JP3556949B2 - ポテンショメータ - Google Patents

ポテンショメータ Download PDF

Info

Publication number
JP3556949B2
JP3556949B2 JP51042594A JP51042594A JP3556949B2 JP 3556949 B2 JP3556949 B2 JP 3556949B2 JP 51042594 A JP51042594 A JP 51042594A JP 51042594 A JP51042594 A JP 51042594A JP 3556949 B2 JP3556949 B2 JP 3556949B2
Authority
JP
Japan
Prior art keywords
resistance member
electrode
movable electrode
output
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP51042594A
Other languages
English (en)
Inventor
佳英 殿貝
正明 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP7740192U external-priority patent/JPH0644103U/ja
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Application granted granted Critical
Publication of JP3556949B2 publication Critical patent/JP3556949B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/30Adjustable resistors the contact sliding along resistive element
    • H01C10/32Adjustable resistors the contact sliding along resistive element the contact moving in an arcuate path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • G01D5/165Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance by relative movement of a point of contact or actuation and a resistive track
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2412Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

技術分野
本発明は、自動制御等に使用されるポテンショメータに関するものである。
背景技術
自動制御方式におけるフィードバック用途のセンサとして、例えば回転角や変位量の絶対値(アナログ量)を検知するセンサがあるが、その代表的なものはポテンショメータである。このポテンショメータは、第1図及び第2図に示す接触タイプと、第3図及び第4図に示す非接触タイプとに分類される。
第1図及び第2図に示す如く、接触タイプのポテンショメータは、内面に抵抗部材1を貼り付けた円筒壁2aが固定された円形のベース2を備え、これに回転軸4が支持され、この回転軸4には、可動アーム6を介して刷子7が取り付けられるとともに、スリップリング8が固着されている。このスリップリング8に切り欠かれた凹溝8aには、出力端子10に接続されたV字状の導電ワイヤ9がスライド可能に接している。
抵抗部材1は、金属抵抗や導電プラスチックによって横断面C字形に構成され、その2つの両端には、入力端子3・3がそれぞれ接続されている。回転軸4は、軸受5を介してベース2の底部に回動可能に支持され、抵抗部材1の中心部に位置している。可動アーム6の先端に取り付けられた刷子7は、抵抗部材1の内周面にスライド可能に接している。可動アーム6と、その上方に位置するスリップリング8とが、回転軸4を介して電気的に接続されている。
上述した接触タイプのポテンショメータは、入力端子3・3間に直流電圧を印加して使用される。回転軸4と一体に刷子7が回転変位すると、出力端子10の電圧が変化する。つまり、刷子7の位置により、抵抗部材1による直流電圧の分圧比が絶対値で得られ、これにより、回転軸4の回転角や変位量の絶対値を検出することができる。
このポテンショメータは、抵抗部材1の抵抗分割比に応じた直流電圧の分圧比を用いて刷子7の位置を検知しているので、温度変化による影響を受けず、−40℃〜+150℃の広い温度範囲の環境下での使用可能である。しかしながら、刷子7がこすれて抵抗部材1が摩耗し、検出精度が劣化して寿命が低下したり、摺動時のトルクが大きいという欠点がある。
そこで、長寿命化のために、検出部を非接触としたポテンショメータが提案されている。第3図及び第4図に示す如く、このポテンショメータは、円筒壁2aを有する円板形のベース2を備え、これに、2つの磁気抵抗素子11・11が配設されている。
2つの磁気抵抗素子11・11は、略半円弧状に構成され、その曲率中心を共通にしてベース2の底部に配設されている。この2つの磁気抵抗素子11・11の間は、導電ワイヤによって出力端子10に共通接続されている。これら素子11・11の端部には、導電ワイヤを介して入力端子3・3がそれぞれ接続されている。
回転軸4は、軸受5を介してベース2の底部に回動可能に挿通され、2つの磁気抵抗素子11・11の曲率中心に位置している。さらに、回転軸4の周面には、略半円形の永久磁石13が磁界発生源として取り付けられ、この永久磁石13が、2つの磁気抵抗素子11・11と隙間を介して対向している。この永久磁石13は、回転軸4の回転に伴い、2つの磁気抵抗素子11・11と隙間を介した対向状態で回転し、これにより2つの磁気抵抗素子11・11に作用する磁界の量を変化させる。
上述したポテンショメータは、入力端子3・3間に直流電圧を印加して使用される。そして、磁気抵抗素子11・11に磁界が加わると、磁気抵抗素子11・11の内部抵抗が変化することを利用している。即ち、永久磁石13が回転すると、これと対向する磁気抵抗素子11・11に作用する磁界の量が変化し、これによって素子11・11の抵抗値がそれぞれ増減する。この抵抗値の増減により出力端子10の電位が変化し、したがって、永久磁石13の位置が求まる。
この非接触タイプのポテンショメータは、検出部に機械的劣化が生じないので長寿命化である。しかしながら、永久磁石13は、経年変化による磁気特性の劣化が生じやすいため、検出精度に問題がある。さらに、半導体からなる磁気抵抗素子11・11は、温度特性が悪く、広い温度範囲で使用するためには、温度補償を考慮しなくてはならなかった。
悪環境下でも正確に働く自動制御を実現するためには、回転角や変位量の絶対値を検知するセンサであるポテンショメータの適用可能な温度範囲を拡大し、長寿命化することが重要である。しかしながら、検出部が機械的に接触するタイプのポテンショメータでは、温度範囲の拡大は可能であるが、長寿命化が困難だった。これに対し、検出部が非接触型のポテンショメータでは、長寿命化は図れるが、検出精度に問題が生じたり、温度範囲の拡大が難しいという問題もあり、いずれのポテンショメータにも長所と短所があった。
発明の開示
本発明は、適用可能な温度範囲の拡大と、長寿命化を同時に実現できるポテンショメータを提供することを目的としている。
本発明のポテンショメータは、両端間に所定の交流電圧が印加される抵抗部材と、この抵抗部材と一定の間隙をあけて対向した状態で両端間を抵抗部材に沿って変位する可動電極とを備え、可動電極による抵抗部材の分割比に対応した交流電圧を、当該可動電極とこれに対向する抵抗部材で形成される抵抗分割用コンデンサを介して、可動電極から出力することを特徴とする。
本発明の特徴を要約すると、次のようになる。第1の特徴は、抵抗部材の両端に交流電圧を印加することであり、この点で従来の接触タイプおよび非接触タイプのいずれのポテンショメータとも異なる。第2の特徴は、抵抗部材と可動電極を直接には接触しないようにしたことである。これにより、摩耗によって機械的に劣化するという従来の接触タイプのポテンショメータの欠点が除かれる。なお、抵抗部材と可動電極の間に絶縁体層を介在させてもよく、この場合には絶縁体層と抵抗部材、又は絶縁体層と可動電極はこすれ合う。しかし、絶縁体層の材料としては、抵抗部材や可動電極の材料に比べて十分に耐摩耗性が高く、かつ表面を滑らかにできる物質を選択できるので、摩耗による機械的な劣化は殆ど生じない。また、従来の接触タイプのポテンショメータでは、直流電気的な導通をとるために、比較的高い押圧力で接することが必要であったが、本発明では単に抵抗部材と可動電極の間隔が一定に保たれれば十分なので、絶縁体層への押圧力は低くてもよく、したがって摩耗はほとんど生じない。第3の特徴は、可動電極と抵抗部材の間でコンデンサが構成され、このコンデンサを介して可動電極とその直下の抵抗部材が交流電気的に接続されていることである。したがって、抵抗部材に印加された交流電圧は可動電極の位置で分圧され、出力される。交流電圧の抵抗による分圧によって可動電極の位置を検出しているため、抵抗部材の抵抗値の温度変化に起因する誤差を無視することができ、適用可能な温度範囲は従来の非接触タイプのポテンショメータに比べて広くできる。
【図面の簡単な説明】
第1図は従来の接触式ポテンショメータを示す横断面説明図である。
第2図は第1図のポテンショメータの部分縦断面図である。
第3図は従来の非接触式ポテンショメータを示す横断面説明図である。
第4図は第3図のポテンショメータの部分縦断面図である。
第5図は本発明の第1の実施例に係るポテンショメータを示す斜視図である。
第6図は第5図のポテンショメータの等価回路図である。
第7図は第5図のポテンショメータの縦断面説明図である。
第8図は本発明の第2の実施例に係るポテンショメータの斜視図である。
第9図は第8図のポテンショメータの部分断面図である。
第10図は第8図のポテンショメータの等価回路図である。
第11図は本発明の第3の実施例に係るポテンショメータの斜視図である。
第12図は第11図の回路パターンを示す平面図である。
第13図は第11図の縦断面図である。
第14図は本発明の第4の実施例に係るポテンショメータの回路パターンを示す平面図である。
第15図は本発明の第5実施例に係るポテンションメータの回路パターンを示す平面図である。
第16図は第15図の回路パターンと可動電極の位置関係を示す平面図である。
第17図は第5実施例の側面構成を示す断面図である。
第18図は第5実施例の正面構成を示す断面図である。
発明を実施するための最良の形態
第5図および第7図に示すように、第1の実施例においては、絶縁性支持体であるほぼ円形のベース2の上面に、両端が非接触で円環形状の抵抗材料からなる板状の抵抗部材14が貼り付けられ、抵抗部材14の両端部14a・14aには、交流電源の入力端子3・3がそれぞれ接続されている。
抵抗部材14の中心部には、ベース2を回動可能に貫通する回転軸4が軸受5を介して位置し、この回転軸4には、折曲された電極アーム15が取り付けられている。この電極アーム15の端部には、導電体からなる可動電極16が一体的に形成され、この可動電極16が、微小な間隙を有して抵抗部材14に対向配置されており、この可動電極16と抵抗部材14との間隙が、第6図に示す抵抗分割用のコンデンサCDの役割を果たすこととなる。尚、電極アーム15は、導電体である回転軸4、或いは、ワイヤなどの接続手段を介して、出力端子10に接続されている。
従って、このポテンショメータにおいて、入力端子3・3を介して抵抗部材14の両端に交流電流を流すと、抵抗部材14上に交流電位が生じ、これと容量結合する可動電極16上にも一定量減衰した交流の電位が生じる。このとき、回転軸4と一体に可動電極16をスライドさせると、抵抗部材14との電位差に比例した交流電位の変化が可動電極16上に生じるため、この可動電極16の交流出力を検出することにより、回転軸4の回転位置を求めることができる。
本実施例のポテンショメータでは、可動電極16と抵抗部材14とが、これらにより形成されるインピーダンス素子としてのコンデンサCDを介して交流電気的に導通するので、可動電極16が従来の接触タイプのポテンショメータにおける刷子7に対応する疑似刷子の役割を果している。
本実施例によれば、可動電極16と固定の抵抗部材14が機械的に接しないため、これらが摩耗しないポテンショメータが実現できる。また、本実施例では、ポテンショメータの出力は抵抗の分割比に対応する交流電圧の分圧比となるので、抵抗部材14の抵抗値の温度変化に起因する検出誤差を無視できる。なお、コンデンサCDの温度変化による誘電率の変化に依存して別の誤差が生じることとなるが、実際上、温度変化による空気の誘電率の変化は殆んどないので、結果として、安定した出力を得ることが可能となる。
第8図乃至第10図に示す第2の実施例は、第1の実施例を改良したものである。このポテンショメータでは、抵抗部材14の上面に均一な厚さの絶縁体層17が重ねられており、この絶縁体層17の表面上を可動電極16がスライドして移動する構成となっている。このため、コンデンサCDの容量を左右する可動電極16と抵抗部材14との間隔を一定に維持できるので、可動電極16と抵抗部材14との間にガタが発生して、上記間隔が変化することにより検出誤差が生じる、という虞れがない。
各図に基づいて詳説すると、両端が非接触で円環状の抵抗性材料からなる抵抗部材14がほぼ円形のベース2の上面に重ねて固着され、この抵抗部材14の上面には、均一な厚みの絶縁体層17が重ねて固着されている。また、抵抗部材14の中心位置には、回転軸4がベース2に軸受5を介して挿通され、この回転軸4には、折曲された電極アーム15の基端が嵌められて固着されている。
この電極アーム15の先端には、導電体から成る可動電極16が一体的に形成されている。この可動電極16は、絶縁体層17の表面に接して配置され、これにより回転軸4の回転に伴い、絶縁体層17の上面をスライドする。電極アーム15にベース2の方向に付勢するバネ性を付与すると、可動電極16と絶縁体層17との間に隙間が生じない。また、上記回転軸4には、電極アーム15と電気的に接続した半径方向の断面がU字状のスリップリング8が嵌められ、このスリップリング8の外周面における凹溝8aは、V字形で出力用の導電ワイヤ9によりスライド自在にはさまれている。
抵抗部材14を搭載するベース2には、可動電極16とは別に固定電極18が設けられている。この固定電極18は、抵抗部材14の一端部14bに対向して設けられ、可動電極16と同様に絶縁体層17の上面に接して配置されている。この固定電極18は、絶縁体層17を抵抗部材14と可動電極16との間に介在させることにより生じる不具合を解決する。
即ち、絶縁体層17は、可動電極16と抵抗部材14との間に配置されてスペーサとしての作用を営み、回転軸4の可動電極16と抵抗部材14との間隔を一定に保持し、検出精度を向上させるために設けられたものであるが、反面、絶縁体層17を使用すると、この絶縁体層17の温度変化による材料の膨脹、収縮により絶縁層の間隔寸法が変化し、また温度変化により絶縁体層17の誘電率が変化して検出精度に誤差が生じることがある。
そこで、本実施例では、上記誤差を検出してポテンショメータの位置検出出力を補正するため、可動電極16とは別に固定電極18を設けている。即ち、可動電極16と抵抗部材14との間に形成する抵抗分割用のコンデンサCDとは別に、固定電極18と抵抗部材14の一端部14bとの間に、コンデンサCDと容量の等しい温度補償用のコンデンサCTを形成し、このコンデンサCTの出力によって、絶縁体層17の温度変化による容量変化を検出して、回路的に温度の影響を補償している。
次に、本実施例に係るポテンショメータの作用を説明する。
抵抗部材14の入力端子14a・14aに第10図に示すように交流電源30を接続して電流を流すと、可動電極16及び固定電極18には、抵抗部材14とのコンデンサ結合により減衰した電圧が得られる。この場合、抵抗分割用コンデンサCDを構成する可動電極16と抵抗部材14との間には、一定振幅の電位差が生じ、この電位差は当該可動電極16の位置に比例して増減し、これに比例した変化を可動電極16上に生じる。従って、回転軸4に設けた可動電極16の出力を測定することにより、回転軸4の回転角や変位量を検出することができる。
ところで、今、温度変化等の外乱により抵抗部材14と可動電極16との間の誘電率が変化すれば、この変化分は当然検出誤差となるので、回路的に補償する必要がある。そこで、第10図に示す如く、可動電極16と固定電極18とにそれぞれ電圧測定器19・20を接続し、電圧測定器19・20の出力信号を演算処理装置21に入力している。
交流電源30の電圧をV、入力電流をI、抵抗部材14の抵抗値をR0,可動電極16と抵抗部材14との間の抵抗値をR1、抵抗分割用のコンデンサCDの出力をV2,温度補償用のコンデンサCTの出力をV1とすると、
V=IR0, …(1)
V1=1/jω CT・I …(2)
V2=R1/R0(1/jω CD・I) …(3)
となり、
CT=CD …(4)
が成り立つと、
V2=(R1/R0)V1 …(5)
となる。
式(4)、(5)より、CT=CDが成り立つときには、出力V1,V2の比は、抵抗部材14による分圧比R1/R0のみにより定まることがわかる。ここで、コンデンサCT,CDの容量を左右する絶縁体層17に温度変化があったとしても、これらの温度変化は互いのコンデンサにおいて等しく、したがってCT=CDの関係は温度が変化しても変ることはない。また、抵抗部材14に温度変化があっても、その分圧比R1/R0は変ることがない。したがって、(5)式の関係
V2=(R1/R0)V1
は温度変化により影響されない。なお、交流電源30からの入力電流Iが変化すると、出力V1・V2も変化するが、この変化についても後段の演算処理回路で
V2/V0
等の演算をすることで相殺できるので、結局、原理的には全く温度変化による影響を受けないポテンショメータが得られる。
上記の場合、CT=CDとする最も簡単な手段として、可動電極16と固定電極18の面積を同一とし、又、各電極16・18と抵抗部材14及びその一端部14bとの間の距離を同一にすると良い。
次に、可動電極16及び固定電極18と、抵抗部材14及びその一端部14bとにより形成されるコンデンサCT、CDの特性について説明する。上記2つの電極16・18と抵抗部材14で形成されるインピーダンスZは、ω=2πfとすると、
Z=1/jωC=L/jεεSS …(6)
となる。
ここで、CはコンデンサCT、CDの容量(C=CD=CT)、fは交流電源30の発振周波数、εは絶縁体層17の比誘電率、εは真空の誘電率、Sは電極16、18の面積、Lは電極16、18と抵抗部材14との間隔寸法である。
上記式(6)から分るように、ポテンショメータの感度向上のためにインピーダンスZを小さくするには次の3通りある。第1は、交流電源30の発振周波数fを上げること、第2は絶縁体層17に誘導比率εの高い材料を使用すること、第3は絶縁体層17を薄くすることである。尚、第1の手法に関しては、発振周波数fを余り上げていくと、電極アーム15や導電ワイヤ9の誘導成分が増大するため、数+HZ〜数百HZの間で駆動させるのが良い。第2の手法に関しては、絶縁体層17の材質は吸水性のないこと、摩擦係数の小さいことも重視しなくてはならないため本実施例では採用せず、もっぱら第3の手法、すなわち絶縁体層17を薄くすることにより感度アップを図っている。
さらに、電極アーム15を先端側でベース2の方向に折曲して、この部分と可動電極16を直角にすることが望ましい。これは電極アーム15に対向する部分に抵抗部材14があると、その間で浮遊容量が発生し、出力の線形性が低下するためである。
第11図乃至第13図に示す如く、この第3の実施例では、可動電極16の交流出力を取出す検出ラインを、後述の出力パターン24と円環電極25により、接触部のない構造で実現している。本実施例においては、絶縁性の支持体であるベース2の上面に、両端が非接触で円環状の抵抗部材14が重ねられ、この抵抗部材14の両端部14a・14aには、交流電源30の入力端子がそれぞれ接続されている。また、抵抗部材14の上面には、均一な厚みの絶縁体層17が重ねられている。
抵抗部材14の内方には、両端が開いた導電体22が抵抗部材14と平行に配設されている。抵抗部材14の一端と導電体22の一端とは接続リード23により導通され、この抵抗部材14と導電体22により、抵抗分圧用のパターンが形成されている。また、導電体22の他端は接続リード22bを介して入力端子部22aに接続されている。抵抗部材14と導電体22の間には、これらと平行に両端が開いた導電体からなる出力パターン24が配設され、その端部には、出力端子24aが設けられている。
抵抗部材14と導電体22と出力パターン24の中心部には、軸受5を介してベース2を回動可能に貫通した回転軸4が位置している。また、回転軸4には、絶縁体層26を介して円環電極25がマウントされ、この円環電極25の周縁から可動電極16が突出して形成されている。可動電極16は抵抗部材14と対向して、且つ、抵抗部材14の上面に貼り付けられた絶縁体層17上をスライド移動自在に設けられており、この可動電極16と抵抗部材14とにより、抵抗分割用のコンデンサCDが形成されている。さらに、円環電極25は出力パターン24と対向して、且つ、出力パターン24に貼られた絶縁体層17a上をスライド移動自在に設けられており、この円環電極25と出力パターン24の間に出力用のコンデンサC0が形成されている。
本実施例によれば、抵抗部材14の入力端部14a・14aに交流電流を流すことにより、抵抗部材14上に電位が生じ、可動電極16にも一定量減衰した電位が生じる。このとき、回転軸4と一体に可動電極16をスライドさせると、可動電極16と抵抗部材14の電位差に比例した変化が当該可動電極16に生じるため、この可動電極16からの出力を検出することにより、回転軸4の回転位置を求めることが可能となる。
また、抵抗分割用のコンデンサCDを構成する可動電極16から得た交流電圧分圧出力を、出力コンデンサC0を介して出力パターン24に導出してその出力端部24aから取出すことができ、電気的接触部のない検出器とすることができる。なお、円環電極25と出力パターン24は広い面積で対向しているので、出力用のコンデンサC0は交流的に十分に低インピーダンスであり、したがって良好な信号出力が可能である。
上記場合、抵抗部材14に交流電流を流すと、隣接する出力パターン24には、誘導電流が発生し、このままでは、検出出力に誤差が生じてしまう。しかしながら、本実施例では出力パターン24の横に抵抗部材14と導通する導電体22が設けられ、この導電体22に抵抗部材14に流れる電流の方向と逆の(つまり、逆位相の)電流が流れているので、導電体22からも逆位相の誘導電流が出力パターン24に発生し、結果として、出力パターン24に発生する誘導電流は打ち消されるので、検出出力に誤差が生じない。
さらに、本実施例では、ベース2に固定電極18を設け、固定電極18を抵抗部材14の一端部14bに所定の間隔をおいて対向配置して温度補償用のコンデンサCTを構成しており、固定電極18の出力を電極端部18aから取出せるように構成している。この温度補償用のコンデンサCTは第2実施例のものと同等のコンデンサであり、これを設けたことにより、次の作用がある。
即ち、可動電極16と抵抗部材14の間隔保持を確実にするため設けられた絶縁体層17が、温度変化等による外乱により膨張、収縮して誘導率が変化すると、可動電極16から検出する電圧値に誤差が生じる。然るに、上記温度変化等による外乱は同相的外乱であって、可動電極16直下の絶縁体層17に生じる誘電率の変化は固定電極18直下のそれにも同様に生じる。従って、固定電極18からの出力と可動電極16からの出力を演算処理回路に入力し、例えば、第2実施例と同様に各出力電圧比を演算することにより、上記誤差を回路的に補償することができる。
第14図に示す第4実施例においては、ベース2の上面に、拡径の抵抗部材14と縮径の出力パターン24とをそれぞれ貼り付けるとともに、これら抵抗部材14と出力パターン24との間には、ガードライン27を介在して貼り付けている。
抵抗部材14は、基本的には第3実施例で示した構造とほぼ同様に構成されているが、その一端部14cが他の端部14aとほぼ同様の位置に細長く屈曲して設けられている。また、上記した出力パターン24は、円環状に形成され、その一部が細長く外方に延びており、この端部には、出力端子24aが形成されている。さらに、ガードライン27は、ほぼC字状に形成され、その一端部が細長く屈曲しており、この端部27aが、抵抗部材14の端部14aと出力端子部24aとの間に介在されている。ガードライン27が設けられていないときには、抵抗部材14の両端14a・14cに交流電流を印加すると、出力パターン24上には誘導電流が発生する。このため、本実施例では、上述した如く、抵抗部材14と出力パターン24との間に、ガードライン27のパターンを形成し、且つ、接地(GND)している。この構成により、誘導電流は電位の低いガードライン27に流れるので、出力への影響を防止することが可能となる。
その他の部分については第3実施例と同様の構成である。すなわち、回転軸に絶縁体層を介して円環電極が取り付けられ、この円環電極と出力パターン24の間で出力用の低インピーダンスのコンデンサC0が形成される。そして、円環電極から突出した可動電極と抵抗部材14の間で抵抗分割のためのコンデンサCDが形成され、抵抗部材14の部分14aと対向する固定電極によって温度補償用のコンデンサCTが形成され、この出力は固定電極と接触する端子18aから取り出される。
尚、上記諸実施例では、抵抗部材14が円環形状に形成されるとともに、可動電極16が回転軸4に取付けられ、その回転角、回転変位量を検出するポテンショメータを示したが、本発明はこれに限定されるものではない。例えば、第15図に示すように、抵抗部材14を長方形状とし、第16図に示すように、可動電極16を抵抗部材14の長手方向の直線に沿って摺動させることにより、端子14a、14cの交流出力から、直線変位量を検出するポテンショメータを構成することができる。尚、第17図及び第18図に示すように、ベース2は板バネ31によって箱30に支持されており、可動電極15はスライド棒32の先端に支持されている。そして、可動電極15と出力電極151は1枚の板で構成され、その下面には、絶縁体層171、172が貼着されている。可動電極16と抵抗部材14との間隔保持のための絶縁体層17は、抵抗部材14の側に固定して設ける代りに、可動電極16の側に固定して設けても良く、又、抵抗部材14と可動電極16との双方に固定して設けても良い。その他、各電極16・18と抵抗部材14、及び導電体22と出力パターン24の配置や形状等は必要に応じて適宜変更しても構わないのは言うまでもない。
産業上の利用可能性
以上のように本発明によれば、検出部が非接触なので、この検出部に機械的劣化が生じず、長期に亘る検出精度の維持を通じてポテンショメータの長寿命化を実現することができる。
また、検出部を非接触としたが、磁気方式ではなく、従って、従来の磁気を用いた非接触式のポテンショメータのように、永久磁石の経年変化による磁気特性の劣化と、これに伴う検出精度の低下等の問題が全く生じない。
そして、磁気を使用しないので、温度特性が非常に良く、広い温度範囲での使用が可能となる。また、検出電流の取出し部も非接触とすることができ、電流取出し部に機械的劣化が生じないと共に、電極と対向する出力パターンに出力端子を接続するだけで良いので、摺動接触方式に比べて、電流取出し部を平面的に構成でき、ポテンショメータの著しい小型化が期待できる。
さらに、抵抗分割用のコンデンサと温度補償用のコンデンサとにより、検出電流を取出すことができるので、この出力比を測定値として検出することにより、絶縁体層の温度変化に伴なう検出誤差を回路的に補償することができるという効果がある。

Claims (20)

  1. 両端間に所定の交流電圧が印加される抵抗部材と、
    この抵抗部材と一定の間隔をあけて対向した状態で前記両端間を前記抵抗部材に沿って変位する可動電極と、
    前記抵抗部材と前記可動電極の間に介在し、前記抵抗部材または前記可動電極とこすれ合う均一な厚さの絶縁体層と
    を備え、
    前記絶縁体層は、前記絶縁体層とこすれ合う前記抵抗部材または前記可動電極に比べて高い耐摩耗性を有しており、
    前記可動電極による前記抵抗部材の分割比に対応した交流電圧を、当該可動電極とこれに対向する前記抵抗部材で形成される抵抗分割用コンデンサを介して、前記可動電極から出力することを特徴とするポテンショメータ。
  2. 両端間に所定の交流電圧が印加される抵抗部材と、
    この抵抗部材と一定の間隔をあけて対向した状態で前記両端間を前記抵抗部材に沿って変位する可動電極と、
    前記抵抗部材と前記可動電極の間に介在する均一な厚さの絶縁体層と
    を備え、
    前記可動電極による前記抵抗部材の分割比に対応した交流電圧を、当該可動電極とこれに対向する前記抵抗部材で形成される抵抗分割用コンデンサを介して、前記可動電極から出力するとともに、
    前記抵抗部材の両端の一方に接続された第1の固定電極と、
    この第1の固定電極と一定の間隔をあけて対向することにより、前記抵抗分割用コンデンサと略同一容量の温度補償用コンデンサを形成する第2の固定電極と、前記可動電極からの交流電圧出力と前記第2の固定電極からの交流電圧出力とを演算することにより、温度補償された前記可動電極の位置を示す信号を出力する補償演算手段とを更に備えることを特徴とするポテンショメータ。
  3. 前記第1の固定電極は前記抵抗部材の一部により構成されている請求の範囲第1項または第2項に記載のポテンショメータ。
  4. 前記可動電極に固定されて当該可動電極と共に移動する第1の出力電極と、この可動の第1の出力電極と一定の間隔をあけて対向するよう前記可動電極の移動方向に延びて形成された第2の出力電極とを備え、
    前記可動電極からの交流電圧出力は前記第1および第2の出力電極で形成される出力用コンデンサを介して取り出すことを特徴とする請求の範囲第2項記載のポテンショメータ。
  5. 前記第2の出力電極を挟んで前記抵抗部材の反対側に当該抵抗部材と平行に設けられた導電部材を更に備え、
    前記導電部材の一端は前記抵抗部材の一端に接続され、他端は前記所定の交流電力の入力端子に接続されている請求の範囲第4項記載のポテンショメータ。
  6. 前記抵抗部材と前記第2の出力電極の間には、アースされた導電性シールド部材が設けられている請求の範囲第4項記載のポテンショメータ。
  7. 絶縁性材料からなるベースと、
    このベース上に両端が非接触の円環状に形成され、この両端に所定の交流電圧を印加する入力端子が接続された抵抗部材と、
    前記ベースに回転可能に支持され、前記円環状の抵抗部材の略中心に位置する回転軸と、
    この回転軸に基端が固定され、前記抵抗部材と一定の間隔をあけて対向する可動電極を先端で支持する支持部材とを備え、
    前記回転軸の回転に応じた前記可動電極による前記抵抗部材の分割比に対応した交流電圧を、前記可動電極とこれに対向する前記抵抗部材で形成される抵抗分割用コンデンサを介して当該可動電極により出力することを特徴とするポテンショメータ。
  8. 前記回転軸は軸受を介して前記ベースに支持されている請求の範囲第7項に記載のポテンショメータ。
  9. 前記抵抗部材の上面には均一な厚さの絶縁体層が貼着され、前記可動電極は前記絶縁体層と接してスライド移動する請求の範囲第7項記載のポテンショメータ。
  10. 前記可動電極の下面には均一な厚さの絶縁体層が貼着られ、前記可動電極は前記絶縁体層が前記抵抗部材と接するようにスライド移動する請求の範囲第7項に記載のポテンショメータ。
  11. 前記支持部材は導電材料からなる電極アームであり、導電性の前記回転軸には外周面に凹溝が切り欠かれた導電性のスリップリングが嵌め込まれ、
    前記可動電極からの交流電圧出力は前記凹溝にスライド可能に接する導電ワイヤを介して取り出される請求の範囲第7項記載のポテンショメータ。
  12. 前記電極アームは先端近傍が前記ベース方向に折曲され、当該先端に前記可動電極が支持されている請求の範囲第11項に記載のポテンショメータ。
  13. 前記抵抗部材の両端の一方の近傍で当該抵抗部材と一定の間隔をあけて対向することにより、前記抵抗分割用コンデンサと略同一容量の温度補償用コンデンサを形成する固定電極を更に備えることを特徴とする請求の範囲第7項記載のポテンショメータ。
  14. 前記固定電極と前記抵抗部材の間には、前記抵抗部材と前記可動電極の間に介在する絶縁体層と同一の層が介在している請求の範囲第13項に記載のポテンショメータ。
  15. 前記支持部材は前記可動電極に接続される円環状の第1の出力電極を含み、前記ベース板には前記第1の出力電極と一定の間隔をあけて対向する円環状の第2の出力電極が形成され、
    前記可動電極からの交流電圧出力は前記第1および第2の出力電極で形成される出力用コンデンサを介して前記第2の出力電極から取り出される請求の範囲第7項記載のポテンショメータ。
  16. 前記第1の出力電極と前記第2の出力電極との間には、絶縁体層が介在している請求の範囲第15項記載のポテンショメータ。
  17. 前記第2の出力電極の内側の前記ベース上に両端が非接触の円環状導電パターンが形成され、前記円環状導電パターンの一端は前記抵抗部材の一方の端部に接続され、他端は前記所定の交流電圧の入力端子に接続されている請求の範囲第15項に記載のポテンショメータ。
  18. 前記第2の出力電極と前記抵抗部材の間の前記ベース上には、接地された円環状の導電性シールドパターンが形成されている請求の範囲第15項に記載のポテンショメータ。
  19. 前記抵抗部材が円弧状または両端が非接触の円環状で配設されている請求の範囲第1項または第2項に記載のポテンショメータ。
  20. 前記抵抗部材が直線状で配設されている請求の範囲第1項または第2項に記載のポテンショメータ。
JP51042594A 1992-11-10 1993-11-10 ポテンショメータ Expired - Fee Related JP3556949B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP30013792 1992-11-10
JP30013692 1992-11-10
JP7740192U JPH0644103U (ja) 1992-11-10 1992-11-10 ポテンショメータ
PCT/JP1993/001643 WO1994011888A1 (en) 1992-11-10 1993-11-10 Potentiometer

Publications (1)

Publication Number Publication Date
JP3556949B2 true JP3556949B2 (ja) 2004-08-25

Family

ID=27302410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51042594A Expired - Fee Related JP3556949B2 (ja) 1992-11-10 1993-11-10 ポテンショメータ

Country Status (3)

Country Link
US (1) US5525955A (ja)
JP (1) JP3556949B2 (ja)
WO (1) WO1994011888A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105627907A (zh) * 2014-10-31 2016-06-01 北京精密机电控制设备研究所 一种实时高温线性补偿两冗余高精度角位移传感器

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4447295A1 (de) * 1994-11-10 1996-05-15 Siedle Horst Kg Verfahren und Vorrichtung zur Bestimmung einer jeweiligen örtlichen Position eines Körpers durch kapazitive Abtastung
DE9421121U1 (de) * 1994-11-10 1995-04-27 Horst Siedle Kg, 78120 Furtwangen Vorrichtung zur Bestimmung einer jeweiligen örtlichen Position eines Körpers durch kapazitive Abtastung
DE4447293A1 (de) * 1994-11-10 1996-05-15 Siedle Horst Kg Verfahren und Vorrichtung zur Bestimmung einer jeweiligen örtlichen Position eines Körpers durch kapazitive Abtastung
DE9421122U1 (de) * 1994-11-10 1995-04-27 Horst Siedle Kg, 78120 Furtwangen Vorrichtung zur Bestimmung einer jeweiligen örtlichen Position eines Körpers
DE4447294A1 (de) * 1994-11-10 1996-05-15 Siedle Horst Kg Verfahren und Vorrichtung zur Bestimmung einer jeweiligen örtlichen Position eines Körpers
DE19718024C2 (de) 1997-04-29 2000-04-13 Siedle Horst Gmbh & Co Kg Weg-/Winkelsensor
US6727780B2 (en) 2001-10-24 2004-04-27 Sun Microsystems, Inc. Adding electrical resistance in series with bypass capacitors using annular resistors
AU2003258296A1 (en) * 2002-08-19 2004-03-03 Czarnek And Orkin Laboratories, Inc. Capacitive uterine contraction sensor
US6891382B2 (en) * 2002-10-15 2005-05-10 Massachusetts Instiute Of Technology Three-dimensional characterization using a one-dimensional electrode array
WO2007011402A2 (en) * 2004-10-26 2007-01-25 Georgia Tech Research Corporation Displacement sensor
DE102006036102B4 (de) * 2006-08-02 2017-08-10 Rausch & Pausch Gmbh Winkelgeber mit Montageöffnung
US20090058430A1 (en) * 2007-09-05 2009-03-05 Sentrinsic Systems and Methods for Sensing Positions of Components
EP3204717A4 (en) * 2014-10-08 2018-05-23 Candy House Inc. Angle of rotation sensor, a linear displacement sensor, a door mount mechanism, and an electrical brush
CN105140092B (zh) * 2015-09-18 2017-08-25 中广核达胜加速器技术有限公司 一种束流初聚自动调节装置
CN110953983A (zh) * 2019-12-11 2020-04-03 北京云迹科技有限公司 一种测量装置以及测量方法
DE102020122368B4 (de) * 2020-08-26 2024-01-11 Ewellix AB Positionssensor und Herstellungsverfahren sowie Verfahren zur Ermittlung einer Stellung eines Linearaktuators

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3671854A (en) * 1970-11-30 1972-06-20 Denki Onkyo Co Ltd Contactless galuano-magnetro effect apparatus
US3988710A (en) * 1975-11-24 1976-10-26 Illinois Tool Works Inc. Contactless linear rotary potentiometer
JPS6011601Y2 (ja) * 1978-05-04 1985-04-17 横河電機株式会社 非接触形ポテンショメ−タ
JPS6038252Y2 (ja) * 1978-06-09 1985-11-15 アルプス電気株式会社 ハイワツテージ用スライド形2連可変抵抗器
FR2547622B1 (fr) * 1983-06-16 1985-11-22 Leroy Andre Machine volumetrique a surface statorique particuliere
US5231508A (en) * 1989-03-21 1993-07-27 Murphy Jr Frank W Hall effect gauge with magnetically-sensitive variable-resistance element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105627907A (zh) * 2014-10-31 2016-06-01 北京精密机电控制设备研究所 一种实时高温线性补偿两冗余高精度角位移传感器
CN105627907B (zh) * 2014-10-31 2018-11-02 北京精密机电控制设备研究所 一种实时高温线性补偿两冗余高精度角位移传感器

Also Published As

Publication number Publication date
WO1994011888A1 (en) 1994-05-26
US5525955A (en) 1996-06-11

Similar Documents

Publication Publication Date Title
JP3556949B2 (ja) ポテンショメータ
US6462536B1 (en) Eddy current sensor
US3805150A (en) Environment immune high precision capacitive gauging system
US4067225A (en) Capacitance type non-contact displacement and vibration measuring device and method of maintaining calibration
US4766368A (en) Capacitive sensor
EP0023732B1 (en) Capacitive gauge
US8847611B2 (en) Capacitive differential quadrature rotary position sensor
JPH04231804A (ja) 容量式位置発信器
JPH0755500A (ja) 可変容量性トランスジューサ
US6031380A (en) Method and device for determining the respective geometrical position of a body by capacitive sensing
US3706919A (en) Capacitive gauge
JPH08136209A (ja) 可動物体の幾何学的位置、変位又は角度を検出する方法および非接触容量基準位置センサ
US20010030544A1 (en) Capacitance position transducer
US5657006A (en) Capacitance type rotation angle sensor
US5049827A (en) Non-contacting potentiometer
US7023684B1 (en) Variable position sensor employing capacitance
JP2586406B2 (ja) 静電容量型加速度センサ
JP3815771B2 (ja) 静電容量式ギャップセンサ、及びその信号検出方法
US5210491A (en) Measuring device for the contactless determination of a change in linear travel and/or angle of rotation with fixable place of highest measurement accuracy and smallest drift errors
US5223797A (en) Rotatable capacitance sensor
JPH08159705A (ja) 容量センサにより物体の幾何学的位置、変位又は角度を検出する方法および装置
JPH0814813A (ja) ポテンショメータ
JPH08210873A (ja) 可変コンデンサ及びこれを用いた回転角度検出装置
JPH0644103U (ja) ポテンショメータ
US5323118A (en) Hinged displacement sensor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031226

A72 Notification of change in name of applicant

Free format text: JAPANESE INTERMEDIATE CODE: A721

Effective date: 20031226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees