/コンティニュアス通信と、データ通信などの非コンティニュアス通信の融合、すなわちマルチメディア通信が可能な通信方式である。このことから、ATM交換方式をLANに導入することによりLANにおけるマルチメディア環境の実現を促す可能性がある。
【0009】
(3)公衆網との親和性がよい。
【0010】
先にも述べたように、公衆網における広帯域通信実現のターゲットはATM交換方式であることがCCITTで決められていることから、将来の公衆網(公衆通信網)はATM網として構築される可能性が極めて高い。
【0011】
また、これとは別に最近LANの環境をより広い領域で使用したいという要求が高まっている。これはLANと同一の環境をより広域化すること、すなわちMAN(Metropolitan Area Network) やWAN(Wide Area Network) へのニーズの高まりを示している。これを実現するためには、端末同士あるいはLAN同士を公衆網を介して相互接続する必要があり、一般にこれら端末あるいは網が物理的に離れている場合には、公衆網を介して相互接続する必要がある。
【0012】
公衆網にATM交換方式が用いられ、LANでも同様の通信方式が用いられるとすると、その境界点においては簡単なプロトコル変換のみで情報/パケットの相互乗り入れを行うことが可能であると考えられ、公衆網への親和性の高さを示している。これらのことから、LANにATM交換方式を適用することは、これまでの公衆網では不可能であった遠距離端末/網間の広帯域通信回線の確保、及びリアルタイム性の確保ができると考えられ、MANあるいはWANへのLANの展開を促進するものといえよう。
【0013】
一方、従来のLAN環境、例えばイーサネット等においては、LAN間接続、即ちLAN間のインターネットワーキングを行う場合、各々のLAN間にルーターが配置されていた。このルーターはOSIプロトコルレイヤスタックのレイヤ3(ネットワークレイヤ)までの処理を行い、LAN間をまたがるデータグラム通信のルーチング処理を主にその機能としている。即ち、2つのLANをまたがるデータグラムについては、必ずルーターにてレイヤ3まで上げられ、ここで宛先ネットワークレイヤアドレスが解析され、この解析結果に従って宛先のLANに配送される。このルーターは、しばしばコンピュータ通信の世界で「ゲートウェイ」と呼ばれることもあるが、「ゲートウェイ」なる用語はOSIにてレイヤ7までの処理を行う実体として定義されており、ここでの用語の使い方と異なるので、以降はルーターという呼び方で統一する。
【0014】
また、LAN間接続を実現するためのものの中でルーターに類似したものとして、「ブリッジ」なるものも知られている。これは、ルーターが宛先ネットワークレイヤアドレスを解析して、送出するLANを決定しているのに対し、ブリッジではデータリンクレイヤアドレス(MACアドレス)を解析して送出するLANを決定している。具体的には、ブリッジは受信したデータグラムの宛先MACアドレスを解析し、該受信したMACアドレスが自LAN内宛てでない場合は、該データグラムを他方のLANに透過させることでLAN間接続を実現させる機能である。さらに、これに類似したものとして、ある決められたネットワークレイヤプロトコルについてはルーターとして機能し、それ以外のプロトコルについてはブリッジとして機能する「ブルータ」が知られている。
【0015】
これらのルーター、ブリッジおよびブルータには、通常ワークステーション (WS)が用いられてきた。即ち、WS内のCPUがアドレスの解析などを行い、割り当てられた物理ポートに対してこれを送出することでルーター、ブリッジ、ブルータの機能を実現していた。
【0016】
【発明が解決しようとする課題】
ATM通信方式は、ATMセルのハードウエアスイッチングによって高速化を達成することが一つの特徴となっている。すなわち、ATM網は「コネクションオリエンテッド」(以下、COともいう)な網であり、エンド−エンド間に仮想コネクション(Virtual Connection:VC)または仮想パス(Virtual Path:VPともいう)を張り、これらVCまたはVPをその識別子(VCIまたはVPI)でラベル多重またはラベル交換される形でセルと呼ばれるパケットがエンド−エンド間で配送される。
【0017】
エンド−エンド間で配送される情報(データ)はATMセルのペイロード内に格納され、ATMセルはVC/VPに沿う形でソフトウエアの介在無しにハードウエアスイッチングのみで宛先端末まで交換・転送される。ハードウエアスイッチングは、ATMセルヘッダに含まれるVPI/VCI(場合によっては、ATMセルヘッダのこれ以外の領域の値、例えばPTなど)を参照してATMスイッチにより行われる。
【0018】
このATM通信方式をLANの分野に適用する場合、LAN内の端末間の通信は、上記のようなATM−VC/ATM−VPを通した通信によって達成できると考えられ、端末間通信の飛躍的な高速化・大容量化を期待できる。
【0019】
しかしながら、このようなATM通信方式を適用したLAN(以下ATM−LANと呼ぶ)間での通信を行う場合、前述したようにLAN間に位置するルーター、ブリッジまたはブルータによって強制的にレイヤ3またはレイヤ2での終端がなされる。この終端後のレイヤ2、レイヤ3処理は通常ソフトウエア処理にて行われる可能性が大きい。このためLAN間にまたがる通信に関しては、LAN内の通信と比べて著しく高速性・大容量性が失われる可能性が大きい。また、従来のようにLAN間にルーター、ブリッジ、ブルータなどを配してLAN間通信を行う方式においては、LAN間をまたがったVP/VCは基本的に張れないこととなる。VP/VCは、そのエンドポイント間でATMレイヤ以上のレイヤ処理がされることはないからである。これはATM網間にまたがる通信については、ATM通信方式の特徴の一つであるコネクションオリエンテッドな通信回線を設定できないことを意味する。
【0020】
コネクションオリエンテッドな通信方式であるATM通信方式に対し、従来のデータ通信で用いられてきた通信方式は「コネクションレス」(以下、CLともいう)である。コネクションレス通信方式では、エンド−エンド間でコネクションは必ずしも張らず、宛先情報をパケットの一部に添付する形でパケットを網に送り出し、網内の何らかのノードが宛先情報を解析してルーチング処理を行い、宛先端末まで該パケットを転送する。すなわち、コネクションレス通信は端末がコネクションの設定手続を行うことなく通信をデータグラム実現するこのようにしてコネクションレスで宛先端末まで送出するパケットをデータグラムと呼び、これを用いた通信方式をデータグラム転送方式と呼んでいる。換言すれば、コネクションレス通信は端末がコネクションの設定手続を行うことなく通信をデータグラム転送の形で実現する方式である。
【0021】
既存のデータ端末、例えばワークステーション(WS)やパーソナルコンピュータ(PC)などは、このデータグラム転送方式を適用しているものがほとんどである。これは、従来のほとんどのLANがデータグラム転送方式をサポートしており、またデータ端末内に搭載されていたソフトウエア(例えばOS)がデータグラム転送向けのものであったためでもある。この代表例としてTCP/IP、UDP/IPを挙げることができる。
【0022】
これら既存の端末、あるいは既存のプロトコルを搭載した端末、すなわちデータグラムを生成し、ATM網を介して相手側端末/網へ送出する端末では、データグラム転送方式を端末−端末間の通信に用いる。このため、これらの端末をATM網に適応させるためには、(a) 端末において現状のLAN用の基板、例えばイーサネットボードをATM網用の基板(ATMボード)と入れ替え、またはターミナルアダプタ(TA)などを用いてATM−LANとのインタフェースに適合させる機能、(b) 端末において、データグラムを何らかの形でATMセルに乗せ込む機能、(c) 網において、データグラムをその宛先アドレスが示す宛先端末まで配達する機能、を設けるといった改良が端末側や網に必要となる。なお、ここでいう端末とは、既存のLANとATM網とのゲートウエイも含む。
【0023】
これを実現する機能として、従来CLSF(コネクションレスサービス機能)を用いたデータグラム配送方式が知られていた。このCLSFを用いたデータグラム配送方式は、以下のようにして実現される。
【0024】
ATM網内にCLSF処理部を配置し、データグラムは全てここに集める。すなわち、全てのデータグラム端末とCLSF処理部はPVC(パーマネントVC)(VC、VP、PVPでもよい)でつながれ、端末は送出したいデータグラムを全てATMセル化してCLSF処理部へ向かうPVCに乗せ込み、CLSF処理部へ送出する。CLSF処理部では受信したデータグラムを再生し、宛先アドレスを解析して宛先アドレスにつながるPVCを選択し、再度データグラムをATMセル化して送出する。宛先アドレスにつながるPVCが存在しない場合、複数のCLSF処理部が網内に存在するときは宛先アドレスである端末を含むと考えられる、またはルーチング規則で予め定められた次段のCLSF処理部にデータグラムを再度ATMセル化して送出する。
【0025】
CLSF処理部では、必ずしもデータグラムを再生してから宛先アドレスを解析し、再度ATMセル化して送出する必要はなく、データグラムをATMセル化した最初の1セル内に宛先アドレスが含まれている場合は、最初の1セル内の宛先アドレスを解析して、そのまま該セルを宛先端末に向かって転送するとともに、データグラムをATMセル化した2セル目以降を順次宛先端末に送信する方法を用いても良い。
【0026】
しかしながら、上述したCLSFを用いる方法では、網内から送信された全てのデータグラムは必ずCLSF処理部を経由することになり、送信するデータグラムの量が増えるほど、また網内の端末数が増えるほどCLSF処理部にはより高いスループットが求められ、CLSF処理部には非常に高いスループットと、柔軟な拡張性が求められることになる。
【0027】
データグラムを宛先端末まで送出するもう一つの方法は、宛先端末までATMコネクション、例えばVCを張り、ATMセル化したデータグラムをこのVC上に乗せ込んで配送する方法である。しかし、この方法ではどの宛先端末に対してVCを張るかという点が非常に問題になる。すなわち、データグラムを送り得る相手端末は実質上無数にあり、さらにデータグラムは音声情報などと違ってその発生がバースト的であるために、無駄にコネクションを張ることは網資源の浪費となる。
【0028】
さらに、従来のATM網においてはコネクションレス通信を実現する場合、必ずCLSF処理部においてATMコネクションが終端され、AALレイヤより上位のプロトコル処理、例えばCLNAPと呼ばれるコネクションレスサービス用のプロトコル処理が行われる。つまり、非常に近接した端末間でデータグラム通信を行う場合にも、一旦CLSF処理部においてATMコネクションが終端されてしまう。また、遠くの端末間でデータグラム通信を行う場合には、データグラムは複数のCLSF処理部を通過することになり、各CLSF処理部でそれぞれAALレイヤ以上のプロトコル処理が行われる。
【0029】
一般に、AALレイヤより上位のCLNAPといったプロトコル処理は、ソフトウェア処理で行われ(AALレイヤ以下は、一般にハードウェア処理で行われる)、処理速度が遅い。また、CLSF処理部は自分がサポートしている網に属する端末間の通信だけではなく、他のCLSF処理部がサポートしている網内の端末との通信に際しても、データグラム中のアドレス情報(例えばネットワークレイヤアドレス情報)の解析を行う必要があり、CLSF処理部にデータグラム転送処理の負荷が集中してしまう。これらの理由により、従来のATM通信システムでは端末間でのコネクションレス通信(データグラム配送)においては、高速な通信を実現することが難しいという問題があった。
【0030】
本発明の目的は、高速性・大容量性・コネクションオリエンテッド性を犠牲にすることなくATM網間の通信を実現できるATM通信システム及びATM通信方法を提供することにある。
【0031】
本発明の他の目的は、ATM網を用いたデータグラム配送を効率的に行うことができるATM通信システム及びATM通信方法を提供することにある。
【0032】
本発明のさらに別の目的は、ATM網に接続された端末間のコネクションレス通信、すなわちデータグラム配送を高速に行うことができるATM通信システム及びATM通信方法を提供することにある。
【0033】
【課題を解決するための手段】
本発明(請求項1)は、複数のATMネットワークと宛先端末を収容する宛先側ネットワークとを含む複数のネットワークと、前記複数のネットワークにおけるコネクションレスのデータグラム転送を司る複数のコネクションレスサービス(CLSF)処理手段とを備え、前記複数のコネクションレスサービス処理手段は、前記宛先側ネットワークに対してデータグラム転送を行う宛先側コネクションレスサービス処理手段を含み、前記宛先側コネクションレスサービス処理手段に接続されるATMコネクションには、帯域管理を行わないATMコネクションを用い、前記ATMコネクションを識別するためのコネクション識別子を取得し、この取得されたコネクション識別子により識別されるATMコネクションを通して送信元端末から前記宛先側コネクションレスサービス処理手段へのデータグラムを送信することによって、該送信元端末から前記宛先端末へのコネクションレスのデータグラム転送を行うことを特徴とする。
好ましくは、前記宛先側ネットワークはATMネットワークであり、前記コネクションレスサービス処理手段は各ATMネットワーク毎に設けられるようにしてもよい。
好ましくは、前記ATMコネクションは前記送信元端末と前記宛先側コネクションレスサービス処理手段との間に設定されるようにしてもよい。
好ましくは、前記ATMコネクションは前記送信元端末を収容する送信元側ATMネットワークに関連する送信元側コネクションレスサービス処理手段と前記宛先側コネクションレスサービス処理手段との間に設定されるようにしてもよい。さらに、好ましくは、前記データグラムは前記送信元端末から前記送信元側コネクションレスサービス処理手段を介して前記宛先側コネクションレスサービス処理手段へ転送されるようにしてもよい。また、好ましくは、前記複数のATMネットワーク間を接続する網間接続手段を更に備え、前記送信元側コネクションレスサービス処理手段と前記宛先側コネクションレスサービス処理手段との間に前記網間接続手段を介してATMコネクションを設定するようにしてもよい。 好ましくは、前記宛先側コネクションレスサービス処理手段は、前記送信元端末から送信された前記データグラムを解析して、該データグラムを前記宛先端末へ配送するようにしてもよい。
好ましくは、前記宛先側コネクションレスサービス処理手段は、前記ATMコネクションを終端し、前記送信元端末から送信された前記データグラムを解析して、該データグラムを前記宛先端末へリレーイングするようにしてもよい。
好ましくは、前記コネクション識別子は前記宛先側コネクションレスサービス処理手段のATMレイヤアドレスを使って前記送信元端末により取得されるようにしてもよい。
好ましくは、前記コネクション識別子は前記宛先側コネクションレスサービス処理手段のATMレイヤアドレスを使って前記送信元端末を含む送信元側ネットワークに関連する送信元側コネクションレスサービス処理手段により取得されるようにしてもよい。
好ましくは、前記複数のATMネットワーク間を接続する網間接続手段を更に備え、前記送信元端末と前記宛先側コネクションレスサービス処理手段との間に前記網間接続手段によっては終端されないATMコネクションを設定するようにしてもよい。
好ましくは、前記ATMネットワーク毎に設けられたアドレスレゾリューションサーバを更に備え、当該アドレスレゾリューションサーバは、当該ATMネットワークからアドレスレゾリューション要求を受けた際、該アドレスレゾリューション要求のターゲットノードが当該ATMネットワークに属さない場合に該アドレスレゾリューション要求を他のATMネットワークのアドレスレゾリューションサーバにリレーイングし、前記宛先側コネクションレスサービス処理手段に接続されたATMコネクションを識別子可能な情報を当該ATMネットワークに返すようにしてもよい。
好ましくは、前記宛先側コネクションレスサービス処理手段は、論理的に前記宛先側ネットワークに属するが、物理的には前記宛先側ネットワークとは異なるネットワークのうちの1つに属するものであるようにしてもよい。
【0034】
また、好ましくは、前記ATMネットワークはATM−LANであるようにしてもよい。
また、好ましくは、前記コネクション識別子は前記ATMコネクションを識別するVPI/VCIであるようにしてもよい。
また、好ましくは、前記ATMネットワークは階層型トポロジーに配置されているようにしてもよい。
また、好ましくは、前記ATMネットワークは水平型トポロジーに配置されているようにしてもよい。
【0035】
本発明(請求項14)は、複数の端末を含む互いに網間接続された複数のネットワークであって複数のATMネットワークおよび宛先端末を収容した宛先側ネットワークを含む複数のネットワークと、前記複数のネットワークにおけるコネクションレスのデータグラム転送を司る複数のコネクションレスサービス処理手段であって前記宛先側ネットワークに対するデータグラム転送を行う宛先側コネクションレスサービス処理手段を含む複数のコネクションレスサービス処理手段とを備えたATM通信システムにおけるATM通信方法であって、前記宛先側コネクションレスサービス処理手段に接続される、帯域管理が行われないATMコネクションを識別するためのコネクション識別子を取得し、この取得されたコネクション識別子により識別されるATMコネクションを通して、各端末から前記宛先側コネクションレスサービス処理手段へデータグラムを送信することを特徴とする。
【0036】
本発明によれば、ATM網に収容された送信元端末自身で、送信元端末から宛先側のCLSF処理手段との間に設定されたATMコネクションのコネクション識別子を獲得し、このコネクション識別子により識別されたATMコネクションを用いて宛先側のCLSF処理手段へデータグラムを配送することにより、ATMコネクションの終端点の数が著しく減少される。これによって端末間での高速のデータグラム配送が可能となる。
【0037】
さらに、本発明によれば、送信元端末から宛先端末へ配送すべきデータグラムは送信元端末から送信元側のCLSF処理手段へ配送し、CLSF処理手段においては、該CLSF処理手段から宛先側のCLSF処理手段との間に設定されたATMコネクションのコネクション識別子を獲得し、配送されてきた送信元端末からのデータグラムを前記コネクション識別子により識別されたATMコネクションを用いて前記宛先側のCLSF処理手段へデータグラムを配送することにより、同様にATMコネクションの終端点の数が著しく減少され、端末間でのデータグラム配送を高速に実現することが可能となる。
【0038】
【発明の実施の形態】
以下、図面を参照しながら発明の実施の形態を説明する。
【0039】
(第1の実施形態)
図1に、第1の実施形態に関わるATM網を示す。同図に示されるように、本実施形態のATM網は、第1のATM−LAN11、第2のATM−LAN12、網間接続装置(以降、IWUとも呼ぶ)13からなる。
【0040】
第1のATM−LAN11、第2のATM−LAN12は、それぞれATM方式にて運用されるローカルエリアネットワークである。各々のATM−LAN内では、アドレス体系は独立している。即ち、各々のATM−LANの内部にて使用されるVPI/VCI値は、その内部に存在するVPI/VCI値決定機能が決める権限を持っており、この権限は各々のATM−LANにおいて独立である。ATM−LAN内の端末装置およびノードは、送出したい情報が存在する場合は(その送出先が該ATM−LAN内であっても、そうでなくても)、該情報をATMセルに格納し、しかるべきATMセルヘッダを付与して、該ATM−LAN内に送出する。
【0041】
図2に、網間接続装置13の内部構造の図を示す。この網間接続装置13は、アッド・ドロップ処理部21、マルチプレクサ/デマルチプレクサ(以下、MUX/DEMUXという)22、CLSF処理部23、呼処理部24、IWU管理部25、ATMセルヘッダ変換部26からなる。本網間接続装置13は、2つのATM−LAN間に位置し、該2つのATM−LANのインターネットワーキング(LAN間接続)を司る機能を有する。
【0042】
アッド・ドロップ処理部21は、入力されてきたATMセルのヘッダ部を参照し、該セルがしかるべきヘッダ値を有している場合(即ち、該セルが網間接続装置13内にて終端されるべきセルである場合)には、該セルをDEMUX22側にドロップさせる処理及びMUX22側からのセルをセル伝送路上に挿入する (アッドさせる)処理を行う。ここで、本アッド・ドロップ処理部21はセル伝送路上の左右どちらからのセルをもドロップさせる機能を持ち、かつ左右どちら方向のセル伝送路上へもセルを挿入させる機能を持っている。
【0043】
このアッド・ドロップ処理部21において、左右どちら方向のセル伝送路上ににセルを挿入させるかに関する情報は、後述するCLSF処理部23、呼処理部24、IWU管理部25の各々により指定されるものとする。すなわち、例えば左方向のセル伝送路に挿入するなら0、右方向なら1などの値と共に該挿入セルをアッド・ドロップ処理部21に渡し、アッド・ドロップ処理部21はこの値を参照して挿入方向を決める。また、該セルを挿入する箇所は、セル伝送路上のセルスロット上に空セルが通過している際に、これを置き換える形で挿入する形になっていても良い。
【0044】
また、アッド・ドロップ処理部21からセルをMUX/DEMUX22側にドロップするに際し、図3に示すようなドロップテーブルが参照される。このドロップテーブルは、左右両方向のセル伝送路に各々設けられ、このテーブルの値に従って、セルのドロップ先(CLSF処理部23か、呼処理部24か、IWU管理部25か)が決定される。図3のように、ドロップテーブルはセルヘッダ値をエントリーとし、ドロップ先を示す値が参照される。このドロップ先を示す値としては、例えばCLSF処理部23ならば1、呼処理部24ならば2、IWU管理部25ならば3、などというように値が割り当てられている。アッド・ドロップ処理部21にてドロップさせるセルは、このドロップ先を示す値と、左右どちら方向のセル伝送路からのドロップセルであるかを示す値(例えば左方向からならば0、右ならば1など)と共に、MUX/DEMUX22側に送出される。なお、このドロップテーブル上の情報は、後述するIWU管理部25によって、初期化、追加、変更などが行われる。
【0045】
MUX/DEMUX22は、アッド・ドロップ処理部より送られてきたセル (ドロップセル)を並行して送られてきた情報を参照して下部につながるいずれかのモジュール(本実施形態ではCLSF処理部23、呼処理部24、IWU管理部25)に送出する機能(DEMUX機能)、および該下部につながるモジュール群から送られてきたセル伝送路に挿入すべきセル(アッドセル、挿入セル)を多重し、アッド・ドロップ処理部21側に、どちらの方向に挿入すべきかの情報と共に渡す機能(MUX機能)を有する。
【0046】
CLSF処理部23は、コネクションレスサービス機能(Connection Less Service Function)の処理を行うものである。後に詳述するように、CLSF処理部23は網間接続装置13をまたがって配送されるデータグラム(コネクションレスパケット)を一度終端し(必ずしも、データグラムをリアセンブリする必要はないことに注意する。即ち、必ずしもネットワークレイヤ終端を行う必要はなく、CCITTにて審議されているCLレイヤにて終端を行うこともできる)、ネットワークレイヤアドレスを一度参照した後、しかるべきATMコネクション(該ネットワークレイヤアドレスを有する端末/ノードとつながるVP/VC、または該ネットワークレイヤアドレスを配送する機能を有すると考えられるCLSF処理部とつながるVP/VC)に送出する機能を有する。このCLSF処理部23にて、データグラム配送のためのATMコネクションは一度終端されていることに注意が必要である。
【0047】
呼処理部24は、基本的に網間接続装置13をまたがるATMコネクションの設定、切断、変更、管理などを行う機能を有している。また、該ATMコネクション、あるいは網間接続装置内のATM伝送路上の帯域を管理する機能を有していても良い。詳細は後述する。
【0048】
IWU管理部25は、網間接続装置13の管理、制御を行う機能を有する。
【0049】
ヘッダ変換部26は、(左右両方向から)入力されてきたセルのヘッダ値を参照し、該ヘッダ値がしかるべき値である場合、これを別のヘッダ値に書き換える機能を有する。このヘッダ変換部26は、基本的にセルヘッダ値を参照(入力セルヘッダ値)し、これをあるセルヘッダ値(出力セルヘッダ値)に書き換える機能を有しているため、該入力セルヘッダ値と、出力セルヘッダ値との対応テーブルを内部に有している。この対応テーブルの初期化、追加、変更などは、IWU管理部25によって行われる。この対応テーブルは、エントリー値が入力セルヘッダ値である点で、図3のドロップテーブルと一致しているため、該テーブルをドロップテーブルと一体化させることが容易に可能である。
【0050】
網間接続装置13内の各モジュールは、各々バス接続されているものとし(図示せず)、IWU管理部25からの各モジュールの設定値の変更などの制御は、このバスを通して行われるものとする。
【0051】
なお、各モジュール間の情報のやり取りを上記のようにバスを通して行うのではなく、ATMセルに該情報を乗せて、セルをモジュール間で交換することにより、これを行っても良い。
【0052】
なお、本実施形態では、左右両方向のセル伝送路上の色々の処理(CLSF処理、呼処理など)を左右で同一のモジュールにて行っているが、左右の方向別にこれを行うことも可能である。
【0053】
また、本実施形態では、本IWU内の色々の処理を別個に行っているが(即ち、CLSF処理部はCLSF処理専用モジュールにて、呼処理は呼処理専用モジュールにてそれぞれ処理を行っている)、全て、あるいはこれらの処理のいくつかを同一のCPU/MPUにて行うことも可能である。
【0054】
また、本実施形態の図2の網間接続装置内にはヘッダ変換部26が一つしかない場合を記しているが、左右両方向のATMセル流に対して、アッド・ドロップの前、および/または後にヘッダ変換部を設けて、その各々がそれぞれ片方向のセル流のATMセルのヘッダ変換を行う方式(図38)や、図39のようにヘッダ変換部の前後にアッド・ドロップ処理部を設けて、それぞれ片方向のセル流のATMセルのアッド・ドロップを行う方式も考えられる。これらのようにすることにより、左右両方向からみて、網間接続装置13の機能を対称にみせることができる。
【0055】
次に、図4に第1のATM−LAN11、第2のATM−LAN12の内部のノード・端末構成の一実施形態を示す。このように、第1のATM−LANは11は、3つのスイッチノード41、42、43と、これらに接続された端末4A、4B、4C、4Dからなる。また、第2のATM−LAN12は、2つのスイッチノード44、45と、これらに接続された端末4E、4F、4Gからなる。
【0056】
スイッチノード内には、ATMスイッチが実装され、スイッチノード同士の接続、網間接続装置との接続、端末装置との接続を行うことができ、その際はスター型(あるいはツリー型など)の構成をとることとなる。これらスイッチノードと、端末装置/スイッチノード/網間接続装置間のインタフェース速度は10M、20M、155M、622Mなど様々な値を選択できるものとする。
【0057】
次に、図5に両ATM−LAN内の端末と、網間接続装置13内のCLSF処理部間のATMコネクション接続状態の一実施形態を示す。ここで、簡単のため端末・スイッチノード間、スイッチノード・網間接続装置間の配線は省略してある。また、網間接続装置内の呼処理部、ヘッダ変換部などのその他の構成要素も図中では省略してある。
【0058】
このように、各端末装置と網間接続装置13内のCLSF処理部23間は、それぞれATMコネクションで結ばれている。このATMコネクションは、VPであってもVCであっても構わない。このATMコネクションは、帯域管理の対象外のコネクションである。即ち、端末装置と、網間接続装置13内のCLSF処理部23とのATMコネクションを物理的に張るのに際し、帯域の予約がなされることなく(即ち、呼受付制御に際し、帯域管理のための評価関数を経ることなく)張られたものである。このような帯域管理を行わないATMコネクションは、帯域管理を行うATMコネクションと比較して、優先度が低いと考えられる。即ち、セル配送遅延、あるいはセル廃棄率などのパラメータに関して、帯域管理を行うATMコネクションと比較すると、帯域管理を行わないATMコネクションは悪い値を示すことになる。この端末装置と、CLSF処理部間を結ぶATMコネクションは、データグラムの配送のために使われるものであるが、元来データグラムの配送は、大きな遅延時間、および信頼性のない物理コネクションを前提にして考えられたものであるため、このようなATMコネクションを使用するのは、妥当である。
【0059】
このように、本実施形態においてはATM−LAN内のATMコネクション(場合によっては、ATM−LAN間をまたがるATMコネクションについても)には、帯域管理を行うATMコネクションと、帯域管理を行わないATMコネクションとがある。帯域管理を行うATMコネクションは一定の通信品質(QOS)を保ちつつ通信を行うことのできるコネクション(一定以上のセル廃棄率、一定以下の遅延時間が期待できるコネクション)であり、帯域管理を行わないATMコネクションは通信品質に一切の保証がないコネクション(セル廃棄率、遅延時間に関して、制限がない)である。
【0060】
帯域管理を行うATMコネクションは、優先度の高いコネクション、帯域管理を行わないATMコネクションは優先度の低いコネクションと考えられ、例えば優先度の高いコネクションに属するセルが無い場合に限り、優先度の低いコネクションに属するセルの通過を許すなどの優先制御を行うことにより、これを実現することができる。
【0061】
帯域管理を行うATMコネクションに関しては、該コネクションの通過するセル伝送路、および交換ノード内の通信資源が確保された場合に限り、設定を許可されるコネクションであるのに対し、帯域管理を行わないATMコネクションに関しては、帯域管理対象外であるため、呼/コネクション受付制御に際しても、(各コネクション管理エンティティの)受付上限数以下である限り、無条件に受け付けられるものである。
【0062】
なお、この端末装置と網間接続装置13内のCLSF処理部23間を結ぶATMコネクションは、網間接続装置をまたがる、即ちATM−LAN間をまたがるものではないことに注意が必要である。ATM−LAN間をまたがるATMコネクションを設定する場合は、一般に、後述するように両ATM−LAN間でのネゴシエイションや、アドレス変換、プロトコル変換などが一般に必要であり、網間接続装置内にCLSF処理部を設けることにより、このようなATM−LAN間をまたがるATMコネクションをデータグラム配送のために設ける必要がなくなる。
【0063】
さて、端末装置は、網間接続装置13を介した、即ち自ATM−LAN外へのデータグラムについては、網間接続装置13内のCLSF処理部23を介して配送することになる。即ち、ATMセル化したデータグラムを該CLSF処理部23に送り込むことになるが、該データグラムを該CLSF処理部23に送出すれば良いということを端末装置が知るまでのアプローチとしては、いくつかの方法が考えられる。
【0064】
端末装置は、送出したいデータグラムの宛先アドレス(ネットワークレイヤアドレス、あるいはドメイン名を含んだメイルアドレスなどでも良い)から、該データグラムをどのATMアドレス(即ち、どのVPI/VCIの値)をつけて送出すれば良いかをレゾリューションしなくてはならない。このように、宛先アドレスから送出するデータグラム/ATMセルに付与するVPI/VCI値をレゾリューションする作業を、ここではLANの慣例に習ってARP(Address Resolution Protocol:アドレスレゾリューションプロトコル) と呼ぶことにする。
【0065】
このARPの実現方法には、以下のように幾つかの方法がある。
【0066】
(方法1):予めCLSF処理部宛のVPI/VCIが割り当てられている場合。
【0067】
この場合は、予めCLSF処理部のATMアドレス(VPI/VCI)がLAN一意に割り当てられており、データグラムは無条件に該VPI/VCIをつけて送出すれば良いとなっている方式である。
【0068】
このような方式の場合、端末は自ATM−LAN内へのデータグラムの配送と、網間接続装置を介した他LANへのデータグラム配送を区別することができないため、網間接続装置13内のCLSF処理部23が、ATM−LAN内に閉じたデータグラムの配送機能をも有している必要がある。なお、図6に示すようにATM−LAN内にCLSF処理部が別に用意されており、網間接続装置をまたがるデータグラム配送については、該データグラムが網間接続装置内のCLSF処理部にリレーイングされてくる形式のデータグラム配送方式は、本方法に含まれるものである(あらかじめATM−LAN内のCLSF処理部宛のVPI/VCIが定められている)。 (方法2):ARPサーバを用いる方法
ATM−LAN内にARPサーバなるものが存在しており(図示せず)、端末装置はARPサーバに対して、該宛先アドレスのデータグラムをどのVPI/VCIをつけて送り出したら良いのかを尋ねにいく方式である。
【0069】
ARPサーバは、内部にテーブルを有しており、このテーブルには、あて先アドレスと、VPI/VCI値とが対応している。問い合わせを受け取ったARPサーバは、該宛先アドレスに対応するVPI/VCI値を内部のテーブルを参照して解析し、その解析結果(VPI/VCI値)を該問い合わせ元の端末装置に対して返す。その際、両端末装置/ノード間にATMコネクションが張られていない場合は、その旨を通知しても良いし、該ARPサーバが両端末/ノード間のATMコネクションを設定して、その後に該ATMコネクションのVPI/VCI値を返しても良い。このようにしてARPが行われる。
【0070】
ここで、端末装置が、ARPサーバのATMアドレス(該端末装置からARPサーバ宛のVPI/VCI値)を知っている場合と、知らない場合とが考えられる。
【0071】
知っている場合は、該VPI/VCI値を使って問い合わせを行えば問題ない。
【0072】
知らない場合は、ARPサーバ自身のATMアドレスのレゾリューション(ARP)を行うか、ブロードキャストチャネルを用いて、該問い合わせを自ATM−LAN中に放送し、その放送された問い合わせをARPサーバが、この問い合わせは自分に対する問い合わせであると認識して、その後の処理を行う方式とが考えられる。このブロードキャストチャネルを用いる場合は、該ブロードキャストセル中に、自分のアドレス(ネットワークレイヤアドレス、必要ならばメイルアドレス、ATMアドレスVPI/VCI値、サーバ名(ARPサーバ)、通信ボードに付与された物理アドレスなど)、相手先アドレス(該ブロードキャストセルを受け取ってもらいたい実体のネットワークレイヤアドレス、必要ならばメイルアドレス、ATMアドレス、サーバ名、機能名など)、ブロードキャストセル種別(どの様な意味あいのブロードキャストセルであるか)の情報を少なくとも含める必要がある(図7)。また、この自分のアドレス(送出元アドレス)や、相手先アドレス(受信側アドレス)に、「どのプロトコルのアドレスか」(たとえばIPアドレスか、E。164アドレスか、など)を示す領域が含まれていても良い。また、同一の送出元が、同一の相手先に複数の要求を同時に行う際に、その返答がどの要求に対するものであるかを示すために、該セル内に乱数や、判別用の番号などを付加しても良い。
【0073】
この放送セルをARP用に使う場合は、例えば図7のその他の情報のフィールドに、アドレスレゾリューションの対象先である端末装置/ノードのアドレス (ネットワークレイヤアドレス、必要ならばメイルアドレスなど)の情報を少なくとも含めることが考えられる。この場合、放送セルフォーマットの中の、受信側アドレスに関しては不定(例えばオール1など)にしてもよい。受信側アドレスを不定にする理由としては、放送セルにおける受信側アドレスとは、該放送セルの受信対象端末のアドレスが入る。ARPに放送セルを用いる場合は、アドレスレゾリューション対象の端末装置が必ずしも該ARPに対して返答するとは考えられない、即ち該ARPを行うセルを受信し、処理するとは考えられないためである。
【0074】
この、ブロードキャストを行うに際しては、たとえばVPI=オール1を用いる。VCI=オール1でも良いし、VCIの値に、ブロードキャストセル種別情報を含めても良い。
【0075】
ブロードキャストを用いて、ARPを行う例としては、例えば、放送セル(ARPセル)を受信した適当なARPサーバが、放送セル種別を参照して、これがデータグラム送出要求ARPであることを知り、更に該ARP要求が、網間接続装置内のCLSF処理部を介して処理するべきものであるということをアドレスレゾリューション対象アドレスを参照して認識し、該網間接続装置内のCLSF処理部へのATMアドレス(VPI/VCI値)を返答する場合などがある。このようなARPを放送セルを用いて行う場合の放送セルのフォーマットの一例を図8に示す。
【0076】
ブロードキャストを用いずにアドレスレゾリューションの要求をARPサーバに対して(エンド−エンドのATMコネクションを通して)行う場合でも、該問い合わせにアドレスレゾリューションの対象アドレスを含む必要があるのは言うまでもない。
【0077】
ARPサーバは、該データグラムの送出先が、網間接続装置の先である(即ち自ATM−LAN外である)と認識した場合、レゾリューション結果として、網間接続装置内のCLSF処理部へのATMアドレス(VPI/VCI値)を返答する。
【0078】
この[該データグラムの送出先が網間接続装置の先である]と認識するには、例えばサブネットマスク等を用いて該データグラムの宛先アドレスが自ATM−LANのサブアドレスを有しているか否かを検査する方式が考えられる。
【0079】
ARPサーバが解析結果を問い合わせ元に対して返答する際にも、いくつかの方法が考えられる。
【0080】
まず、ブロードキャストチャネルを用いて、該問い合わせ結果を返答する方法がある。この場合は、図8の放送セル種別にARPの返答である旨が入り、アドレスレゾリューション結果であるATMアドレス(VPI/VCI)がアドレスレゾリューション対象アドレスに代わり、または引き続き入ることになる。
【0081】
なお、詳細は後述するが、前願特願平5−1267において提案した、方式 (ここでは、これをVPルーチング方式と呼ぶ)、即ち各端末/ノードに対して、VPIを一つ割り振り、ATM−LAN内のルーチングをVPIを用いて行うような方式である以外は、本ARPに際しては、「データグラム送出要求ARP」としてARPが行われることになる。
【0082】
即ち、ARPには、「データグラム送出要求ARP」(必ずしも相手先とエンド−エンドで直接つながるATMコネクションのVPI/VCIが返ってくるとは限らない。例えばCLSF処理部へのATMコネクションのVPI/VCI値がレゾリューションされてくることも有り得る)と、「コネクション接続要求ARP」(相手先とエンド−エンドで直接つながるATMコネクションのVPI/VCIが返ってくる)とがある点に注意が必要である。。
【0083】
(方法3)呼処理サーバを介する方法
ARPを欲する端末装置が、ATM−LAN内に存在する呼処理サーバ(図示せず)に対して、CLSF処理部とのATMコネクションの設定を要求する方式である。該呼処理サーバは、データグラムの配送先が網間接続装置をまたがった先であると認識した場合は、網間接続装置内のCLSF処理部との間にATMコネクションを張るといった形でも良い。
【0084】
(方法4)端末/ノード間の直接ARP
ATM−LAN内の各端末/ノードにVPIを一つ割り振ってあり、ATM−LAN内のルーチングをVPIを用いて行うような方式(VPルーチング方式)では、ARPはなんらサーバを介することなく、データグラムの送信側端末と網間接続装置13内のCLSF処理部23間で直接行うことができる。即ち、端末装置は、ブロードキャストチャネルを用いて、ARP要求を出す。
【0085】
要求セルの内容は図8の通りである。送信元アドレスには該自端末装置のアドレス(VPI値、またはVPI/VCI値でも良い)、受信側アドレスには相手側のアドレス、または不定、ARP先アドレスには相手側のアドレスが入る。なお、この場合、相手先アドレスのはいる領域が2カ所あり、冗長と考えられることから、直接ARPに関しては、該ARPセル(放送セル)のフォーマットを図37のように、簡略化することが可能である。
【0086】
これを受け取った網間接続装置13(必要ならば、網間接続装置13のCLSF処理部23は、としてもよい。この場合は、ドロップテーブルに放送セル種別を判別して、ARPであればCLSF処理部23にドロップするように設定しておけば良い)は、これが自網間接続装置をまたがって配送されるデータグラムであると認識した場合は、自分宛のATMアドレスが該アドレスのレゾリューションになることから、自網間接続装置13のVPIと、必要なVCI値をもってレゾリューション結果を問い合わせ元端末装置に返す。これは、問い合わせ元端末装置は、該VPI/VCI値を付加してセルを送出することにより、VPI値によって、該網間接続装置にセルが届き、VCI値によってCLSF処理部にドロップされることになる。このレゾリューション結果の返送の際、ブロードキャストチャネルを用いても良いし、問い合わせ元端末装置宛のVPを介してこれを行っても良い。
【0087】
なお、ATM−LANは必ずしもVPIールーチングを適用している必要はなく、受信側端末が送信側端末との間のATMコネクションのATMアドレスを認知している一般の場合に直接ARPは適用可能である。
【0088】
以上のようにして、網間接続装置をまたがるデータグラムの配送に関してのARPが行われ、以降データグラムを送出する端末装置は、該データグラムをATMセル化した後、該データグラムの宛先が網間接続装置をまたがる宛先である場合には、先にレゾリューションしたATMアドレス(VPI/VCI)を用いて、これを網間接続装置内のCLSF処理部に送出する。一度レゾリューションしたアドレスについては、以降もこれを用いるものとする。該網間接続装置内のCLSF処理部は、これを一度ネットワークレイヤ、あるいはCLレイヤにて終端し、宛先アドレスを解析した後、(必要であれば再度ATMセル化した後)宛先へとつながるATMコネクションを適当に選択してこれを通して該データグラムを配送することになる。
【0089】
このように、網間接続装置内にCLSF処理部を配置することにより、
(1)網間接続装置に接続された網から、このCLSF処理部に対して直接アクセスすることができる。また、このアクセスは、複数の網間をまたがるATMコネクションを用いることなく行うことができる。
(2)該網間接続装置に接続されたATM網間にまたがるデータグラム配送について、ここで処理を行うことにより、各々の網におけるアドレス体系(VPI/VCI値)の変換をここで集中的に行うことができる。
(3)該網間接続装置に接続されたATM網に関するルーチング情報(たとえばネットワークレイヤアドレス、CLレイヤアドレスとVPI/VCI値との関係情報や存在情報)を網間接続装置/CLSF処理部にて終端/集中的に管理することができるため網間に渡って交換する必要がなくなる。
などの利点を享受することができる。
【0090】
なお、本実施形態で述べたARP手法(方法1〜方法4)は、必ずしもCLSF処理部がIWU内に存在する必要はなく、CLSF処理部が網内の任意位置に存在する構成も考えられる。
【0091】
また、(方法2)において詳述したように、ARPには、「データグラム送出要求ARP」(必ずしも相手先とエンド−エンドで直接つながるATMコネクションのVPI/VCIが返ってくるとは限らない。例えばCLSF処理部へのATMコネクションのVPI/VCI値がレゾリューションされてくることも有り得る)と、「コネクション接続要求ARP」(相手先とエンド−エンドで直接つながるATMコネクションのVPI/VCIが返ってくる)とに主に分類できる点に注意が必要である。
【0092】
次に、図9に、両ATM−LAN内の端末と、網間接続装置13内の呼処理部24間のATMコネクション接続状態の一実施形態を示す。ここで、簡単のため、端末・スイッチノード間、スイッチノード・網間接続装置間の配線は省略してある。また、網間接続装置内のCLSF処理部、ヘッダ変換部などのその他の構成要素も図中では省略してある。また、両ATM−LAN内に、呼処理部91、92が追加されている。
【0093】
このように、各端末装置と、網間接続装置13内の呼処理部24間は、それぞれATMコネクションで結ばれている。このATMコネクションは、VPであってもVCであってもかまわない。この端末装置と、網間接続装置13内の呼処理部24間を結ぶATMコネクションも、CLSF処理部と同様に網間接続装置をまたがる、即ちATM−LAN間をまたがるものではないことに注意が必要である。本ATMコネクションはシグナリングのためのコネクションである。
【0094】
また、この場合、両ATM−LANの構成情報を有しているのは、網間接続装置内の呼処理部のみでよいことに注意が必要である。
【0095】
さて、ATM−LAN内の端末装置/ノードが網間接続装置13をまたがるATMコネクションを張ることを欲している場合、この呼処理部24が使われることになるわけであるが、上記網間接続装置13をまたがるATMコネクションが帯域管理を行うコネクションであるか、帯域管理が不要な、単なるコネクション接続を求めているかで、若干対応が異なる。以下に、順に説明を行う。
【0096】
まず、単なるコネクション接続(帯域管理が不要)のみを求めている場合の説明を行う。
【0097】
(方法1)端末が網間接続装置内の呼処理部にコネクション接続要求を行う場合。
【0098】
この場合は、「コネクション設定要求ARP」を行うこととなる。前述したように、「コネクション設定要求ARP」では、相手先と直接つながるATMコネクションのVPI/VCIがレゾリューションされてくるため、CCITTで議論されている一般のシグナリングに対応したものである。
【0099】
まず、網間接続装置をまたがるATMコネクションを張りたいと欲する端末装置/ノード(送信側端末と呼ぶ)は、網間接続装置内13内の呼処理部24に対して、コネクション接続要求を出す。
【0100】
その際、送信側端末が、どの呼処理部に対してコネクション接続要求を出したら良いのかがわからない場合や、どのATMアドレス(VPI/VCI)のシグナリングチャネルを用いれば網間にわたるコネクション設定要求が出せるのかがわからない場合が考えられる。この場合は、どの呼処理部に対してコネクション接続要求を出せば良いのかを尋ねる「呼処理要求ARP」を用いることになる。即ち、詳細はCLSF処理部の場合に準ずるが、受信側端末の宛先アドレスをアドレスレゾリューション対象アドレスとして「呼処理要求ARP」を出す。「呼処理要求ARP」をブロードキャストチャネルを通して送出する際は、放送セルフォーマットの放送セル種別の領域にその旨を書き入れる。これに対して、該宛先アドレスが網間接続装置を介した向こう側である場合には、網間接続装置13内の呼処理部24へのATMアドレス(VPI/VCI)を返答するものである。この返答は、例えば網間接続装置が行っても、ARPサーバが行っても良い。これを受け取った送信側端末は、再度この網間接続装置13内の呼処理部24宛にコネクション接続要求(コネクション設定要求ARP)をだすこととなる。
【0101】
なお、「呼処理要求ARP」を出さずに、直接「コネクション設定要求ARP」をブロードキャストチャネルを通して放送する方式も考えられる。
【0102】
このようにして、コネクション接続要求を受け取った網間接続装置13内の呼処理部24は、各々のATM−LAN内において送信側端末と網間接続装置間、および網間接続装置と受信側端末間のATMコネクションを張り、さらにヘッダ変換部26を適当に設定することにより、両ATMコネクションを結合し、最終的に両端末間のATMコネクションを確立する。ここで、各々のATM−LAN内におけるATMコネクションを確立する場合、両ATM−LAN内の呼処理部91、92を用いても良い。
【0103】
(方法2)網間接続装置がARPをリレーイングする方式
この方法では、送信側端末装置が、「コネクション設定要求ARP」を発した場合、これを受信した網間接続装置が該コネクション設定要求ARPをリレーイングする。即ち、送信側端末装置は、受信側端末のアドレス(ネットワークレイヤアドレス、またはメイルアドレスなど)、コネクションの設定要求である旨を(例えばブロードキャストでこのARPを行う場合は、放送セル種別にこの旨を記す)含めて(コネクション設定要求)ARPを行う。これを受信した、網間接続装置内の呼処理部は、このコネクション設定要求ARPが網間接続装置をまたがったコネクション設定要求ARPであることを認識し、このARPを網間接続装置をまたがった次のATM−LANにリレーイングする。これは、例えば該ARP要求を行うARP要求セルを次段のATM−LANに送出(リレーイング)することにより行われる。また、このARPのリレーイングと並行してあるいは前後して、送信側端末と網間接続装置間のATMコネクションの設定/確立を行う。
【0104】
この間、送信側端末に対して、現在ARP中である旨を伝えても良い。
【0105】
このARPが完了したら、即ち網間接続装置と、受信側端末との間のATMコネクションが確立したら、このATMコネクション(網間接続装置と、受信側端末間のATMコネクション)と、送信側端末装置と網間接続装置間に確立したATMコネクションとを接続する。その際は、網間接続装置内のヘッダ変換部を適当に設定することにより、これを行うことができる。このようにして、送信側端末と、受信側端末間にエンド−エンドに結ばれたATMコネクションについて、該ATMコネクションのVPI/VCI値を送信側端末装置に通知することで、コネクション接続は完了する。
【0106】
このようにARPのリレーイングでATMコネクションの確立がなされる場合は、網間接続装置内には特別な呼処理部は不要であり、単にARPのリレーイング機能が備わっていれば良いことに注意が必要である。よって、この方法2は先の方法1の手法の特別な場合であると考えることができる。
【0107】
次に、方法2の具体例として、両ATM−LANにおいてVPルーチング方式が用いられている場合の網間接続装置をまたがるコネクション設定要求の流れの一例について概説する。
【0108】
例えば、第1のATM−LANの端末Aが第2のATM−LANの端末BとのATMコネクション(エンド−エンドのATMコネクション)の設定を求めている場合の例を示す。
【0109】
第1のATM−LANの端末Aは、アドレスレゾリューション対象のアドレスとして端末Bのアドレス(例えばネットワークレイヤアドレス)を指定して、コネクション設定要求ARPを送出する。これを受け取った網間接続装置では、例えば呼処理部において該コネクション設定要求ARPのアドレスレゾリューション対象の端末Bが第2のATM−LAN内に存在していることを識別するか、またはデフォルトで定められているARP先である第2のATM−LANを選択し、第2のATM−LANに上記コネクション設定要求ARPをリレーイングする(即ち、第2のATM−LANに向かってコネクション設定要求ARPを送出する)。その際、ARPセルの送出元アドレスは、書き換えて該網間接続装置内の呼処理部のアドレスとしても良い。
【0110】
これと並行してあるいは前後して、網間接続装置の呼処理部は送信側端末Aと網間接続装置間のATMコネクションを確保する。具体的には、第1のATM−LAN側で自分(網間接続装置)に割り当てられたVPI値(VPI値=#Pとする)において、使われていないVCI値を適当に選択して(選択したVCI値=#Qとする)、これを持って送信側端末Aと網間接続装置間のATMコネクションと定める。この間、第1のATM−LAN内のスイッチノード(のルーチングテーブル)への設定がなんら行われていない点に注意が必要である。
【0111】
第2のATM−LANにおいては、受信側端末Bと網間接続装置間のATMコネクションがARPによって確立、またはアドレスレゾリューションされ(即ち、網間接続装置から受信側端末BへのATMアドレスを網間接続装置が得る。このATMアドレス値をVPI値=#R、VCI値=#Sとする)、網間接続装置と受信側端末B間のATMコネクションが定められる。
【0112】
網間接続装置内の呼処理部は、上記送信側端末Aと網間接続装置間のATMコネクションと、網間接続装置と受信側端末B間のATMコネクションとをヘッダ変換機能内のテーブルを適当に定めることにより、即ち(VPI、VCI)= (#P、#Q)と(VPI、VCI)=(#R、#S)とのヘッダ変換を定めることにより、両ATMコネクションを結合し、送信側端末Aと受信側端末Bとの間のエンド−エンドのATMコネクションを確立する。
【0113】
ここで、網間接続装置内の呼処理部はARPのリレーイングを行っていることと、網間接続装置内のテーブルの設定などを行っているのみである点に注意が必要である。すなわち、両ATM−LAN内に特別な呼処理部の存在を必ずしも仮定していない。
【0114】
このようにして確立したエンド−エンドのATMコネクションについて、ARP応答として、網間接続装置では呼処理部において(VPI、VCI)=(#P、#Q)をレゾリューション結果として送信側端末Aに返すことになる。送信側端末Aは、(VPI、VCI)=(#P、#Q)なるATMアドレスにてセルを送出すれば、該セルは途中AAL以上の終端を受けることなく、受信側端末BとATMレイヤ処理のみでエンド−エンドの通信ができることとなり、エンド−エンドのATMコネクションが確立したこととなる。
【0115】
なお、コネクション接続要求ARPのセルの情報部に、接続したい通信の属性(UPCパラメータやQOSなど)の情報を乗せ込んでも良い。
【0116】
以上は、送信側端末から受信側端末へのATMコネクションを張るまでの流れであったが、むろんこれと並行して受信側端末から送信側端末へのATMコネクションをも確立し、両方向通信が可能にすることも容易に可能である。なお、この場合はコネクション設定要求ARP内に逆方向ATMコネクション(例えば網間接続装置から送信側端末A、または受信側端末Bから網間接続装置)で使用してもらいたいVCI値を乗せ込んでおいても良い(逆方向ATMコネクションにはこのVCI値を用いる)。
【0117】
なお、ここでは第1、第2のATM−LAN内にそれぞれ呼処理部91,92の存在を前提に記述してきたが、必ずしもATM−LAN内に呼処理部が一つ以上存在する必要はなく、IWU内あるいは他のATM−LAN内の呼処理部を用いて呼処理を行う構成も考えられる。
【0118】
次に、該網間接続装置をまたがるATMコネクションに帯域管理を行うとき、即ち適当なQOSを該ATMコネクションに求めるときの説明を行う。
【0119】
前記(方法1)の場合は、各々のATM−LAN内でのATMコネクションの設定の際に、帯域管理を行うとともに、網間接続装置内のATM伝送路の帯域管理を行う実体(呼処理部内にあっても良い)が網間接続装置内の帯域管理を行い、両ATM−LAN内のATMコネクションの帯域管理部(呼処理部91、92内にあっても良い)、及び網間接続装置内の帯域管理部の全てが該ATMコネクションの確立が可能であると判断した場合に限り、該ATMコネクション間を網間接続装置内のヘッダ変換機能を適当に定めることにより接続し、該ATMコネクションを確立すれば良い。
【0120】
前記(方法2)の場合は、網間接続装置をまたがるATMコネクションが確立した後、または確立する際、両ATM−LAN内及び網間接続装置内の帯域管理部に該ATMコネクションの帯域管理の妥当性を問い合わせ、許可がおりた場合に帯域管理を介した(即ち、一定以上のQOSを保った)ATMコネクションの使用を許可する。ここで、帯域管理部が該一定以上のQOSを保ったATMコネクションの使用を許可しなかった場合は、帯域管理に関しては確保できなかった旨を送信側端末(必要であれば受信側端末にも)に通知する。この場合、帯域管理のなされていないATMコネクションの確立はなされている点に注意が必要である。ここで、端末側は帯域管理のなされていないコネクションでも構わない場合は、該ATMコネクションにて通信を開始し、帯域管理がなされていないATMコネクションでは通信が不可能であると判断したときは、該通信を断念することとなる。その際は、該ATMコネクション切断要求を出しても良い。
【0121】
なお、以上のようなプロセスはコネクション設定要求に限らず、コネクションの設定/切断/変更要求の際にそれぞれほぼ同様にとられるものである。
【0122】
このように、網間接続装置内に呼処理機能を設けることにより、以下の利点を享受することができる。
【0123】
(1)網間接続装置をまたがったATMコネクションの処理は、その接続される双方の網内の情報が必要である。各々の網間に位置し、その各々の網内の情報を知ることのできる網間接続装置内に呼/コネクション処理部を配置することにより、網間接続装置をまたいだATMコネクションの処理について効率的に行うことができる。
【0124】
(2)網間接続装置とつながる各々の網から、この呼/コネクション処理部に対して、アクセスすることができる。また、このアクセスは複数の網間をまたがるATMコネクションを用いることなく行うことができる。
【0125】
(3)該網間接続装置内の呼/コネクション処理部は、該網間接続装置をまたがるATMコネクションの処理に特化させることが可能となる。
【0126】
(4)網間をまたがるATMコネクションについては、網間接続装置においてその各々のATMアドレス体系(VPI/VCI体系)を変換する必要がある。網間接続装置内にて呼/コネクション処理部を設けることで、該VPI/VCI体系の変換テーブルの設定部などのアドレス体系の変換に不可欠な要素を呼/コネクション処理部に含めたり、同処理部と密に結合させることが可能となる。
【0127】
なお、本実施形態で述べた呼処理方は必ずしも呼処理部がIWU内に存在する必要はなく、網内の任意位置に存在する構成も考えられる。但し、この場合、該呼処理部はIWU内のテーブルの設定等を行う必要があるため、IWUと直接接続されたATMコネクションが存在することが望まれる。
【0128】
次に、図10に両ATM−LAN内の端末と、網間接続装置13内の呼処理部24間のATMコネクションの接続状態の別の実施形態を示す。本実施形態では、各ATM−LAN内の呼処理部101、102と、網間接続装置13内の呼処理部24間が、それぞれATMコネクションで結ばれている。このATMコネクションは、VPであってもVCであっても構わない。
【0129】
この場合は、網間接続装置13をまたがるATMコネクション接続要求は、まずATM−LAN内の呼処理部101、102にて終端され、ここで要求されているATMコネクションが網間接続装置をまたがるものであると該呼処理部101、102により認識されると、該呼処理は網間接続装置13内の呼処理部24との間にリレーイングされ、さらに該網間接続装置13内の呼処理部24から、対向側のATM−LAN内の呼処理部にリレーイングされる。この過程において、両ATM−LAN内のATMコネクションが各々のATM−LAN内の呼処理部により確立され、さらに網間接続装置内でヘッダ変換部を適当に設定することにより両ATMコネクションが結ばれ、結果として網間接続装置をまたがるATMコネクションが確立される。
【0130】
ここで、この図10のような形の呼処理方式は、まずATM−LAN内の端末からのコネクション設定要求は、それが自ATM−LAN内に閉じたものであろうと、網間接続装置をまたがるものであろうと、必ずATM−LAN内の呼処理部101、102に出される方式である。なお、この方式においてもATM−LAN内の呼処理部と、網間接続装置13内の呼処理部24間を結ぶATMコネクションも、CLSF処理部、あるいは先の実施形態と同様に網間接続装置をまたがる、即ちATM−LAN間をまたがるものではないことに注意が必要である。
【0131】
また、このような形で呼処理部を配置することにより、ATM−LAN内の呼処理部101、102内には、自ATM−LAN内の構成情報のみを配置すればよく、両方のATM−LANに関する構成情報は網間接続装置内の呼処理部のみが有すれば良いことに注意が必要である。ここで、ATM−LAN内の呼処理部101、102は、到着したATMコネクション設定要求が自ATM−LANに閉じたものではないときには、網間接続装置内の呼処理部にリレーイングすれば良いとのルール化も可能である。
【0132】
次に、図11に網間接続装置内には呼処理部が存在しない例を示す。このような形態における複数のATM−LANをまたがるATMコネクションの設定は、第1のATM−LAN111内の呼処理部11Aと、第2のATM−LAN112内の呼処理部11Bとの協調分散により行われることとなる。即ち、例えば第1のATM−LAN内の端末からの複数のATM−LANをまたがるATMコネクションの設定要求は、まず第1のATM−LAN内の呼処理部11Aにまず渡され、該呼処理部11Aが、該要求が複数のATM−LANをまたがるものであることを認識し、この要求を第2のATM−LAN112内の呼処理部11Bにリレーイングし、その後はこれら複数の呼処理部が協調分散してATMコネクションを確立する。ここで、網間接続装置内のATMコネクションの確立、即ち網間接続装置内のヘッダ変換部の設定もどちらかの呼処理部の責任となることに注意が必要である。また、両呼処理部間は例えばパーマネントATMコネクション(VPでもVCでも良い)によって結ばれているが、この呼処理部間を結ぶATMコネクションは、両ATM−LAN間をまたがるものであることに注意が必要である。また、この場合は、すべての呼処理部は、基本的に隣接したATM−LANの構成に関する情報を内部に有している必要がある。
【0133】
以上詳述したように(図11の例を除いて)、複数の網間をまたがるべきコネクションに関するCプレーンのセルは基本的にLAN間接続用の呼処理部(本実施形態では網間接続装置内の呼処理部)にて終端される。ここで、Mプレーンのセルについても網間接続装置内にて終端する構成にすることもできる。この場合は、網管理部が網間接続装置内に配置されることになる。該網間接続装置内に配置された網管理部は、そこから先のATM−LANの管理情報を一括して管理、または保持、または容易に準備することが可能とすることにより、例えばATM−LANを階層化して構成する際などの網管理情報の交換、獲得などの際の付加を大幅に軽減することができる(網間接続装置の前後で終端することも可能)。
【0134】
また、本網間接続装置が他ベンダのATM−LAN間に位置する場合は、その内部にプロトコル変換部(即ち、ベンダごとのATM−LAN内プロトコルの変換部)を内部に含んでいても良い。
【0135】
また、ATM−LAN内で放送される、いわゆるブロードキャストチャネルはこの網間接続装置内で基本的に終端される。これは、網間接続装置内のヘッダ変換部において、ある定まった放送セルについては次のATM−LANへは伝送せず、該ヘッダ変換部内にて廃棄する様に定めることにより、容易に実現可能である。
【0136】
なお、VPI=オール1を放送セルとし、VCIの値でその放送セルの属性を定めるようにしたとすると、ある放送セルつまり、あるVCI値を有した放送セルについては、該ヘッダ変換部内にて廃棄し、別のある放送セル(別のあるVCI値を有した放送セルセル)については、次のLANのブロードキャストチャネルに該放送セルを必要に応じてヘッダ変換を施した後に送り出すことにより、放送セルのリレーイングを行うことも容易に可能である。また、ブロードキャストチャネルを介して受け取ったセルについても、ヘッダ変換部を適当に定めることにより次のATM−LANにおいては、ブロードキャストチャネルを介して放送することも容易に可能である。これらをまとめた図を図12に記す。
【0137】
(第2の実施形態)
次に、図13に本発明の第2の実施形態に関わるATM網を示す。同図に示されるように、本実施形態のATM網は、第1のATM−LAN131、第2のATM−LAN132、第3のATM−LAN133、網間接続装置(IWU)134からなる。
【0138】
第1のATM−LAN131、第2のATM−LAN132、第3のATM−LAN133は、第1の実施形態と同じくそれぞれATM方式にて運用されるローカルエリアネットワークである。また、各々のATM−LAN内ではアドレス体系は独立している。ATM−LAN内の端末装置、ノードは、送出したい情報が存在する場合は、その送出先が該ATM−LAN内であっても、そうでなくても、該情報をATMセルに格納し、しかるべきATMセルヘッダを付与して該ATM−LAN内に送出する。
【0139】
図14に、網間接続装置134の内部構造の図を示す。このように、網間接続装置134は、ATMスイッチ141、CLSF処理部142、呼処理部143、IWU管理部144、入力処理部14A、14B、…、出力処理部14X、14Y、…からなる。
【0140】
本網間接続装置134は、2つあるいはそれ以上のATM−LAN間に位置し、該複数のATM−LANのインターネットワーキング(LAN間接続)を司る機能を有する。
【0141】
入力処理部14A、…は入力されたATMセルに対して、ヘッダ値(例えばVPI/VCI値)の解析を行い(必要ならばその変換も行う)、ATMスイッチ内でのセルのルーチングを行うためのルーチングタグを新たに入力セルに付加する機能を有する。
【0142】
ATMスイッチ141は、N入力M出力(N、Mは正数、たとえばN=M=8)のATMスイッチである。セルに付与されているルーチングタグにしたがってセルのルーチングを行う。ブロードキャスト機能、マルチキャスト機能を内部に有していても良い。
【0143】
出力処理部14X、…は、ATMスイッチを介して到来したATMセルからルーチングタグを削除する機能と、必要であればATMセルヘッダの値の変換機能を有する。
【0144】
このATMセルヘッダの変換機能は、入力処理部と出力処理部のいずれかに必要な機能である。この入力処理部、出力処理部が組で隣接するLAN内のスイッチノード、あるいは端末装置、あるいは必要な場合は他の網間接続装置との間の接続を司ることとなる。
【0145】
CLSF処理部142の機能は、コネクションレスサービス機能(Connection Less Service Function)である。この機能は基本的に第1の実施形態のCLSF処理部23に準ずるものであるから、詳細な説明は省略する。
【0146】
呼処理部143は、基本的に本網間接続装置134をまたがるATMコネクションの設定、切断、変更、管理などを行う機能を有しており、基本的に第1の実施形態の呼処理部24にその機能は準ずる。よって、詳細の説明は省略する。
【0147】
IWU管理部144は、本網間接続装置134の管理、制御を行う機能を有する。網間接続装置134内の各モジュールは、各々バス接続されているものとし(図示せず)、IWU管理部144からの各モジュールの設定値の変更などの制御は、このバスを通して行われるものとする。
【0148】
なお、各モジュール間の情報のやり取りを上記のようにバスを通して行うのではなく、ATMセルに該情報を乗せて、セルをモジュール間で交換することにより、これを行っても良い。
【0149】
また、本実施形態ではIWU内の色々の処理を別個に行っているが(即ち、CLSF処理部はCLSF処理専用モジュールにて、呼処理は呼処理専用モジュールにてそれぞれ処理を行っている)、全てあるいはこれらの処理の幾つかを同一のCPU/MPUにて行うことも可能である。
【0150】
次に、図15に第1のATM−LAN131、第2のATM−LAN132、第3のATM−LAN133の内部のノード・端末構成の一実施形態を示す。第1のATM−LANは131は、3つのスイッチノード151、152、153と、これらに接続された端末15A、15B、15C、15Dからなる。第2のATM−LAN132は、2つのスイッチノード154、155と、これらに接続された端末15E、15F、15Gからなる。第3のATM−LAN133は、2つのスイッチノード156、157と、これらに接続された端末15H、15I、15Jからなる。スイッチノードの機能は第1の実施形態と同様である。
【0151】
次に、図16に各々のATM−LAN内の端末と、網間接続装置134内のCLSF処理部間のATMコネクション接続状態の一実施形態を示す。ここで、簡単のため、端末・スイッチノード間、スイッチノード・網間接続装置間の配線は省略してある。また、網間接続装置内の呼処理部、ヘッダ変換部などのその他の構成要素及びATM−LAN内のスイッチノードも図中では省略してある。
【0152】
このように、各端末装置と網間接続装置134内のCLSF処理部142間は、それぞれATMコネクション(VPまたはVC)で結ばれている。このATMコネクションは、第1の実施形態と同様に、帯域管理の対象外のコネクションである。この端末装置と、網間接続装置134内のCLSF処理部142間を結ぶATMコネクションは、第1の実施形態と同様に、網間接続装置をまたがる、即ちATM−LAN間をまたがるものではないことに注意が必要である。
【0153】
さて、端末装置が網間接続装置134を介した、即ち自ATM−LAN外へのデータグラムの配送を欲した場合は、ほぼ第1の実施形態と同様のプロセスでこれが行われる。以下に、簡単に説明する。
【0154】
網間接続装置134をまたいだデータグラムの配送については、網間接続装置134内のCLSF処理部142を介して配送することになる。即ち、ATMセル化したデータグラムを該CLSF処理部142に送り込むことになる。ここで、ATM−LAN内の端末/ノードが、該データグラムを該CLSF処理部142に送出すれば良いということを端末装置が知るまでのアプローチ(ARP)については、第1の実施形態と同様であるので、詳細は省略する。第1の実施形態と同様に、網間接続装置をまたがるデータグラムの配送に関してのARPが行われ、以降データグラムを送出する端末装置は、該データグラムをATMセル化した後、該データグラムの宛先が網間接続装置をまたがる宛先である場合には、先にレゾリューションしたATMアドレス(VPI/VCI)を用いて、これを網間接続装置内のCLSF処理部に送出する。該網間接続装置内のCLSF処理部は、これを一度ネットワークレイヤ、あるいはCLレイヤにて終端し、宛先アドレスを解析した後、(必要であれば再度ATMセル化した後)宛先へとつながるATMコネクションを適当に選択してこれを通して該データグラムを配送することになる。
【0155】
ここで、この方式でも第1の実施形態における網間接続装置内CLSF処理部の利点と同様の利点を享受することができる。
【0156】
次に、図17に各々のATM−LAN内の端末と網間接続装置134内の呼処理部143間のATMコネクション接続状態の一実施形態を示す。ここで、簡単のため、端末・スイッチノード間、スイッチノード・網間接続装置間の配線は省略してある。また、網間接続装置内のCLSF処理部処理部、ヘッダ変換部などのその他の構成要素も図中では省略してある。また、両ATM−LAN内に呼処理部171、172、173が追加されている。
【0157】
このように、各端末装置と、網間接続装置134内の呼処理部143間は、それぞれATMコネクション(VP、あるいはVC)で結ばれている。この端末装置と、網間接続装置134内の呼処理部143間を結ぶATMコネクションも、CLSF処理部と同様に網間接続装置をまたがる、即ちATM−LAN間をまたがるものではないことに注意が必要である。
【0158】
また、この場合、各々のATM−LANの構成情報をすべて有しているのは、網間接続装置内の呼処理部のみでよいことに注意が必要である。
【0159】
さて、ATM−LAN内の端末装置/ノードが網間接続装置134をまたがるATMコネクションを張ることを欲している場合、この呼処理部143が使われることになる。基本的には、第1の実施形態と同様であるが、若干の相違点もあるため簡単に説明する。
【0160】
まず、単なるコネクション接続のみを求めている場合の説明を行う。
【0161】
(方法1):端末が、網間接続装置内の呼処理部にコネクション接続要求を行う場合。
【0162】
この場合は、第1の実施形態に準ずるものである。よって、詳細な説明は省略する。
【0163】
(方法2):網間接続装置がARPをリレーイングする方法。
【0164】
この方法でも、第1の実施形態と同様に、送信側端末装置が「コネクション設定要求ARP」を発した場合、これを受信した網間接続装置が該ARPをリレーイングするが、ARPの対象アドレスが該網間接続装置134につながる複数のATM−LANのうち、どのATM−LANに属するものであるかを解析し、その後、該ATM−LANに関してのみ、ARPをリレーイングする点が第1の実施形態と異なる。即ち、本呼処理部は内部のデータベース(つながるLANとネットワークアドレス、あるいはドメイン名などとの対応表など)を参照し(ネットワークレベルでのレゾリューション)、そこで判明したATM−LANに対して、端末/ノードレベルでのレゾリューションをかけることとなる。
【0165】
勿論、本網間接続装置内でネットワークレベルのレゾリューションは行わず、該網間接続装置につながる全ATM−LANに対してARPをリレーイングしても良いし、網間接続装置とつながるATM−LANに対して順次ARPが完了するまで、ARPを行って入っても良い(例えばスイッチのポート番号の小さい順に、など)。
【0166】
なお、該網間接続装置をまたがるATMコネクションに帯域管理を行うとき、即ち、適当なQOSを該ATMコネクションに求めるときは、第1の実施形態に準ずるので、詳細の説明は省略する。
【0167】
以上のようなプロセスは、コネクション設定要求に限らず、コネクションの設定/切断/変更要求の際に、それぞれ、ほぼ同様にとられるものである。
【0168】
ここで、この方式でも、第1の実施形態における網間接続装置内の呼処理部の利点を享受することができる。
【0169】
また、呼処理部143は必ずしもIWU134内に位置せず、網内の任意位置にあってもよい。
【0170】
次に、図18に各々のATM−LAN内の端末と、網間接続装置134内の呼処理部143間のATMコネクションの接続状態の別の実施形態を示す。各ATM−LAN内の呼処理部181、182、183と、網間接続装置134内の呼処理部143間がそれぞれATMコネクション(VPあるいはVC)で結ばれている。この場合も、第1の実施形態の図10と同様に、網間接続装置134をまたがるATMコネクション接続要求は、まずATM−LAN内の呼処理部181、182、183にて終端され、ここで要求されているATMコネクションが網間接続装置をまたがるものであると該呼処理部181、182、183により認識されると、該呼処理部は網間接続装置134内の呼処理部143との間にリレーイングされ、さらに該網間接続装置134内の呼処理部143にて、どこのATM−LAN内の端末/ノードとのコネクション接続要求であるかを判別し、この判別結果に基づいて、対応するATM−LANの呼処理部にリレーイングされる。この過程において、各々のATM−LAN内のATMコネクションが各ATM−LAN内の呼処理部により確立され、さらに網間接続装置内の入力処理部、あるいは出力処理部内のヘッダ変換部を適当に設定することにより、両ATMコネクションが結ばれ、結果として網間接続装置をまたがるATMコネクションが確立される。
【0171】
なお、到着した、網間接続装置をまたがるコネクション接続要求を網間接続装置134内の呼処理部143が、ATM−LAN内の呼処理部にリレーイングするのに際し、上記のように網間接続装置内の呼処理部にてどこのATM−LANの呼処理部にこれをリレーイングするかを解析するのではなく、(必要であれば、該コネクション設定要求が発せられたATM−LAN内の呼処理部をのぞいた)接続されたすべてのATM−LAN内の呼処理部に対して、これを放送する方式、あるいは順次これらに問い合わせを送る方式をとることもできる。
【0172】
ここで、第1の実施形態と同様に、この図18のような形の呼処理方式も、ATM−LAN内の端末からのコネクション設定要求は、それが自ATM−LAN内に閉じたものであろうと、網間接続装置をまたがるものであろうと、必ずATM−LAN内の呼処理部181、182、183に出される方式である。なお、この方式においても、ATM−LAN内の呼処理部と、網間接続装置134内の呼処理部143間を結ぶATMコネクションも、CLSF処理部あるいは先の実施形態と同様に網間接続装置をまたがる、即ちATM−LAN間をまたがるものではないことに注意が必要である。
【0173】
また、このような形で呼処理部を配置することにより、ATM−LAN内の呼処理部181、182、183内には、自ATM−LAN内の構成情報のみを配置すればよく、両方のATM−LANに関する構成情報は網間接続装置内の呼処理部のみが有すれば良いことに注意が必要である。ここで、ATM−LAN内の呼処理部181、182、183は、到着したATMコネクション設定要求が自ATM−LANに閉じたものではないときには、網間接続装置内の呼処理部にリレーイングすれば良いとのルール化も可能である。
【0174】
次に、図19に網間接続装置内には呼処理部が存在しない例を示す。この場合も、第1の実施形態と同様に、このような形態における複数のATM−LANをまたがるATMコネクションの設定は、第1のATM−LAN191内の呼処理部19Aと、第2のATM−LAN192内の呼処理部19Bと第3のATM−LAN193内の呼処理部19Cとの協調分散により行われることとなる。即ち、例えば第1のATM−LAN内の端末から第2のATM−LAN内の端末に対しての、複数のATM−LANをまたがるATMコネクションの設定要求は、まず第1のATM−LAN内の呼処理部19Aにまず渡され、該呼処理部19Aが、該要求が複数のATM−LANをまたがるものであることを認識し、この要求を第2のATM−LAN192内の呼処理部19Bにリレーイングし、その後はこれら複数の呼処理部が協調分散してATMコネクションを確立する。ここで、網間接続装置内のATMコネクションの確立、即ち網間接続装置内のヘッダ変換部の設定もいずれかの呼処理部の責任となることに注意が必要である。また、各呼処理部間は、例えばパーマネントATMコネクション(VPでもVCでも良い)によって結ばれているが、この呼処理部間を結ぶATMコネクションは、両ATM−LAN間をまたがるものであることに注意が必要である。また、この場合は、全ての呼処理部は基本的に隣接したATM−LANの構成に関する情報を内部に有している必要がある。また、一つの網間接続装置に複数のATM−LANがぶら下がる状況下では、各ATM−LAN内の呼処理部間でのパーマネントコネクションを基本的にメッシュ状に張っておく必要がある。
【0175】
以上詳述したように、第2の実施形態においても第1の実施形態と同様に(図19の例を除いて)、複数の網間をまたがるべきコネクションに関するCプレーンのセルは基本的にLAN間接続用の呼処理部(本実施形態では網間接続装置内の呼処理部)にて終端される。また、Mプレーンのセルについても網間接続装置内にて終端する構成にすることもできるのも、第1の実施形態と同様である。また、本網間接続装置が他ベンダのATM−LAN間に位置する場合は、その内部にプロトコル変換部(即ち、ベンダごとのATM−LAN内プロトコルの変換部)を内部に含んでいても良い。また、ATM−LAN内のブロードキャストチャネルはこの網間接続装置内で基本的に終端されるのも第1の実施形態と同様である。
【0176】
(第3の実施形態)
次に、第3の実施形態として図20に大規模ATMネットワークの構成法の例を示した。この大規模ATMネットワークは、ATMバックボーン網201、第1のATM−LAN202、第2のATM−LAN203、第3のATM−LAN204、ATMバックボーン網と、各ATM−LANとの間の網間接続装置20A、20B、20Cからなる。これらのATM−LANは、ATMバックボーン網201を介して、階層的なネットワーク構造をとることができる。
【0177】
ATMバックボーン網201は、各ATM−LANのLAN間接続や、公衆網(図示せず)とのインタフェースをとる網である。内部のアーキテクチャは特に限定しないが、リング/スター/バス/ツリー/その混合など、色々のアーキテクチャをとることのできる柔軟性、拡張性に富んだ、また信頼性の非常に高いネットワークである。ATM−LAN202、203、204は、第1、2の実施形態と同様である。
【0178】
網間接続装置20A、20B、20Cは、ATMバックボーン網とATM−LANとの間のインターネットワーキングを司る以外、図2中の網間接続装置13とほぼ同様のものであるが、ATMバックボーン網では、その信頼性確保の観点からATM−LANと比べて厳しいトラヒック管理を行っているため、網間接続装置のバックボーン網側への出力インタフェースにはポリシング機構がついており、定められたトラヒック条件を遵守するようになっている。更にその他の細かなATM−LANとATMバックボーン網間のプロトコル変換機構がついているのが、図2の網間接続装置13との主な相違点である。
【0179】
ここで、例えばATMバックボーン網は企業や大学全体の管理部門、あるいは事業所全体の管理部門が管轄する網であり、これに対し、ATM−LANは企業や大学の各部、課、研究室単位に敷設されるLANである。現状と比較すると、ATMバックボーン網は現在の電話網(PBX網)に、ATM−LANは現在のコンピュータ通信用LANにそれぞれ対応するものであると考えて良い。本実施形態における大規模ネットワークは、階層的ネットワークとして電話網と計算機網をATM方式によって統合したネットワークと考えられる。また、ATMバックボーン網は、公衆網の専用線を介して全国規模で展開される網であると仮定しても良い。
【0180】
図21に、本大規模ネットワークにおけるATM−LANの内部構造を示す。第1のATM−LAN202は、3つのスイッチノード211、212、213と、これらに接続された端末21A、21B、21C、21Dからなる。また、第2のATM−LAN203は、2つのスイッチノード214、215と、これらに接続された端末21E、21F、21Gからなる。また、第3のATM−LAN204は、2つのスイッチノード216、217と、これらに接続された端末21H、21I、21Jからなる。スイッチノードの機能は、第1の実施形態と同様である。
【0181】
次に、本実施形態の大規模ネットワークにおけるATM−LAN内におけるデータグラムの配送法の詳細について述べる。第1〜第3のATM−LAN202〜204の各々についてデータグラム配送の方法は同一であるので、代表して第1のATM−LAN202を例にとり、説明する。
【0182】
第1のATM−LAN202においては、その内部の全てのノード、IWUおよび端末装置にそれぞれLANで一意のVPI値が割り当てられている。即ち、他の任意のノード/IWU/端末から発せられたセルが、該VPI値をそのATMセルヘッダのVPIフィールドに持っている場合は、該セルは必ず対応する該ノード/IWU/端末にルーチングされる。ここで、スイッチノードおよび網間接続装置などにもLANで一意のVPI値が割り当てられていることに注意が必要である。
【0183】
例えば、図22のようにノード/IWU/端末にVPI値がそれぞれ一つずつ割り当てられている場合は、「VPI値=#A」として、任意の端末/ノードから送出されたセルは、VCI値が幾つであったとしても必ず端末21Aにルーチング、すなわち配送される。また、このようにセルがルーチングされるべく、ATM−LAN内のスイッチノードのルーチングテーブルは設定されている。
【0184】
このように設定することにより、本ATM−LANに属するノード/IWU/端末間は互いにメッシュ状に(エンド−エンドに)ATMコネクションが予め張られているのと等価である。即ち、任意の端末/IWU/ノード(送信側端末と呼ぶ)から、任意の端末/IWU/ノード(受信側端末と呼ぶ)へ通信を行う場合(セルを送出する場合)、該受信側端末に割り当てられているVPI値(ATMセルヘッダ値)を用いれば、該セルは受信側端末へルーチングされる。これは、任意の送信側端末から、任意の受信側端末へのATMコネクションが(QOSの保証はないが)メッシュ状に張られていることを意味する(VPルーチング方式)。
【0185】
なお、本実施形態のATM−LAN内におけるATMセルヘッダのフォーマットは、CCITT勧告におけるUNI(ユーザ・網インタフェース)セルのフォーマットに従うものとする。VPI値をATM−LANにて一意になるように、該ATM−LANを構成する構成要素(ノード/IWU/端末)に割り当てているため、該ATM−LAN内のノード/IWU/端末の総数の上限は、256に限られる。VPI領域が8ビットしかないためである。なお、本実施形態においては、後述のようにATM−LAN内のノード/IWU/端末の総数の上限は更に少ない。
【0186】
ここで、スイッチノード内にVPルーチング方式を行うべく、スイッチの設定が行われている。即ち、適当なVPをATMセルヘッダに設定して、該セルを送出すれば、該セルは目的の受信側端末にルーチングされる。これにも関わらず、送信側端末が受信側端末のATMアドレス(VPI値)を認知していない場合が考えられる。この場合、送信側端末は目的の受信側端末のネットワークレイヤアドレスは認識しているものとする(または通信ボードの物理アドレス値などでもよい)。
【0187】
このような状況は、既存のLAN(例えばイーサネット)において、受信側端末のネットワークレイヤアドレス(例えばIPアドレス)はわかっているにも関わらず、物理アドレス(MACアドレス、例えばイーサネットアドレス)がわからない場合に対応する。既存のLANでは、このような場合、ネットワークレイヤアドレスから、物理アドレスをレゾリューションするプロトコル(アドレスレゾリューションプロトコル、ARP)を働かせることになる。
【0188】
これと同様に、本実施形態のATM−LANにおいても、受信側端末のネットワークレイヤアドレスから、該受信側端末へとつながるATMアドレス(VPI値)を得る(レゾリューションする)ことをARPを行うと表現する。
【0189】
以下に、受信側端末が送信側端末と同一のATM−LAN内に存在する場合のARPの手法について説明する。まず、この方法としては、以下の2つの方法が考えられる。
【0190】
(方法1):送信側端末−受信側端末の直接ARP
送信側端末は、受信側端末のネットワークレイヤアドレス(例えばIPアドレスやE.164アドレスなど)はわかっているが、このアドレスがどのATMアドレス(具体的にはVPI/VCI値)に対応しているのかがわからない。この場合、送信側端末は、予め該ATM−LAN内にて定められたブロードキャストチャネルを通して、ARPを行う。詳細は後述するが、ARPにはいくつかの種類があり、本ARPはその中の「データグラム送出要求ARP」である。
【0191】
ここで、ブロードキャストチャネルとは、任意の送信側端末から、該ATM−LANに属するすべてのノード/IWU/端末に対して、送出したセルをブロードキャストすることのできるATMコネクションであり、本ATM−LANでは、例えば「VPI値=オール1」のセルを送出した場合、該セルは網によってブロードキャストセル(放送セル)であると認識され、該セルは該ATM−LANに属するすべてのノード/IWU/端末に配送される。ここで、放送セルとして送信したセルが該セルを送出した端末自身にも配送されても良いし、されなくても良い。
【0192】
図23に、データグラム送出要求ARPを行うセルのフォーマットの一例を示す。この様に、データグラム送出要求ARPセルには、送出元アドレス(Source Address)、相手先アドレス(Destination Address) 、放送セル種別、ARP種別が少なくとも含まれる。送出元アドレスには、ネットワークレイヤアドレス種別、送信側端末のネットワークレイヤアドレス、該ATM−LANにおいて、送信側端末に割り当てられたVPI値が含まれる。
【0193】
ここで、ネットワークレイヤアドレス種別とは、この領域に引き続いて含まれる送信側端末のネットワークレイヤアドレスが、どのネットワークレイヤアドレスであるか(どのネットワークレイヤプロトコルのアドレスであるか)を示すための領域である。例えば、図24のようにLLC+(SNAP(SubNetwork Attatchment Point) or NLPID(Network Layer Protocol ID) )にて識別する方法が考えられる。また、このネットワークレイヤアドレス種別として、インターネット・リクエスト・フォア・コメンツ(RFC)1134のPPP(Point to Point Protocol) のプロトコル種別と同様のものを使っても良い。
【0194】
また、送信側端末に割り当てられたVPI値を用いれば、該ATM−LANに属するすべてのノード/IWU/端末から該「送信側端末」に対してセルを配送できる(VPルーチング方式)ことは、前述の通りである。即ち、この値は自分の該ATM−LANにおけるATMアドレスを通知することとなる。
【0195】
相手先アドレスには、ネットワークレイヤアドレス種別、受信側端末のネットワークレイヤアドレスが含まれる。ネットワークレイヤアドレス種別と、受信側端末のネットワークレイヤアドレスについては、送信元アドレスの同種別、同アドレスとの関係と同一であるので、詳細は省略する。
【0196】
放送セル種別とは、該放送セルがいかなる意味を有した放送セルであるのかを記したフィールドである。具体的な「放送セルの意味」とは、例えば「データグラム送出要求ARP」、「コネクション接続要求ARP」(意味は後述)、「放送」(該ATM−LAN内のすべてのノード/IWU/端末が必要とする情報を乗せたセル、例えばルーチング情報など。この種別のセルは基本的に全てのノード/IWU/端末が受信・処理を行う)などの種類がある。放送セル種別識別のための6ビットのコーディング方法として、たとえば「000000;データグラム送出要求ARP」、「000001;コネクション接続要求ARP」、「000010;放送」などとすることができる。
【0197】
ARP種別とは、該放送セルがARP(「データグラム送出要求ARP」、または「コネクション設定要求ARP」)である場合に、そのARPが「ARP要求」であるのか(例えばARP種別値=0)、「ARP応答」であるのか(同=1))、に関する情報を少なくとも有する。
【0198】
ARP種別識別のための2ビットのコーディング方法として、たとえば「00;ARP要求」、「01;ARP応答」、「10;RARP要求」、「11;RARP応答」などとすることができる。ここで、ARPにおける「ARP要求」とは、相手側のATMアドレス(VPI値など)を問い合わせる際に用いるARPセルの種別、「ARP応答」とは、上記「ARP要求」に対する返答として、ATMアドレスを返すARPセルの種別である。
【0199】
なお、本ARPセルにパリティ、CRCなどの誤り訂正符号をいれても良い。この誤り訂正符号は、該セルのパイプライン処理を容易にするために、セルの最後部に挿入するのが望ましい。
【0200】
また、本ARPセルは複数セルにわたることなく、1セルにて完結することが望ましい。ARPセルが複数セルにわたる場合には、該複数セルにわたる情報のリアセンブリが必要となり、処理の複雑化を招くからである。即ち、ある情報パケットをATMセル化し、これをブロードキャストチャネルを通して転送する場合、受信側端末では、該セルに含まれる宛先アドレスを参照して、自分宛のブロードキャストセルであることをまず認識し、次に送信元アドレスを参照して送信元を判別し、送信元アドレスごとにセルのリアセンブリを行い、情報パケットを得る。よって、受信側端末は、該放送セルが複数の送信側端末から多重化されて受信される場合は、情報パケットのリアセンブリを、該宛先アドレス、送信元アドレスの組ごとに、個別にこれを行う機能が必要となる。これは放送セルの解析・処理機能の実現、特にハードウエアによる実現に、大きなコストがかかることを意味する。これに対し、放送セルが1セルで完結するならば、リアセンブリが不要となり、1セルごとの処理を順次行えば良いため、その実現が容易である。これはARPセルに限らず、放送セル全般に共通する事情である。
【0201】
さて、送信側端末はARPを行う場合、「データグラム送出要求ARP(ARP要求)」を用いて該放送セルを該ATM−LANに送出する。その際は、相手側アドレスのATMアドレスのフィールドには無意データが入っている。プロトコルとして、このように定めておいても良い。該ATM−LANに属するノード/IWU/端末は、全てこの放送セルを受信し、放送セル種別を識別して該放送セルが「データグラム送出要求ARP(ARP要求)」であることを識別し、更に、これが自分に宛てられたARPであるか否か(該ARPセルの相手先アドレスに自分のアドレスが含まれているか否か)を判別する。該セルが自分に宛てられた「データグラム送出要求ARP(ARP要求)」である場合には、該ARPを要求している送信側端末に対して、自分のATMアドレス(自分に割り当てられたVPI値)を通知すべく、自分のATMアドレス(VPI値)を含んだ返答セル(ARP応答)を送出する。この返答は、受信側端末からのブロードキャストチャネルを用いて行ってもよいが、本実施形態では、ネットワークの通信資源を考慮し、「データグラム送出要求ARP(ARP要求)」セル内に含まれる送信側端末のATMアドレス(VPI値)を、返答セル(ARP応答セル)のATMアドレス(VPI値)として用いて、該応答を行うものとする。これらの場合、応答セルの内部には、送信側端末(ARPの応答を行った端末)のアドレス、受信側端末(ARPの問い合わせを行った端末)のアドレス、放送セル種別(放送セルを用いて返答をする場合)、ARP種別が入る。このように、ARPの問い合わせ(ARP要求)と比べると、送信元アドレスと受信側アドレスが入れ替わっていることになる。
【0202】
ここで、ARP応答をブロードキャストチャネルを用いずに行う場合、即ちARP応答を該ARPの問い合わせを行った送信側端末に対して、ポイント−ポイントのATMコネクション(送信側端末のVPI値を用いたVPルーチング方式によるATMコネクション)を用いて行う場合について説明する。
【0203】
ARP応答など、ブロードキャストチャネル(のARP)に対する返答の際に用いるVCI値を例えば「VCI値=0」などというように予め決めておく。このように「VCI値=0」となっているセルのペイロード(48オクテット)は、放送セルと同様のフォーマットとなっているものとする(図25参照)。このようにすることにより、該ペイロードに放送セル種別、ARP種別、送信元アドレス、相手側アドレスなどの情報が乗っているため、ARP応答を受け取った「送信側端末(ARP要求を行った端末)」は、これが「自分の発行したARP要求に対するARP応答である」と認識することができる。
【0204】
以上のような、ATM−LAN内ノード/IWU/端末同士のARPの流れを図26にまとめる。この図のように、自分宛てでないARP要求を受け取ったノード/IWU/端末は、該セル(ARP要求セル)は廃棄してしまえば良い。
【0205】
なお、その他の端末は自端末とは必ずしも関係のないこれらのARPセルを参照して自端末内のアドレステーブル(L3アドレスとVPIとの対応表)を順次更新・学習していってもよい。
【0206】
(方法2):ARPサーバを用いる場合
ATM−LAN内のネットワークレイヤアドレスと、ATMアドレス(VPI値)との対応を管理、認知しているサーバ(ARPサーバ)がATM−LAN内に少なくとも一つ存在するか、または存在しなくとも該ATM−LAN内に属する全ノード/IWU/端末が、該ARPサーバへのアクセス方法を認知している場合、任意の端末はネットワークレイヤアドレスからATMアドレス(VPI)へのレゾリューションを行うためには、このARPサーバに対して問い合わせを行うといった方式である。但し、図21内にARPサーバは図示していない。
【0207】
ARP要求を行う送信側端末は、ARP要求セルをブロードキャストチャネルを通して、またはARPサーバ宛てのVPI値をATMセルヘッダに設定し(この際、例えばVCI=0とする。理由は(方法1)と同じ)、ARP要求セルをARPサーバに宛てて送出する。
【0208】
ただし、ARPサーバのATMアドレス(VPI値)が未知の場合は、このアドレスのレゾリューションを行う必要があることに注意が必要である。ここで、ARPサーバのアドレスのレゾリューションを行う場合は、ブロードキャストチャネルを通して、ARPサーバのネットワークレイヤアドレスからATMアドレスへのアドレスレゾリューションを行っても良いし、ARPサーバのネットワークレイヤアドレスが未知の場合は、放送セルの種別がARP要求セルであることをARPサーバが自律的に認識し、これに応答する形でも良い。また、プロセスサーバなどを用いてこれを行っても良い。
【0209】
なお、ARPサーバのATMアドレスは、デフォルトであらかじめ決められていても(ATM−LAN一意に決められる)よい。
【0210】
このようにしてARP要求(データグラム送出要求ARP)を受け取ったARPサーバは、該ARP要求のレゾリューション先が該ATM−LAN内のノード/IWU/端末である場合は、該レゾリューション先に対応するVPI値をARP応答として返答する。このARP応答は、(方法1)と同様に、ブロードキャストチャネルを通して行っても良いし、該ARP要求を行った送信側端末に対するポイント−ポイントのATMコネクションを用いて行っても良い。
【0211】
前述のように、該ARPサーバは一つのATM−LAN内に一つ存在する形態のみならず、同一のATM−LAN内に複数個存在していても良いし、複数のATM−LAN内に一つのみ存在し、該複数のATM−LANからのアクセスが可能な構成になっていても良い。
【0212】
以上の実施形態は、受信側端末が送信側端末と同一のATM−LAN内に存在する場合のアドレスレゾリューション方法であった。そこで、次に受信側端末が送信側端末と異なるATM−LAN内に存在する場合のアドレスレゾリューション方法について説明する。
【0213】
基本的に、ここまでの実施形態におけるATM網においては、複数のATM−LANをまたがるデータグラム配送、即ち網間接続装置(IWU)をまたがって配送されるデータグラムについては、CLSF処理部にてATMコネクションは一度終端され、該データグラムはネットワークレイヤアドレスの処理(ネットワークレイヤ処理、またはCLレイヤ処理)を受けることになる。
【0214】
よって、アドレスレゾリューション先(該ネットワークレイヤアドレスを有した受信側端末)が送信側端末からみて異なるATM−LANに属している場合、それが「データグラム送出要求ARP」である場合には、該ARP要求に対するARP応答における、アドレスのレゾリューション結果は網間接続装置におけるCLSF処理部へのATMコネクションのVPI/VCI値すなわちATMアドレスである必要がある。
【0215】
ここで、「データグラム送出要求ARP」と「コネクション接続要求ARP」の区別の説明を行う。「データグラム送出要求ARP」では、送出したいデータグラム(をATMセル化したもの)がある場合(送出したいデータグラムのネットワークレイヤアドレスのみが既知であり、ATMアドレスが未知である場合)、「ARP要求」としてこのレゾリューションを要求する。これに対し、どの様なATMアドレスを用いれば該データグラムを所望の受信側端末に配送できるかをレゾリューション結果として返答するのが「データグラム送出要求ARP」である。ここでは、レゾリューション結果として帰されてきたATMアドレス値にて配送される配送先が必ずしも受信側端末であるとは限らない。例えば、該ATMアドレス値にて配送される先がCLSF処理部であるような場合がこれに当たる。
【0216】
これに対し、「コネクション設定要求ARP」では、受信側端末に直接つながるATMコネクションをアドレスレゾリューション結果として要求するARPである。即ち、受信側端末が送信側端末と同一ATM−LAN内であろうとなかろうと、レゾリューション結果であるATMアドレス値を用いれば、そのATMアドレスで示されるATMコネクションが途中(例えばIWUや、CLSF処理部など)で終端されることなく、該受信側端末とエンド−エンドのATMコネクションでつながれているような状態を要求するARPである。このようなARPは、CCITTにて議論されているシグナリング手順により規定されているコネクション設定方法に類似するものである。ただし、該コネクション設定に際し、本実施形態においては帯域の管理(帯域の確保)などのオーバヘッドは必ずしも必要なく、単にエンド−エンドのATMコネクションの設定が(スイッチノード内のテーブル設定を行ってあるという意味において)行われており、該ATMアドレスを用いれば該ATMコネクションを通して、エンド−エンドの通信が行えることを保証するのみであり、QOSなどの保証は必ずしも行われていない点に注意が必要である。このARP(コネクション設定要求ARP)を用いれば、エンド−エンドに結合されたATMコネクションが得られるため、呼設定サーバなどを介することなく両端末間でQOS(Quality Of Service)や、通信属性のネゴシエイションなどが可能になる。
【0217】
次に、受信側端末が送信側端末と異なるATM−LAN内に存在する場合のアドレスレゾリューション方法(「データグラム送出要求ARP」)について具体的に説明する。この場合も、以下の2つの方法が考えられる。
【0218】
(方法I):送信側端末−IWU内CLSF処理部の直接ARP
基本的に、受信側端末が送信側端末と同一のATM−LAN内に存在する場合の(方法1)に準ずる。即ち、受信側端末のネットワークレイヤアドレス(あるいは通信ボードの物理アドレスなど)は分かっているが、このアドレスがどのATMアドレスに対応しているのかが分からない場合に、送信側端末が予め該ATM−LAN内にて定められたブロードキャストチャネルを通してARPを行う方式である。
【0219】
先の(方法1)との相違点は、該ARP(データグラム送出要求ARP)を行う先の受信側端末が送信側端末と異なるATM−LAN内に属している場合(網間接続装置をまたがらないと、該データグラムを配送できない場合)、ARP応答を返すのが網間接続装置であるという点である。
【0220】
網間接続装置は、送信側端末が属するATM−LAN内の全ノード/IWU/端末のネットワークレイヤアドレスを把握しており、ARP要求に含まれる受信側アドレスが該ATM−LAN内に存在しないと認識することが可能である。この場合、該網間接続装置がデフォルトルータとして、自分のATMアドレス値 (VPI値)をARP応答として応答する形になっていても良い。
【0221】
また、網間接続装置をまたがった対向側に、該ARP要求に含まれる受信側アドレスを有した受信側端末の存在を確認した上で、ARP応答を行う形になっていても良い。
【0222】
また、何らかのルーチングプロトコルがIWU間、またはCLSF処理部間などで動作しており、ルーチング情報の交換を行っており、該ルーチング情報に基づいてARP応答を行う形になっていても良い。
【0223】
その他の点に関しては、受信側端末が送信側端末と同一のATM−LAN内に存在する場合の(方法1)とほぼ同様である。この場合、網間接続装置内のアッド・ドロップ機能は、受信した放送セルがデータグラム送出要求ARPである場合、これを内部のARP処理を行うことができる処理部(本実施形態ではLSF処理部)にドロップさせる処理が必要である。例えば、受信した放送セルが「コネクション設定要求ARP」である場合には、これを内部の呼処理部にドロップする。
【0224】
また、CLSF処理部は上記のように網間接続装置につながるATM−LANそれぞれに属するノード/IWU/端末のネットワークレイヤアドレスを把握し、ARP要求に含まれる受信側アドレスがそのARP要求を発した送信側端末と同一のATM−LAN内にあるか否かを解析し、無い場合にはARP応答を生成して、該送信側端末に対しARP応答セルを送出する処理が必要である。
【0225】
また、サブネットマスク等を用いて該要求が自サブネット宛てであるか否かを勘弁に図る方法も考えられる。
【0226】
このように本CLSF処理部は、データグラムのリレーイング機能、アドレスレゾリューションを行う機能、ルーチング情報の処理機能を有していることになる。なお、アドレスレゾリューション機能、あるいは/及びルーチング情報の処理機能をCLSF処理部と別に有していても良い。
【0227】
(方法II):ARPサーバを用いる場合
基本的に、受信側端末が送信側端末と同一のATM−LAN内に存在する場合の(方法2)に準ずる。即ち、該ATM−LAN内のネットワークレイヤアドレスと、ATMアドレス(VPI値)との対応を管理、認知しているサーバ(ARPサーバ)が存在し、ネットワークレイヤアドレスからATMアドレス(VPI)へのレゾリューションを行うためには、このARPサーバに対して問い合わせを行うといった方式である。
【0228】
先の(方法2)との相違点は、該ARP(データグラム送出要求ARP)を行う先の受信側端末が、送信側端末と異なるATM−LAN内に属している場合、即ち網間接続装置をまたがらないと該データグラムを配送できない場合、ARP応答として、網間接続装置(のCLSF処理部)へのATMアドレスを返すという点である。
【0229】
このことから、ARPサーバはATM−LAN毎にテーブル(ネットワークレイヤアドレスとATMアドレス(VPI値)の対応表、図27参照)を有しており、その対象としているATM−LAN内のノード/IWU/端末のネットワークレイヤアドレス以外には、網間接続装置のATMアドレスが記されている。こうして、送信側端末と異なるATM−LANに属する受信側端末へのARP応答としては、網間接続装置(内のCLSF処理部)が選択される。
【0230】
このARPサーバ内のテーブルの設定は、人手でマニュアルで行っても良い。また、適当なルーチングプロトコルにより、ARPサーバがルーチングに関する情報を得る形で、テーブル設定が自動的に行なわれる形でも良い。
【0231】
その他の点に関しては、受信側端末が送信側端末と同一のATM−LAN内に存在する場合の(方法2)とほぼ同様である。
【0232】
なお、上述の(方法2)、(方法II)において、ATM−LAN内が「VPルーチング方式」にてルーチングされない網である場合、例えば呼処理サーバにより、ATMコネクションが張られる形態のネットワークである場合、ARP要求を受け取ったARPサーバは、ARP要求を出した送信側端末と該ARP要求にて要求された受信側端末間に、呼処理サーバ(図示せず、ATM−LAN内のATMコネクションの設定、切断、変更、管理などを行っているサーバ)を使ってATMコネクションを(ATM−LAN内にはエンド−エンドに、ATM−LAN外とは網間接続装置内のCLSF処理部間に)設定し、該ATMコネクションのVPI/VCI値などのATMセルヘッダ値を送信側端末、さらに必要であれば受信側端末に通知する方式を用いても良い。
【0233】
また、上記の(方法2)、(方法II)について、ARPサーバが認証(コネクション設定の許可など)の機能、即ち特定の端末に対してだけアドレスレゾリューションを行う機能を有していても良い。
【0234】
以上述べた(方法I)または(方法II)のようにして、複数のATM−LANをまたがるデータグラム送出に関してのARP要求に対する処理は行われる。(データグラムに関してのアドレスレゾリューションプロトコル)
なお、何らかの形でARPに失敗した場合は、ブロードキャストチャネルを通して、放送セル種別を「放送」として、相手先アドレスフィールドに相手先ネットワークレイヤアドレスを書き込んでおくことにより、ATM−LAN内での最低限の通信を行うことができる。
【0235】
また、ARPに失敗した場合、網間接続装置内(あるいは内外でも良い)のCLSF処理部処理部に送出したいデータグラムを送出すれば、(該CLSF処理部は網間接続装置につながるノード/IWU/端末の全ネットワークレイヤアドレスの存在を認識していることから)該CLSF処理部にデータグラムを配送することにより、同一ATM−LAN内へのデータグラム配送も可能になる点に注意が必要である。
【0236】
次に、本実施形態におけるデータグラム配送に関するATMセルヘッダの付け方のルールについて説明する。
【0237】
本実施形態におけるATM−LAN内におけるATMセルとしては、CCITT勧告におけるUNIセルを用いているため、VPIの値は0から255まで、VCIの値は0から65535までの値が使用可能である。
【0238】
VPIの付け方のルールとしては、先に説明したように、ATM−LAN内の各ノード/IWU/端末にそれぞれ少なくとも一つずつのVPI値を割り当ててあり、任意の送信側端末から適当なVPI値をATMセルヘッダに付与して送出すれば、該当する受信側端末(該VPI値が与えられた受信側端末)にルーチングされる(VPルーチング方式)。本実施形態では、特別な意味を有したVPI値の存在を考慮し(例えばメタシグナリング用、網管理用、非常用など)、ATM−LAN内の各ノード/IWU/端末に割り当てられるVPI値は、16〜254までの値とする。即ち、同一のATM−LAN内に存在することのできるノード/IWU/端末の総数は、本実施形態においては239までとなる。なお、このVPI値の割当方法の例外として「VPI=オール1(255)」があり、このVPI値の場合は、ブロードキャストチャネルとして、該VPI値を持ったATMセルはATM−LAN内にブロードキャストされる。
【0239】
なお、リザーブされたVPI値(VCI値)は、CCITTにて審議されているB−ISDNにおけるリザーブされたVPI値(VCI値)と同様の意味を持たせても良い。
【0240】
次に、本実施形態におけるVCIの付け方のルールの例を説明する。先に説明したように、「VCI=0」は放送セルの応答に用いられる。また、VPIの場合と同様に、「VCI=1〜15」まではリザーブビットとしておく。「VCI=16〜254」の場合は、これはデータグラム配送用に用いられるものとする。即ち、任意の送信側端末がデータグラムを送出する場合は、宛先アドレス(宛先VPI)と合わせて「VCI=16〜254」の値を有したセルを用いる。その際、VCI値としては自分に割り当てられているVPI値を入れておくものとする。即ち、「VPI値=#X」が割り当てられているノード/IWU/端末は、データグラムを送出する際には、該データグラムをATMセル化したATMセルのヘッダのVPI領域は、該データグラムの宛先に対応するVPI値(データグラム送出要求ARPのレゾリューション結果)を、同VCI領域には自分に割り当てられているVPI値を(即ち「VCI値=自分のVPI値」)それぞれ入れて送出する。
【0241】
このセルを受信したノード/IWU/端末は、VPI値により該セルが自分宛に配送されたものであると認識し、VCI値が「16≦VCI値≦254」であることから、これがデータグラムであることを認識することができる。受信側端末は、各セル毎にAALタイプ3/4のようなATMレイヤよりも上位のレイヤに送出元を判別できるようなIDがない限り、送出元を判別するためには、異なる送信側端末、あるいはCLSF処理部などからから発せられたデータグラムには異なるATMセルヘッダが付与されている必要がある。本実施形態のようなATMセルヘッダ値付与方式を用いることにより、これが可能となる。
【0242】
更に、網間接続装置ではVPI値が自分宛のものであり、VCI値が16〜254であるセルを受信した場合には、該セルが網間接続装置自身、または網間接続装置をまたいで配送されるべきデータグラムであると認識することができ、該セルを内部のCLSF処理部にルーチングすることができる。
【0243】
このように、VCI値が16〜254である場合には、受信側端末は該セルはデータグラムであることが認識でき、更にこれは送信元端末毎にそれぞれ対応するVCI値がつけられてデータグラムが転送されてくるため、AALタイプ5のような同一送出元ATM−SAPからのパケットが連続して送られなければならないようなモードのAAL(ATM Adaptation Layer)に関しても、データグラムのリアセンブリが可能である(送信側端末毎に、異なるVPI/VCI値を有している)ことから、使用可能である点に注意が必要である。即ち、送信側端末、及び受信側端末間での使用するVCI値に関するネゴシエイションなしに、データグラム配送が行うことができる。
【0244】
なお、VCI値=256〜65535に関しては、例えばエンド−エンド間でどの様に使うかをネゴシエイションするなどして適当に使うことができる。
【0245】
次に、上記データグラム送出要求ARPを行うタイミングについて説明する。データグラム送出要求ARPを行うタイミングは、必ずしもATMボード(ATM通信用基板)内に、データグラムがOS(オペレーティングシステム)から降りてきた際に行う必要はない。即ち、送出したいデータグラムが生じた際に、該データグラムをATMボード、または任意のメモリに待機させて、データグラム送出要求ARPを行い、アドレスレゾリューションを行って、ATMアドレスが判明した後、上記ATMボードまたは任意のメモリからデータグラムを取り出し、これをATMセル化してレゾリューションされたATMアドレスを付与して送出する必要は必ずしも無い。なぜなら、ARPを行っている時間はデータグラムを待ちの状態にしておくことになることから、データグラムを送出する立場からいえば無駄な時間である。データグラムを送出する可能性のある相手先端末に関しては、予めアドレスのレゾリューションを行っておくことにより、効率的なデータグラム配送を行うことができると考えられる。
【0246】
データグラム送出要求ARPを行うタイミングとしては、該ノード/IWU/端末のブート時(ブートプログラムに、データグラム送出要求ARPを行うべきネットワークレイヤアドレスを明記しておき、該ネットワークレイヤアドレスについて、それぞれたとえばバッチ処理などにより、データグラム送出要求ARPを行っていく)に行う方式が考えられる。
【0247】
また、該ノード/IWU/端末のユーザログイン時(ログインプログラム、即ちログインの際に起動するプログラムに、データグラム送出要求ARPを行うべきネットワークレイヤアドレスを明記しておき、該ネットワークレイヤアドレスについて、それぞれ例えばバッチ処理などにより、データグラム送出要求ARPを行っていく)に行う方式が考えられる。
【0248】
例えば、前者の方法では、任意のノード/IWU/端末について必須の相手先(例えばNISサーバ、ファイルサーバ、網管理サーバ、ネットワークサーバなど)とのデータグラム向けATMコネクションのアドレスをレゾリューションし、後者の方法では、ユーザ毎に該ユーザが頻繁にデータグラム通信を行う相手との間にデータグラム向けATMコネクションのアドレスをレゾリューションするなどの応用が考えられる。
【0249】
ここで、上記のようなブート、あるいはログイン時のATMコネクションのアドレスレゾリューションは、データグラム向けに限らず、即ちデータグラム配送要求ARPに限らず、コネクション設定要求ARPについても行って良いことに注意が必要である。
【0250】
また、本実施形態では「ブート時、あるいはログイン時にARPを行う」との記述から、ARPを行う前にあらかじめスイッチノードの設定(VPルーチングのためのルーチングテーブルの設定)は終了しており、端末は適当なATMアドレス(VPI値)をつけてATMセルを送出すれば所望の相手先端末に対してセルを送出できる状態になっていることを仮定している。例えば、端末/IWU/ノードのブート時には、まず上記スイッチノードの設定が行われ、その後ARPが行われるなどである。
【0251】
しかしながら、予めスイッチノードの設定(VPルーチングのためのルーチングテーブルの設定)は終了しておらず、「ブート時、あるいはログイン時に呼設定サーバなどを用いて、ATMコネクションの設定を行う」ような場合も考えられることに注意が必要である。
【0252】
なお、後述のように、ブート時、あるいはログイン時などにあらかじめATMコネクションを設定するに際して、特に通信資源を圧迫するものではないことに注意が必要である。即ち、上記の段階で張られたATMコネクションは、コネクションの受付制御などを経ずに、単にスイッチノード内のテーブルに設定されたATMコネクションに過ぎないので、帯域管理の対象外のコネクション、即ち優先度の低いコネクションであると考えることができ、通信資源を圧迫することはない。
【0253】
以下に、この理由について説明する。本実施形態においては、ATM−LAN内のATMコネクション(場合によっては、ATM−LAN間をまたがるATMコネクションも含む)には、帯域管理を行うATMコネクションと、帯域管理を行わないATMコネクションとがある。帯域管理を行うATMコネクションは一定の通信品質(QOS)を保ちつつ通信を行うことのできるコネクション(一定以上のセル廃棄率、一定以下の遅延時間が期待できるコネクション)であり、帯域管理を行わないATMコネクションは通信品質に一切の保証がないコネクション(セル廃棄率、遅延時間に関して、制限がない)である。帯域管理を行うATMコネクションは、優先度の高いコネクション、帯域管理を行わないATMコネクションは優先度の低いコネクションと考えられ、たとえば優先度の高いコネクションに属するセルが無い場合に限り、優先度の低いコネクションに属するセルの通過を許すなどの優先制御を行うことにより、これを実現することができる。帯域管理を行うATMコネクションに関しては、該コネクションの通過するセル伝送路、および交換ノード内の通信資源が確保された場合に限り、設定を許可されるコネクションであるのに対し、帯域管理を行わないATMコネクションに関しては、帯域管理対象外であるため、呼/コネクション受付制御に際しても、各コネクション管理エンティティの受付上限数以下である限り、無条件に受け付けられるものである。この受付上限数とは、たとえばスイッチノード内のテーブルの容量などにより規定されるものである。帯域管理を行うATMコネクションについては、特に「帯域管理サーバ」なるものが用意されており(図示せず)、ここが一元的にATM−LAN内の通信資源の管理、受付制御の際の評価関数の演算実行などを行っている。この帯域管理サーバにより許可を得たATMコネクションに限り、帯域管理を行うATMコネクションとして使用することができる。
【0254】
次に、図28にATMバックボーン網における網間接続装置内のCLSF処理部間のATMコネクション接続状態の一実施形態を示す。ここで、簡単のため、各物理配線などは省略してある。また、網間接続装置内の呼処理機能、ヘッダ変換機能などのその他の機能や、ATM−LAN内のスイッチノード、ATMバックボーン網内の構成要素も図中では省略してある(実際には、ATM−LAN内のスイッチノードからも網間接続装置内のCLSF処理部にATMコネクションが確立していても良い)。
【0255】
このように、ATMバックボーン網内においては、網間接続装置内のCLSF処理部間が例えばパーマネントコネクション(VP、あるいはVC)で結ばれている。このパーマネントコネクションも帯域管理の対象外のコネクションである。ATMバックボーン網をまたがる(あるいはATMバックボーン網内に存在する端末/ノードへの)データグラムについては、これらCLSF処理部のリレーイングにより行われる。即ち、該網間接続装置内のCLSF処理部は、これを一度ネットワークレイヤ、あるいはCLレイヤにて終端し、あて先アドレスを解析した後、(必要であれば再度ATMセル化した後)あて先へとつながるATMコネクションを適当に選択してこれを通して該データグラムを配送することになる。図28にあるように、網間接続装置内のCLSF処理部間は、パーマネントATMコネクションにて結合されているため、該CLSF処理部はこれらのパーマネントATMコネクションを介して該データグラム(ATMセル化したもの)を次なる網間接続装置内のCLSF処理部へリレーイングする。
【0256】
さて、上述のように網間接続装置内にCLSF処理部を配置し、網間をまたがるデータグラムの配送についてはこの網間接続装置内のCLSF処理部を介して行うことにより、以下のような利点を享受することができる。
【0257】
(1)網間接続装置に接続された網から、このCLSF処理部に対して直接アクセスすることができる。また、このアクセスは、複数の網間をまたがるATMコネクションを用いることなく行うことができる。
【0258】
(2)該網間接続装置に接続されたATM網間にまたがるデータグラム配送について、ここで処理を行うことにより、各々の網におけるアドレス体系(VPI/VCI値)の変換をここで集中的に行うことができる。
【0259】
(3)該網間接続装置に接続された網に関するルーチング情報(ネットワークレイヤアドレス、CLレイヤアドレスに関する情報、及び該アドレスとVPI/VCI値との関係情報など)は、通常、網間接続装置において終端、交換されるため、該ルーチング情報を用いてデータグラムの解析、処理を行うCLSF処理部を網間接続装置を配置するのは、ルーチングプロトコルとCLSF処理部間の関係を密にできる、ルーチングテーブルの共用がはかれる、などの理由から妥当である。
【0260】
但し、CLSF処理部の機能のうち、データグラム(コネクションレスパケット)を終端し、ネットワークレイヤアドレスを一度参照した後、しかるべきATMコネクション(該ネットワークレイヤアドレスを有する端末/ノードとつながるVP/VC、または該ネットワークレイヤアドレスに配送する機能を有すると考えられるCLSF処理部とつながるVP/VC)に送出する機能は、網内の機能としては大きな装置が必要となり、必要以上の該CLSF処理部の機能を網内に設けることはコストの増大(オーバースペック)につながると考えられる。よって、図28に示すような大規模ATMネットワークにおいて、各網間接続装置ごとに、あるいは各ATM−LANごとにCLSF処理部を設けるのは、各ATM−LAN間、またはATMバックボーン網や外部の網とのデータグラムの通信量が十分に大きくなった場合の最終形態であると考えられる。
【0261】
よって、以下では大規模ATMネットワークにおけるCLSF処理部の配置法の発展形態の一例について説明する。これまでに説明したように、図28のように、各網間接続装置にCLSF処理部を配置するのは、この発展形態の最終形態であると考えられる。以下に、CLSF処理部の配置法の発展形態を3つのフェーズに分けて説明する。
【0262】
図29に、フェーズ1として、初期導入時の図を示す。このように、CLSF処理部は、ATMバックボーン網内に1つ設けられているのみである。なお、該CLSF処理部は、いずれかの網間接続装置内あるいは任意のATM−LAN内に位置していても良い。該CLSF処理部は、フェーズ1の時期において該大規模ATMネットワークに属する(網間をわたる)データグラムの配送を十分に処理できるだけのスループットを有しているものとする。ここで、前述のようにATM−LAN内の端末間のデータグラム通信は、エンド−エンドのATMコネクションにて行われていてもよいことに注意が必要である。
【0263】
この形態においては、全ての網間接続装置内にCLSF処理部が存在するわけではない。しかしながら、網間接続装置では該大規模ATMネットワークにおいて動作しているルーチングプロトコルの終端処理部(以降、ルーチング処理部と呼ぶ。このフェーズ1における網間接続装置は、第2図のCLSF処理部の代わりにルーチング処理部、または図2のCLSF処理部および呼処理部の代わりにルーチング処理部が入る構成となっている)が存在していることに注意が必要である。
【0264】
通常、網間接続装置は該網間接続装置につながる網(あるいは、網間接続装置と直接接続された網の更に先に位置するその他の網)に関するルーチング情報を得られる立場にある。このことから、該網間接続装置間でルーチング情報のやり取りを行うという形で、大規模ネットワーク内のルーチングプロトコルは動作している場合がある。本大規模ATMネットワークにおいても、上述のようなルーチングプロトコルが働いており、各々の網間接続装置がルーチング情報の収集あるいは交換などを行っている。本実施形態においては、ルーチング処理部が上記ルーチングプロトコルを終端している。
【0265】
これらのうち、ルーチング情報の交換あるいは位置情報(どのアドレスを有した端末がどこにいるか)の交換(ルーチングプロトコルの動作)は、網間接続装置間のデータグラムの配送により行われても良い。網間接続装置間に、ルーチング情報交換のためのATMコネクションを設け、また必要であればルーチングプロトコルごとにATMコネクションを別々に設け、これを通してルーチング・位置情報の交換を行っても良い。このようにして、網間接続装置は、ルーチング・位置に関する情報を得ることができる。
【0266】
このフェーズ1においては、網間接続装置内にCLSF処理部が存在しないため、受信側端末が送信側端末と異なるATM−LAN内に存在する場合のアドレスレゾリューション方法が、先に説明した(方法I)、(方法II)の場合と若干異なることとなる。以下に一実施形態を説明する。
【0267】
(方法I′):送信側端末−IWU内ルーチング機能間の直接ARP
送信側端末からのARP要求に対して応答を返すのが網間接続装置内のルーチング機能である点を除いて基本的に(方法I)に準ずる。
【0268】
網間接続装置内のルーチング処理部は、送信側端末の属する網に関するルーチング情報を有しているため、該ARP要求がATM−LANに閉じたものであるか、否かを判別することができる。よって、該ARP要求がATM−LAN内に閉じたものではない、即ちアドレスレゾリューションすべきアドレスが該送信側端末の属するATM−LAN内には存在しないと認識した場合は、該ルーチング機能がARP応答を行う。ここで、ARP応答としては、先の(方法I)の場合と同様に、自網間接続装置に割り当てられたVPI値を返答することとなる。よって、送信側端末からみると、CLSF処理部が網間接続装置内(ひいては自ATM−LAN内)に位置しているのか、否かは判断できない。
【0269】
(方法II′):ARPサーバを用いる場合
(方法II)に準ずる。ただし、ARPサーバはルーチングに関する情報を網間接続装置内のルーチング処理部からもらう形となっていても良い。
【0270】
ただし、上記の(方法I′)、(方法II′)のどちらの場合においても、網間接続装置内にはCLSF処理部は存在しないため、該ルーチング処理部は送られてきたデータグラムをCLSF処理部に転送する必要がある。以下に、この一実施形態を示す。
【0271】
これは、網間接続装置内のヘッダ変換機能を適当に設定することにより行う方法である。即ち、網間接続装置に対してデータグラム(実際にはこれをATMセル化したもの)が送られてきた場合(前述のように、これは自網間接続装置に割り当てられたVPI値と8〜254のVCI値を有したATMセルが到着したことにより判別できる)は、これをヘッダ変換テーブルにて適当なヘッダ(後述)に変換し、ネットワークレイヤ、あるいはCLレイヤによる終端は行わずに、ATM処理のみで、CLSF処理部に該セルを転送してしまう。このヘッダ変換テーブル(ヘッダ変換部)の設定は、はじめてARPが行われた際に行っても良いし、事前に行われても良い。
【0272】
この場合、CLSF処理部は受信したセルについて、それぞれ送信側端末を一意に識別する必要があることから(ここでいう「識別」とは、送信側端末がどの端末であるのかを例えばネットワークレイヤアドレス等まで識別するという意味ではなく、「異なる端末から発せられたセル(異なるコネクションレスパケットに属するセルである)である」ということを識別するという意味である)、送信側端末毎に異なるATMセルヘッダ値を付与する必要があることに注意が必要である。
【0273】
以下に、CLSF処理部にて送信側端末を一意に識別することのできるATMセルヘッダ値の割当法の一例について、ATMバックボーン網においても「VPルーチング方式」が適用されている場合を例にとり説明する。
【0274】
ATMバックボーン網においても、「VPルーチング方式」が行われているため、ATMバックボーン網内のCLSF処理部に対しても、少なくとも一つのVPI値が割り当てられており、CLSF処理部に向かうデータグラム(ATMセル化したもの)には、該VPI値が付与される(ヘッダ変換機能に登録されている)。よってCLSF処理部は、VCI値によって送信側端末を識別することとなる。
【0275】
VCI値としては、例えば図30に示すようにVCI値の上8桁については送信側端末のATM−LANにおけるVPI値、続く下8桁については、該網間接続装置に割り当てられているATMバックボーン網側のVPI値を使うものとする。こうすることにより、CLSF処理部は受信したセルのATMセルヘッダから(送信側端末が異なれば、必ず異なるVCI値が使われることから)一意に送信側端末を識別することができることとなる。このようなVCI値をヘッダ変換機能に登録しておくことにより、網間接続装置は、網間接続装置をまたがって配送されるデータグラムをATMレイヤ処理のみでCLSF処理部に転送することができることとなる。このような方法をとることにより、64k個(=2の16乗)までの端末を該CLSF処理部はサポートできることとなる。
【0276】
このルールは、本実施形態のような2階層のネットワークのみならず、VCIフィールド階層化を適当に工夫することにより、更に多階層のネットワークにも適用することができる。
【0277】
ここで、ATM−LANにおいて、上述のようなルールでは網間接続装置自身へ向けたデータグラムをCLSF処理部に転送する可能性が存在するため、網間接続装置にはVPI値を複数、例えば#Xと#Yの2つ与え、ARPにて網間接続装置自身のアドレスのレゾリューションを求められたときは「VPI値=#X」を、また網間接続装置をまたがった受信側端末のアドレスレゾリューションを求められた時は「VPI値=#Y」を、それぞれARP応答として答えるものとし、「VPI値=#X」の時は自網間接続装置内に該データグラムを取り込み、「VPI値=#Y」の時は自網間接続装置宛のデータグラムではないと判断して、ヘッダ変換機能にてヘッダの変換を行った上、CLSF処理部に該セルを転送するといった方法をとることもできる。
【0278】
また、反対にCLSF処理部からセルを受信した場合は、前記の処理と逆の処理を行った上、ATM−LAN内の端末に該データグラムを送出すれば良いことに注意が必要である。
【0279】
以上のやり取りについての具体例を図31にまとめる。スイッチノードなどの記述は省略してある。ATM−LAN311及びATMバックボーン網312はVPルーチング方式で運用されており、ATM−LAN311内の端末31A、31B、31C、網間接続装置31Pには各々#A、#B、#C、#PなるVPI値が割り当てられている。ATMバックボーン網312内のCLSF処理部31X、網間接続装置には各々#X、#YなるVPI値が割り当てられている。
【0280】
ATM−LAN311内の端末は、網間接続装置31Pをまたがって配送されるデータグラム(ATMセル化したもの)については、図のように「VPI値=#P」を付与して送出する。前述のように、VCI値は自分に割り当てられたVPI値を入れて送出する(例えば端末31Aでは「VCI値=#A」とする)。
【0281】
網間接続装置31C内のヘッダ変換テーブル(ATM−LAN311からATMバックボーン網に向かう側)は、図のように設定されており、自動的に該データグラム(をATMセル化したもの)をATMレイヤ処理のみでCLSF処理部に転送できるようになっている。
【0282】
たとえば上記のデータグラムは、CLSF処理部に向かうため、VPI値は#Xに書き換えられ、更にVCI値は、
(1)VCI値の下8桁は、該データグラム(をATMセル化したもの)を受信したCLSF処理部が、該データグラムがどこの網間接続装置から転送されてきたものかを判別するために、網間接続装置のVPI値(この場合、=#Y)が入る。
(2)VCI値の上8桁は、網間接続装置毎に送信側端末を識別するために、送信側端末のVPI値(この場合、=#A)が入る。
のようにして運用される。
【0283】
本例では、CLSF処理部に到達するセルについては、データグラムであるにも関わらずVCI値が16〜254以外の値が入ることとなるが、CLSF処理部には基本的にデータグラムしか転送されないため、これはCLSF処理部向けのATMセルヘッダ値割当ルールとして妥当である(即ちこの例では、ATMバックボーン網におけるCLSF処理部では、ATM−LANにおけるVCI値割当ルールとは異なるVCI値の割当を行っていることになる)。なお、CLSF処理部自身に向けたデータグラムについては、「VCI値の上8桁が0である場合は、自分自身宛のデータグラム」等と認識することができる。
【0284】
反対に、CLSF処理部から網間接続装置に向かうデータグラム(をATMセル化したもの)は、VPI値は網間接続装置のVPI値(この場合、=#Y)が入り、またVCI値は、下8桁にはCLSF処理部に割り当てられたVPI値 (この場合、=#X)が入り、上8桁には受信側端末のVPI値(受信側端末が端末31Bである場合は、=#B)が入ることとなる。
【0285】
網間接続装置における(ATMバックボーン網312からATM−LAN311に向かう側の)ヘッダ変換部については、図のようにCLSF処理部側から送られてくるATMセルヘッダ値、つまりVCI値の下8桁を参照して、これがCLSF処理部から送られてきたデータグラムであることを認識し、VCI値の上8桁を参照して、この値を受信側端末に送出するセルのVPI値として用いる。ここで、受信側端末に送出するセルのVCI値としては、ATM−LAN311において割り当てられているVPI値をいれておくのは前述の通りである。
【0286】
また、ATMバックボーン網312に200以上もの網間接続装置(またはATM−LAN)が属することがない場合は、VCI値の下8桁の値を更に例えば4桁と4桁等と階層化し、網間接続装置の多段構成をとることも可能である。
【0287】
また、本実施形態では網間接続装置に接続されるATM−LANの数は1つとしているが、網間接続装置に接続されるATM−LANの数が複数個にわたる場合は、ATMバックボーン網において各々のATM−LANごとにVPI値を一つずつ割り当ててもよい。この場合、ATMバックボーン網において該網間接続装置は複数のVPI値を有することとなる。また、網間接続装置に複数(網間接続装置に接続されるATM−LANの数と等しい)のVPI値を割り当てることができない場合は、CLSF処理部と網間接続装置のヘッダ変換部間で該データグラム(ATMセル化したもの)をどのATM−LANのどの端末に振り分けるのかを取り決める必要があるため、VCI値の論理的な割付方法のネゴシエイションが必要である。
【0288】
次に、図32にフェーズ2としてCLSF処理部を増設した場合の図を示す。このように、CLSF処理部はATMバックボーン網内に複数個設けられる。該CLSF処理部のうち幾つかは、いずれかの網間接続装置内、あるいは任意のATM−LAN内に位置していても良い。このような場合は、例えば本ネットワークにおけるデータグラムの通信量が増大し、フェーズ1にて設置したCLSF処理部のスループットでは不足となり、CLSF処理部を増設するような場合と考えられる。
【0289】
この形態においても、網間接続装置内にルーチング処理部が存在していることに注意が必要である。このフェーズ2においては、受信側端末が送信側端末と異なるATM−LAN内に存在する場合のアドレスレゾリューション方法は、フェーズ1の場合と同様である。ただし、CLSF処理部が増設されたため、いくつかの網間接続装置内のヘッダ変換機能において、データグラム(をATMセル化したもの)の転送先を増設CLSF処理部に変更するべく、増設CLSF処理部へとつながるATMコネクションのヘッダ(ATMセルヘッダ)に変換するように、ヘッダ書換テーブルの書換を行うこととなる。この書換のみでCLSF処理部の増設(場合によっては減設、変更など)を行うことができるため、非常に容易にCLSF処理部の増減設を行うことができる点に注意が必要である。
【0290】
この場合、ATM−LAN内の送信側端末(受信側端末)からは、CLSF処理部の増設に伴う網間接続装置内の変化(ヘッダ書換テーブルの設定変更など)はまったく認知する必要はない点に注意が必要である。送信側端末は、フェーズ1と全く同様にしてアドレスレゾリューション、及びデータグラムを用いた通信行うことができる。これは、フェーズ2のみならず後述のフェーズ3においても同様である。このフェーズ2のような増設(またはCLSF処理部の切り替え、変更でも良いことに注意)を繰り返して行うことによって、図28のような全ての網間接続装置にCLSF処理部を配置するような形態(フェーズ3)に変更していくことができる。ここで、網間接続装置内にCLSF処理部を増設する場合は、ルーチング処理部に代わってCLSF処理部を増設する形になっていても良いし、ルーチング処理部を配置した状態で、CLSF処理部を増設する形になっていても良い。これは、ヘッダ変換テーブル(ヘッダ変換部)及びアッド・ドロップ処理部(網間接続装置内のセルの振り分けをATMスイッチ機能で行っている場合は、該スイッチング機能)の設定変更のみでこれを行うことができるため、非常に容易にCLSF処理部の増減設を行うことができる点に注意が必要である。
【0291】
ここで、網間接続装置、及びCLSF処理部間のATMコネクション、及びCLSF処理部−各端末間のATMコネクションは、帯域管理を行わないATMコネクションであれば良い点に注意が必要である。
【0292】
次に、図28に戻り「CLSF処理部間ARP」について説明する。図28において、CLSF処理部がデータグラムを配送する場合に、ATMバックボーン網内に張られている網間接続装置内のCLSF処理部へのパーマネントATMコネクション(PVC、PVP)の内、どのPVC/PVPに送出すれば良いかの選択を行う必要があるときがある。即ち、解析したデータグラムの宛先アドレス(ネットワークレイヤアドレス、あるいはメイルアドレスなどでも良い)がCLSF処理部内部のテーブル(この宛先アドレスの場合は、このPVC/PVPに送出せよ、という指示の書いてあるテーブル)に未登録の場合は、該宛先アドレスからどのPVC/PVPに該データグラムを送出したら良いかのレゾリューションを行うこととなる。これをここでは「CLSF処理部間ARP」と呼ぶ。この「CLSF処理部間ARP」を行う方法としても、以下のようないくつかの方法がある。
【0293】
(方法1):ARPサーバを用いる方法
先の第1の実施形態のATM−LAN内のデータグラム配送の際のARPの(方法2)に類似した方法である。ATMバックボーン網内にARPサーバをおく(図示せず)。このARPサーバは、内部にテーブルを有しており、このテーブルには宛先アドレスと、VPI/VCI値とが対応している。このVPI/VCI値は、他の網間接続装置内のCLSF処理部(場合によっては、ATMバックボーン網内のCLSF処理部。これはATMバックボーン網内の端末装置を担当する)へとつながるPVC/PVPのVCI/VPI値である。該テーブルの概要の一実施形態を図33に示す。このように本テーブルはCLSF処理部の数だけ存在し、各々のテーブルが1つのCLSF処理部からの問い合わせに対応する。問い合わせを受け取ったARPサーバは、該宛先アドレスに対応するVPI/VCI値を該テーブルを参照して解析し、その解析結果(VPI/VCI値)を該問い合わせ元のCLSF処理部に対して返す。
【0294】
ここで、ATMバックボーン網がその内部の端末/ノードにVPIを一つ割り当て、ATMバックボーン網内のセルのルーチングをVPIを用いて行うような方式では、宛先アドレスによって付与すべきVPI値は一意に決定するから、宛先アドレス別のテーブルを用意する必要はなく、一つのテーブルを用意するだけでよいことから、大幅なテーブル量削減が可能である。この場合、データグラムまたはARP送出の際は、たとえばVCI値の上8桁はオール0とし(これをデータグラム配送の印とする。即ち、網間接続装置内では、VCI値の上8桁がオール0のセルについては、CLSF処理部に転送する)、下8桁を送出元CLSF処理部の属する網間接続装置のVPI値を入れることにより、これを受信したCLSF処理部は該セルの送出元を知ることができると共に、データグラム配送処理を引き続き行うことができる。ARPの返送に際しては、VCI領域に入っていた送出元CLSF処理部のVPIを用いれば、ARPの返答が放送を用いずに行える。なお、CLSF処理部が送出元CLSF処理部を知る必要がない場合は、必ずしも上記の下8桁に送出元CLSF処理部が属する網間接続装置のVPIを入れるという作業は省くことができる。
【0295】
その他は、第1の実施形態の先のATM−LAN内でのCLSF処理部へのARPについて説明した(方法2)とほぼ同様である。
【0296】
(方法2):ATMバックボーン網内にてCLSF処理部間で直接ARPを行う方法
ATMバックボーン網内にて、網間接続装置内あるいはATMバックボーン網内のその他のCLSF処理部に対して直接ARPを行う方法である。即ち、ARPを行う側(即ち、VPI/VCI値を尋ねる側)のCLSF処理部は、その他のCLSF処理部に対してARP要求を放送、あるいは放送に準ずる方法(たとえば順に聞いて回るなど)を行い、該当するCLSF処理部がこれに答える形で自分宛のVPI/VCI値を通知する方法である。
【0297】
これはATMバックボーン網内の各ノード/網間接続装置にVPIが一つ割り振ってあり、バックボーン網内のルーチングをVPIを用いて行うような方式 (VPルーチング方式)では、自分のVPI値と適当なVCI値を通知することにより行うことができる。
【0298】
また、このARPを受け取ったCLSF処理部は、これが自分が担当すべき宛先アドレスであると判断した場合には、自CLSF処理部と送出元CLSF処理部間に結ばれているPVC/PVPのVPI/VCI値を通知するといった形でも、これを行うことができ、必ずしもVPルーチング方式でなくても良い。
【0299】
(方法3):ARPを用いず、予め全アドレスに関するテーブルを各CLSF処理部に与えておく方法
全体のネットワーク規模がそれほど大きくない場合は、全アドレスに関するテーブルを予め各CLSF処理部に与えておくことが可能である。このテーブルのローディングは、例えばCLSF処理部の立ち上げ時に行えば良い。
【0300】
この場合、該テーブルにない宛先アドレスに対しては、デフォルトで転送先CLSF処理部を決めておき、ここへ転送すれば良い、このデフォルトの転送先CLSF処理部は全ての完全なテーブルを有しているなどという様な構成法をとることも可能である。
【0301】
このような「CLSF処理部間ARP」の後、該データグラムはARPの結果であるVPI/VCIにて示されるCLSF処理部へ転送(リレーイング)され、該CLSF処理部まで配送されたデータグラムは、再度宛先アドレスが解析され、しかるべき宛先とつながるATMコネクションにリレーイングされる。なお、該「CLSF処理部間ARP」にてレゾリューションされた宛先アドレスとVPI/VCI値の組は、以降CLSF処理部内のテーブルに保持されてもよい。
【0302】
ATMバックボーン網に関しては、効率的なルーチングを実現するため、アドレッシングには充分な配慮が必要である。例えば、サブネットマスクの作成を容易にするため、物理的に近いLANや、同一の網間接続装置/ATMバックボーン網中のスイッチノードにつながるLAN同士には、値の重なりの大きいネットワークアドレスを与えるなどである。
【0303】
この方式においても、第1、2の実施形態における網間接続装置内のCLSF処理部の利点を享受できる。
【0304】
次に、図34に網間接続装置内の呼処理部とATM−LAN内の端末間のATMコネクション接続状態、及びATMバックボーン網における網間接続装置内の呼処理部間のATMコネクション接続状態の一実施形態を示す。ここで、簡単のため、各物理配線は省略してある。また、網間接続装置内のCLSF処理部、ヘッダ変換部などのその他の構成要素や、ATM−LAN内のスイッチノード、ATMバックボーン網内の構成要素も図中では省略してある。実際には、ATM−LAN内のスイッチノードからも網間接続装置内の呼処理部にATMコネクションが確立していても良い。
【0305】
このように、ATM−LAN内の各端末装置と網間接続装置内の呼処理部間は、それぞれATMコネクション(VPまたはVC)で結ばれている。このATM−LAN内の端末装置と、網間接続装置内の呼処理部間を結ぶATMコネクションは、第1、2の実施形態と同様に、網間接続装置をまたがるコネクションではないことに注意が必要である。
【0306】
また、ATMバックボーン網内においては、網間接続装置内の呼処理部間が例えばパーマネントコネクション(VPあるいはVC)で結ばれている。このパーマネントコネクションに関しても、ATMバックボーン網内に閉じたATMコネクションであり、網間接続装置をまたがるコネクションではないことに注意が必要である。
【0307】
また、上記呼処理部間の接続をパーマネントATMコネクションにて行うことにより、呼処理部間の処理情報転送の都度生じるコネクション設定オーバヘッドを削減することができると共に、3つ以上の網間をまたがる呼/コネクションの処理については、該パーマネントATMコネクションを介して網間接続装置内の呼処理部間のリレーイングで常に行われるようにすることができる。また、呼/コネクション処理のために使われるトラヒックの監視を行い易くすることができる。
【0308】
以下に、ATM−LAN内の端末/ノード(以下、送信側端末と呼ぶ)から、他のATM−LAN内の端末/ノード(以下、受信側端末と呼ぶ)へのATMコネクションの設定を行う際のプロセスについて説明する。
【0309】
さて、ATM−LAN内の端末装置/ノードが網間接続装置、及びATMバックボーン網をまたがるATMコネクションを張ることを欲している場合、網間接続装置内の呼処理部が使われることになる。基本的には、第1、2の実施形態と同様であるが、若干の相違点もあるため、簡単に説明する。
【0310】
まず、単なるコネクション接続のみ(帯域管理が不要)を求めている場合の説明を行う。
【0311】
まず、ATMコネクションの設定要求を行うATM−LAN内の端末/ノード(送信側端末と呼ぶ)が網間接続装置内の呼処理部に働きかける点は、第1、2の実施形態とほぼ同様のプロセスにて行われる。詳細の説明は省略する。
【0312】
次に、これを受け取った網間接続装置内の呼処理部は、「コネクション設定要求ARP」の対象アドレスが、どの網間接続装置内の呼処理部の担当であるかを検索し、該網間接続装置内の呼処理部に該ARPをリレーイングする。図34にあるように、網間接続装置内の呼処理部間は、パーマネントATMコネクションにて結合されているため、該呼処理部はこれらのパーマネントATMコネクションを介して該コネクション設定要求を次なる網間接続装置内の呼処理部へリレーイングすることになる。
【0313】
ここで、該呼処理部がATMバックボーン網内に張られている網間接続装置内の呼処理部のパーマネントATMコネクション(PVC、PVP)の内、どのPVC/PVPに送出すれば良いかの選択を行う必要があるときがある。即ち、解析したコネクション接続要求の宛先アドレス(ネットワークレイヤアドレス、あるいはメイルアドレスなどでも良い)が呼処理部内部のテーブル(この宛先アドレスの場合は、このPVC/PVPに送出せよ、この呼処理部にリレーイングせよ、という指示の書いてあるテーブル)に未登録の場合は、該宛先アドレスから、どのPVC/PVPに該接続要求を送出したら良いかのレゾリューションを行うこととなる。これを、ここでは「呼処理部間ARP」と呼ぶ。
【0314】
この「呼処理部間ARP」を行う方法としても、以下のようないくつかの方法がある。
【0315】
(方法1):ARPサーバを用いる方法
先の、図28のCLSF処理部におけるARPサーバの場合とほぼ同様であり、相違点はARPサーバ内部のテーブルのVPI/VCI値が他の網間接続装置内の呼処理部(場合によっては、ATMバックボーン網内の呼処理部。これはATMバックボーン網内の端末装置を担当することになる)へとつながるPVC/PVPのVCI/VPI値である点である。なお、このテーブルについては、CLSF処理部にて用いていたテーブルと共用することが容易に可能である。
【0316】
(方法2):ATMバックボーン網内で呼処理部間で直接ARPを行う方法
ATMバックボーン網内にて、網間接続装置内のあるいはATMバックボーン網内のその他の呼処理部に対して直接ARPを行う方法である。図28に示すCLSF処理部における(方法2)とほぼ同様の方法にて実現することができるので、詳細は省略する。
【0317】
(方法3):ARPを用いず、予め全アドレスに関するテーブルを各呼処理部に与えておく方法
CLSF処理部の場合と同様に、全体のネットワーク規模がそれほど大きくない場合は、全アドレスに関するテーブルを予め各呼処理部に与えておくことが可能である。このテーブルのローディングは、例えば呼処理部の立ち上げ時に行えば良い。また、該テーブルをCLSF処理部と共用することも容易に可能である。詳細はCLSF処理部の場合とほぼ同様であるので、省略する。
【0318】
この場合、該テーブルにない宛先アドレスに対しては、デフォルトで転送先呼処理部を決めておき、ここへ転送すれば良い。このデフォルトの転送先呼処理部は、全ての完全なテーブルを有しているなどという様な構成法をとることも可能である。
【0319】
このような「呼処理部間ARP」の後、該コネクション設定要求は、このARPの結果であるVPI/VCIにて示される呼処理部へ転送(リレーイング)され、該呼処理部まで配送されたコネクション設定要求は、再度宛先アドレスが解析され、第1、2の実施形態の受信側端末側を担当する呼処理部と同様の動作を行うこととなる。なお、該「呼処理部間ARP」にてレゾリューションされた宛先アドレスとVPI/VCI値の組は、以降呼処理部内のテーブルに保持される。
【0320】
以上のようなプロセスは、コネクション設定要求に限らず、コネクションの設定/切断/変更要求の際にそれぞれほぼ同様にとられるものである。
【0321】
なお、網間接続装置内の呼処理部間にパーマネントATMコネクションは張られておらず、コネクション設定/切断/変更要求の際にその都度呼処理部間にパーマネントATMコネクション/ATMコネクションを張る方式や、ARPをATMバックボーン網全体にわたって行使する方法も考えられる。
【0322】
また、該網間接続装置、ATMバックボーン網をまたがるATMコネクションに帯域管理を行うとき、即ち適当なQOSを該ATMコネクションに求めるときは、第1、2の実施形態に準ずるので、詳細の説明は省略する。
【0323】
この方式においても、第1、2の実施形態における網間接続装置内の呼処理部の利点を享受できる。
【0324】
なお、呼処理部の場合も、CLSFの場合と同様に図29、図32、図28のような段階的な呼処理部の増減設/変更が可能である点に注意が必要である。その変更に際しては、IWU内のテーブルの簡単な変更のみで対処できるのも同様である。なお、これはCLSF、呼処理部に限らず、任意のサーバに間して一般的ないえる点である。
【0325】
次に、図35に大規模ネットワークにおける呼処理部の配置方法の別の実施形態を示す。図35の例では、ATMバックボーン網内に呼処理部351が配置されている。このATMバックボーン網内の呼処理部は、一つである必要は必ずしもなく、分散配置(負荷分散であっても、機能分散であっても良い)されていても良い。網間接続装置内の呼処理部がATMバックボーン網をまたいだATMコネクションを欲する場合、呼処理部351にそのコネクション接続要求をリレーイングする。ここで、図35のように網間接続装置内の呼処理部とATMバックボーン網内の呼処理部351間は、パーマネントATMコネクションで結合されている。このパーマネントATMコネクションは、網間接続装置をまたがるコネクションではなく、ATMバックボーン網内に閉じたものであることに注意が必要である。呼処理部351は、ATMバックボーン網内のATMコネクションの設定、切断、管理などを一括して行っており、この呼処理部が網間接続装置間のATMバックボーン網を横断するATMコネクションを設定/切断/変更する。網間接続装置内の呼処理部は、ATM−LAN内のATMコネクションと該ATMバックボーン網間のATMコネクションをヘッダ変換部を適当に設定することにより結合し、ATMバックボーン網をまたがるATMコネクションを制御する。
【0326】
同様の動作が、ATM−LAN内の端末/ノードと、ATMバックボーン網内の端末/ノード間のATMコネクションを制御する際にも用いられる。
【0327】
また、このような形で呼処理部を配置することにより、ATMバックボーン網内の呼処理部351内にのみ、該ATMバックボーン網につながるATM−LANに関する構成情報を保持すれば良いことに注意が必要である。ここでは、網間接続装置内の呼処理部は、ATMバックボーン網内の呼処理部351への多重化機能を有しているといえる。
【0328】
さて、これまで述べてきたようなARP(ネットワークレイヤアドレスからATMアドレス=VPI値へのアドレスレゾリューション)を行う際、該ARPを行う実体が送信側端末(ノード/IWU/端末)のどこに位置するかという点に関しても、いくつかの場合が考えられる。以下に、それぞれの場合について説明する。ここでは、ATMボードという言葉を用いるが、これはATM通信方式を使って通信を行う端末装置の通信用拡張ボードであり、ATMインタフェースと、端末内部バスインタフェースを有するボード(基板)である。
【0329】
まず、ARP要求について説明する。
【0330】
(場合1):ATMボードが自律的にARP要求を行う場合。
【0331】
この場合は、端末内部バスインタフェースを介して、上位(たとえばOS)から転送すべきデータグラムを受け取る。このデータグラムはネットワークレイヤデータグラム(例えばIPデータグラム)である。よって、上位から転送先のネットワークレイヤアドレスが(ネットワークレイヤデータグラムのしかるべき領域に格納されている形で)ATMボードに通知される。
【0332】
なお、これと並行してATM方式とは異なるMACアドレスに関する情報などがATMボードに転送されてきても良い。これは、既存端末(例えばUNIX・TCP/IP+イーサネット)のイーサネットボードの代わりに、ATMボードをOS、あるいはデバイスドライバなどの設定に一切の変更を行わずに通信用ボードとして使用した場合などに考えられる状況である。即ち、先の例で考えると、OSは、通信用ボードがATMボードであることを認識しておらず、イーサネットボードであると認識している場合である。
【0333】
この例においては、ARP要求の機能はATMボードが有しているため、ネットワークレイヤアドレスと、ATMアドレス(本実施形態の場合はVPI値、一般の場合はVPI/VCI値などを含むATMセルヘッダ値)との対応テーブル(ARPテーブル)はATMボード上に存在することになる。上位から受け取ったデータグラムの相手先アドレスについてATMアドレスのレゾリューションが終了していない場合に、ATMボードは自律的にARP要求を行うこととなる。
【0334】
このARPは、ARP要求セルをATMボード上に実装されているプロセッサなどがソフトウエア的/ファームウエア的に生成しても良いし、ATMボード上の専用ハードが生成しても良い。生成されたARP要求セルは、前記のような方法でATM−LANに向けて送出される。ARPを行っている間、該データグラムはATMボード上のメモリにて待ち合わせを行うこととなる。この間、ATMボードは該データグラムの次に、上位から送られてきたデータグラムに関する処理を行っていても良いし、該データグラムのATMセル化などを行っていても良い。
【0335】
ARP応答が返ってきたなら、該応答に記載されているATMアドレス(VPI値)をATMセルヘッダとして、前記のルールに従いATMセルヘッダを生成し、該データグラム(ATMセル化したもの)をATM−LANに向けて送出する。
【0336】
また、これと並行してアドレスレゾリューションされたATMアドレスを該ATMボード内のARPテーブルに登録する。この登録により、次の同一宛先へのデータグラムについては、アドレスレゾリューションを行うことなく、ネットワークレイヤアドレスからATMアドレスへの変換を行うことができる。
【0337】
なお、このネットワークレイヤアドレスからATMアドレスへの変換についても、ATMボード上に実装されているプロセッサなどがソフトウエア的/ファームウエア的に行っても良いし、ATMボード上の専用ハードが行っても良い。
【0338】
なお、このARPテーブルに登録されたネットワークレイヤアドレスと、ATMアドレスとの変換表については、一定の時間使われなかった場合、登録を抹消されても良い。これは、ARPテーブルの大きさに限界があり、新たに登録すべきデータが存在するときに、抹消するべきデータを決める際に適用することのできる方法である。
【0339】
(場合2):端末内のOSプログラム、またはデバイスドライバとしてARP要求プログラムが動いている場合。
【0340】
この場合は、ARP要求を行うのは端末内のプログラムである。このARPの起動は、
(1)ATMボード内にネットワークレイヤアドレスとATMアドレスの対応表があり、該対応表に存在しないネットワークレイヤアドレスの出現によりARP要求の必要が生じたATMボード側がARPプログラムを起動する場合
(2)OSまたはデバイスドライバ側にネットワークレイヤアドレスとATMアドレスの対応表があり、該対応表に存在しないネットワークレイヤアドレスの出現により、ARP要求の必要をOSまたはデバイスドライバが自律的に認識し、OSのARP要求処理プログラムまたはデバイスドライバのARP要求処理プログラムを起動する場合
の2つの場合が考えられる。なお、(2)の場合においても、ATMボード内にもネットワークレイヤアドレスと、ATMアドレスの対応表が存在していても構わない。
【0341】
ARP処理プログラムの動作としても、いくつかの場合が考えられ、
(A)ARP要求処理プログラムは、ARP要求セルまたは「該セルのペイロード(即ち、ARP要求である旨を伝える内容)+該情報がARPであることをATMボードに伝える情報」を自律的に生成し、ATMボードに通知する。ATMボードは、上記の情報をARPとして、ATM−LANに向けて送出する。即ち、ARP情報を生成する能力はARP処理プログラム側が有する。
(B)ARP要求処理プログラムは、「該ネットワークレイヤアドレスについてARP要求を行え」との命令をATMボード側に出す。ATMボード側はARP要求セルを生成し、ATM−LANに向けて送出する。
の2つの場合が考えられる。
【0342】
更に、ARP応答が返ってきた場合のATMボードの対応もいくつかの場合が考えられ、
(i)ATMボード上にATMボード内にネットワークレイヤアドレスとATMアドレスの対応表があり、該対応表にレゾリューション結果のATMアドレスを登録する。
(ii)OSまたはデバイスドライバ側にネットワークレイヤアドレスとATMアドレスの対応表があり、該対応表にレゾリューション結果のATMアドレスを登録する。
(iii)ATMボード上とOSまたはデバイスドライバ側の両方にATMボード内にネットワークレイヤアドレスとATMアドレスの対応表があり、両対応表にレゾリューション結果のATMアドレスを登録する。
の3つの場合が考えられる。
【0343】
ここで、(iii)においては、ATMボード上の対応表については、OSまたはデバイスドライバの対応表のキャッシュになっていても良い。即ち、OSまたはデバイスドライバ側が有している対応表内のデータのうち、一部分のみを記載している。どの様に一部分を記載するかの選択方式としては、FIFO方式、ラウンドロビン方式などいろいろな場合が考えられる。
【0344】
次に、ARP応答について説明する。
【0345】
(場合A):ATMボードが自律的にARP応答を行う場合。
【0346】
これは、ATMインタフェース側からARP要求を受け取ったATMボードが自律的に自分宛のARP要求を検出し、該自分宛のARP要求に対してARP応答を行う場合である。
【0347】
図36に、このような処理を行うATMボードの例を示した。このATMボードは、ATMインタフェース361、ARPフィルタ部362、ARP処理部363、挿入部364、バスインタフェース部365からなる。ATMインタフェース361は、ATMボードと、ATM−LANとのインタフェースをとる機能を有する。
【0348】
ARPフィルタ部362は、入力伝送路上を流れるセルのうち、ARPセルを抽出して、該ARPセルをARP処理部363にドロップする機能を有する。また、ドロップして空いたセルスロットには空セルを挿入する機能をさらに有していても良い。
【0349】
ARP処理部363は、ARPフィルタ部362から送られてきたARPセルを解析し、該ARPセルが自分宛のARPセルであるかを相手先アドレスを解析することにより調べ、自分宛のARPセルでない場合は該セルを廃棄し、自分宛のARPセルである場合はARP応答セルを生成し、該ARP応答セルを挿入部364に送出する機能を有する。該ARP処理部の処理はハードウエア論理により行われても良いし、プロセッサなどによりソフトウエア的/ファームウエア的に処理されても良い。
【0350】
挿入部364では、ARP処理部363から送られてきたARP応答セルと、バスインタフェース部365から送られてきたセルとを適当に多重化し、ATM−LAN側は該セルを送出する機能を有する。
【0351】
バスインタフェース部365は、ATMボードと、端末内部のバスとのインタフェースをとる機能を有する。
【0352】
ここで、図36には代表的なATMセルの転送経路のみを矢印で記している。実際には、端末内部バスを介して、上位CPU等が各モジュールとの間で互いにアクセスする、例えばARP処理部に該端末装置のネットワークレイヤアドレスを通知したり、エラー通知をやり取りしたりするなどの機能を実現するための制御線が存在している。
【0353】
本ATMボードに到着したARP要求セルは、ARPフィルタ部362によりARP処理部363側にドロップされ、該ARPセルが自分宛(該ATMボードを実装した端末向け)であったとすると、ARP処理部363によりARP応答セルが生成され、挿入部364を介してATM−LAN側に送出される。その際、ATMボード内にネットワークレイヤアドレスと、ATMアドレスとの対応表が存在する場合には、ARP要求セルに含まれる情報(具体的には送出元アドレス)を利用し、該対応表に送出元アドレスに含まれる情報(送出元端末のネットワークレイヤアドレスと、ATMアドレスとの対応情報)を登録しても良い。
【0354】
また、OSまたはデバイスドライバ内にネットワークレイヤアドレスとATMアドレスとの対応表が存在する場合には、上記情報(送出元端末のネットワークレイヤアドレスと、ATMアドレスとの対応情報)を登録すべく、OSまたはデバイスドライバ側に該情報を通知しても良い。
【0355】
以上の記述からわかるように、ARP要求および応答について、両方ともATMボードあるいはソフトウエアで(即ち、OSまたはデバイスドライバで)行うといった形態のほかに、「ARP要求についてはソフトウエアで(即ち、OSまたはデバイスドライバが、ARP応答についてはATMボードが行う」といった形態も考えられることに注意が必要である。
【0356】
(場合B):端末内のOSプログラムまたはデバイスドライバがARP応答を行う場合。
【0357】
この場合は、ARP応答を行うのは端末内のプログラムである。このARP応答プログラムの起動は、
(1)ATMボードが、自分宛のARP要求セルの到着を認識し、OS、またはデバイスドライバ側に通知する場合。
(2)ATMボードは、ARP要求セルとそれ以外のセルを区別なくOS、またはデバイスドライバ側に転送し、該OS、またはデバイスドライバが自分宛のARP要求セルの到着を認識して、OSのARP応答処理プログラム、またはARP応答処理デバイスドライバを起動する場合。
の2つが考えられる。
【0358】
ARP応答処理プログラムの動作としてもいくつかの場合が考えられ、
(A)ARP応答処理プログラムは、ARP応答セルまたは「該セルのペイロード(即ち、ARP応答の内容)+該情報がARP応答であることをATMボードに伝える情報」を自律的に生成し、ATMボードに通知する。ATMボードは、上記の情報をARP応答セルとしてATM−LANに向けて送出する。即ち、ARP応答情報を生成する能力はARP処理プログラム側が有する。
(B)ARP応答処理プログラムは、「該ネットワークレイヤアドレス(及びATMアドレス)についてARP応答を行え」との命令をATMボード側に出す。ATMボード側は、ARP応答セルを生成し、ATM−LANに向けて送出する、
の2つの場合が考えられる。
【0359】
なお、本第3の実施形態においては、ATM−LAN、あるいはATMバックボーン網におけるセルのルーチング、アドレッシング方式として「VPルーチング方式」を用いたものを例として示したが、本発明における各種方式はその適用をVPルーチング方式に限定するものではなく、一般のATM通信方式に適用が可能である点に注意が必要である。
【0360】
例えば、「VPルーチング方式」ではなく、「呼処理サーバなどの処理部がコネクション接続要求の度にエンド−エンドのATMコネクションを設定して(セルの転送中にATMセルヘッダの書換があっても良い)、エンド−エンドの通信を行う方式(以下では、呼処理サーバ方式とも呼ぶ)のATM−LAN、あるいはATMバックボーン網」や、「ATM−LANはVPルーチング方式で運用され、ATMバックボーン網は呼処理サーバ方式で運用される大規模ATMネットワーク」、また逆に「ATMバックボーン網はVPルーチング方式で運用れ、ATM−LANは呼処理サーバ方式で運用される大規模ATMネットワーク」、更には、一部のATM−LANにおいてはVPルーチング方式、一部のATM−LANにおいては呼処理サーバ方式といったように、各種方式が混在したATMネットワークにおいても、本発明における各種方式は容易に適用が可能である。
【0361】
また、本実施形態においては、ATM−LAN、あるいはATMバックボーン網におけるデータグラム配送法などについて述べてきたが、これらはATM−LAN、あるいはATMバックボーン網に限定するものではなく、サブネット化されたATM−LAN、あるいはサブネット化されたATMバックボーン網についても容易に適用が可能である点に注意が必要である。
【0362】
また、これまで述べてきた第1・第2・第3の実施形態における網間接続装置は、任意のATM−LAN、あるいはATMバックボーン網に帰属していると考えることができる。また、該網間接続装置は接続している網すべてに帰属していると考えることも可能である。
【0363】
また、これまで述べてきた実施形態における網間接続装置は、計算機(ワークステーションなど)に、拡張ユニット/拡張ボードを加えた形態であっても、計算機と一体化した構造となっていても良い。この場合、CLSF処理部、呼処理部およびIWU管理部については、該計算機のCPUにより実現する構成になっていても良い。
【0364】
(第4の実施形態)
次に、サブネットワーク内部でのデータグラム通信に関する実施形態について説明する。ここでは、一般的なATMネットワークの場合と、江崎、津田、夏堀:“ATM−LANにおけるデータ転送実現法”、電子情報通信学会(情報ネットワーク研究会資料,March,1993)に記載されているようなVPIルーティング方法を適用した場合についてそれぞれ説明する。
【0365】
(実施形態4−1)サブネットワーク内部でのデータグラム通信を一般のATMネットワークに適用した場合について。
【0366】
図40はその実施形態であり、端末(TE)411にデータグラム送信要求が発生すると、端末411はATMコネクション41Aを用いて、アドレスレゾリューションサーバ(以下、ARSという)413に対して、目的の端末にデータグラムを転送するためATMアドレスの獲得要求(AR要求)を行う。このアドレス獲得要求は、データグラム転送要求が発生したときには常に行うことも、端末411に格納されたアドレスレゾリューションテーブルに宛先端末のアドレス情報がないときにのみ行う方法(図42参照)とがある。後者の方法の場合、ARテーブルに内に既にアドレスが存在していれば、AR要求とAR応答の手続きを実行する必要がない。
【0367】
ARS413は、宛先端末412にデータグラムを転送するためのATMコネクションの識別子であるVCI/VPI情報(端末411が付加すべきVCI/VPI情報)をATMコネクション41Bを用いて端末411に通知する(AR応答という)。AR応答を受け取った端末411は、通知されたVCI/VPIを付加してデータグラムをネットワークに投入する。データグラムはATMコネクション41Cを通して、端末412へ直接配送される。この実施形態の場合には、サブネットワーク内のすべての端末間にATMコネクションがフルメッシュ状に設定されておく必要がある。
【0368】
図42に、送信側端末(この例では端末411)で実行されるプロトコルの一例に関するフローチャートを示す。これは送信側端末が送信先のアドレス情報をキャッシングすることができる場合の例である。ステップ432で自端末内のアドレスレゾリューション用のキャッシュテーブルを検索している。キャッシュエントリに宛先端末412の情報がなければ、AR応答をARS413に対して行う。
【0369】
図41は、端末411,412およびARS413間のデータのやり取りを示している。これは、端末411のアドレスレゾリューションキャッシュエントリに宛先端末412の情報がなかった場合の例である。なお、AR要求41AおよびAR応答41Bはポイント−ポイントのATMコネクションでも実現可能であるが、ブロードキャストチャネルを用いて実現することも可能である。
【0370】
図43に、他の実施形態を示す。実際のデータグラムの転送をCLSF414に実行させる。端末411でデータグラム転送要求が発生すると、端末411は目的の端末412へデータグラムを転送するためのATMコネクション情報のレゾリューションを行う。端末411が宛先端末412へデータグラムを転送するためのATMコネクション情報を持っていないとき、つまりキャッシュテーブルにエントリがないときは、ATMコネクション41Aを用いて、アドレスのレゾリューションを行う(AR要求)。
【0371】
ARS413は、宛先端末が自サブネットワーク内の端末であるときには、端末411がCLSF414へデータグラムを転送するためのATMレイヤアドレス情報を端末411へ返答する(AR応答)。なお、データグラムが転送されるべき端末が自サブネットワーク以外のネットワークに属する場合の実施形態は、次サブセクション以降で説明する。
【0372】
アドレスのレゾリューションを完了した端末411は、適切なVCI/VPI(キャッシュテーブルあるいはAR応答で獲得したVCI/VPI情報)をデータグラムを転送するためのセルに付加して、ネットワークに投入する。このVCI/VPIはATMコネクション441の識別子であり、セルはATMコネクション441上を転送されてCLSF414に到達する。CLSF414は受信したデータグラムのアドレス情報を解析し、宛先端末412へデータグラムを転送するためのVCI/VPIを付加して、セルをネットワークに投入する。投入されたセルは、ATMコネクション442を用いて端末412へ到達する。本実施形態の場合には、CSLF414と各端末間にスター状のATMコネクションが設定されておく必要がある。なお、AR要求およびAR応答は、ポイント−ポイントのATMコネクションではなく、ブロードキャストチャネルを用いて行うことも可能である。
【0373】
ARS413で行うアドレスレゾリューション手続きは、ネットワークのアドレス空間情報(アドレスマスク)に関する検索を行えば良い。以下に示すように、ARS413では外部のネットワークに対しても、その端末がどのネットワークアドレス空間に存在するかを解析すればよく、必ずしも宛先端末を直接ATMコネクションでアクセスするためのVCI/VPI情報をレゾリューションする必要はない。
【0374】
図44に、データの受け渡しの手続きを示している。ここで、端末411からCLSF414へのデータグラムの転送については、一旦データグラム全体がCLSF414に取り込まれた後に、まとめて端末412に転送する場合を示しているが、データグラムの転送をパイプライン状に行うことも可能である。
【0375】
(実施形態4−2)サブネットワーク内部でのデータグラム通信にVPIルーティングを適用した場合について。
【0376】
図45に示したように、各ネットワーク要素にVPIが割り当てられているものとする。各端末/サーバは、サブネットワーク内の全てのUNIポイントからマルチポイント−ポイントATMコネクションが設定されているのに等しい。つまり、端末は宛先端末のVPIを付けたセルをネットワークに投入すると、セルは目的のUNIポイントに転送される。例えば、ARS413へセルを転送するには、VPIとしてVPI413 を付加すればよい。
【0377】
図40で説明した方法は、コネクション46A,46B,46Cを用いる。端末411は、VPI413 をVPI情報とするAR要求セルをARS413に転送する。このとき、VCI情報あるいは上位レイヤの識別子を用いて、受信したセルが端末411から送信されたセルであることをARS413は認識することがきる。例えば、VCIフィールドに端末411のVPI情報であるVPI411 書き込めば、ARS413はATMヘッダを参照することにより受信したセルが端末411からのものであることを認識できる。また、VCI情報はセルがデータグラム通信のためのAR要求セルであることを陽に示す識別番号とすることも可能である。
【0378】
端末412のアドレスレゾリューションを行ったARS413は、AR応答セルにVPI=VPI411 と書き込んで端末411へネットワークへ投入する。ARS413と同様に、端末411はVCI情報と上位レイヤのヘッダ情報の少なくとも一方を用いて、受信したセルがAR応答であることを認識する。AR応答セルの中には、端末412のアクセスアドレス情報であるVPI412 が少なくとも書き込まれている。
【0379】
端末412で受信したデータグラム転送用のセルが端末411から転送されたものであることを識別するための識別情報は、VCI情報あるいは上位レイヤのヘッダ情報であるが、この識別情報をARS413がAR応答内に書き込まれた情報として、端末411に通知することも可能である。送信元およびセルのタイプを受信元で識別する最も簡単な方法としては、上記の一連の手続きで、VCIフィールドの情報として、8ビットは送信元のVPI情報、後の8ビットがセルのタイプを示すという方法が可能である。
【0380】
端末411端末412へ転送するセルのVCIフィールド(16ビット)のコーディング方法としては、以下のような方法がある。
【0381】
例1:8ビットが自分の端末のアクセスアドレス(VPI番号と同じ番号)、残り8ビットはコネクションレス通信であるとを示す識別番号
例2:8ビットが自分の端末のアクセスアドレス、残り8ビットは自分のネットワークの識別番号。但し、この時には各端末はコネクションレス通信用にVPIをコネクションオリエンティッド用のVPIとは別に獲得する必要がある(CLとCOで別のVPIを用いる)。
【0382】
例3:16ビットを端末のブート時に設定しておく。受信側端末が適当にアサインすることも可能。
【0383】
図43で説明した方法は、コネクション46A,46B,46D,46Eを用いる。端末411は、VPI413 をVPI情報とするAR要求セルをARS413に転送する。端末412のアドレスレゾリューションを行ったARS413は、AR応答セルにVPI=VPI414 を書き込んで、セル(AR応答)をネットワークへ投入する。AR応答セルの中には、CLSF414のアクセスアドレス情報であるVPI414 が少なくとも書き込まれている。CLSF414で受信したデータグラム転送用のセルが端末411から転送されたものであることを識別するための情報は、VCI情報あるいは上位レイヤのヘッダ情報であるが、この識別情報をARS413がAR応答内に書き込まれた情報として、端末411に通知することも可能である。CLS414は受け取ったセルのアドレス情報を解析し、端末412にデータグラムセルを転送するためにVPI=VPI412 をセルに付加してネットワークにセルを投入する。セルはATMコネクション46Eを通って端末412へ転送される。
【0384】
本実施形態における5つの具体例を以下に示す。
【0385】
(1) 受信端末のアクセスアドレスのレゾリューションをCLSF414が行う。CLSF414は受信データグラムの中に書き込まれているネットワークレイヤアドレス(または、それ以外のレイヤのアドレスでも可能)を基に宛先端末のアドレスを解析する。このとき、データグラムは一旦CLSF414でリアセンブリされる。
【0386】
(2) 受信端末のアクセスアドレスのレゾリューションをCLSF414が行う。CLSF414は受信データグラムの中に書き込まれているネットワークレイヤアドレス(または、それ以外のレイヤのアドレスでも可能)を基に宛先端末のアドレスを解析する。このとき、データグラムは一旦CLSF414でリアセンブリされず、パイプイライン処理によりセルがリレーイングされる。つまり、データグラムの先頭セルに書き込まれているアドレス情報を解析して宛先端末のアクセスアドレスを解析し、先頭セル以降のセルは、VCI情報を基にしてVPI/VCIを書き替えて宛先端末へリレーイングする。CLSF414はデータグラム毎に異なるVCIをアサインする必要がある。
【0387】
(3) 送信端末が宛先端末のアクセスアドレスをレゾリューションし、これを先頭のセルのペイロード部に書き込む。先頭セルを受信したCLSF414は先頭セルのペイロード部の情報を読み、これをもちいて、セルを宛先端末へ転送する。このとき、データグラムは一旦CLSF414でリアセンブリされる。
【0388】
(4) 送信端末が宛先端末のアクセスアドレスをレゾリューションし、これを先頭のセルのペイロード部に書き込む。先頭セルを受信したCLSF414は先頭セルのペイロード部の情報を読み、これを用いてセルを宛先端末へ転送する。このとき、データグラムは一旦CLSF414でリアセンブリされず、パイプイライン処理によりセルがリレーイングされる。つまり、データグラムの先頭セルに書き込まれているアドレス情報を解析することで宛先端末のアクセスアドレスを解析し、先頭セル以降のセルは、VCI情報を基にしてVPI/VCIを書き替えて宛先端末へリレーイングする。CLSF414はデータグラム毎に異なるVCIをアサインする必要がある。
【0389】
(5) 送信端末が宛先端末のアクセスアドレスをレゾリューションし、これをVCIフィールドを利用してCLSF414へ転送する。つまり、例えばVCIの8ビットを宛先端末のアクセスアドレス、残り8ビットを送信元端末のアクセスアドレスとする。CLSF414は、VCIフィールドの宛先端末のアドレスをコピーしてセルを宛先の端末にリレーイングする。リレーイングには、データグラムを一旦リアセンブリする方法とパイプライン的にセルをリレーイングする方法とがある。
【0390】
(第5の実施形態)
次に、外部ネットワークへのデータグラム転送に関する実施形態として、まず2階層ネットワークを用いた場合について説明する。
【0391】
(実施形態5−1)一般のATMネットワークを用いた場合−その1。
【0392】
図46に、本実施形態のネットワークアーキテクチャの概略図を示した。このネットワークは、2階層のネットワークで構成されている。各ネットワーク471〜475は、IWU(インターネットワーキングユニット)476〜479を介してインターネットワーキングされている。ネットワーク471と公衆網475は、IWU479を介して接続されている。IWU476〜479は、ATMコネクションを終端することなくATMセルのリレーイングを実現することができる。すなわち、受信したセルのVCI/VPIを隣接するネットワークで対応するATMコネクションに割り当てられているVCI/VPIに変換する機能を持つ。
【0393】
図47および図51に、アドレスレゾリューションの関連するATMコネクションの設定を示す。各ARS481〜484は、少なくとも各ARSが属するネットワーク471〜474が収容している端末あるいはネットワークのアドレス情報を管理している。図48に、ネットワーク472から他のネットワーク471,473,474,475へデータグラムを転送するために必要なATMコネクション496,497,498,49Bの設定を示す。IWU476からCLSF491,493,494へのATMコネクション(片方向ATMコネクション)が設定されている。また、公衆網475の中にあるCLSFへのATMコネクション49B(双方向ATMコネクションが通常定義される)が設定される。なお、同様のコネクションが他のサブネットワークについても設定される。CLSFおよびARSが存在する位置は、IWUの位置に存在することも可能である。また、CLSFとARSとが同じ位置に存在することも可能である。
【0394】
公衆網475から、ここで議論しているネットワーク内に存在する端末へ転送されるべきセル( コネクションレス通信セル)は、一旦ネットワーク471内に存在する公衆網とのコネクションレス通信(ATMコネクション)を終端するサーバが存在する。公衆網475からみると、コネクショレス通信に関して、このサーバがアクセスポイントと定義されている。このサーバはATMコネクションを終端し、宛先端末へデータグラムを転送する。このサーバからのデータグラムの転送方式は、各端末から他の端末へのデータグラムの転送と同じ方法で実現される。
【0395】
本実施形態における端末のプロトコル、すなわち端末がコネクションレス通信のデータグラムを目的の端末に送信するための手続きは次の通りである。
【0396】
(1) 端末は、アドレスのレゾリューション要求(AR要求)を出す。これは、端末が自分の能力でアドレスをレゾリューションできない場合、例えば、アドレスレゾリューションキャッシュテーブルにエントリーが存在しない時、あるいは常に行われる。
【0397】
(2) 端末は、アドレスレゾリューションサーバから、該当する端末をアクセスするために用意されたATMコネクションの識別子であるVCI/VPI情報を獲得する。
【0398】
(3) 端末は、獲得したVCI/VPIを付けて、ネットワークにセルを投入することで、データグラムの転送を完了する。
【0399】
なお、端末はデータグラムの転送に際して、特にATMネットワークで定義されているコネクション設定手続きを行う必要がない。
【0400】
本実施形態におけるアドレスレゾリューションサーバのプロトコルは、「バックボーンARS主導」と「フロントエンドARS手動」の2種類があり、それぞれ次の通りである。
【0401】
(i) バックボーンARS主導
各ネットワーク472〜474に存在するARS482〜484とネットワーク471に存在するARS481との間にスター状のATMコネクション(双方向通信チャネル)が形成される。例えば、端末47Aが端末47Dにデータグラムを転送するべくVCI/VPIを獲得するために、端末47Aは自分のネットワーク472のARSであるARS482に端末47Dのアドレス情報を持ったアドレスレゾリューション要求セルを転送する。要求セルを受け取ったARS482は、受け取ったセル中に書き込まれている目的端末のアドレスが自ネットワーク472ではないことを解析し、ネットワーク471に存在するARS481へ既に設定されているATMコネクション485を用いてアドレスレゾリューション要求セルのリレーイングを行う。他の方法として、ARS482が予めATMコネクション485を通じて既に過去に獲得した外部ネットワークのネットワークアドレス情報と各該当するCLSFへセルを転送するためのVCI/VPI情報をキャッシングしておくことも可能である。
【0402】
ARS481は、受け取ったセルが持っている宛先端末47Dのアドレス情報から、データグラムが転送されるべきCLSF(ネットワーク474内に存在する)にデータグラムを転送するためのVCI/VPI情報(VCI/VPI情報については後述する)を解析し、そのVCI/VPI情報をARS482へ転送する。VCI/VPI情報を受け取ったARS482は、VCI/VPI情報を基に、端末47Aが使用すべきVCI/VPI情報を返答(AR応答)する。
【0403】
ARS481でのアドレスのレゾリューションは次のように行われる。ARS481は自ネットワーク471が収容している端末のアドレス情報(アドレス空間情報)およびサブネットワーク472〜474のアドレス空間の情報を持っている。ARS481は受け取ったアドレスレゾリューション要求セルに書き込まれているアドレスと、各サブネットワークのアドレス空間情報との比較を行い、該当する転送先ネットワークを解析する。ここで、ARSは上記比較を行う際に、宛先アドレスのホストアドレスまでを解析する必要は必ずしもなく、ネットワークアドレスまでを解析すればよいことに注意が必要である。
【0404】
なお、公衆ネットワーク475向けのデータグラムを識別する方法としては、以下の2つの方法がある。
【0405】
(a) アドレスレゾリューションセルに書き込まれたアドレス情報が陽に公衆網475向けのデータグラムなのか、それとも公衆網向けではないデータグラムなのかを示している。つまり、端末はアドレスレゾリューション要求時に、それが公衆網向けかそうではないかを知っている場合で、端末はARSが公衆向けかそうでないかを陽に識別できるような形でアドレスレゾリューションセルをARSに転送する。公衆網475向けのアドレスではないアドレス情報であったときに、ARS481のアドレスエントリーにアドレスが存在しなかったときには、アドレスが存在しないという情報がARS482に送られる。
【0406】
(b) ARS481のアドレスエントリーに受け取ったアドレスレゾリューション要求セルが持つアドレスが存在しないときには、そのアドレスは公衆網475に属するものであると判断する。
【0407】
このように、ARS481はネットワーク471に属している端末およびサブネットワーク472,473,474のアドレスおよびアドレス空間の情報を持ち、アドレスのレゾリューションを行う。
【0408】
本実施形態におけるサブネットワーク空間のビューをARSの立場から示した図が図49および図50である。図49は、ARS481から見た隣接ネットワークのアドレス空間ビューである。また、図50はARS482から見た隣接ネットワークのアドレス空間ビューである。ARS482からは、IWU476で接続されたネットワーク511は複数のサブネットワークとしては当初見えていない。ARS482からは、ARS481との情報のやりとりを行って初めて、各サブネットワークのアドレス空間がレゾリューションされる。
【0409】
ARS482がARS481から受け取るアドレス情報(ATMレイヤアドレス情報)は、IWU476から目的のサブネットに存在するCLSFへのATMコネクションの識別子(VCI/VPI情報で、場合によっては上位レイヤの識別情報をも含む場合がある)の情報である。例えば、端末47Aから端末47Dへのデータグラム転送に際しては、CLSF494をアクセスするためのATMコネクション495,497の識別子を通知し(AR応答)、端末47Fへのデータグラム転送に際しては、CLSF491をアクセスするためのATMコネクション495,496の識別子を通知する。なお、ARS482はARS481から受け取ったVCI/VPI情報から、ATMコネクションがIWU476で正常にリレーイングされるようなVCI/VPI情報を端末47Aに通知する。端末47Aに通知されたVCI/VPI番号は、IWU476において別のVCI/VPIに書き替えられる。
【0410】
(ii)フロントエンドARS主導
各ネットワーク472〜474に存在するARS482〜484とネットワーク471に存在するARS481との間に、図47に示すスター状のATMコネクションあるいは図51に示すメッシュ状のATMコネクションが形成される。各ARSは、自分のサブネットワークからみた時の外部サブネットワークのアドレス空間情報およびATMコネクション情報(VCI/VPI)をそれぞれ図47あるいは図51で定義されたATMコネクションを用いて獲得している。図47は、ARS481がマスタARSのような形態であり、図51は各ARSが独立に動作する分散型の形態であると言える。ネットワークが3階層以上にはならない場合には、図47のようにバックボーンネットワークをマスターとする方が適切である。
【0411】
一方、ネットワークの階層に制限がない場合には、図47、図51の形態のどちらを選択するかはネットワークの形態あるいは管理形態、さらにはネットワーク内に存在するサブネットワークの数によって異なる。例えば、端末47Aが端末47Dにデータグラムを転送するべくVCI/VPIを獲得するために端末47Aは自分のネットワーク472のARSであるARS482に端末47Dのアドレス情報を持ったアドレスレゾリューション要求セルを転送する。要求セルを受け取ったARS482は、受け取ったセル中に書き込まれている目的端末のアドレスがネットワーク474であることを解析し、データグラムが転送されるべきCLSF(ネットワーク474内に存在する)にデータグラムを転送するための、VCI/VPI情報(VCI/VPI情報については後述)を端末47Aへ転送(AR応答)する。
【0412】
ARS482でのアドレスのレゾリューションは、次のように行われる。ARS482は自ネットワーク472が収容している端末のアドレス情報(アドレス空間情報)およびサブネットワーク471,473,474のアドレス空間の情報を持っている。ARS482は受け取ったアドレスレゾリューション要求セルに書き込まれているアドレスと、各サブネットワークのアドレス空間情報との比較を行い、該当する転送先ネットワークを解析する。ここで、ARSは上記比較を行う際に、宛先アドレスのホストアドレスまでを解析する必要は必ずしもなく、ネットワークアドレスまでを解析すればよいことに注意が必要である。
【0413】
なお、公衆ネットワーク475向けのデータグラムを識別する方法としては、以下の2つの方法がある。
【0414】
(a) アドレスレゾリューションセルに書き込まれたアドレス情報が陽に公衆網475向けのデータグラムなのかそれとも公衆網向けではないデータグラムなのかを示している。つまり、端末はアドレスレゾリューション要求時に、それが公衆網向けかそうではないかを知っている場合で、端末はARSが公衆向けかそうでないかを陽に識別できるような形でアドレスレゾリューションセルをARSに転送する。公衆網475向けのアドレスではないアドレス情報であったときに、ARS482のアドレスエントリーにアドレスが存在しなかったときには、アドレスが存在しないと判断される。
【0415】
(b) ARS482のアドレスエントリーに受け取ったアドレスレゾリューション要求セルが持つアドレスが存在しないときには、そのアドレスは公衆網475に属するものであると判断する。
【0416】
このように、ARS482はネットワーク472に属している端末およびサブネットワーク471,473,474のアドレスおよびアドレス空間の情報を持ち、アドレスのレゾリューションを行う。
【0417】
本実施形態におけるサブネットワーク空間のビューをARSの立場から示した図が図52および図53である。図52はARS482から見た隣接ネットワークのアドレス空間ビューであり、また図53はARS481から見た隣接ネットワークのアドレス空間ビューである。それぞれのARSからは、全てのサブネットワークのアドレス空間がレゾリューエションされている。
【0418】
ARS482が他のARSから受け取るアドレス情報(ATMレイヤ)は、IWU476から目的のサブネットに存在するCLSFへのATMコネクションの識別子(VCI/VPI情報であり、上位レイヤの識別情報をも含む場合がある)の情報である。例えば、端末47Aから端末47Dへのデータグラム転送に際しては、CLSF494をアクセスするためのATMコネクション495,497の識別子を通知し(AR応答)、端末47Fへのデータグラム転送に際しては、CLSF491をアクセスするためのATMコネクション495,496の識別子を通知する。なお、ARS482は他のARSから受け取ったVCI/VPI情報から、ATMコネクションがIWU476で正常にリレーイングされるようなVCI/VPI情報を端末47Aに通知する。端末47Aに通知されたVCI/VPI番号は、IWU476において別のVCI/VPIに書き替えられる。
【0419】
ARS間では、各サブネットワークのアドレス空間情報の交換プロトコルだけではなく、サブネットワーク間でのデータグラム通信(コネクションレス通信)に関するルーティングプロトコルが動作する。具体的には、図48に示したようなIWUとCLSF間のATMコネクションの設定管理を行う。なお、個別のATMコネクションはIWUで分離しており( サブネットワーク内部で閉じている)、別のATMコネクションサーバプロセスおよびルーティングサーバプロセスが、ATMコネクションの経路制御ならびにATMコネクション管理(例えばVCI/VPI管理)を行っており、ARSはこれらのサーバおよびIWUと制御メッセージの交換を行い、コネクションレス通信に必要なATMコネクションの管理を行う。
【0420】
図54に、IWU476が持つべきVCI/VPIの書き替えテーブルの一例を示した。なお、図中で同じCLSFへセルを転送するために付加するVCI/VPIは必ずしも異なる番号にする必要はない。すなわち、VCI/VPI情報のみでなく、上位レイヤデータユニット中の識別子情報と組み合わせることで、宛先CLSFが受信したセルがどのデータグラムの属するかを識別することもできる。同様に、同じ端末から転送されてくるセルに付加されたVCI/VPIは、必ずしも異なる番号にする必要はない。
【0421】
また、サブネットワーク内での輻輳や障害のために、通常状態で使っていたATMコネクションとは異なる経路を持つATMコネクションを使用する必要が生じる場合がある。この場合には、各スイッチのテーブルに設定するVCI/VPIおよびルーティングテーブル情報の管理制御を行う、ルーティング制御プロセス( アドレス管理を行う制御プロセスが他のプロセスであることも可能)は、UNIポイント(ユーザーインタフェイス点)に見せるVCI/VPI番号はサブネットワーク内の経路が変化したときでも同じ番号を維持できるように、管理制御を行う。
【0422】
次に、各種のサーバ(例えばCLSF)のアクセスポイントが移動したときにも、同様に各アクセスポイントからみえるコネクション識別番号(VCI/VPI)が同じになるようにリブートすればよい。また、リブートに際して関係するアクセスポイントに対して、旧いアクセスのための情報をキャッシュテーブルから廃棄する要求メッセージ(必要ならば新しいアクセス情報)を転送する。後者の場合には、IWUでは、図54に示したようなテーブルのエントリー情報を変更する必要がある(転送されたメッセージ内の情報を用いて、あるいは新しい情報を獲得するためのプロトコルを実行する)。
【0423】
次に、本実施形態における宛先端末へのルーティングについて説明する。各端末への最終的なデータグラムの配送は、各CLSFが属するネットワークのみについて行う(図48参照)。すなわち、例えばCLSF491はネットワーク471に属している端末(ネットワーク472,473,474,475はサービスしない)へのデータグラムの配送を行う。同様に、CLSF494はネットワーク494内の端末のみへのデータグラムの配送を行う。各CLSFが受け取ったデータグラムが持つネットワークアドレスが、そのCLSFの持つアドレスエントリーに存在しない場合、あるいは受信データグラムのアドレスがそのネットワークのネットワークアドレス空間の要素ではない場合には、そのデータグラムは誤って配送されたものと判断される。誤ったデータグラムの配送に対するアクションはここでは議論しない。すなわち、各CLSFは自分が属するネットワークの端末のアドレス情報のみを持ってればよい。受け取ったデータグラムのアドレスが自ネットワークに存在する時には、適切なATMコネクションを選択して、データグラムのリレーイングを行う。
【0424】
図55に、端末47Aから端末47Dへデータグラムが転送される場合のプロトコル処理の例を示した。ATMコネクションは、CLSF494で一旦終端される。すなわち、CLSF494でOSIレイヤ3のプロトコルが終端される。CLSF494でレイヤ3のプロトコル処理が行われ、データユニットはATMコネクションを用いて端末47Dに転送される。このように、自サブネットワーク以外の端末へのデータグラムの転送に際しては、ただ1回のATMコネクション終端でデータグラム配送がエンド−エンドに実現される。
【0425】
(実施形態5−1−1)
次に、より具体的な実施形態について説明する。
【0426】
図56および図57において、端末47Aから端末47Dにデータグラムが転送される場合の実施形態について簡単に説明する。図56が図50と図49に示した管理ビューに基づいた実施形態であり、図57が図52と図53に示した管理ビューに基づいた実施形態である。
【0427】
本実施形態におけるアドレスレゾリューションは、次のようにして行われる。
【0428】
端末47Aは端末47Dへデータグラムを転送するときに、端末47Dへデータグラムを転送するためのATMレイヤアドレス情報を持っていない場合には、ARS482へ、端末47Dのアドレス情報を持ったアドレスレゾリューション要求セルをATMコネクション571,581を用いて転送する。但し、ATMコネクション571,581はポイント−ポイントのコネクションでも、ブロードキャストコネクションでも実現可能である。アドレスレゾリューション要求セルを受け取ったARS482は、アドレスレゾリューション要求セルが解析したいアドレスが自ネットワーク472ではないので、図56の例ではアドレスレゾリューション要求セルをATMコネクション572を経由してARS481に転送する。なお、ARS482がアドレスレゾリューション要求セルを受け取って、ARS481にその要求セルを転送するまでの手続きとしては、以下のような方式が考えられる。
【0429】
(1) ARSがそのネットワーク内で発生するアドレスレゾリューション要求セルに対する応答を全て受け持つ場合には、ARSはまずアドレスレゾリューション要求セルのスクリーニングを行う。すなわち、受け取ったセルの中のアドレスが自ネットワークのアドレス空間の要素であるかどうをネットワークマスクなどを用いて検証する。もし、アドレスが自ネットワーク内のものであれば、アドレステーブルを検索して該当する端末のATMレイヤアドレス情報を返す。一方、アドレスが自ネットワーク以外であった時には、予め設定された上位のARS、この例ではARS481へ要求セルを転送する。
【0430】
(2) ARSは、そのネットワークではない、つまり他のサブネットワークに属する端末に対して、データグラムを送りたい要求に対してのみ応答を行い、自ネットワーク内の端末に対するレゾリューション要求に対する応答は各転送されるべき端末自身が返答する場合には、アドレスレゾリューションの際にブロードキャストチャネルを用いる場合とポイント−ポイントコネクションを用いる場合とで異なる。ブロードキャストチャネルを用いる場合には、アドレスのスクリーニングを行った後、要求セルを取り込み、上位のARSに要求セルを転送する。一方、ポイント−ポイントコネクションを用いる場合には、原則的には無条件に上位のARS、この例ではARS481にセルを転送することができる。
【0431】
図56の例で、アドレスレゾリューション要求セルを受け取ったARS481は、自ネットワークが収容しているアドレスおよびアドレス空間に要求セルの持つアドレスが存在するかどうかを調べる。アドレスのエントリーに該当するアドレスが存在しない時には、公衆網向けのアドレスと判断する。例では、宛先は端末47Dであるので、ARS471はネットワーク474のアドレス空間に要求セルのアドレスが存在することを認識することができる(すなわち、ネットワーク474の持つアドレス空間情報を用いることができる)。端末47Dのアドレスを解析したARS481は、IWU476からCLSF494へのATMコネクションのVCI/VPI情報(IWU476から見たときのVCI/VPI情報)をARS482へ応答する。
【0432】
ARS482は、IWU476でCLSF494の通じているATMコネクションにリレーイングされるべきATMコネクションの識別情報であるVCI/VPIを応答する。このVCI/VPIを用いることにより、端末47AはCLSF494へ直接データグラムを配送することができる。ARS482が自律的にアドレスのレゾリューションを行うことができる図57の例では、ATMコネクション581を通じて与えられたアドレスレゾリューション要求に対して、直接、レゾリューション情報(AR応答)を端末47AにATMコネクション582を通じて転送することができる。
【0433】
本実施形態におけるデータグラムの転送は、次のようにして行われる。
【0434】
端末47Aは、ATMコネクション575,583を用いてセル(データグラム情報を持つ)をCLS494へ転送する。IWU476,478は、受け取ったセルのVCI/VPI情報を書き替えることでATMコネクションのリレーイングを行う。この処理は上位レイヤに持ち上げずATMレイヤの処理として行われるので、IWU476,478を経由しているATMコネクション575,583はATM終端点のない一つのATMコネクションと見ることができる。
【0435】
ATMコネクション575,583の終端点であるCLSF494では、ネットワークレイヤの処理が行われる。CLSF494はネットワークアドレスの解析を行い、データグラムをATMコネクション576,584にリレーイングして、端末47Dに転送する。
【0436】
このようにATMコネクションは、端末47AからCLSF494と、CLSF494から端末47Dの2つであり、1度だけ終端される。
【0437】
(実施形態5−2)VPIルーティングのATMネットワークを用いた場合−その1。
【0438】
まず、本実施形態におけるATMレイヤのアドレス割り当て方法について説明する。VPIルーティングを行う場合には、VPIフィールドが宛先UNIを示している(VPI−Fと記述する)。VCIフィールドのコーディング方法は次のように定義する必要がある。ここで、議論しているVCIフィールドのコーディングは、コネクションレス通信に関係するセルの転送に関係するものであり、他のアプリケーション(コネクションオリエンテッドコネクションなど)に対しては、ここでのコーディングを必ずしも使用する必要はない。つまり、一般的には、VCIフィールドのコーディング方法は、着信端末と送信端末の間でのネゴシエーションによって行うことができるものである。VCIフィールド16ビットは、2つの8ビットのサブフィールドから構成されるように定義し、これらをVCI−F1,VCI−F2と記述する。
【0439】
本実施形態ではATMコネクションを次の通り設定する。図58〜60に示したアドレスレゾリューションの関連するATMコネクションの設定について説明する。各ARS481〜484は、少なくとも各ARSが属するネットワーク471〜474が収容している端末あるいはネットワークのアドレス情報を管理している。
【0440】
図58は、図48に示したARS481が主導となって(ルートとなって)各サブネットワークのアドレス情報が管理される場合である。VCI/VPI情報は、IWUで書き替えられATMコネクションのリレーイングが行われる。例えば、ARS482からARS481へのATMコネクションは、コネクション591,592とから形成される。コネクション591のVPI−FはIWU476のアクセスアドレスであるVPI476−2 であり、VCI−F1はARS482のアクセスアドレスであるVPI482 である。VCI−F2は、原則として任意の値とすることが可能であるが、IWU476がVCI−F2内部の情報から、受信セルがコネクション592へリレーイングされるべきものであることを識別することができるようにコーディングされる。一方、コネクション592のVPI−FはARS481のアクセスアドレスであるVPI481 であり、VCI−F1はIWU476のアクセスアドレスであるVPI476−1 である。なお、両方のコネクションでVCI−F2は原則として任意の値とすることが可能である。また、VPI476−1 はネットワーク471とってのIWU476のアクセスアドレス(VPI)、VPI476−2 はネットワーク472にとってのIWU476のアクセスアドレス(VPI)である。
【0441】
IWU476では、受信したセルのVCI−F2とVCI−F1の情報の組から、コネクション592のセルに書き込むべきVCI/VPI情報を解析する。従って、IWU476はテーブルエントリーとしてVCIフィールド(16ビット)を持ち、結果としてVCI/VPI情報を解析する機能を持つ。コネクション592のセルのVPI−Fは、VCI−F1とVCI−F2の組み合わせで解析される。VCI−F1には、VPI476−1 が書き込まれる。また、VCI−F2は、ARS482からARS481との間のATMコネクションの識別子としてコーディングされる。VCI−F2の値は、ATMコネクション(コネクション591,592)の設定時に決定される。VCI−F2のアサインメントは、サブネットワーク(ネットワーク471,472)内でのVCI−F2の管理を行っているプロセスでも構わないし、端末(ARS481およびIWU476)でVCI−F2の値を管理しているプロセスでも構わない。
【0442】
図59、図60について説明する。これは図51に示した各ARSが独自に各サブネットワークのアドレス情報が管理される場合である。例えば、ARS482からARS484へのATMコネクション617は、コネクション6021,6041,6061から形成される。コネクション6021のVPI−Fは、IWU476のアクセスアドレスであるVPI476−2であり、VCI−F1はARS482のアクセスアドレスであるVPI482 である。VCI−F2は、コネクション6021に割り当てられた識別番号であるVCI−F1とVCI−F2の組み合わせでコネクションが識別される。コネクション6061のVPI−FはIWU478のアクセスアドレスであるVPI478−1 であり、VCI−F1はIWU476のアクセスアドレスであるVPI476−1 である。VCI−F2は、コネクション6061の設定時に設定される値である。コネクション6041のVPI−FはARS484のアクセスアドレスであるVPI484 であり、VCI−F1はIWU478のアクセスアドレスであるVPI478−1 である。VCI−F2は、コネクション6041の設定時に設定される値である。
【0443】
例えば、IWU478では受信したセルのVCI−F2とVCI−F1の情報の組から、コネクション6041のセルに書き込むべきVCI/VPI情報を解析する。IWU478は、テーブルエントリーとしてVCIフィールド(16ビット)を持ち、一方、結果としてVCI/VPI情報を解析する機能をもつ。
【0444】
コネクション6041のセルのVPI−Fは、VCI−F1とVCI−F2の組み合わせで解析される。VCI−F1には、VPI478−1 が書き込まれる。また、VCI−F2はARS482からARS481との間のATMコネクションの識別子としてコーディングされる(VCIフィールド情報から解析)。VCI−F2の値は、ATMコネクション(コネクション6021,6041,6061)の設定時に決定される。VCI−F2のアサインメントは、サブネットワーク(ネットワーク471,472,474)内でのVCI−F2の管理を行っているプロセスでも構わないし、端末(ARS481,IWU476,ARS484)でVCI−F2の値を管理しているプロセスでも構わない。
【0445】
以上のようなVCI/VPIフィールドの設定方法により、複数のセルにまたがった情報をARSが他のARSに転送したときにも、受信側で問題なくデータのリアセンブリが可能となる。なお、どの端末から転送されたデータであるか、あるいはデータがアドレスレゾリューションのプロトコルに関わるものであるというようなデータ識別は、上位レイヤの識別フィールドを用いる必要がある。
【0446】
図61に、端末47Aから端末47F、公衆網475、端末47Dへデータグラムを転送するために必要なATMコネクションの設定を示す。その2つの方法を以下に示す。
【0447】
(1) まず、端末47Aから端末47Fへのデータグラムの転送を説明する。この場合、2つのATMコネクションから形成される。一つは端末47AからCLSF491へのコネクション621〜3とコネクション624、もう一つはCLSF491から端末47Fへのコネクション625である。端末47Aは、IWU476へ次のようなセルを転送する。すなわち、VPI−FはIWU476のアクセスアドレスであるVPI476−2 、VCI−F1は端末47AのアクセスアドレスであるVPI47A 、VCI−F2はコネクション621の設定時に設定された値をそれぞれ持つ。IWU476で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。VCI−F1は、IWU476のネットワーク471にとってのアクセスアドレスであるVPI476−1 が書き込まれる。なお、VCI−F2はコネクション624が設定される時に決められる値であり、IWU476が受信したセルのVCI−F1の値、すなわち端末47AのアクセスアドレスであるVPI47A をコピーして書くことも可能である。
【0448】
CLSF491に到着したデータグラムは一旦セルリアセンブリが行われ、ATMコネクションが終端される。CLSF491は上位レイヤのアドレス情報を解析し、データグラムの宛先が端末47Fであることを認識する。そこで、CLSF491は次のようなセルを生成し、データグラムを端末47Fへ転送する。VPI−Fは端末47FのアクセスアドレスであるVPI47F 、VCI−F1はCLSF491のアクセスアドレスであるVPI491 、VCI−F2はコネクション625に割り当てられた識別番号である。なお、端末47FはVCI−F1とVCI−F2とからセルの所属するデータグラムを一意に識別することができる。すなわち、データグラムのリアセンブリができる。
【0449】
次に、端末47Aから公衆網475へのデータグラムの転送を説明する。この場合、一つのATMコネクション(コネクション622+626+627)から形成される。端末47Aは、IWU476へ次のようなセルを転送する。すなわち、VPI−FはVPI476−2 、VCI−F1はVPI47A 、VCI−F2はコネクション622の設定時に設定された値をそれぞれ持つ。IWU476で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。VCI−F1は、IWU476のネットワーク471にとってのアクセスアドレスであるVPI476−1 が書き込まれる。なお、VCI−F2はコネクション626が設定される時に決められる値であり、IWU476が受信したセルのVCI−F1の値、すなわち端末47AのアクセスアドレスであるVPI47A をコピーして書くことも可能である。IWU479は、受信したセルのVCI情報から、公衆網475で定義されているATMコネクション627にアサインされているVCI/VCIを書き込み、セルを公衆網475へ転送する。
【0450】
最後に、端末47Aから47Dへのデータグラムの転送を説明する。二つのATMコネクションから形成される。一つは端末47AからCLSF494へのコネクション623,628,629、もう一つはCLSF494から端末47Dのコネクション62Aである。端末47Aは、IWU476へ次のようなセルを転送する。すなわち、VPI−FはIWU476のアクセスアドレスであるVPI476−2 、VCI−F1は端末47AのアクセスアドレスであるVPI47A 、VCI−F2はコネクション623の設定時に設定された値をそれぞれ持つ。IWU476で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。VCI−F1は、IWU476のネットワーク471にとってのアクセスアドレスであるVPI476−1 が書き込まれる。なお、VCI−F2は、コネクション628が設定される時に決められる値であり、IWU476が受信したセルのVCI−F1の値、すなわち端末47AのアクセスアドレスであるVPI47A をコピーして書くことも可能である。
【0451】
次に、IWU478で受信されたセルのVCIが解析され、対応するVPI−F,VCI−F1およびVCI−F2が解析される。VCI/VPIは、CLSF494が、ネットワーク内の全ての端末(データグラムをCLSF494に転送可能な端末)からのセルが同時に到着しても識別可能であるように割り振られる必要がある。
【0452】
CLSF494に到着したデータグラムは一旦セルリアセンブリが行われ、ATMコネクションが終端される。CLSF494は上位レイヤのアドレス情報を解析し、データグラムの宛先が端末47Dであることを認識する。そこで、CLSF494は次のようなセルを生成し、データグラムを端末47Dへ転送する。すなわち、VPI−Fは端末47DのアクセスアドレスであるVPI47D 、VCI−F1はCLSF494のアクセスアドレスであるVPI494 、VCI−F2はコネクション62Aに割り当てられた識別番号である。なお、端末47DはVCI−F1とVCI−F2とから、セルの所属するデータグラムを一意に識別することができる。すなわち、データグラムのリアセンブリができる。
【0453】
(2) 各CLSFは、全てVPIアドレスを獲得しており、そのVPIで識別されるコネクションはすべてデータグラム通信(コネクションレス通信)に関するセルの転送に用いられるATMコネクションであるように構成する。すなわち、CLSFサーバは、自分自身が他の端末/サーバとの通信を行うために、ATMコネクション(コネクションレスのコネクションではない)を必要とする。つまり、CLSFは少なくとも2つ以上のアクセスアドレス(VPI)をブート時に獲得する必要がある。
【0454】
同様に、IWUも全て少なくとも2つ以上のアクセスアドレス(VPI)をブート時に獲得する。一つのVPIは、コネクションレス通信のセルに関するものとして使用される。すなわち、各端末はコネクションレス通信に関するデータグラムのセルを外部ネットワークに転送するときには、コネクションレス通信用に定義されたVPI(for IWU)をセルに付けてネットワークにセルを投入する。
【0455】
この時、コネクションレス通信に関するセルのVCIフィールドのコーディング方法として、以下のような方法を用いる。VCIフィールドは、8ビットの2つのサブフィールドにする(VCI−F1とVCI−F2:フィールドの定義位置については言及しない)。
【0456】
次に、外部サブネットワーク内で転送されるセルのコーディング手法を説明する。これは、端末が属するサブネットワークからIWUを介して外部のサブネットワークにセルが転送されるときのVCIフィールドのコーディングである。VCI−F1には送信元の端末が属するサブネットワークの識別番号が書き込まれ、VCI−F2には送信元端末のサブネットワーク内での識別番号が書き込まれる。例えば、サブネットワークの識別番号として、ネットワーク471における各IWUのアクセスアドレス(VPI)をサブネットワークの識別アドレスとすることも可能である(ネットワーク471自身は適当にコーディングする)。また、端末の識別番号としては各サブネットワークにおける端末のアクセスアドレス(VPI)とすることも可能である。例えば、外部のサブネットワーク内で転送される端末47Dから出されるコネクションレス通信のセルのVCIフールドは、VCI−F1=VPI478−1 、VCI−F2=VPI47D とすることができる。
【0457】
次に、自サブネットワーク内で転送されるセルのコーディング手法について説明する。これは、端末が属するサブネットワークのIWUへセルが転送されるときのVCIフィールドのコーディングである。VCI−F1には宛先端末が属するサブネットワークの識別番号が書き込まれ、VCI−F2には送信元端末のサブネットワーク内での識別番号が書き込まれる。例えば、自ネットワーク内で転送される端末47Dから出されるコネクションレス通信のセルのVCI−F2フィールドは、VPI47D とすることができる。
【0458】
以上のような構成をとることで、端末はデータグラムの転送に先立って行うアドレスレゾリューション手続きにおいて、宛先端末が属するサブネットワークの識別番号を獲得しさえすれば、データグラム(複数あるいは1つのセル)を転送することができる。以下、このデータグラムの転送について説明する。
【0459】
まず、端末47Aから端末47Fへのデータグラムの転送を説明する。端末47Aは、IWU476へ次のようなセルを転送する。VPI−FはIWU476のアクセスアドレスであるVPI476−2 、VCI−F1はネットワーク471の識別番号(例えばCLSF491のアクセスアドレスであるVPI491 )を用いることも可能)、VCI−F2は端末47AのアクセスアドレスであるVPI47A に設定する。
【0460】
IWU476で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。例えば、VCI−F1にCLSF491のアクセスアドレスVPI491 が書き込まれている実施形態の場合には、出力するセルのVPI−Fは、受信したセルのVCI−F1情報であるVPI491 をコピーすることで、実現できる。VCI−F1には、IWU476のネットワーク471にとってのアクセスアドレスであるVPI476−1 が書き込まれる。VCI−F2は、トランスペアレントに設定することができる。すなわち、例えば端末47Aから転送されるセルのVCI−F1にCLSF491のアクセスアドレスVPI491 が書き込まれている実施形態の場合には、(1) 受信セルのVCI−F1を送出セルのVPI−Fにコピーし、(2) 受信セルのVCI−F2を送出セルのVCI−F2にコピーし、(3) 送出セルのVCI−F1には、IWUのアクセスアドレスであるVPI476−1 を書き込むという手順により、セルのリレーイングが実現される。
【0461】
CLSF491に到着したデータグラムはセルリアセンブリが行われ、ATMコネクションが終端される。CLSF491は上位レイヤのアドレス情報を解析し、データグラムの宛先が端末47Fであることを認識する。そこで、CLSF491は、VPI−Fが端末47FのアクセスアドレスであるVPI47F であるようなセルを生成し、データグラムを端末47Fへ転送する。なお、CSLF491はVCI−F1とVCI−F2とから、セルの所属するデータグラムを一意に識別することができる(データグラムのリアセンブリができる)。従って、データグラム(セル)のリレーイングをパイプライン的に行うことも可能である。
【0462】
次に、端末47Aから公衆網475へのデータグラムの転送を説明する。端末47Aは、IWU476へ次のようなセルを転送する。VPI−FはIWU476アクセスアドレスであるVPI476−2 、VCI−F1は公衆網475の識別番号(例えばIWU479のアクセスアドレスであるVPI479 を用いることも可能)、VCI−F2は端末47AのアクセスアドレスであるVPI47A に設定する。
【0463】
IWU76で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。例えば、VCI−F1にIWU479のアクセスアドレスVPI479 が書き込まれている実施形態の場合には、出力するセルのVPI−Fは、受信したセルのVCI−F1情報であるVPI479 をコピーすることで、実現できる。VCI−F1には、IWU476のネットワーク471にとってのアクセスアドレスであるVPI476−1 が書き込まれる。VCI−F2は、トランスペアレントに設定することができる。すなわち、例えば端末47Aから転送されるセルのVCI−F1にIWU479のアクセスアドレスVPI479 が書き込まれている実施形態の場合には、(1) 受信セルのVCI−F1を送出セルのVPI−Fにコピーし、(2) 受信セルのVCI−F2を送出セルのVCI−F2にコピーし、(3) 送出セルのVCI−F1には、IWUのアクセスアドレスであるVPI476−1 を書き込むという手順により、セルのリレーイングが実現される。IWU479は、受信したセルのVCI情報から、公衆網475で定義されているATMコネクション627にアサインされているVCI/VPIを書き込み、セルを公衆網475へ転送する。
【0464】
最後に、端末47Aから端末47Dへのデータグラムの転送を説明する。端末47AはIWU476へ次のようなセルを転送する。VPI−FはIWU476のアクセスアドレスであるVPI476−2 、VCI−F1はネットワーク474の識別番号(例えばIWU478のアクセスアドレスであるVPI478−1 を用いることも可能)、VCI−F2は端末47AのアクセスアドレスであるVPI47A に設定する。
【0465】
IWU476で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。例えば、VCI−F1にIWU478のアクセスアドレスVPI478−1 が書き込まれている実施形態の場合には、出力するセルのVPI−Fは受信したセルのVCI−F1情報であるVPI478−1 をコピーすることで実現できる。VCI−F1は、IWU476のネットワーク471にとってのアクセスアドレスであるVPI476−1 が書き込まれる。VCI−F2は、トランスペアレントに設定することができる。すなわち、例えば端末47Aから転送されるセルのVCI−F1にIWU478のアクセスアドレスVPI478−1 が書き込まれている実施形態の場合には、(1) 受信セルのVCI−F1を送出セルのVPI−Fにコピーし、(2) 受信セルのVCI−F2を送出セルのVCI−F2にコピーし、(3) 送出セルのVCI−F1にはIWUのアクセスアドレスであるVPI476−1 を書き込むという手順により、セルのリレーイングが実現される。
【0466】
次に、IWU478で受信されたセルのVCIが解析され、対応するVPI−F、VCI−F1およびVCI−F2が解析される。IWU478からCLSF494へ転送されるセルのVCIフィールドは、受信したセルのVCIフィールド情報をトランスペアレントに設定することが可能である。すなわち、VCI−F1=VPI476−1 、VCI−F2=VPI47A とすることができる。なお、VPI−FはCLSF494のアクセスアドレスであるVPI494 が設定される。CLSF494に到着したデータグラムは一旦セルリアセンブリが行われ、ATMコネクションが終端される。CLSF494は上位レイヤのアドレス情報を解析し、データグラムの宛先が端末47Dであることを認識する。また、CLSF494はVPI−Fが端末47DアクセスアドレスであるVPI47D であるようなセルを生成し、データグラムを端末47Dへ転送する。なお、端末47DはVCI−F1とVCI−F2とから、セルの所属するデータグラムを一意に識別することができる。すなわち、データグラムのリアセンブリができる。具体的には、例えばVCI−F1から送信元端末が属するサブネットワークまたは該サブネットワークを収容するIWUをVCI−F2から該サブネットワークにおける識別番号として知ることができる。
【0467】
(実施形態5−3)一般のATMネットワークを用いた場合−その2。
【0468】
図62に、本実施形態のネットワークアーキテクチャの概略図を示した。このネットワークは、2階層のネットワークで構成されている。各ネットワーク631−635は、IWU636〜639を介してインターネットワーキングされている。ネットワーク631と公衆網635とは、IWU639を介して接続されている。IWU636〜639は、ATMコネクションを終端することなくATMセルのリレーイングを実現することができる。すなわち、受信したセルのVCI/VPIを隣接するネットワークで対応するATMコネクションに割り当てられているVCI/VPIに変換する機能を持つ。なお、CLSF−O、CLSF−IおよびARSは同じ装置に実装することも可能である。さらに、これらはIWU上に実現することも可能である。
【0469】
図64および図65に、アドレスレゾリューションの関連するATMコネクションの設定を示す。各ARSは、少なくとも各ARSが属するネットワークが収容している端末あるいはネットワークのアドレス情報を管理している。
【0470】
図63に、端末63Aから(1) 端末63C、(2) 公衆網635、(3) 端末63Bへデータグラムを転送するために必要なATMコネクション641〜646の設定を示す。CLSF−O63MからCLSF−I63L,CLSF−I63Jおよび公衆網635へのATMコネクション(片方向ATMコネクション)が設定されている。なお、同様のコネクションが他のサブネットワークについても設定されている。CLSF−IおよびCLSF−O間に設定されているATMコネクションは、図66に示した。なお、公衆網635から定義されたネットワーク631〜634に属する端末へのコネクションレス通信の場合には、公衆網635からのコネクションレス通信に関するATMコネクションは、ネットワーク631に存在する、公衆網635からのコネクションレス通信に関するATMコネクションを終端し、データグラムをリレーイングするためのサーバで終端される。このコネクションレスに関するATMコネクションを終端するサーバについては、以下で説明する、ネットワーク内の端末から他のネットワーク内の端末へのデータグラム転送と同じ手続きを用いて、目的の端末へ、このサーバから転送される。
【0471】
本実施形態における端末のプロトコルについて説明する。端末は、データグラムが外部のサブネットワーク宛てのものであると判断したときには、データグラムをCLSF−Oに転送する。なお、端末とCLSF−Oとの間には既にATMコネクションが設定されているものとする。各端末は、自端末が属するサブネットワークのアドレス空間の情報(アドレスマスクなど)を持っており、宛先の端末が、自分のサブネットワーク内なのかそれとも外部のサブネットワークなのかを判断することができる。
【0472】
図62に示したネットワーク構成の場合には、データグラム配送の方式として、例えば以下のような3つの方法を用いることができる。
【0473】
(1) CLSF−OとCLSF−Iとが同じアクセスポイントにあり、CLSFと端末との間にはスター状のATMコネクションが設定されている。端末は、データグラムの転送を行うときには全てCLSFへセルを転送する。データグラムの配送は、全てCLSFが行う。すなわち、サブネットワーク内の端末同士の通信も一度CLSFを経由する。
【0474】
(2) サブネットワーク内の端末同士の通信はCLSFを介さずに実現され、外部ネットワークにある端末との通信はCLSF−Oを介して実現される。
【0475】
(3) 外部ネットワークの端末との通信にはCLSF−Oが使用され、自ネットワーク内部の端末との通信にはCLSF−Iが使用される。
【0476】
本実施形態におけるアドレスレゾリューションサーバのプロトコルは、「バックボーンARS主導」と「フロントエンドARS手動」の2種類があり、それぞれ次の通りである。
【0477】
(i) バックボーンARS主導
各ネットワークに存在するARSとネットワーク631に存在するARS63Gとの間に、スター状のATMコネクション(双方向通信チャネル)が形成される(図64)。例えば、端末63Aから端末63Bにデータグラムを転送するべく、CLSF−O63MはCLSF−O63MとCLSF−I63Jとの間に設定されたATMコネクションを利用するために、そのコネクションのVPI/VCI情報を獲得する必要がある。CLSF−O63Mは、VCI/VPIを獲得するために、自分のネットワーク632のARSであるARS63Dに端末63Bのアドレス情報を持ったアドレスレゾリューション要求セルを転送する(受信したデータグラムの中に書き込まれているアドレス情報)。要求セルを受け取ったARS63Dは、受け取ったセル中に書き込まれている宛先端末のアドレスを解析し、ARS63Dが持っている情報ではアドレスのレゾリューションができないときには、ネットワーク631に存在するARS63Gへ既に設定されているATMコネクション651を用いて、アドレスレゾリューション要求セルのリレーイングを行う。
【0478】
ARS63Gは、受け取ったセルが持っている宛先端末63Bのアドレス情報から、データグラムが転送されるべきCLSF(ネットワーク633内に存在する)にデータグラムを転送するためのVCI/VPI情報(VCI/VPI情報については後述する)を解析し、そのVCI/VPI情報をARS63Dへ転送する。VCI/VPI情報を受け取ったARS63Dは、VCI/VPI情報を基に、CLSF−O63Mが使用すべきVCI/VPI情報を返答する(AR応答)。
【0479】
ARS63Gでのアドレスのレゾリューションは次のように行われる。ARS63Gは自ネットワーク631が収容している端末のアドレス情報(アドレス空間情報)およびサブネットワーク632〜634のアドレス空間の情報を持っている。ARS63Gは受け取ったアドレスレゾリューション要求セルに書き込まれているアドレスと、各サブネットワークのアドレス空間情報との比較を行い、該当する転送先ネットワークを解析する。
【0480】
なお、公衆網635向けのデータグラムを識別する方法としては、以下の2つの方法がある。
【0481】
(a) アドレスレゾリューションセルに書き込まれたアドレス情報が陽に公衆網635向けのデータグラムなのかそれとも公衆網向けではないデータグラムなのかを示している。つまり、端末はアドレスレゾリューション要求時に、それが公衆網向けかそうではないかを知っている場合で、端末はARSが公衆向けかそうでないかを陽に識別できるような形でアドレスレゾリューションセルをARSに転送する。公衆網635向けのアドレスではないアドレス情報であったときに、ARS63Gのアドレスエントリーにアドレスが存在しなかったときには、アドレスが存在しないという情報がARS63Dに送られる。
【0482】
(b) ARS63Gのアドレスエントリーに受け取ったアドレスレゾリューション要求セルが持つアドレスが存在しないときには、そのアドレスは公衆網635に属するものであると判断する。
【0483】
このように、ARS63Gはネットワーク631に属している端末およびサブネットワーク632〜634のアドレスおよびアドレス空間の情報を持ち、アドレスのレゾリューションを行う。なお、ARS63Gは自分の属するサブネットワーク以外のサブネットワークの端末レベルまでのアドレス情報を持つ必要は必ずしもなく、ネットワークアドレスレベルまでの情報を持てばよい。
【0484】
ARS63DがARS63Gから受け取るアドレス情報(ATMレイヤ)は、IWU636から目的のサブネットに存在するCLSF−IへのATMコネクションの識別子(VCI/VPI情報で、上位レイヤの識別情報をも含む場合もある)の情報である。例えば、端末63Aから端末63Bへのデータグラム転送に際しては、CLSF−I63JをアクセスするためのATMコネクション645の識別子を通知し(AR応答)、端末63Cへのデータグラム転送に際しては、CLSF−I63LをアクセスするためのATMコネクション642の識別子を通知する。
【0485】
なお、ARS63DはARS63Gから受け取ったVCI/VPI情報から、ATMコネクションがIWU636で正常にリレーイングされるようなVCI/VPI情報をCLSF−O63Mに通知する。CLSF−O63Mに通知されたVCI/VPI番号は、IWU636において別のVCI/VPIに書き替えられる。
【0486】
(ii)フロントエンドARS主導
各ネットワークに存在するARSとネットワーク631に存在するARS63Gとの間に、図64に示すようなスター状のATMコネクションあるいは図65に示すようなメッシュ状のATMコネクションが形成される。各ARSは、自分のサブネットワークからみた時の、外部サブネットワークのアドレス空間情報およびATMコネクション情報(VCI/VPI)をそれぞれ図64あるいは図65で定義されたATMコネクションを用いて獲得している。図64は、ARS63GがマスターARSのような形態であり、図65は各ARSが独立に動作する分散型の形態であると言える。
【0487】
ネットワークが3階層以上にはならない場合には、図64のようにバックボーンネットワークをマスターとする方が適切である。一方、ネットワークの階層に制限がない場合には、図64、図65の形態のどちらを選択するかは、ネットワークの形態あるいは管理形態、さらにはネットワーク内に存在するサブネットワークの数によって異なる。例えば、CLSF−O63Mが端末63Bにデータグラムを転送すべくVCI/VPIを獲得するために、CLSF−O63Mは自分のネットワーク632のARSであるARS63DにARS63Bのアドレス情報を持ったアドレスレゾリューション要求セルを転送する。この要求セルを受け取ったARS63Dは、受け取ったセル中に書き込まれている宛先端末のアドレスがネットワーク633であることを解析し、データグラムが転送されるべきCLSF(ネットワーク633内に存在する)にデータグラムを転送するためのVCI/VPI情報(VCI/VPI情報については後述する)CLSF−O63Mへ転送する(AR応答)。
【0488】
ARS63Dでのアドレスのレゾリューションは、次のように行われる。ARS63Dは自ネットワーク632が収容している端末のアドレス情報(アドレス空間情報)およびサブネットワーク631,633,634のアドレス空間の情報を持っている。ARS63Dは受け取ったアドレスレゾリューション要求セルに書き込まれているアドレスと、各サブネットワークのアドレス空間情報との比較を行い、該当する転送先ネットワークを解析する。
【0489】
なお、公衆ネットワーク635向けのデータグラムを識別する方法としては、以下の2つの方法がある。
【0490】
(a) アドレスレゾリューションセルに書き込まれたアドレス情報が陽に公衆網635向けのデータグラムなのかそれとも公衆網向けではないデータグラムなのかを示している。つまり、端末はアドレスレゾリューション要求時に、それが、公衆網向けかそうではないかを知っている場合で、端末はARSが公衆向けかそうでないかを陽に識別できるような形でアドレスレゾリューションセルをARSに転送する。公衆網635向けのアドレスではないアドレス情報であったときに、ARS63Dのアドレスエントリーにアドレスが存在しなかったときには、アドレスが存在しないと判断される。
【0491】
(b) ARS63Dのアドレスエントリーに受け取ったアドレスレゾリューション要求セルが持つアドレスが存在しないときには、そのアドレスは公衆網635に属するものであると判断する。
【0492】
このように、ARS63Dはネットワーク632に属している端末およびサブネットワーク631,633,634のアドレスおよびアドレス空間の情報を持ち、アドレスのレゾリューションを行う。なお、ARS63Dは自分の属するサブネットワーク以外のサブネットワークの端末レベルまでのアドレス情報を持つ必要は必ずしもなく、ネットワークアドレスレベルまでの情報を持てばよい。
【0493】
ARS63Dが他のARSから受け取るアドレス情報(ATMレイヤ)は、IWU636から目的のサブネットに存在するCLSF−IへのATMコネクションの識別子(VCI/VPI情報で、上位レイヤの識別情報をも含む場合がある)の情報である。例えば、端末63Aから端末63Bへのデータグラム転送に際しては、CLSF−I63JをアクセスするためのATMコネクション645の識別子を通知し(AR応答)、端末63Cへのデータグラム転送に際しては、CLSF−I63LをアクセスするためのATMコネクション642の識別子を通知する。
【0494】
なお、ARS63Dは他のARSから受け取ったVCI/VPI情報から、ATMコネクションがIWU636で正常にリレーイングされるようなVCI/VPI情報をCLSF−O63Mに通知する。CLSF−O63Mに通知されたVCI/VPI番号は、IWU636において別のVCI/VPIに書き替えられる。ARS間では、各サブネットワークのアドレス空間情報の交換プロトコルだけではなく、サブネットワーク間でのデータグラム通信(コネクションレス通信)に関するルーティングプロトコルが動作する。具体的には、図63に示したようなATMコネクションの設定管理を行う。なお、個別のATMコネクションは、IWUで分離しており(サブネットワーク内部で閉じている)、別のATMコネクションサーバプロセスおよびルーティングサーバプロセスが、ATMコネクションの経路制御ならびにATMコネクション管理(例えばVCI/VPI管理)を行っており、ARSはこれらのサーバおよびIWUと制御メッセージの交換を行い、コネクションレス通信に必要なATMコネクションの管理を行う。
【0495】
本実施形態における宛先端末へのルーティングについて説明する。各端末への最終的なデータグラムの配送は、各CLSF−Iが属するネットワークのみについて行う。すなわち、例えばCLSF−I63Lはネットワーク631に属している端末(ネットワーク632〜635はサービスしない)へのデータグラムの配送を行う。同様に、CLSF−I63Jはネットワーク633内の端末のみへのデータグラムの配送を行う。各CLSFが受け取ったデータグラムが持つネットワークアドレスが、そのCLSFが持つアドレスエントリーに存在しない場合、あるいは受信データグラムのアドレスがそのネットワークのネットワークアドレス空間の要素ではない場合には、そのデータグラムは誤って配送されたものと判断される。誤ったデータグラムの配送に対するアクションはここでは議論しない。すなわち、各CLSFは自分が属するネットワークの端末のアドレス情報のみを持ってればよい。受け取ったデータグラムのアドレスが自ネットワークに存在する時には、適切なATMコネクションを選択して、データグラムのリレーイングを行う。
【0496】
図67に、端末63Aから63Bへデータグラムが転送される場合のプロトコル処理の例を示した。ATMコネクションは、CLSF−O63MおよびCLSF−I63Jで終端される。すなわち、CLSF−O63MおよびCLSF−I63JでOSIレイヤ3のプロトコルが終端される。このように、自サブネットワーク以外の端末へのデータグラムの転送に際しては、2回のATMコネクション終端でデータグラム配送がエンド−エンドに実現される。
【0497】
(実施形態5−3−1)
次に、より具体的な実施形態について説明する。
【0498】
図63において端末63Aから63Bにデータグラムが転送される場合の例について簡単に説明する。
【0499】
本実施形態におけるアドレスレゾリューションは、次のようにして行われる。
【0500】
端末63Aは端末63Bへデータグラムを転送するときに、端末63Bが外部サブネットワークに属する端末であることを解析すると、CLSF−O63Mへデータグラムを転送する。CLSF−O63Mは受信したデータグラムのアドレス情報を解析し、端末63B(CLSF−I63J)へデータグラムを転送するためのATMレイヤアドレス情報を持っていない時には、ARS63Dへ端末63Bのアドレス情報を持ったアドレスレゾリューション要求セルを転送する。
【0501】
ARS63Dはレゾリューション可能な情報をもっている場合には、AR要求(CLSF−O63MからCLSF−I63Jへセルを転送するためのVCI/VPI情報)を直接転送する。ところが、ARS63Dではアドレスのレゾリューションができない場合には、適切なARSをアクセスしてレゾリューションを行う。アドレスのレゾリューションが完了すると、結果(AR応答)をCLSF−O63Mへ転送する。
【0502】
本実施形態におけるデータグラムの転送は、次のようにして行われる。
【0503】
端末63Aは、ATMコネクション641を用いてデータグラム情報を持つセルをCLSF−O63Mへ転送する。CLSF−O63Mは、データグラムのアドレス情報を解析し、データグラムをセル化して、セルをATMコネクション645を用いてCLSF−I63Jへ転送する。IWU636およびIWU637は、受け取ったセルのVCI/VPI情報を書き替えることで、ATMコネクションのリレーイングを行う。ATMコネクション645の終端点であるCLSF−I63Jでは、ネットワークレイヤの処理が行われる。CLSF−I63Jはネットワークアドレスの解析を行い、データグラムをATMコネクション646にリレーイングして、端末63Bに転送する。
【0504】
このように、ATMコネクションは端末63AからCLSF−O63Mと、CLSF−O63MからCLSF−I63J、およびCLSF−I63Jと端末63Bの3つであり、ATMコネクションは2度終端される。
【0505】
(実施形態5−4)VPIルーティングのATMネットワークを用いた場合−その2。
【0506】
本実施形態においてARS間で設定されるATMコネクションの実現方法は、上述した方法の場合と等しいので、ここでは説明を省略する。
【0507】
図63または図68を参照して、端末63Aから端末63B,公衆網635,端末63Cへデータグラムを転送するために必要なATMコネクションの設定について、4つの方法を説明する。
【0508】
ATMコネクション設定方法(1)
まず、端末63Aから端末63Cへのデータグラムの転送を説明する。3つのATMコネクション、すなわち(1) 端末63AからCLSF−O63Mへのコネクション691、(2) CLSF−O63MからCLSF−I63Lへのコネクション692,693、(3) CLSF−I63Lから端末63Cへのコネクション694が形成される。端末63AはVPI−F=VPI63M を持ったセルを転送する。なお、VCI−F1は端末63AのアクセスアドレスであるVPI63A である。CLSF−O63Mは、IWU636へ次のようなセルを転送する。VPI−FはIWU636のアクセスアドレスであるVPI636−2 、VCI−F1はCLSF−O63MのアクセスアドレスであるVPI63M 、VCI−F2はコネクション692の設定時に設定された値をそれぞれ持つ。IWU636で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。VCI−F1は、IWU636のネットワーク631にとってのアクセスアドレスであるVPI636−1 が書き込まれる。なお、VCI−F2はコネクション693が設定される時に決められる値であり、IWU636が受信したセルのVCI−F1の値、すなわちCLSF−O63MのアクセスアドレスであるVPI63M をコピーして書くことも可能である。CLSF−I63Lに到着したデータグラムは一旦セルリアセンブリが行われ、ATMコネクションが終端される。CLSF−I63Lは上位レイヤのアドレス情報を解析し、データグラムの宛先が端末63Cであることを認識する。そこで、CLSF−I63Lは次のようなセルを生成し、データグラムを端末63Cへ転送する。
【0509】
VPI−Fは端末63CのアクセスアドレスであるVPI63C 、VCI−F1はCLSF−I63LのアクセスアドレスであるVPI63L 、VCI−F2はコネクション694に割り当てられた識別番号である。なお、端末63CはVCI−F1とVCI−F2とからセルの所属するデータグラムを一意に識別することができる。すなわち、データグラムのリアセンブリができる。
【0510】
次に、端末63Aから公衆網635へのデータグラムの転送を説明する。2つのATMコネクション691と、692,695,696から形成される。端末63AはVPI−F=VPI63M を持ったセルを転送する。CLSF−O63Mは、IWU636へ次のようなセルを転送する。VPI−FはVPI636−2 、VCI−F1はVPI63M 、VCI−F2はコネクション692の設定時に設定された値を持つ。IWU636で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。VCI−F1は、IWU636のネットワーク631にとってのアクセスアドレスであるVPI636−1 が書き込まれる。なお、VCI−F2はコネクション695が設定される時に決められる値であり、IWU636が受信したセルのVCI−F1の値、すなわちCLSF−O63MのアクセスアドレスであるVPI63M をコピーして書くことも可能である。IWU639は、受信したセルのVCI情報から公衆網635で定義されているATMコネクション696にアサインされているVCI/VPIを書き込み、セルを公衆網635へ転送する。
【0511】
最後に、端末63Aから63Bへのデータグラムの転送を説明する。3つのATMコネクション、すなわち(1) 端末63AからCLSF−O63Mへのコネクション691、(2) CLSF−O63MからCLSF−I63Jへのコネクション692,697,698、(3) CLSF−I63Jから63Bへのコネクション699である。端末63AはVPI−F=VPI63M を持ったセルを転送する。CLSF−O63Mは、IWU636へ次のようなセルを転送する。VPI−FはIWU636のアクセスアドレスであるVPI636−2 、VCI−F1はCLSF−O63MのアクセスアドレスであるVPI63M 、VCI−F2はコネクション692の設定時に設定された値をそれぞれ持つ。IWU636で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。VCI−F1は、IWU636のネットワーク631にとってのアクセスアドレスであるVPI636−1 が書き込まれる。なお、VCI−F2はコネクション697が設定される時に決められる値であり、IWU636が受信したセルのVCI−F1の値、すなわちCLSF−O63MのアクセスアドレスであるVPI63M をコピーして書くことも可能である。
【0512】
次に、IWU637で受信されたセルのVCIが解析され、対応するVPI−F,VCI−F1およびVCI−F2が解析される。VCI/VPIは、CLSF−I63Jがネットワーク内の全ての端末・サーバ(CLSFなど)、すなわちデータグラムをCLSF−I63Jに転送可能な端末からのセルが同時に到着しても識別可能であるように割り振られる必要がある。
【0513】
CLSF−I63Jに到着したデータグラムは一旦セルリアセンブリが行われ、ATMコネクションが終端される。CLSF−I63Jは上位レイヤのアドレス情報を解析し、データグラムの宛先が端末63Bであることを認識する。そこで、CLSF−I63Jは次のようなセルを生成し、データグラムを端末63Bへ転送する。VPI−Fは端末63BのアクセスアドレスであるVPI63B 、VCI−F1はCLSF−I63JのアクセスアドレスであるVPI63J 、VCI−F2はコネクション699に割り当てられた識別番号である。なお、端末63BはVCI−F1とVCI−F2とからセルの所属するデータグラムを一意に識別することができる。すなわち、データグラムのリアセンブリができる。
【0514】
ATMコネクション方法(2)
CLSF−Oでは、データグラムのリアセンブリは行うが、アドレスのレゾリューションは各端末が行う。レゾリューションされた目的ネットワークのアドレス情報を端末からCLSF−Oへ転送されるセルのVCI−F1に書き込む。CLSF−Oからのセルの転送(データグラムの転送)は、パイプライン的に実行することはできない。しかし、CLSF−Oでは受信データグラム内のアドレス情報から、宛先端末の属するネットワークのアドレスのレゾリューションは行う必要がない。
【0515】
各IWU、CLSF−OおよびCLSF−Iは、全てVPIアドレスを獲得しており、そのVPIで識別されるコネクションは全てデータグラム通信(コネクションレス通信)に関するセルの転送に用いられるATMコネクションであるように構成する。すなわち、CLSFサーバおよびIWUは、自分自身が他の端末/サーバとの通信を行うために、ATMコネクション(コネクションレスのコネクションではない)を必要とする。つまり、CLSFおよびIWUは少なくとも2つ以上のアクセスアドレス(VPI)をブート時に獲得する必要がある。
【0516】
この時に、コネクションレス通信に関するセルのVCIフィールドのコーディング方法として、以下のような方法を用いる。VCIフィールドは、8ビットの2つのサブフィールド(VCI−F1とVCI−F2:フィールドの定義位置については言及しない)とする。
【0517】
本実施形態における外部サブネットワーク内で転送されるセルのコーディング手法について説明する。これは、端末が属するサブネットワークからIWUを介して外部のサブネットワークにセルが転送されるときのVCIフィールドのコーディングである。VCI−F1には送信元の端末が属するサブネットワークの識別番号が書き込まれ、VCI−F2には送信元端末のサブネットワーク内での識別番号が書き込まれる。例えば、サブネットワークの識別番号としてネットワーク631における各IWUのアクセスアドレス(VPI)をサブネットワークの識別アドレスとすることも可能である(ネットワーク631自身は適当にコーディングする)。また、端末の識別番号としては各サブネットワークにおける端末のアクセスアドレス(VPI)とすることも可能である。例えば、端末63Bから出されるコネクションレス通信のセルのVCIフールドは、VCI−F1=VPI637−1 、VCI−F2=VPI63B とすることができる。
【0518】
(CLSF−OからIWUへのセル)
VCI−F1には送信元端末の属するサブネットワークの識別番号が書き込まれ、VCI−F2にはCLSF−Oのサブネットワーク内での識別番号が書き込まれる。例えば、CLSF−O63Mから出されるコネクションレス通信のセルのVCI−F2フィールドは、VPI63M とすることができる。
【0519】
(端末からCLSF−Oへのセル)
VCI−F1には宛先端末の属するサブネットワークの識別番号が書き込まれ、VCI−F2には送信元端末のサブネットワーク内での識別番号が書き込まれる。例えば、端末63Bから出されるコネクションレス通信のセルのVCI−F2フィールドは、VPI63B とすることができる。
【0520】
以上のような構成とすることで、端末はデータグラムの転送に先立って行うアドレスレゾリューション手続きにおいて、宛先端末が属するサブネットワークの識別番号を獲得しさえすれば、データグラム(複数あるいは1つのセル)を以下のように転送することができる。
【0521】
まず、端末63Aから端末63Cへのデータグラムの転送を説明する。端末63Aは、CLSF−O63Mへ次のようなセルを転送する。VPI−FはCLSF−O63MのアクセスアドレスであるVPI63M 、VCI−F1はネットワーク631の識別番号(例えばCLSF−I63LのアクセスアドレスであるVPI63L を用いることも可能)、VCI−F2は端末63AのアクセスアドレスであるVPI63A に設定する。
【0522】
CLSF−O63Mは、IWU636へ次のようなセルを転送する。VPI−Fは、IWU636のアクセスアドレスであるVPI636−2 に設定する。VCI−F1は、受信セルのVCI−F1をそのままコピーすることができ、ネットワーク631の識別番号(例えばCLSF−I63LのアクセスアドレスであるVPI63L を用いることも可能)に設定される。VCI−F2は、CLSF−O63MのアクセスアドレスであるVPI63M に設定する。
【0523】
IWU636で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。例えば、VCI−F1にCLSF−I63LのアクセスアドレスVPI63L が書き込まれている実施形態の場合には、出力するセルのVPI−Fは、受信したセルのVCI−F1情報であるVPI63L をコピーすることで実現できる。VCI−F1には、IWU636のネットワーク631にとってのアクセスアドレスであるVPI636−1 が書き込まれる。VCI−F2はトランスペアレントに設定することができる。すなわち、例えばCLSF−O63Mから転送されるセルのVCI−F1にCLSF−I63LのアクセスアドレスVPI63L が書き込まれている実施形態の場合には、(1) 受信セルのVCI−F1を送出セルのVPI−Fにコピーし、(2) 受信セルのVCI−F2を送出セルのVCI−F2にコピーし、(3) 送出セルのVCI−F1には、IWUのアクセスアドレスであるVPI636−1 を書き込むという手順により、セルのリレーイングが実現される。
【0524】
CLSF−I63Lに到着したデータグラムは一旦セルリアセンブリが行われ、ATMコネクションが終端される。CLSF−I63Lは上位レイヤのアドレス情報を解析し、データグラムの宛先が端末63Cであることを認識する。そこで、CLSF−I63LはVPI−Fが端末63CのアクセスアドレスであるVPI63C であるようなセルを生成し、データグラムを端末63Cへ転送する。なお、端末63CはVCI−F1とVCI−F2とから、セルの所属するデータグラムを一意に識別することができる。すなわち、データグラムのリアセンブリができる。
【0525】
次に、端末63Aから公衆網635へのデータグラムの転送を説明する。端末63Aは、CLSF−O63Mへ次のようなセルを転送する。VPI−FはCLSF−O63MのアクセスアドレスであるVPI63M 、VCI−F1はネットワーク635の識別番号(例えばIWU639のアクセスアドレスであるVPI639 を用いることも可能)、VCI−F2は端末63AのアクセスアドレスであるVPI63A に設定する。
【0526】
CLSF−O63Mは、IWU636へ次のようなセルを転送する。VPI−Fは、IWU636のアクセスアドレスであるVPI636−2 に設定する。VCI−F1は、受信セルのVCI−F1をそのままコピーすることができ、公衆網635の識別番号(例えばIWU639のアクセスアドレスであるVPI639 を用いることも可能)に設定される。VCI−F2は、CLSF−O63MのアクセスアドレスであるVPI63M に設定する。
【0527】
IWU636で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。例えば、VCI−F1にIWU639のアクセスアドレスVPI639 が書き込まれている実施形態の場合には、出力するセルのVPI−Fは、受信したセルのVCI−F1情報であるIWU639をコピーすることで実現できる。VCI−F1には、IWU636のネットワーク631にとってのアクセスアドレスであるVPI636−1 が書き込まれる。VCI−F2は、トランスペアレントに設定することができる。すなわち、例えば、CLSF−O63Mから転送されるセルのVCI−F1にIWU639のアクセスアドレスVPI639 が書き込まれている実施形態の場合には、(1) 受信セルのVCI−F1を送出セルのVPI−Fにコピーし、(2) 受信セルのVCI−F2を送出セルのVCI−F2にコピーし、(3) 送出セルのVCI−F1にはIWUのアクセスアドレスであるVPI636−1 を書き込むという手順により、セルのリレーイングが実現される。IWU639は、受信したセルのVCI情報から公衆網635で定義されているATMコネクション696にアサインされているVCI/VPIを書き込み、セルを公衆網635へ転送する。
【0528】
最後に、端末63Aから端末63Bへのデータグラムの転送を説明する。端末63Aは、CLSF−O63Mへ次のようなセルを転送する。VPI−FはCLSF−O63MのアクセスアドレスであるVPI63M 、VCI−F1はネットワーク633の識別番号(例えばCLSF−I63JのアクセスアドレスであるVPI63J やIWU637のアクセスアドレスであるVPI637 を用いることも可能)、VCI−F2は端末63AのアクセスアドレスであるVPI63A に設定する。
【0529】
CLSF−O63Mは、IWU636へ次のようなセルを転送する。VPI−Fは、IWU636のアクセスアドレスであるVPI636−2 に設定する。VCI−F1は受信セルのVCI−F1をそのままコピーすることができ、ネットワーク633の識別番号(例えばIWU637のアクセスアドレスであるVPI637−1 を用いることも可能)に設定される。VCI−F2は、CLSF−O63MのアクセスアドレスであるVPI63M に設定する。IWU636で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。例えば、VCI−F1にIWU637のアクセスアドレスVPI637−1 が書き込まれている実施形態の場合には、出力するセルのVPI−Fは受信したセルのVCI−F1情報であるVPI637−1 をコピーすることで実現できる。VCI−F1は、IWU636のネットワーク631にとってのアクセスアドレスであるVPI636−1 が書き込まれる。VCI−F2は、トランスペアレントに設定することができる。すなわち、例えばCLSF−O63Mから転送されるセルのVCI−F1にIWU637のアクセスアドレスVPI637−1 が書き込まれている実施形態の場合には、(1) 受信セルのVCI−F1を送出セルのVPI−Fにコピーし、(2) 受信セルのVCI−F2を送出セルのVCI−F2にコピーし、(3) 送出セルのVCI−F1にはIWUのアクセスアドレスであるVPI636−1 を書き込むという手順により、セルのリレーイングが実現される。
【0530】
次に、IWU637で受信されたセルのVCIが解析され、対応するVPI−F,VCI−F1およびVCI−F2が解析される。IWU637からCLSF−I63Jへ転送されるセルのVCIフィールドは、受信したセルのVCIフィールド情報をトランスペアレントに設定することが可能である。すなわち、VCI−F1=VPI636−1 、VCI−F2=VPI63M とすることができる。なお、VPI−FはCLSF−I63JのアクセスアドレスであるVPI63J が設定される。CLSF−I63Jに到着したデータグラムは一旦セルリアセンブリが行われ、ATMコネクションが終端される。CLSF−I63Jは上位レイヤのアドレス情報を解析し、データグラムの宛先が端末63Bであることを認識する。CLSF−I63Jは、VPI−Fが端末63BのアクセスアドレスであるVPI63B であるようなセルを生成し、データグラムを端末63Bへ転送する。なお、端末63BはVCI−F1とVCI−F2とから、セルの所属するデータグラムを一意に識別することができる。すなわち、データグラムのリアセンブリができる。
【0531】
ATMコネクション設定方法(3)
先の方法(2)において、データグラムの属するセルをパイプライン的に転送する方法である。CLSF−Oでは、データグラムのリアセンブリは行うが、アドレスのレゾリューションは各端末が行い、CLSF−Oでは受信データグラム内のアドレス情報から、宛先端末の属するネットワークのアドレスのレゾリューションは行う必要がない。レゾリューションされた目的ネットワークのアドレス情報を端末からCLSF−Oへ転送されるセルのVCI−F1に書き込む。
【0532】
この時、コネクションレス通信に関するセルのVCIフィールドのコーディング方法として、以下のような方法を用いる。
【0533】
(外部サブネットワーク内−方法2に同じ)
VCI−F1には送信元端末が属するするサブネットワークの識別番号が書き込まれ、VCI−F2には送信元端末のサブネットワーク内での識別番号が書き込まれる。
【0534】
(CLSF−OからIWUへのセル)
VCI−F1には宛先端末の属するサブネットワークの識別番号が書き込まれ、VCI−F2には送信元端末のサブネットワーク内での識別番号が書き込まれる。例えば、端末63Aから出力されたデータグラムに関するセルは、VCI−F2フィールドは、VPI63A とすることができる。
【0535】
(端末からCLSF−Oへのセル−方法2に同じ)
VCI−F1には宛先端末の属するサブネットワークの識別番号が書き込まれ、VCI−F2には送信元端末の属するサブネットワーク内での識別番号が書き込まれる。
【0536】
まず、端末63Aから端末63Cへのデータグラムの転送を説明する。端末63Aは、CLSF−O63Mへ次のようなセルを転送する。VPI−FはCLSF−O63MのアクセスアドレスであるVPI63M 、VCI−F1はネットワーク631の識別番号(例えばCLSF−I63LのアクセスアドレスであるVPI63L を用いることも可能である)、VCI−F2は端末63AのアクセスアドレスであるVPI63A に設定する。
【0537】
CLSF−O63Mは、IWU636へ次のようなセルを転送する。VPI−Fは、IWU636のアクセスアドレスであるVPI636−2 に設定される。VCI−F1およびVCI−F2は受信セルの情報をそのままコピーすることが可能である。従って、VCI−F1はネットワーク631の識別番号(例えばCLSF−I63LのアクセスアドレスであるVPI63L を用いることも可能)に、VCI−F2は端末63AのアクセスアドレスであるVPI63A にそれぞれ設定する。このときには、CLSF−O63Mにおいて一旦データグラムのリアセンブリングを行うことなく、パイプライン的にセルを順次IWU636へ転送することができる。
【0538】
IWU636で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。例えば、VCI−F1にCLSF−I63LのアクセスアドレスVPI63L が書き込まれている実施形態の場合には、出力するセルのVPI−Fは、受信したセルのVCI−F1情報であるVPI63L をコピーすることで実現できる。VCI−F1には、IWU636のネットワーク631にとってのアクセスアドレスであるVPI636−1 が書き込まれる。VCI−F2はトランスペアレントに設定することができる。すなわち、例えばCLSF−O63Mから転送されるセルのVCI−F1にCLSF−I63LのアクセスアドレスVPI63L が書き込まれている実施形態の場合には、(1) 受信セルのVCI−F1を送出セルのVPI−Fにコピーし、(2) 受信セルのVCI−F2を送出セルのVCI−F2にコピーし、(3) 送出セルのVCI−F1にはIWUのアクセスアドレスであるVPI636−1 を書き込むという手順により、セルのリレーイングが実現される。
【0539】
CLSF−I63Lに到着したデータグラムは一旦セルリアセンブリが行われ、ATMコネクションが終端される。CLSF−I63Lは上位レイヤのアドレス情報を解析し、データグラムの宛先が端末63Cであることを認識する。そこで、CLSF−I63LはVPI−Fが端末63CのアクセスアドレスであるVPI63C であるようなセルを生成し、データグラムを端末63Cへ転送する。なお、端末63CはVCI−F1とVCI−F2とから、セルの所属するデータグラムを一意に識別することができる。すなわち、データグラムのリアセンブリができる。
【0540】
次に、端末63Aから公衆網635へのデータグラムの転送を説明する。端末63Aは、CLSF−O63Mへ次のようなセルを転送する。VPI−FはCLSF−O63MのアクセスアドレスであるVPI63M 、VCI−F1は公衆網635の識別番号(例えばIWU639のアクセスアドレスであるVPI639 を用いることも可能)、VCI−F2は端末63AのアクセスアドレスであるVPI63A に設定する。
【0541】
CLSF−O63Mは、IWU636へ次のようなセルを転送する。VPI−Fは、IWU636のアクセスアドレスであるVPI636−2 に設定される。VCI−F1およびVCI−F2は受信セルの情報をそのままコピーすることが可能である。従って、VCI−F1は公衆網635の識別番号(例えばIWU639のアクセスアドレスであるVPI639 を用いることも可能)に、VCI−F2は端末63AのアクセスアドレスであるVPI63A に設定する。このときには、CLSF−O63Mにおいて、一旦データグラムのリアセンブリングを行うことなく、パイプライン的にセルを順次IWU636へ転送することができる。
【0542】
IWU636で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。例えば、VCI−F1にIWU639のアクセスアドレスVPI639 が書き込まれている実施形態の場合には、出力するセルのVPI−Fは、受信したセルのVCI−F1情報であるIWU639をコピーすることで、実現できる。VCI−F1には、IWU636のネットワーク631にとってのアクセスアドレスであるVPI636−1 が書き込まれる。VCI−F2は、トランスペアレントに設定することができる。すなわち、例えばCLSF−O63Mから転送されるセルのVCI−F1にIWU639のアクセスアドレスVPI639 が書き込まれている実施形態の場合には、(1) 受信セルのVCI−F1を送出セルのVPI−Fにコピーし、(2) 受信セルのVCI−F2を送出セルのVCI−F2にコピーし、(3) 送出セルのVCI−F1には、IWUのアクセスアドレスであるVPI636−1 を書き込むという手順により、セルのリレーイングが実現される。
【0543】
IWU639は、受信したセルのVCI情報から、公衆網635で定義されているATMコネクション696にアサインされているVCI/VPIを書き込み、セルを公衆網635へ転送する。
【0544】
最後に、端末63Aから端末63Bへのデータグラムの転送を説明する。端末63Aは、CLSF−O63Mへ次のようなセルを転送する。VPI−FはCLSF−O63MのアクセスアドレスであるVPI63M 、VCI−F1はネットワーク633の識別番号(例えばCLSF−I63JのアクセスアドレスであるVPI63J を用いることも可能)、VCI−F2は端末63AのアクセスアドレスであるVPI63A に設定する。
【0545】
CLSF−O63Mは、IWU636へ次のようなセルを転送する。VPI−Fは、IWU636のアクセスアドレスであるVPI636−2 に設定される。VCI−F1およびVCI−F2は受信セルの情報をそのままコピーすることが可能である。従って、VCI−F1はネットワーク633の識別番号(例えばIWU637のアクセスアドレスであるVPI637−1 を用いることも可能)に、VCI−F2は端末63AのアクセスアドレスであるVPI63A に設定する。この時には、CLSF−O63Mにおいて、一旦データグラムのリアセンブリングを行うことなく、パイプライン的にセルを順次IWU636へ転送することができる。IWU636で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。例えば、VCI−F1にIWU637のアクセスアドレスVPI637−1 が書き込まれている実施形態の場合には、出力するセルのVPI−Fは、受信したセルのVCI−F1情報であるVPI637−1 をコピーすることで実現できる。VCI−F1は、IWU636のネットワーク631にとってのアクセスアドレスであるVPI636−1 が書き込まれる。VCI−F2は、トランスペアレントに設定することができる。すなわち、例えばCLSF−O63Mから転送されるセルのVCI−F1にIWU637のアクセスアドレスVPI637−1 が書き込まれている実施形態の場合には、(1) 受信セルのVCI−F1を送出セルのVPI−Fにコピーし、(2) 受信セルのVCI−F2を送出セルのVCI−F2にコピーし、(3) 送出セルのVCI−F1には、IWUのアクセスアドレスであるVPI636−1 を書き込むという手順により、セルのリレーイングが実現される。
【0546】
次に、IWU637で受信されたセルのVCIが解析され、対応するVPI−F,VCI−F1およびVCI−F2が解析される。IWU637からCLSF−I63Jへ転送されるセルのVCIフィールドは、受信したセルのVCIフィールド情報をトランスペアレントに設定することが可能である。すなわち、VCI−F1=VPI636−1 、VCI−F2=VPI63M とすることができる。なお、VPI−Fは、CLSF−I63JのアクセスアドレスであるVPI63J が設定される。
【0547】
CLSF−I63Jに到着したデータグラムは一旦セルリアセンブリが行われ、ATMコネクションが終端される。CLSF−I63Jは上位レイヤのアドレス情報を解析し、データグラムの宛先が端末63Bであることを認識する。CLSF−I63JはVPI−Fが端末63BのアクセスアドレスであるVPI63B であるようなセルを生成し、データグラムを端末63Bへ転送する。なお、端末63BはVCI−F1とVCI−F2とからセルの所属するデータグラムを一意に識別することができる。すなわち、データグラムのリアセンブリができる。
【0548】
ATMコネクション設定方法(4)
これは方法(2)において異なるサブネットワークへのデータグラム転送をパイプライン的に行う場合の例である。同じサブネットワークに属する端末から、同一のサブネットワーク内の端末へのデータグラム転送は、パイプライン的には行うことができないが、宛先のサブネットワークが異なればパイプライン転送が可能である。この場合、CLSF−Oはある程度のバッファスペースを持っている必要がある。
【0549】
CLSF−Oはデータグラムのリアセンブリは行うが、アドレスのレゾリューションは各端末が行うので、CLSF−Oでは受信データグラム内のアドレス情報から、宛先端末の存在するネットワークのアドレスのレゾリューションは行う必要がない。レゾリューションされた目的ネットワークのアドレス情報は、端末からCLSF−Oへ転送されるセルのVCI−F1に書き込まれている。CLSF−Oでのデータグラムの転送手順を以下に説明する。
【0550】
ステップ1:端末からセルを受信(データグラムに関する先頭セル)する。
【0551】
ステップ2:VCI−F1に書かれた目的サブネットワークアドレス情報を解析する。
【0552】
ステップ3:解析したサブネットワークに対して現在データグラム転送を行っているものがないかを検査する。
【0553】
ステップ4:CLSF−Oはデータグラムの転送の終了をATMレイヤ以上の識別コード(例えば、AAL5であればぺイロードタイプのコーディング)を用いて認識することができる。解析したサブネットワークに対して、他のデータグラム転送が行われていないときには、受信セルを目的のサブネットワークに向けてリレーイングする。受信セルは、CLSF−Oにおいて一旦リアセンブリされることなくリレーイングされる;パイプライン転送。
【0554】
ステップ5:一方、解析したサブネットワークに対して他のデータグラム転送が他の端末から行われている時には、受信したセルをそのデータグラム転送が終了するまで、バッファリングしておく必要がある。他のデータグラムの転送の終了が確認されると、バッファリングしておいたセルを順次転送する。このとき、バッファリングされるセル(データグラム)はリアセンブリされる必要はないし、バッファリングされているセルの属するデータグラムの最後のセルが到着する前に、先頭のセルの転送が開始させることができる。また、適切なプロトコルをCLSF−Oと端末との間で定義しておけば、バッファリングされたセルがバッファオーバーフローによって廃棄されないように、フロー制御を行うことも可能である。
【0555】
本実施形態では、コネクションレス通信に関するセルのVCIフィールドのコーディング方法として、以下のような方法を用いる。
【0556】
(外部サブネットワーク内−方法2に同じ)
VCI−F1には送信元端末が属するサブネットワークの識別番号が書き込まれ、VCI−F2には送信元端末のサブネットワーク内での識別番号が書き込まれる。
【0557】
(CLSF−OからIWUへのセル)
VCI−F1には宛先の端末が属するサブネットワークの識別番号が書き込まれ、VCI−F2には送信元ネットワークの識別番号が書き込まれる。例えば、端末63Aから出力されたデータグラムに関するセルは、VCI−F2フィールドは、VPI636−1 などとすることができる。
【0558】
(端末からCLSF−Oへのセル−方法2に同じ)
VCI−F1には宛先の端末が属するサブネットワークの識別番号が書き込まれ、VCI−F2には送信元端末のサブネットワーク内での識別番号が書き込まれる。
【0559】
まず、端末63Aから端末63Cへのデータグラムの転送を説明する。端末63Aは、CLSF−O63Mへ次のようなセルを転送する。VPI−FはCLSF−O63MのアクセスアドレスであるVPI63M 、VCI−F1はネットワーク631の識別番号(例えばCLSF−I63LのアクセスアドレスであるVPI63L を用いることも可能)、VCI−F2は端末63AのアクセスアドレスであるVPI63A に設定する。
【0560】
CLSF−O63Mは、サブネットワーク631へのデータグラム転送が他には行われていないときに、IWU636へ次のようなセルを転送する。VPI−Fは、IWU636のアクセスアドレスであるVPI636−2 に設定される。VCI−F1は受信セルの情報をそのままコピーすることが可能である。VCI−F1はネットワーク631の識別番号(例えばCLSF−I63LのアクセスアドレスであるVPI63L を用いることも可能)に設定される。VCI−F2は、例えばサブネットワーク632を表現する識別番号であるVPI636−1 (IWU636のアクセスアドレス)とすることができる。VCI−F2は自分のサブネットワークを識別するための識別子であればよい。このときCLSF−O63Mにおいて、一旦データグラムのリアセンブリングを行うことなく、パイプライン的にセルを順次IWU636へ転送することができる。
【0561】
IWU636で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。例えば、VCI−F1にCLSF−I63LのアクセスアドレスVPI63L が書き込まれている実施形態の場合には、出力するセルのVPI−Fは受信したセルのVCI−F1情報であるVPI63L をコピーすることで実現できる。VCI−F1には、IWU636のネットワーク631にとってのアクセスアドレスであるVPI636−1 が書き込まれる。VCI−F2はトランスペアレントに設定することができる。すなわち、例えばCLSF−O63Mから転送されるセルのVCI−F1にCLSF−I63LのアクセスアドレスVPI63L が書き込まれている実施形態の場合には、(1) 受信セルのVCI−F1を送出セルのVPI−Fにコピーし、(2) 受信セルのVCI−F2を送出セルのVCI−F2にコピーし、(3) 送出セルのVCI−F1には、IWUのアクセスアドレスであるVPI636−1 を書き込むという手順によりセルのリレーイングが実現される。
【0562】
CLSF−I63Lに到着したデータグラムは一旦セルリアセンブリが行われ、ATMコネクションが終端される。CLSF−I63Lは上位レイヤのアドレス情報を解析し、データグラムの宛先が端末63Cであることを認識する。そこで、CLSF−I63LはVPI−Fが端末63CのアクセスアドレスであるVPI63C であるようなセルを生成し、データグラムを端末63Cへ転送する。なお、端末63CはVCI−F1とVCI−F2とからセルの所属するデータグラムを一意に識別することができる(データグラムのリアセンブリができる)。
【0563】
次に、端末63Aから公衆網635へのデータグラムの転送を説明する。端末63Aは、CLSF−O63Mへ次のようなセルを転送する。VPI−FはCLSF−O63MのアクセスアドレスであるVPI63M 、VCI−F1は公衆網635の識別番号(例えばIWU639のアクセスアドレスであるVPI639 を用いることも可能)、VCI−F2は端末63AのアクセスアドレスであるVPI63A に設定する。
【0564】
CLSF−O63Mは、公衆網635へのデータグラム転送が他には行われていないときに、IWU636へ次のようなセルを転送する。VPI−Fは、IWU636のアクセスアドレスであるVPI636−2 に設定される。VCI−F1は受信セルの情報をそのままコピーすることが可能である。VCI−F1は公衆網635の識別番号(例えばIWU639のアクセスアドレスであるVPI639 を用いることも可能)に設定される。VCI−F2は、サブネットワーク632を表現する識別番号であるVPI636−1 (IWU636のアクセスアドレス)とすることができる。VCI−F2は自分のサブネットワークを識別するための識別子であればよい。このときには、CLSF−O63Mにおいて一旦データグラムのリアセンブリングを行うことなく、パイプライン的にセルを順次IWU636へ転送することができる。
【0565】
IWU636で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。例えば、VCI−F1にIWU639のアクセスアドレスVPI639 が書き込まれている実施形態の場合には、出力するセルのVPI−Fは、受信したセルのVCI−F1情報であるVPI639 をコピーすることで実現できる。VCI−F1には、IWU636のネットワーク631にとってのアクセスアドレスであるVPI636−1 が書き込まれる。VCI−F2は、トランスペアレントに設定することができる。すなわち、例えばCLSF63Mから転送されるセルのVCI−F1にIWU639のアクセスアドレスVPI639 が書き込まれている実施形態の場合には、(1) 受信セルのVCI−F1を送出セルのVPI−Fにコピーし、(2) 受信セルのVCI−F2を送出セルのVCI−F2にコピーし、(3) 送出セルのVCI−F1には、IWUのアクセスアドレスであるVPI636−1 を書き込むという手順によりセルのリレーイングが実現される。
【0566】
IWU639は、受信したセルのVCI情報から公衆網635で定義されているATMコネクション696にアサインされているVCI/VPIを書き込み、セルを公衆網635へ転送する。
【0567】
最後に、端末63Aから端末63Bへのデータグラムの転送を説明する。端末63Aは、CLSF−O63Mへ次のようなセルを転送する。VPI−FはCLSF−O63MのアクセスアドレスであるVPI63M 、VCI−F1はネットワーク633の識別番号(例えばIWU637のアクセスアドレスであるVPI637−1 を用いることも可能)、VCI−F2は端末63AのアクセスアドレスであるVPI63A に設定する。
【0568】
CLSF−O63Mは、サブネットワーク633へのデータグラム転送が他には行われていないときに、IWU636へ次のようなセルを転送する。VPI−Fは、IWU636のアクセスアドレスであるVPI636−2 に設定される。VCI−F1は受信セルの情報をそのままコピーすることが可能である。VCI−F1はネットワーク633の識別番号(例えばIWU637のアクセスアドレスであるVPI637−1 を用いることも可能)に設定される。VCI−F2は、サブネットワーク632を表現する識別番号であるVPI636−1 (IWU636のアクセスアドレス)とすることができる。VCI−F2は自分のサブネットワークを識別するための識別子であればよい。このときには、CLSF−O63Mにおいて、一旦データグラムのリアセンブリングを行うことなく、パイプライン的にセルを順次IWU636へ転送することができる。
【0569】
IWU636で受信されたセルのVCIが解析され、対応するVPI−FおよびVCI−F2が解析される。例えば、VCI−F1にIWU637のアクセスアドレスVPI637−1 が書き込まれている実施形態の場合には、出力するセルのVPI−Fは受信したセルのVCI−F1情報であるVPI637−1 をコピーすることで実現できる。VCI−F1は、IWU636のネットワーク631にとってのアクセスアドレスであるVPI636−1 が書き込まれる。VCI−F2は、トランスペアレントに設定することができる。すなわち、例えばCLSF−O63Mから転送されるセルのVCI−F1にIWU637のアクセスアドレスVPI637−1 が書き込まれている実施形態の場合には、(1) 受信セルのVCI−F1を送出セルのVPI−Fにコピーし、(2) 受信セルのVCI−F2を送出セルのVCI−F2にコピーし、(3) 送出セルのVCI−F1には、IWUのアクセスアドレスであるVPI636−1 を書き込むという手順によりセルのリレーイングが実現される。
【0570】
次に、IWU637で受信されたセルのVCIが解析され、対応するVPI−F,VCI−F1およびVCI−F2が解析される。IWU637からCLSF−I63Jへ転送されるセルのVCIフィールドは、受信したセルのVCIフィールド情報をトランスペアレントに設定することが可能である。すなわち、VCI−F1=VPI637−1 、VCI−F2=VPI636−1 とすることができる。なお、VPI−Fは、CLSF−I63JのアクセスアドレスであるVPI63J 設定される。
【0571】
CLSF−I63Jに到着したデータグラムは一旦セルリアセンブリが行われ、ATMコネクションが終端される。CLSF−I63Jは上位レイヤのアドレス情報を解析し、データグラムの宛先が端末63Bであることを認識する。CLSF−I63Jは、VPI−Fが端末63BのアクセスアドレスであるVPI63B であるようなセルを生成し、データグラムを端末63Bへ転送する。なお、端末63BはVCI−F1とVCI−F2とからセルの所属するデータグラムを一意に識別することができる(データグラムのリアセンブリができる)。
【0572】
(第6の実施形態)
次に、水平型トポロジーのネットワーク構成に関する実施形態について説明する。図69に、本実施形態のシステム構成を示す。同図に示すように、複数のサブネットワーク701〜706がIWUを用いてインターネットワーキングされている。IWUは、ATMコネクションを終端することなくATMセルのリレーイングを実現することができる。すなわち、受信したセルのVCI/VPIを隣接するネットワークで対応するATMコネクションに割り当てられているVCI/VPIに変換する機能を持つ。
【0573】
各サブネットワーク701〜706間の接続線は、キャンパス内の接続線である場合もあるし、公衆網の専用回線/スイッチ回線である場合もある。また、図には公衆網707,708が示されているが、これは公衆網を介して定義されたネットワーク以外の端末やネットワークへのアクセスが可能であることを示している。すなわち、例えば一般の公衆網に接続された端末と通信する時には、公衆網707,708を通して行う。
【0574】
各サブネットワーク701〜706は、それぞれCLSFを持っており、コネクションレス通信の関係するセルのハンドリングを行うことができる。CLSFの設定および動作と、端末間でコネクションレス通信が実現されるときの具体的な実施形態については、後述する。
【0575】
ネットワークの距離(ネットワーク内部の任意の点間を結ぶのに最高で幾つの中継点(サブネットワーク)を経由するかという指標)には、特に制限はない。先の実施形態で説明した2階層ネットワークでは、高々1つの中継サブネットワークを経由すると目的のサブネットワークに到達できるようなネットワークトポロジーとなっている。しかし、ここで取り扱うネットワークにおいては、このネットワークの距離に関する制約は基本的にはない。
【0576】
また、以下の実施形態ではアドレスレゾリューションの実現に関するATMコネクションの構成法については特には言及しない。アドレスレゾリューションの実現方法は、基本的には先の実施形態で説明した方式と同じである。すなわち、各アドレスレゾリューションサーバが対等な立場にあって、ネットワークのアドレス情報を解析する方法(図49のようなイメージ)と、アドレスレゾリューションサーバが論理的なある階層構造(図50のようなイメージ)を持っていて、アドレス情報の管理解析を行う方法である。また、アドレスレゾリューションサーバ間に設定されるATMコネクションであるが、これはフルメッシュ構成(図59のような構成)から最小スパニングツリー構成(図58のような構成)まで、任意の構成にすることが可能である。
【0577】
(実施形態6−1)一般のATMネットワークに適用した場合について。
【0578】
本実施形態におけるATMコネクションは、次の通りである。各サブネットワークに接続された端末から任意のサブネットワークに接続された端末へデータグラムを転送するために、各IWUから全てのサブネットワーク内に存在するCLSFに対してATMコネクションが設定されている。すなわち、IWUからCLSFへの(片方向ATMコネクション)ATMコネクションがフルメッシュ状に設定されている。なお、ATMコネクションの経路上に存在するIWU(中継IWU)では、ATMヘッダ情報の書き替え(少なくともVCI/VPI変換)が行われ、セルのリレーイングがATMレイヤの仕事として実行される。つまり、IWUの経由に際しては、原則としてATMコネクションは終端されない。
【0579】
なお、CLSFが存在する位置はIWUの位置に存在することも可能である。また、公衆網707および708から定義されたネットワークへデータグラムが転送されたときには、IWU70KおよびIWU70Mにおいて、受信したセル(データグラムの属する)は公衆網のデータグラムコネクションを一旦終端するサーバに転送される。なお、このサーバはIWUに存在することもできる。公衆網から転送されてきたデータグラムを終端したサーバは、定義されたネットワーク内の端末からのデータグラムの転送と同じで手順でそのデータグラムをリレーイングする。
【0580】
図80に、公衆網707から端末70Aへデータグラムが転送される時のATMコネクションの構成を示した。公衆網707から転送されたデータグラムは、一旦CLSF−P811で終端され、その後CLSF7011を経て端末70Aへ転送される。ATMコネクションは、812,813および814の3つのコネクションである。
【0581】
(端末のプロトコル)
本実施形態における端末がコネクションレス通信のデータグラムを宛先端末に送信するための手続きは、次の通りである。
【0582】
(1) 端末は、アドレスのレゾリューション要求(AR要求)を出す。これは、端末が自分の能力でアドレスをレゾリューションできない場合(例えば、アドレスレゾリューションキャッシュテーブルにエントリーが存在しない時)に行われるか、あるいは常に行われる。
【0583】
(2) 端末は、アドレスレゾリューションサーバーから、該当する端末をアクセスするために用意されたATMコネクションの識別子であるVCI/VPI情報を獲得する。
【0584】
(3) 端末は、獲得したVCI/VPIを付けてネットワークにセルを投入することで、データグラムの転送を完了する。端末はデータグラムの転送に際して、特にATMネットワークで定義されているコネクション設定手続きを行う必要がない。
【0585】
(ルーティング)
本実施形態における各端末への最終的なデータグラムの配送は、各CLSFが属するネットワークのみについて行う。すなわち、例えばCLSF7061はネットワーク706に属している端末へのデータグラムの配送を行う。同様に、CLSF7031はネットワーク703内の端末のみへのデータグラムの配送を行う。各CLSFが受け取ったデータグラムが持つネットワークアドレスが、そのCLSFが持つアドレスエントリーに存在しない場合(あるいは受信データグラムのアドレスがそのネットワークのネットワークアドレス空間の要素ではない時)には、そのデータグラムは誤って配送されたものと判断される。誤ったデータグラムの配送に対するアクションはここでは議論しない。
【0586】
すなわち、各CLSFは自分が属するネットワークの端末のアドレス情報のみを持ってればよい。受け取ったデータグラムのアドレスが自ネットワークに存在する時には、適切なATMコネクションを選択して、データグラムのリレーイングを行う。図71に、端末70Aから端末70Bへデータグラムが転送される場合のプロトコル処理の例を示した。ATMコネクションは、CLSF7061で一旦終端される。すなわち、CLSF7061でOSIレイヤ3のプロトコルが終端される。CLSF7061でレイヤ3のプロトコル処理が行われ、データユニットは、ATMコネクションを用いて端末70Bに転送される。このように、自サブネットワーク以外の端末へのデータグラムの転送に際しては、ただ1回のATMコネクション終端でデータグラム配送がエンド−エンドに実現される。
【0587】
同様に、図73は端末70Aから公衆網708へデータグラムが転送される場合を示しており、図81は公衆網707から端末70Aへデータグラムが転送されるときのプロトコル構成を示した。
【0588】
(実施形態6−1−1)
次に、より具体的な実施形態を説明する。
【0589】
(端末70Aから端末70Bへのデータグラム転送について)
図70に、ATMコネクションの構成図を示した。端末70Aは、データグラムの転送に際して、端末70Bのアドレスのレゾリューションを行う(端末70Bが属するサブネットワークのアクセスアドレス情報を解析する)。すなわち、端末70Bのアドレス情報の入ったAR要求メッセージをアドレスレゾリューションサーバARSへ転送する。AR要求を受け取ったARSはアドレスのレゾリューションを行った後、端末70Bへセルを転送するためのVCI/VPI情報をAR応答として端末70Aに返送する。
【0590】
端末70Bへセルを転送するためのATMレイヤアドレス(VCI/VPI)情報を獲得した端末70Aは、そのVCI/VPIを付加したセルをネットワークの投入する。セルは、IWU70DでVCI/VPIの変換が行われた後、IWU70Gへ転送される。同様に、IWU70H,IWU70Jを経由して、セルはCLSF7061へ転送される。セルを受け取ったCLSF7061は、データグラムが持つアドレス情報(レイヤ3)の情報を解析し、端末70Bへセルを転送する。なお、CLSF7061から端末70Bへのセルの転送は、CLSF7061がデータグラムに属する全てのセルを受信した後でもよいし、データグラムのレイヤ3アドレスを解析した後、パイプライン的にセルをリレーイングしてもよい。
【0591】
(端末70Aから公衆網708へのデータグラム転送について)
図72に、ATMコネクションの構成図を示した。端末70Aは、データグラムの転送に際して、目的端末のアドレスのレゾリューションを行う(宛先端末が属するサブネットワークのアクセスアドレス情報を解析する)。すなわち、宛先端末のアドレス情報の入ったAR要求メッセージをアドレスレゾリューションサーバARSへ転送する。AR要求を受け取ったARSはアドレスのレゾリューションを行った後、端末へセルを転送するためのVCI/VPI情報をAR応答として端末70Aに返送する。
【0592】
宛先端末へセルを転送するためのATMレイヤアドレス(VCI/VPI)情報を獲得した端末70Aは、そのVCI/VPIを付加したセルをネットワークの投入する。セルは、IWU70DでVCI/VPIの変換が行われた後、IWU70Eへ転送される。同様に、IWU70Mを経由してセルは公衆網708へ転送される。
【0593】
(公衆網707から端末70Aへのデータグラム転送について)
図80に、ATMコネクションの構成図を示した。送信元端末は公衆網707内に存在し、公衆網707からのコネクションレス通信に関係するセルは、IWU70Kを経由してCLSF−P811へ転送される。IWU70KのVCI/VPI変換テーブルには、公衆網707においてコネクションレス通信が用いるセルに割り当てられているVCI/VPIを持ったセルが到着したときには、CLSF−P811へセルが転送されるように設定されている。
【0594】
CLSF−P811は一旦ATMコネクションを終端し、データグラムのレイヤ3アドレス情報を解析する。解析すべきアドレス情報がCLSF−P811内のテーブルに存在しないときには、ARSに対してAR要求を出す。端末70Aへセルを転送するためのATMレイヤアドレス(VCI/VPI)情報を獲得したCLSF−P811は、そのVCI/VPIを付加したセルをネットワークへ投入する。セルは、IWU70GでVCI/VPIの変換が行われた後、IWU70Dへ転送される。さらに、セルはIWU70DからCLSF7011へ転送される。セルを受け取ったCLSF7011は、データグラムが持つアドレス情報(レイヤ3)の情報を解析し、端末70Aへセルを転送する。なお、CLSF7011から端末70Aへのセルの転送およびCLSF−P811からIWU70Gへのセルの転送は、CLSF7011およびCLSF−P811がデータグラムに属するすべてのセルを受信した後でもよいし、データグラムのレイヤ3アドレスを解析した後、パイプライン的にセルをリレーイングしてもよい。
【0595】
(実施形態6−2)
一般のATMネットワークに適用した実施形態について説明する。各サブネットワークに接続された任意の端末から任意のサブネットワークに接続された端末へデータグラムを転送するために、各CLSFから全てのサブネットワーク内に存在するCLSFに対してATMコネクションが設定されている。すなわち、CLSF間のATMコネクションがフルメッシュ状に設定されている。なお、ATMコネクションの経路上に存在するIWU(中継IWU)では、ATMヘッダ情報の書き替え(少なくともVCI/VPI変換)が行われ、セルのリレーイングがATMレイヤの仕事として実行される。つまり、IWUの経由に際しては原則としてATMコネクションは終端されない。なお、CLSFが存在する位置はIWUの位置であってもよい。
【0596】
また、公衆網707および708から定義されたネットワークへデータグラムが転送されたときには、IWU70KおよびIWU70Mにおいて、受信したセル(データグラムの属する)は、公衆網のデータグラムコネクションを一旦終端するサーバに転送される。なお、このサーバがIWUに存在することもできる。公衆網から転送されてきたデータグラムを終端したサーバは、定義されたネットワーク内の端末からのデータグラムの転送と同じで手順でそのデータグラムをリレーイングする。
【0597】
図82に、公衆網707から端末70Aへデータグラムが転送される時のATMコネクションの構成を示した。公衆網707から転送されたデータグラムは、一旦CLSF−P811で終端され、その後CLSF7031と7011を経て端末70Aへ転送される。ATMコネクションは、831,832,833および834の4つのコネクションである。
【0598】
(端末のプロトコルについて)
端末は、データグラムが外部のサブネットワーク宛てのものであると判断したときには、データグラムをCLSFに転送する。CLSFは基本的に端末と同一のサブネットワーク内に位置するが、例えば隣接ノード等、他のサブネットワークに存在してもよい。なお、端末とCLSFとの間には既にATMコネクションが設定されているものとする。各端末は、自端末が属するサブネットワークのアドレス空間の情報(アドレスマスクなど)を持っており、宛先端末が自分のサブネットワーク内なのかそれとも外部のサブネットワークなのかを判断することができる。
【0599】
図69に示したネットワーク構成の場合には、データグラム配送の方式として、以下のような方法がある。
【0600】
(1) CLSFと端末との間にはスター状のATMコネクションが設定されている。端末は、データグラムの転送を行うときには、全てCLSFへセルを転送する。データグラムの配送は全てCLSFが行う。すなわち、サブネットワーク内の端末同志の通信も一度CLSFを経由する。
【0601】
(2) サブネットワーク内の端末同志の通信はCLSFを介さずに実現され、一方、外部ネットワークにある端末との通信はCLSFを介して実現される。
【0602】
(ルーティングについて)
各端末への最終的なデータグラムの配送は、各CLSFが属するネットワークのみについて行う。すなわち、例えばCLSF7061はネットワーク706に属している端末へのデータグラムの配送を行う。同様に、CLSF7031はネットワーク703内の端末のみへのデータグラムの配送を行う。各CLSFが受け取ったデータグラムが持つネットワークアドレスが、そのCLSFが持つアドレスエントリーに存在しない場合(あるいは受信データグラムのアドレスがそのネットワークのネットワークアドレス空間の要素ではない時)には、そのデータグラムは誤って配送されたものと判断される。誤ったデータグラムの配送に対するアクションはここでは議論しない。
【0603】
すなわち、各CLSFは自分が属するネットワークの端末のアドレス情報のみを持ってればよい。受け取ったデータグラムのアドレスが自ネットワークに存在する時には、適切なATMコネクションを選択して、データグラムのリレーイングを行う。
【0604】
図74に、端末70Aから端末70Bへデータグラムが転送される場合のコネクションの構成を示した。ATMコネクションは、CLSF7011およびCLSF7061で終端される。すなわち、CLSF7061およびCLSF7011でOSIレイヤ3のプロトコルが終端される。CLSF7011でレイヤ3のプロトコル処理が行われ、データユニットはATMコネクションを用いてIWU70Dに転送される。CLSF7061でレイヤ3のプロトコル処理が行われ、データユニットはATMコネクションを用いて端末70Bに転送される。このように自サブネットワーク以外の端末へのデータグラムの転送に際しては、2回のATMコネクション終端でデータグラム配送がエンド−エンドに実現される。
【0605】
同様に、図75は端末70Aから公衆網708へデータグラムが転送される場合を示している。
【0606】
(実施形態6−2−1)
次に、より具体的な実施形態を説明する。
【0607】
(端末70Aから端末70Bへのデータグラム転送について)
図74に、ATMコネクションの構成図を示した。端末70Aは端末70Bへデータグラムを転送するときに、端末70Bが外部サブネットワークに属する端末であることを解析すると、CLSF7011へデータグラムを転送する。CLSF7011は受信したデータグラムのアドレス情報を解析し、端末70B(CLSF7061)へデータグラムを転送するためのATMレイヤアドレス情報を持っていない時には、ARSへ端末70Bのアドレス情報を持ったアドレスレゾリューション要求セルを転送する。AR要求を受け取ったARSはアドレスのレゾリューションを行った後、CLSF7061(端末70B)へセルを転送するためのVCI/VPI情報をAR応答として、CLSF7011に返送する。
【0608】
端末70Bへセルを転送するためのATMレイヤアドレス(VCI/VPI)情報を獲得したCLSF7011は、そのVCI/VPIを付加したセルをネットワークの投入する。セルは、IWU70DでVCI/VPIの変換が行われた後、IWU70Gへ転送される。同様に、IWU70H,IWU70Jを経由してセルはCLSF7061へ転送される。セルを受け取ったCLSF7061は、データグラムが持つアドレス情報(レイヤ3)の情報を解析し、端末70Bへセルを転送する。なお、CLSF7061から端末70Bへのセルの転送は、CLSF7061がデータグラムに属するすべてのセルを受信した後でもよいし、データグラムのレイヤ3アドレスを解析した後、パイプライン的にセルをリレーイングしてもよい。
【0609】
(端末70Aから公衆網708へのデータグラム転送について)
図75に、ATMコネクションの構成図を示した。端末70Aは公衆網708の目的の端末へデータグラムを転送するときに、宛先端末のアドレスのレゾリューションを行う(宛先端末が属するサブネットワークのアクセスアドレス情報を解析する)。すなわち、端末70Aが宛先端末のアドレス情報のレゾリューションができないときには、宛先端末のアドレス情報の入ったAR要求メッセージをアドレスレゾリューションサーバARSへ転送する。AR要求を受け取ったARSはアドレスのレゾリューションを行った後、宛先端末へセルを転送するためのVCI/VPI情報をAR応答として、CLSF7011のアクセスアドレス情報を端末70Aに返送する。宛先が外部サブネットワークに属する端末であることを解析すると、端末70Aは受け取ったVCI/VPI情報あるいは解析した結果得たVCI/VPI情報をセルに付加して、セルをCLSF7011へ転送する。
【0610】
CLSF7011は受信したデータグラムのアドレス情報を解析し、宛先端末へデータグラムを転送するためのATMレイヤアドレス情報を持っていない時には、ARSへ宛先端末のアドレス情報を持ったアドレスレゾリューション要求セルを転送する。AR要求を受け取ったARSはアドレスのレゾリューションを行った後、IWU70Mへセルを転送するためのVCI/VPI情報をAR応答として、CLSF7011に返送する。
【0611】
宛先端末へセルを転送するためのATMレイヤアドレス(VCI/VPI)情報を獲得したCLSF7011は、そのVCI/VPIを付加したセルをネットワークの投入する。セルは、IWU70DでVCI/VPIの変換が行われた後、IWU70Eへ転送される。同様に、IWU70Mを経由して、セルは公衆網708へ転送される。
【0612】
(公衆網707から端末70Aへのデータグラム転送について)
図82に、ATMコネクションの構成図を示した。送信元端末は公衆網707内に存在し、公衆網707からのコネクションレス通信に関係するセルは、IWU70Kを経由してCLSF−P811へ転送される。IWU70KのVCI/VPI変換テーブルには、公衆網707においてコネクションレス通信が用いるセルに割り当てられているVCI/VPIを持ったセルが到着したときには、CLSF−P811へセルが転送されるように設定されている。
【0613】
CLSF−P811は一旦ATMコネクションを終端し、データグラムのレイヤ3アドレス情報を解析する。解析すべきアドレス情報がCLSF−P811内のテーブルに存在しないときには、ARSに対してAR要求を出す。端末70Aへセルを転送するためのATMレイヤアドレス(VCI/VPI)情報(セルをCLSF7031へ転送するためのVCI/VPI情報)を獲得したCLSF−P811は、そのVCI/VPIを付加したセルをネットワークの投入する。CLSF7031は受信したデータグラムのアドレス情報を解析し、端末70A (CLSF7011)へデータグラムを転送するためのATMレイヤアドレス情報を持っていない時には、ARSへ端末70Aのアドレス情報を持ったアドレスレゾリューション要求セルを転送する。AR要求を受け取ったARSはアドレスのレゾリューションを行った後、CLSF7011(端末70A)へセルを転送するためのVCI/VPI情報をAR応答としてCLSF7031に返送する。
【0614】
端末70Aへセルを転送するためのATMレイヤアドレス(VCI/VPI)情報を獲得したCLSF7031は、そのVCI/VPIを付加したセルをネットワークの投入する。
【0615】
セルは、IWU70GでVCI/VPIの変換が行われた後、IWU70Dへ転送される。さらに、セルはIWU70DからCLSF7011へ転送される。セルを受け取ったCLSF7011は、データグラムが持つアドレス情報(レイヤ3)の情報を解析し、端末70Aへセルを転送する。なお、CLSF7011から端末70Aへのセルの転送およびCLSF−P811からCLSF7031へのセルの転送さらにはCLSF7031からIWU70Gへのセルの転送は、CLSF7011,CLSF7031およびCLSF−P811がデータグラムに属する全てのセルを受信した後でもよいし、データグラムのレイヤ3アドレスを解析した後、パイプライン的にセルをリレーイングしてもよい。
【0616】
(実施形態6−3)VPIルーティングのATMネットワークに適用した場合について。
【0617】
(ATMコネクション)
各サブネットワークは、8ビットからなるサブネットワーク識別番号をそれぞれ持っている。定義したネットワーク内では、この識別番号でサブネットワークを一意に識別することがきる。サブネットワークの識別番号は、Netと記述する。例えば、サブネットワーク702の識別番号はNet702 である。IWUは全て両方にコネクションレス通信用のアクセスアドレス(VPI)を獲得している。また、受信側のCLSF(IWUから到着するセルをハンドリングするCLSFで、自分のネットワーク内の端末から来るコネクションレス通信用セルのハンドリングを行うCLSFと別の構成にすることも可能)もコネクションレス通信用のアクセスアドレス(VPI)を獲得している。
【0618】
VCI/VPIフィールドのコーディングは、次のようになる。
【0619】
(1) 送信端末から自ネットワークのCLSFへのセル
(1−1) VPI−F;CLSFのアクセスアドレス
(1−2) VCI−F1;宛先ネットワークのアドレスNetまたは任意
(1−3) VCI−F2;自端末のアクセスアドレス
(2) CLSF間でのセル
(2−1) VPI−F;次のアクセス要素(IWUまたは宛先CLSF)のアクセスアドレス
(2−2) VCI−F1;宛先ネットワークのアドレスNetdestnation
(2−3) VCI−F1;送信端末の属するネットワークアドレスNetsource
(3) 宛先端末のネットワークのCLSFから宛先端末へのセル
(3−1) VPI−F;宛先端末のアクセスアドレス
(3−2) VCI−F1;任意の値に設定可能
(3−3) VCI−F2;任意の値に設定可能
なお、任意の値に設定可能というのは、宛先端末で受信したセルが確かに他の任意のアクセスポイントから到着したセルと区別できるような値となるように設定されていれば任意の値に設定可能ということである。
【0620】
(送信端末が存在するサブネットワーク)
まず、送信端末からCLSFまでのセルVCI/VPIフィールドのコーディングを説明する。VPI−Fは、CLSFのアクセスアドレスである。VCI−F2は、送信端末のアクセスアドレスと定義する。VCI−F1のコーディングは、送信端末で宛先端末の属するサブネットワークのレゾリューションを行う場合と、CLSFで行う場合の2つの場合がある。
【0621】
(a) 送信端末がレゾリューションする;送信端末が宛先サブネットワークのアドレスをレゾリューションして、そのサブネットワークの識別番号Netdestination をVCI−F1に書き込む。
【0622】
(b) CLSFがレゾリューションする;宛先ネットワークのレゾリューションはCLSFが行うので、この場合にはVCI−F1は任意の値とすることが可能である。
【0623】
次に、CLSFからIWUへのセルのVCI/VPIコーディングについて説明する。VPI−Fは、IWUのアクセスアドレスである。VCI−F1は、宛先ネットワークの識別番号に設定する(Netdestination )。VCI−F2は、送信端末のネットワークの識別番号に設定する(Netsource)。VCI−F1の設定方法は、送信端末で宛先端末の属するサブネットワークのレゾリューションを行う場合と、CLSFで行う場合の2つの場合がある。
【0624】
(a) 送信端末がレゾリューションする;送信端末がVCI−F1に書き込んだ宛先ネットワークの識別番号Netdestination をコピーして、VCI−F1に書き込む。
【0625】
(b) CLSFがレゾリューションする;レゾリューションした値を書き込む。
【0626】
なお、CLSFからIWUへセルを転送するときには、同じ宛先ネットワークへの異なるデータグラムに属するセル間のインターリーブは許容されない(異なる宛先ネットワークへのデータグラムならば、セルインターリービングが可能)。すなわち、一つのデータグラムに属する一連のセルが連続して転送される。つまり、各送信端末からは任意のタイミングでセルをCLSFに向かって転送することができるが、CLSFからは、一つのデータグラム毎にIWUに向かってセルが転送される。IWUでは、受信したセルのVCI−F1に書き込まれているNetdestination を基にVPI−Fの値を決定する。すなわち、IWUのテーブルにはNetdestination に対応するVPI−Fのテーブルが設定されている。
【0627】
なお、VCI−F1およびVCI−F2はトランスペアレントに転送される。また、Netdestination からVPI−Fすなわちリレーイングすべきサブネットワークを決定するルーティングプロトコルは別途実行されており、各IWUのテーブルが設定されている。
【0628】
(IWU間)
IWUのテーブルに従って、セルがリレーイングされる。すなわち、受信セルのVCI−F1のNetdestination を基に次のIWUへセルをリレーイングするためのVPI−Fを書き込む。
【0629】
(宛先端末が属するサブネットワーク)
宛先端末が属するIWUは、受信したセルのVCI−F1を見て、受信したセルが自分のサブネットワーク宛てであることが分かる。IWUに設定されたVPI−F設定のためのテーブルには、CLSFへセルが転送されるようなVPI番号が設定されている。IWUはそのVPIをVPI−Fに設定して、セルをCLSFに転送する。このとき、VCI−F1およびVCI−F2はトランスペアレントに転送される。
【0630】
受信したCLSFは、VCI情報を基にデータグラムのリアセンブリを行う。このとき、異なるデータグラムの属するセルがインターリーブしてCLSFに転送されることが考えられるが、VCIフイールドの情報を用いて各データグラムをセルがインターリーブされた場合でも正常に再構築することができる。受信したデータグラムの宛先アドレス(レイヤ3アドレス)を解析して、データグラムを適切な端末に転送する。
【0631】
CLSFから端末へ転送されるセルのVPI−Fは、端末のアクセスアドレスである。次に、VCIフィールドは端末が受信したセルがコネクションレス通信用のセルのために定義しているVCIを用いる(複数定義していることも考えられる)。このVCIは通常CLSFと端末間に予め設定されている。コネクションレス用のVCIが複数存在する時には、CLSFから端末へのセルの転送を識別番号がぶつからない範囲でパイプライン的に(異なるデータグラムの属するセルをインターリーブすることができる)、転送することができる。
【0632】
例えば、VCI−F1およびVCI−F2のVCIフィールドフォーマットがCLSFから端末への通信で定義されているとすると、つまりサブネットワーク内での通信のVCIフィールドフォーマットがこのように統一されている時には、CLSFが受信したセルのVCI−F2をそのままCLSFから端末に転送するセルのVCI−F2に設定し、CLSFから端末へのセルのVCI−F1には受信セルがコネクションレス通信に関わるセルであることを認識することができる値として設定すれば、完全にデータグラムがパイプライン的に処理されることができる。
【0633】
(具体的な例)
まず、図74、図78を参照して端末70Aから端末70Bへのデータグラムの転送を説明する。3つのATMコネクションから形成される。(1) 端末70AからCLSF7011へのコネクション791、(2) CLSF7011からCLSF7061へのコネクション792〜796、(3) CLSF7061から端末70Bへのコネクション797である。
【0634】
端末70AはVPI−F=VPI7011を持ったセルを転送する。なお、VCI−F2は端末70AのアクセスアドレスであるVPI70A である。また、VCI−F1は端末70Aが自分で宛先端末が属するサブネットワークのアドレス情報(Net706 )をレゾリューションするときには、この値Net706 がVCI−F1に書き込まれる。CLSF7011がレゾリューションを行うときには、VCI−F1は任意の設定が可能である。
【0635】
CLSF7011は、IWU70Dへ次のようなセルを転送する。VPI−FはIWU70DのアクセスアドレスであるVPI70D−1 、VCI−F1はネットワーク706の識別アドレスであるNet706 、VCI−F2はネットワーク701の識別アドレスであるNet701 である。なお、VCI−F1は受信セルの値をそのままコピーする場合(端末がNet706 を解析)と、CLSF7011がNet706 を解析して設定する場合とがある。
【0636】
IWU70Dで受信されたセルのVCI−F1が解析され、対応するVPI−Fが解析される。すなわち、ネットワーク706へ転送するようなIWUに向かってセルを転送することのできるVPIを解析する(テーブルに設定されている)。VCI−F1およびVCI−F2は、受信したセルのフィールドをそのままコピーする。すなわち、VCI−F1は宛先端末70Bが属するサブネットワーク706のネットワーク識別番号であるNet706 が書き込まれている。以降同様に、IWUでは受信したセルのVCI−F1に書かれた情報であるNet706 の情報を基に適切なVPIが選択され、セルがIWU70Jに転送される。
【0637】
IWU70Jに到着したセルは、VCI−F1情報よりセルが目的のネットワークに転送されたことを認識し、セルをCLSF7061へ転送する。CLSF7061に到着したデータグラムは一旦セルリアセンブリが行われ、ATMコネクションが終端される。CLSF7061は上位レイヤのアドレス情報を解析し、データグラムの宛先が端末70Bであることを認識する。そこで、CLSF7061はセルを生成し、データグラムを端末70Bへ転送する。端末70Bへのセルの転送は、端末70Bへのコネクションレス通信チャンネルが十分存在する時には、CLSF7061のセルの受信からパイプライン的にセルを転送することが可能である。
【0638】
次に、図75を参照して端末70Aから公衆網708へのデータグラムの転送について説明する。端末70AはVPI−F=VPI7011を持ったセルを転送する。なお、VCI−F2は端末70AのアクセスアドレスであるVPI70A である。また、VCI−F1は端末70Aが自分で宛先端末が属するサブネットワークのアドレス情報(Net708 )をレゾリューションするときには、この値Net708 がVCI−F1に書き込まれる。CLSF7011がレゾリューションを行うときには、VCI−F1は任意の設定が可能である。
【0639】
CLSF7011は、IWU70Dへ次のようなセルを転送する。VPI−FはIWU70DのアクセスアドレスであるVPI70D−1 、VCI−F1は公衆網708の識別アドレスであるNet708 、VCI−F2はネットワーク701の識別アドレスであるNet701 である。なお、VCI−F1は受信セルの値をそのままコピーする場合(端末がNet706 を解析)と、CLSF7011がNet708 を解析して設定する場合とがある。IWU70Dで受信されたセルのVCI−F1が解析され、対応するVPI−Fが解析される。すなわち、ネットワーク708へ転送するようなIWUに向かってセルを転送することのできるVPIを解析する(テーブルに設定されている)。VCI−F1およびVCI−F2は、受信したセルのフィールドをそのままコピーする。すなわち、VCI−F1は宛先の端末が属するサブネットワーク708のネットワーク識別番号であるNet708 が書き込まれている。以降同様に、IWUでは受信したセルのVCI−F1に書かれた情報であるNet708 の情報を元に適切なVPIが選択され、セルがIWU70Mに転送される。IWU70Mは、受信したセルのVCI情報から公衆網708で定義されているATMコネクションにアサインされているVCI/VPIを書き込み、セルを公衆網708へ転送する。
【0640】
(第7の実施形態)
次に、大規模ネットワーキング構成におけるコネクションレス通信に関する実施形態について説明する。
【0641】
定義されたサブネットワークの数が非常に多いときには、上述したネットワークをインターネットワーキングすることで対応することができる。すなわち、隣接するネットワーク(上述した複数のサブネットワークの集合体として定義されるネットワーク)を一つのサブネットワークとして見る方法である。
【0642】
図84に、ネットワーク861からみたネットワークの構成を示した。なお、実際のネットワークの構成は図85に示した。このように3つのネットワーク862〜864は、ネットワーク861から見ると一つのサブネットワーク851に見える。ネットワーク861からみたネットワーク851のアドレス空間は、ネットワーク862〜864を合わせた空間が見えることになる。
【0643】
図86に、ネットワークの構成要素のうち以下のデータグラム転送に関与するネットワーク構成要素を簡略化して示している。以下では、先に説明した2つのシステム構成で端末87Aから端末87Bへのデータグラム転送および端末87Aから端末87Cへのデータグラム転送の例を説明する。
【0644】
(実施形態7−1)
本実施形態は、端末が直接外部ネットワークにセルを転送することができる例である。つまり、外部ネットワークの端末にデータグラムを転送するときに自分のネットワーク内のCLSFを用いない方法である。
【0645】
(端末87Aから端末87Bへのデータグラム転送について)
図87にATMコネクションの構成を示した。これは4つのATMコネクション881〜884が構成される。端末87Aは、端末87Bのネットワークレイヤアドレスをレゾリューションし、端末87Bがネットワーク851に属することをレゾリューションし、同時にCLSF871にセルを転送するためのVCI/VPI情報を獲得する。詳細は前述した通りである。
【0646】
データグラムは、CLSF871で一旦終端され(ATMコネクションも終端される)、レイヤ3のプロトコル処理が行われる。ネットワークレイヤアドレスの解析がCLSF871で行われ、端末87Bがネットワーク863に存在することが解析され、さらにCLSF872へセルを転送するためのVCI/VPI情報が獲得される。データグラムはATMコネクション882を用いてCLSF872へ転送される。
【0647】
データグラムは、CLSF872で終端され(ATMコネクションも終端される)、レイヤ3のプロトコル処理が行われる。ネットワークレイヤアドレスの解析がCLSF872で行われ、CLSF873へセルを転送するためのVCI/VPI情報が獲得される。データグラムはATMコネクション883を用いてCLSF873へ転送される。
【0648】
データグラムを受け取ったCLSF873は、データグラムのネットワークレイヤアドレスを解析することで、端末87Bのアクセスアドレスを解析する。適切なVCI/VPIを付加されたセルは、端末87Bへ転送される。
【0649】
このように、3回のATMコネクションの終端およびネットワークレイヤでのプロトコル処理が行われ、データグラムが端末87Aから端末87Bへ転送される。
【0650】
(端末87Aから端末87Cへのデータグラム転送について)
図88にATMコネクションの構成を示した。これは2つのATMコネクション891,892から構成される。端末87Aは、端末87Cのネットワークレイヤアドレスをレゾリューションし、端末87Cがネットワーク851に属することをレゾリューションし、同時にCLSF871にセルを転送するためのVCI/VPI情報を獲得する。詳細は前述した通りである。
【0651】
データグラムは、CLSF871で一旦終端され(ATMコネクションも終端される)、レイヤ3のプロトコル処理が行われる。ネットワークレイヤアドレスの解析がCLSF871で行われ、端末87Cがネットワーク864に存在することが解析され、さらに、ネットワーク864へセルを転送するためのVCI/VPI情報が獲得される。ここでは、ネットワーク862とネットワーク864との間にあるIWUへのセルの転送が行われる。
【0652】
このように、1回のATMコネクションの終端およびネットワークレイヤでのプロトコル処理が行われ、データグラムが端末87Aから端末87Cが存在するネットワーク864へ転送される。なお、CLSF871からのデータグラムの転送先は、公衆網864内のCLSFであってもよい。この場合は、2回以上のATMコネクションの終端およびネットワークレイヤレベルでのプロトコル処理が行われる。
【0653】
(実施形態7−2)
本実施形態は、端末は直接外部ネットワークにセルを転送することができないときの例である。つまり、外部ネットワークの端末にデータグラムを転送するときに自分のネットワーク内のCLSFを一度用いる方法である。
【0654】
(端末87Aから端末87Bへのデータグラム転送について)
図89にATMコネクションの構成を示した。これは5つのATMコネクション901〜905から構成される。端末87Aは、端末87Bのネットワークレイヤアドレスをレゾリューションし、端末87Aがネットワーク851に属することをレゾリューションし(あるいはセルをCLSF874へ送ることを解析し)、同時にCLSF874にセルを転送するためのVCI/VPI情報を獲得する。詳細は前述した通りである。
【0655】
セルを受け取ったCLSF874は、(1) データグラムのネットワークレイヤアドレスを解析、あるいは(2) 端末87Aが解析した結果を利用して、セルがネットワーク862(CLSF871)へ転送する必要があることを認識する。同時に、CLSF871へセルを転送するためのVCI/VPI情報を獲得し、データグラムをCLSF871へ転送する。
【0656】
データグラムは、CLSF871で一旦終端され(ATMコネクションも終端される)、レイヤ3のプロトコル処理が行われる。ネットワークレイヤアドレスの解析がCLSF871で行われ、端末87Bがネットワーク863に存在することが解析され、さらにCLSF872へセルを転送するためのVCI/VPI情報が獲得される。データグラムはATMコネクション903を用いてCLSF872へ転送される。
【0657】
データグラムは、CLSF872で終端され(ATMコネクションも終端される)、レイヤ3のプロトコル処理が行われる。ネットワークレイヤアドレスの解析がCLSF872で行われ、CLSF873へセルを転送するためのVCI/VPI情報が獲得される。データグラムはATMコネクション904を用いてCLSF873へ転送される。データグラムを受け取ったCLSF873は、データグラムのネットワークレイヤアドレスを解析して、端末87Bのアクセスアドレスを解析する。適切なVCI/VPIを付加されたセルは、端末87Bへ転送される。
【0658】
このように、4回のATMコネクションの終端およびネットワークレイヤでのプロトコル処理(3回の場合もある)が行われ、データグラムが端末87Aから端末87Bへ転送される。
【0659】
(端末87Aから端末87Cへのデータグラム転送について)
図90にATMコネクションの構成を示した。これは3つのATMコネクション911〜913から構成される。端末87Aは、端末87Cのネットワークレイヤアドレスをレゾリューションし、端末87Cがネットワーク851に属することをレゾリューションし(あるいはセルをCLSF874へ送ることを解析し)、同時にCLSF874にセルを転送するためのVCI/VPI情報を獲得する。詳細は前述した通りである。
【0660】
セルを受け取ったCLSF874は、(1) データグラムのネットワークレイヤアドレスを解析、あるいは(2) 端末87Aが解析した結果を利用して、セルがネットワーク862(CLSF871)へ転送する必要があることを認識する。同時に、CLSF871へセルを転送するためのVCI/VPI情報を獲得し、データグラムをCLSF871へ転送する。
【0661】
データグラムは、CLSF871で一旦終端され(ATMコネクションも終端される)、レイヤ3のプロトコル処理が行われる。ネットワークレイヤアドレスの解析がCLSF871で行われ、端末87Cがネットワーク864に存在することが解析され、さらにネットワーク864へセルを転送するためのVCI/VPI情報が獲得される。ここでは、ネットワーク862とネットワーク864との間にあるIWUへのセルの転送が行われる。
【0662】
このように、2回のATMコネクションの終端およびネットワークレイヤでのプロトコル処理(1回の場合もある)が行われ、データグラムが端末87Aから端末87Cが存在するネットワーク864へ転送される。なお、CLSF871からのデータグラムの転送先は、公衆網864内のCLSFであってもよい。この場合は、2回以上のATMコネクションの終端およびネットワークレイヤレベルでのプロトコル処理が行われる。
【0663】
【発明の効果】
以上説明したように、本発明によればATM通信方式の高速性・大容量性・コネクションオリエンテッド性という特徴を損なうことなくATM網間の通信を実現することができる。
【0664】
また、本発明によればATM網を用いたデータグラム配送を効率的に行うことができる。
【0665】
さらに、本発明によればATM網に接続された端末間のコネクションレス通信(データグラム配送)を高速に行うことができる。
【図面の簡単な説明】
【図1】第1の実施形態におけるATM網を示す図
【図2】網間接続装置13の内部構造を示す図
【図3】ドロップテーブルを示す図
【図4】ATM−LANの内部の構成を示す図
【図5】ATM−LAN内の端末と網間接続装置内のCLSF処理部間のATMコネクションの接続状態を示す図
【図6】図5において、ATM−LAN内に別にCLSF処理部が用意されている場合を示す図
【図7】放送セルのフォーマットを示す図
【図8】ARPを行う際の放送セルのフォーマットを示す図
【図9】ATM−LAN内の端末と網間接続装置内の呼処理部間のATMコネクションの接続状態を示す図
【図10】ATM−LAN内の端末と網間接続装置内の呼処理部間のATMコネクションの接続状態の別例を示す図
【図11】網間接続装置内に呼処理部が存在しない場合の例を示す図
【図12】放送の様々な形態を示す図
【図13】第2の実施形態におけるATM網を示す図
【図14】網間接続装置134の内部構造を示す図
【図15】ATM−LAN内部の構成を示す図
【図16】ATM−LAN内の端末と、網間接続装置内CLSF処理部間のATMコネクションの接続状態を示す図
【図17】ATM−LAN内の端末と網間接続装置内呼処理部間のATMコネクションの接続状態を示す図
【図18】ATM−LAN内の端末と網間接続装置内呼処理部間のATMコネクションの接続状態の別例を示す図
【図19】網間接続装置内に呼処理部が存在しない場合の例を示す図
【図20】大規模ATMネットワークを示す図
【図21】大規模ATMネットワークにおけるATM−LANの内部構成を示す図
【図22】ATM−LANにおけるVPI値の割当の一例を示す図
【図23】ARPセルフォーマットの一例を示す図
【図24】ネットワークレイヤプロトコル識別方式の一例を示す図
【図25】ブロードキャストチャネルを用いたARP応答をエンド−エンドのATMコネクションを用いて行う場合のセルフォーマットの一例を示す図
【図26】ARPの流れの一例を示す図
【図27】ARPサーバ内のネットワークレイヤアドレスとATMアドレス(VPI値)の対応表を示す図
【図28】網間接続装置内CLSF処理部とATM−LAN内端末間のATMコネクション接続状態、及びATMバックボーン網における該CLSF処理部間のATMコネクションの接続状態の一例を示す図
【図29】初期導入時におけるCLSF処理部配置法の一例(フェーズ1)を示す図
【図30】網間接続装置からCLSF処理部へ向かうデータグラムのATMセルに付与されるヘッダ値を示す図
【図31】ヘッダ変換の流れを示す図
【図32】CLSF処理部増設時におけるCLSF処理部配置法の一例 (フェーズ2)を示す図
【図33】ARPサーバ内のテーブルを示す図
【図34】網間接続装置内呼処理部とATM−LAN内端末間のATMコネクションの接続状態およびATMバックボーン網における該呼処理部間のATMコネクションの接続状態を示す図
【図35】大規模ネットワークにおける呼処理方式の他の例を示す図
【図36】ATMボードの一例を示す図
【図37】VPルーチィングにおけるARPセルの一例を示す図
【図38】IWU13の内部構成の一例を示す図
【図39】IWU13の内部構成の他の例を示す図
【図40】サブネットワーク内でのデータグラム通信システムを示す図
【図41】データグラム通信シークエンスを示す図
【図42】データグラム送信手続きを示すフローチャート
【図43】サブネットワーク内でのデータグラム通信システムを示す図
【図44】データグラム通信シークエンスを示す図
【図45】VPIルーテチングを示す図
【図46】2階層ネットワークを示す図
【図47】AR間のコネクションを示す図
【図48】データグラム通信に必要なATMコネクションを示す図
【図49】ARS481からのアドレス空間ビューを示す図
【図50】ARS482からのアドレス空間ビューを示す図
【図51】ARS間のATMコネクションを示す図
【図52】ARS482からのアドレス空間ビューを示す図
【図53】ARS481からのアドレス空間ビューを示す図
【図54】IWU476内のVCI/VPI変換テーブルを示す図
【図55】データグラム転送プロトコル処理を示す図
【図56】端末47Aから端末47Dへのデータグラム転送を示す図
【図57】端末47Aから端末47Dへのデータグラム転送を示す図
【図58】ARS間のVCI/VPI割り当て方式の一例を示す図
【図59】ARS間のVCI/VPI割り当て方式の他の例を示す図
【図60】ARS間のVCI/VPI割り当て方式の他の例を示す図
【図61】データグラム転送のVCI/VPI割り当て方式を示す図
【図62】ネットワーク構成を示す図
【図63】データグラム転送に必要なATMコネクションを示す図
【図64】ARS間のATMコネクションを示す図
【図65】ARS間のATMコネクションを示す図
【図66】データグラム転送に必要なATMコネクションを示す図
【図67】データグラム転送プロトコル処理を示す図
【図68】データグラム転送例を示す図
【図69】ネットワーク構成を示す図
【図70】端末70A→70Bのデータグラム通信例を示す図
【図71】プロトコル処理を示す図
【図72】端末70A→70Bのデータグラム通信例を示す図
【図73】端末70A→公衆網708のデータグラム通信例を示す図
【図74】端末70A→70Bのデータグラム通信例を示す図
【図75】端末70A→公衆網708のデータグラム通信例を示す図
【図76】端末70A→70BのATMコネクションを示す図
【図77】端末70A→公衆網708のデータグラム通信例を示す図
【図78】端末70A→70BのATMコネクションを示す図
【図79】端末70A→公衆網708のデータグラム通信例を示す図
【図80】公衆網708→端末70Aのデータグラム通信例を示す図
【図81】公衆網708→端末70Aのプロトコル処理を示す図
【図82】公衆網708→端末70Aのデータグラム通信例を示す図
【図83】公衆網708→端末70Aのプロトコル処理を示す図
【図84】ネットワーク861からのイメージを示す図
【図85】ネットワーク構成を示す図
【図86】ネットワーク構成を示す図
【図87】端末87A→87Bのデータグラム通信例を示す図
【図88】端末87A→87Cのデータグラム通信例を示す図
【図89】端末87A→87Bのデータグラム通信例を示す図
【図90】端末87A→87Cのデータグラム通信例を示す図
【符号の説明】
11,12…ATM−LAN
13…IWU(網間接続装置)
21…アッド・ドロップ処理部
22…マルチプレクサ/デマルチプレクサ
23…CLSF処理部(コネクションレスサービス機能処理部)
24…呼処理部
25…IWU管理部
26…ヘッダ変換処理部
41〜44…スイッチノード
4A〜4G…端末
91,92…呼処理部
101,102…呼処理部
111,112…ATM−LAN
11A,11B…呼処理部
131〜133…ATM−LAN
134…IWU(網間接続装置)
141…ATMスイッチ
142…CLSF処理部(コネクションレスサービス機能処理部)
143…呼処理部
144…IWU管理部
14A,14B…入力処理部
14X,14Y…出力処理部
151〜157…スイッチノード
15A〜15J…端末
171〜173…呼処理部
181〜183…呼処理部
191〜193…ATM−LAN
201…ATMバックボーン網
202〜204…ATM−LAN
20A〜20C…IWU(網間接続装置)
211〜217…スイッチノード
21A〜21J…端末
311…ATM−LAN
312…ATMバックボーン網
31A〜31B…端末
31P…IWU(網間接続装置)
31X…CLSF処理部(コネクションレスサービス機能処理部)
361…ATMインタフェース
362…ARPフィルタ部
363…ARP処理部
364…挿入部
365…バスインタフェース
411,412…端末
413…ARS(アドレスレゾリューションサーバ)
414…CLSF処理部(コネクションレスサービス機能処理部)
415…IWU(網間接続装置)
41A〜41C…ATMコネクション
46A〜46E…ATMコネクション
471〜474…サブネットワーク(ATM網)
475…公衆網
476〜479…IWU(網間接続装置)
47A〜47F…端末
481〜484…ARS(アドレスレゾリューションサーバ)
485〜487…ATMコネクション
491〜494…CLSF処理部(コネクションレスサービス機能処理部)
495〜49B…ATMコネクション
571〜576…ATMコネクション
581〜584…ATMコネクション
591〜59C…ATMコネクション
60xx…ATMコネクション
611〜61A…ATMコネクション
621〜62A…ATMコネクション
63A〜63B…端末
631〜634…サブネットワーク(ATM網)
635…公衆網
636〜639…IWU(網間接続装置)
63D〜63G…ARS(アドレスレゾリューションサーバ)
63H〜63L…サブネットワーク外のCLSF処理部(コネクションレスサービス機能処理部)
63M〜63Q…サブネットワーク内のCLSF処理部(コネクションレスサービス機能処理部)
641〜646…ATMコネクション
651〜656…ATMコネクション
661〜66C…ATMコネクション
691〜699…ATMコネクション
701〜706…サブネットワーク(ATM網)
707,708…公衆網
70A,70B…端末
70xx…CLSF処理部(コネクションレスサービス機能処理部)
70E〜70M…IWU(網間接続装置)
771〜776…ATMコネクション
781〜784…ATMコネクション
791〜797…ATMコネクション
801〜805…ATMコネクション
811…CLSF処理部(コネクションレスサービス機能処理部)
812〜814…ATMコネクション
831〜834…ATMコネクション
851…サブネットワーク(ATM網)
861〜863…サブネットワーク(ATM網)
864…公衆網
871〜874…CLSF処理部(コネクションレスサービス機能処理部)
87A〜87C…端末
881〜884…ATMコネクション
891〜892…ATMコネクション
901〜905…ATMコネクション
911〜913…ATMコネクション

Claims (14)

  1. 複数のATMネットワークと宛先端末を収容する宛先側ネットワークとを含む複数のネットワークと、
    前記複数のネットワークにおけるコネクションレスのデータグラム転送を司る複数のコネクションレスサービス処理手段とを備え、
    前記複数のコネクションレスサービス処理手段は、前記宛先側ネットワークに対してデータグラム転送を行う宛先側コネクションレスサービス処理手段を含み、
    前記宛先側コネクションレスサービス処理手段に接続されるATMコネクションには、帯域管理を行わないATMコネクションを用い、
    前記ATMコネクションを識別するためのコネクション識別子を取得し、この取得されたコネクション識別子により識別されるATMコネクションを通して送信元端末から前記宛先側コネクションレスサービス処理手段へのデータグラムを送信することによって、該送信元端末から前記宛先端末へのコネクションレスのデータグラム転送を行うことを特徴とするATM通信システム。
  2. 前記宛先側ネットワークはATMネットワークであり、
    前記コネクションレスサービス処理手段は各ATMネットワーク毎に設けられることを特徴とする請求項1に記載のATM通信システム。
  3. 前記ATMコネクションは前記送信元端末と前記宛先側コネクションレスサービス処理手段との間に設定されることを特徴とする請求項1に記載のATM通信システム。
  4. 前記ATMコネクションは前記送信元端末を収容する送信元側ATMネットワークに関連する送信元側コネクションレスサービス処理手段と前記宛先側コネクションレスサービス処理手段との間に設定されることを特徴とする請求項1に記載のATM通信システム。
  5. 前記データグラムは前記送信元端末から前記送信元側コネクションレスサービス処理手段を介して前記宛先側コネクションレスサービス処理手段へ転送されることを特徴とする請求項4に記載のATM通信システム。
  6. 前記複数のATMネットワーク間を接続する網間接続手段を更に備え、
    前記送信元側コネクションレスサービス処理手段と前記宛先側コネクションレスサービス処理手段との間に前記網間接続手段を介してATMコネクションを設定することを特徴とする請求項4に記載のATM通信システム。
  7. 前記宛先側コネクションレスサービス処理手段は、前記送信元端末から送信された前記データグラムを解析して、該データグラムを前記宛先端末へ配送することを特徴とする請求項1に記載のATM通信システム。
  8. 前記宛先側コネクションレスサービス処理手段は、前記ATMコネクションを終端し、前記送信元端末から送信された前記データグラムを解析して、該データグラムを前記宛先端末へリレーイングすることを特徴とする請求項1に記載のATM通信システム。
  9. 前記コネクション識別子は前記宛先側コネクションレスサービス処理手段のATMレイヤアドレスを使って前記送信元端末により取得されることを特徴とする請求項1に記載のATM通信システム。
  10. 前記コネクション識別子は前記宛先側コネクションレスサービス処理手段のATMレイヤアドレスを使って前記送信元端末を含む送信元側ネットワークに関連する送信元側コネクションレスサービス処理手段により取得されることを特徴とする請求項1に記載のATM通信システム。
  11. 前記複数のATMネットワーク間を接続する網間接続手段を更に備え、
    前記送信元端末と前記宛先側コネクションレスサービス処理手段との間に前記網間接続手段によっては終端されないATMコネクションを設定することを特徴とする請求項1に記載のATM通信システム。
  12. 前記ATMネットワーク毎に設けられたアドレスレゾリューションサーバを更に備え、
    当該アドレスレゾリューションサーバは、当該ATMネットワークからアドレスレゾリューション要求を受けた際、該アドレスレゾリューション要求のターゲットノードが当該ATMネットワークに属さない場合に該アドレスレゾリューション要求を他のATMネットワークのアドレスレゾリューションサーバにリレーイングし、前記宛先側コネクションレスサービス処理手段に接続されたATMコネクションを識別子可能な情報を当該ATMネットワークに返すことを特徴とする請求項1に記載のATM通信システム。
  13. 前記宛先側コネクションレスサービス処理手段は、論理的に前記宛先側ネットワークに属するが、物理的には前記宛先側ネットワークとは異なるネットワークのうちの1つに属するものであることを特徴とする請求項1に記載のATM通信システム。
  14. 複数の端末を含む互いに網間接続された複数のネットワークであって複数のATMネットワークおよび宛先端末を収容した宛先側ネットワークを含む複数のネットワークと、前記複数のネットワークにおけるコネクションレスのデータグラム転送を司る複数のコネクションレスサービス処理手段であって前記宛先側ネットワークに対するデータグラム転送を行う宛先側コネクションレスサービス処理手段を含む複数のコネクションレスサービス処理手段とを備えたATM通信システムにおけるATM通信方法であって、
    前記宛先側コネクションレスサービス処理手段に接続される、帯域管理が行われないATMコネクションを識別するためのコネクション識別子を取得し、
    この取得されたコネクション識別子により識別されるATMコネクションを通して、各端末から前記宛先側コネクションレスサービス処理手段へデータグラムを送信することを特徴とするATM通信方法。
JP2002257118A 2002-09-02 2002-09-02 Atm通信システム及びatm通信方法 Expired - Lifetime JP3557199B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002257118A JP3557199B2 (ja) 2002-09-02 2002-09-02 Atm通信システム及びatm通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002257118A JP3557199B2 (ja) 2002-09-02 2002-09-02 Atm通信システム及びatm通信方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11792893A Division JP3426646B2 (ja) 1993-04-20 1993-04-20 ネットワークシステム、通信方法及び通信装置

Publications (2)

Publication Number Publication Date
JP2003143187A JP2003143187A (ja) 2003-05-16
JP3557199B2 true JP3557199B2 (ja) 2004-08-25

Family

ID=19196693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002257118A Expired - Lifetime JP3557199B2 (ja) 2002-09-02 2002-09-02 Atm通信システム及びatm通信方法

Country Status (1)

Country Link
JP (1) JP3557199B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114979138A (zh) * 2022-04-28 2022-08-30 中国工商银行股份有限公司 基于分布式服务的指令处理方法、装置、设备及存储介质

Also Published As

Publication number Publication date
JP2003143187A (ja) 2003-05-16

Similar Documents

Publication Publication Date Title
US7583665B1 (en) Method and apparatus for forwarding packets
US6147989A (en) ATM communication system with high speed connection-less service function
US5892924A (en) Method and apparatus for dynamically shifting between routing and switching packets in a transmission network
JP3649367B2 (ja) パケット伝送制御方法および装置
Alles ATM internetworking
US6188689B1 (en) Network node and method of frame transfer
US7327688B2 (en) Digital communications system
US20040015590A1 (en) Network interconnection apparatus, network node apparatus, and packet transfer method for high speed, large capacity inter-network communication
EP0740874A1 (en) TRANSPARENT INTERCONNECTOR OF LANs BY AN ATM NETWORK
US6314098B1 (en) ATM connectionless communication system having session supervising and connection supervising functions
Truong et al. LAN Emulation on an ATM Network
JP3923533B2 (ja) Atmの部分的なカットスルー
WO2000056113A1 (en) Internet protocol switch and method
US6418126B1 (en) Wireless ATM networks
JP3426646B2 (ja) ネットワークシステム、通信方法及び通信装置
JP3557199B2 (ja) Atm通信システム及びatm通信方法
JP3557200B2 (ja) Atm通信システム
Cisco Designing ATM Internetworks
Cisco Designing ATM Internetworks
Cisco Designing ATM Internetworks
JP3445532B2 (ja) Atm通信システム
JP2923921B1 (ja) パケット転送方式
JP2002526979A (ja) オンデマンドネットワーク間帯域幅
JPH11122289A (ja) ネットワーク・スイッチング・システム
JPH0795214A (ja) Atm通信システムの網立ち上げ方法、バーチャルパス使用方法、データグラム配送方法、及び帯域割り当て方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

EXPY Cancellation because of completion of term