JP3556494B2 - Thermoelectric converter - Google Patents

Thermoelectric converter Download PDF

Info

Publication number
JP3556494B2
JP3556494B2 JP35308698A JP35308698A JP3556494B2 JP 3556494 B2 JP3556494 B2 JP 3556494B2 JP 35308698 A JP35308698 A JP 35308698A JP 35308698 A JP35308698 A JP 35308698A JP 3556494 B2 JP3556494 B2 JP 3556494B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
substrate
thermoelectric
type
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35308698A
Other languages
Japanese (ja)
Other versions
JP2000183409A (en
Inventor
松雄 岸
三七男 山本
裕彦 根本
尚範 濱尾
雅昭 万代
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP35308698A priority Critical patent/JP3556494B2/en
Publication of JP2000183409A publication Critical patent/JP2000183409A/en
Application granted granted Critical
Publication of JP3556494B2 publication Critical patent/JP3556494B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Electromechanical Clocks (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、P型およびN型熱電材料からなるエレメントを備え、ゼーベック効果による温度差発電(熱発電)やペルチェ効果による電子冷却・発熱を可能とする熱電変換素装置に関する。
【0002】
【従来の技術】
二枚の基板に熱電エレメントを挟んだ構造を有する、いわゆる、π型熱電変換素子を発電装置として用いる場合、熱電変換素子に対する熱の流入、流出を効率良く行う様にするため、これら二枚の基板に金属など熱伝導性の高い物質からなる吸放熱板(一方が吸熱板となり、他方が放熱板となることはいうまでもなく、その機能は状況によって入れ替わる)を接着剤で接続したり、バネやゴムをはじめとする弾性部材を介すると同時にネジ締結等により接続していた。
【0003】
また、近年、小型の熱電変換素子を発電装置として用いることにより、体温と外気温との温度差により発電を行い、腕時計等の携帯型の小型電子機器を駆動させるといった動きが広く見られるようになってきている。このような小型の熱電変換素子の構造や作製方法については、特開昭63−20880号公報、特開平8−18109号公報や特開平8―97472号公報などに記載・開示されている。
【0004】
さらに、このような熱電変換素子の腕時計等への発電装置としての応用やその取り付け構造については、特開昭55―20483号公報、特開平8―46249号公報、特開平6―109868号公報等に記載・開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、熱電変換素子の二枚の基板と吸放熱板を接着剤やネジ等により強固に接着や接続を行った場合、吸放熱板に力、とくにせん断方向に力が加えられると、熱電変換素子を破損してしまうという問題があった。
一方、腕時計等に熱電変換素子を熱発電装置として、腕時計等の電子機器とくに携帯型の電子機器に搭載する場合、一般に、室温付近で最も熱電変換性能が高いと言われている物質であるビスマス−テルル系材料が用いられるが、この材料は、非常に機械的強度が低い物質である。したがって、腕時計のような携帯電子機器では、振動、落下等の衝撃にたえるだけの機械的な強度を考えた構造設計も要求される。この場合、熱電変換素子に吸放熱板を取り付けた場合、一般的な熱電変換素子だけでなく、特開昭63−20880や特開平8−18109などに開示されている熱電変換素子を構成するエレメントの間隙に樹脂を充填することにより補強された素子においてさえも熱電変換素子を破損してしまうという問題があった。
【0006】
【課題を解決するための手段】
本発明の熱電変換装置では、熱電変換素子の二枚の基板と二枚の吸放熱板の接続が、少なくとも一方の接続において、流動性や粘弾性、特に通常は一定の形態を有し、外力が加わることにより変形する性質を意味するチキソトロピー性を有する材料を介してなされている。この材料により、吸放熱板を介して伝わる外部からの衝撃を吸収し、熱電変換素子の破壊、損傷を防ぐことができる。この場合には、チキソトロピー性を有する材料として、熱伝導率の高い材料を選択する必要があるが、シリコーンオイルにアルミナ等の微粒子を混合することにより作られるいわゆるシリコーン・コンパウンドをはじめとする油脂等に高熱伝導性物質の微粒子分散したものや粘土などがあげられる。
【0007】
また、本発明の熱電変換装置では、上記のごとく熱電変換素子の基板に接続された二枚の吸放熱板を樹脂、ガラス、セラミックス、金属等からなる熱伝導率の小さな物質からなる構造体で強固に接続している。これにより、吸放熱板に外力が与えられた場合においても、熱電変換装置としての形態を維持することが出来ると同時に、熱電変換素子と吸放熱板の接続が上記のように外力により変形するチキソトロピー性を有する接続材によっているため、熱電変換素子を破損することがなくなる。
【0008】
【発明の実施の形態】
以下、本願発明の実施例を、図面を参照して詳細に説明する。
図1は本発明に係わる熱電変換装置の概略断面図である。図1に示すように、熱電素子1009は、P型熱電エレメント1004とN型熱電エレメント1005が第1基板1002と第2基板1003に挟持されると同時に第1電極1006および第2電極1007を介して直列に接続され、さらに、各エレメント間の間隙に樹脂1008が充填された構成である。そして、この熱電素子1009、第1吸放熱板1010、第2吸放熱板1011、及び、これらの吸放熱板を互いに接続するプラスチック製の断熱構造体1012により熱電変換装置が構成されている。ここで第1基板1002と第1吸放熱板1010は接着剤層1013で強固に接続されており、第2基板1003と第2吸放熱板1011はチキソトロピー性を有する熱伝導性シリコーンコンパウンド1014で熱的に接触を保つようになっている。また、この熱電変換装置1001は、樹脂が充填された熱電変換素子1009の第1基板1002上に設けられた入出力電極1015に接続されるリード線1016により外部と電気的に接続がなされるようになっている。
【0009】
次に、本実施例の熱電変換装置1001の作製方法について説明する。
図2に、樹脂が充填された熱電変換素子1009のうち樹脂1008を除いた部分の製造工程の概略を示す。まず、図2(a)に示すように一定の厚さに研磨したP型熱電材料板2001を用意する。次に図2(b)のように、このP型熱電材料板2001の両面にフォトレジストを塗付し、露光・現像することにより所望のパターンを有するレジスト層2002を形成する。次に、図2(c)のようにニッケル層2003を湿式法により形成する。さらに、図2(d)のようにその上にハンダ層2004を形成する。図2(e)に、レジスト層2002を剥離・除去した状態を示す。次に、図2(f)に示すように、ハンダ層2004の組成を均一化し、ハンダ層を球形にすることにより高さを整えることを目的としたリフロー処理(溶融処理)によりハンダバンプ2005を形成する。ここで、上述のニッケル層2003は、その形状からニッケルバンプ2006と呼ぶこととする。これらの一連の処理により、ハンダバンプ構造体を有するP型熱電材料板2007を得た。
【0010】
次に、図2(g)に示すシリコンウエハ2008を用意する。このシリコンウェハは表面を熱酸化することにより絶縁化されている。次に、図2(h)のように、このシリコンウエハ2008上にクロム、ニッケル、金からなる金属層2009をスパッタリング法により形成する。この金属層2009をフォトリソグラフィー法により、所望のパターンを有する電極2010とすることにより、第1基板2011を作り上げる(図2(i))。この電極2001は、PN接合を行うための電極と外部への入出力を行うための電極となる。
【0011】
次に、図2(j)のように、このように作製された両面にバンプ構造体を有するP型熱電材料板2007と第1基板2011とをハンダバンプ2005を溶融することによりハンダで接続する。この際、P型熱電材料板2001と第1基板2011との間には、ニッケルバンプ2006により、間隙が設けられている。次に、このようにして形成されたP型熱電材料板と第1基板2011との接合体を、P型熱電材料上に形成されたハンダバンプの間でP型熱電材料を必要に応じた刃具を備えたダイシングマシンやワイヤーソーなどの切断装置で切断することにより、不要な部分を除去する。この際、第1基板2011上の電極2010や第1基板自体を破損しないように刃具の刃先をニッケルバンプにより出来た間隙内に収めるように切断装置を操作する。このようにして、第1基板2011にP型熱電エレメント2012が接合されているP型熱電エレメント接合基板2013Aを作製した(図2(k))。
【0012】
次に、同様にN型熱電材料についても、所望のエレメント配置を有するN型熱電エレメント接合基板2013Bを作製しておき、これらを向かい合わせ、位置合わせしたのち、加圧・加熱することにより、各々のエレメントと基板上の電極とをハンダバンプを介して接合することにより、熱電変換素子2014を作製した。
【0013】
具体的には、P型熱電材料板にはビスマス、アンチモン、及びテルルからなる化合物を、N型熱電材料板にはビスマス、テルルからなる化合物を使用した。また、厚みはともに600μmとした。ニッケルバンプは直径80μm、高さ20μmの円筒型、ハンダバンプは約直径80μmの球形に近いものとした。また、バンプ中心間の距離は220μmとし、切断刃具の幅は140μmとした。これにより、エレメントの大きさは80μm角、高さ600μmとなった。また、エレメントの本数は、P型とN型を併せて102本直列につないだ。
【0014】
この熱電変換素子2014に流動性を有する樹脂を流し込み、硬化させることにより、樹脂1008が充填された熱電変換素子1009を作製した。具体的には、樹脂としてエポキシ樹脂を使用した。
黄銅にニッケルめっきを施したものからなる第1吸放熱板1010上に、この10個の熱電変換素子1009をエポキシ接着剤で接着した後、各々をワイヤーボンドにより金ワイヤーで直列に接続し、入出力電極1015にはリード線1016を取り付けた。すなわち、102本×10個=1020本の熱電エレメントを直列につないだものを作製した。つぎに、第1吸放熱板1010にプラスチック製の断熱構造体1012をエポキシ接着剤により接続した。10個の熱電変換素子1009の第2基板1003の全てにシリコーコンパウンド1014を第2基板1003と第2吸放熱板1011との間で熱接触が十分とれるように適量載せた後、黄銅にニッケルめっきを施したものからなる第2吸放熱板1011をこれらの上にのせ、接着剤によりプラスチック製の断熱構造体1012と接着・固定することにより本発明の熱電変換装置1001を作り上げた。
【0015】
このようにして作製した熱電変換装置1001の性能を調べたところ、電気抵抗は1000Ωを示し、第1吸放熱板1010第2吸放熱板1011の間に温度差を付けたところ、1℃当たり150mVの開放電圧を得ることができた。
次に、この熱電変換装置1001を腕時計に組み込み、その性能を調べた。
図3は、本発明の熱電変換装置1001を腕時計に組み込んだものの断面を示した図である。熱電変換装置1001は、第2吸放熱板が、金属製のケース3001と弾性を有する金属製の導熱板3002を介して接続されている。他方の第1吸放熱板は、裏蓋3003に熱伝導性の高いゴム3004により、熱接触を保ちながら接続されている。一方、ケース3001と裏蓋3003の間にはプラスチック製の断熱枠3005が設けられており、この断熱枠によりケースと裏蓋の間の断熱が図られている。このような構造により、腕から発せられた熱が裏蓋3003、熱電変換装置1001を効率よく通り、ケース3001及びガラス3006から外部に放熱する様になってる。これにより、熱電変換装置1001を通過する熱により発電がなされ、発電された電力は、0.2V以上あれば、時計ムーブ内3007に収められた昇圧・整流装置等により、1.5Vに安定化され時計を駆動するようになっている。
【0016】
この腕時計を携帯したところ、図4のような熱電変換装置1001からの発電特性が得られた。曲線Aは、外気温18℃の時の発電特性で、ピーク電圧は携帯直後から約15秒後に1.2Vに達し、定常時でも0.4Vを示した。曲線Bは外気温22℃のデータであり、曲線Cは28℃のものである。いずれの場合も、0.2Vを超えており時計を駆動させるのに十分な出力を有していることが示された。
【0017】
さらに、時計としての耐衝撃性については、実施例1と同様、落下試験を行った。落下試験は、裏蓋面、ガラス面、12時方向、3時方向、6時方向、9時方向を落下方向として、1mの高さからコンクリート上へ落下することにより行ったが、いずれの方向の試験においても、熱電変換装置には何ら損傷はなかった。以上、本発明による熱電変換装置によれば、耐衝撃性に優れ、熱電性能としても十分なものとして作用する。
【0018】
【発明の効果】
本発明の熱電変換装置によれば、耐衝撃性に優れるばかりでなく、高温、高湿度等の耐環境性にも優れたものを提供することができる。また、腕時計等の小型携帯機器のエネルギー源として使用することが出来ると同時に高信頼性を有するペルチェ素子、すなわち、冷却素子としても使用できることもできる。
【図面の簡単な説明】
【図1】本発明に係わる熱電変換装置の縦断面図である。
【図2】本発明に係わる熱電変換素子の製造工程の概略を示す図である。
【図3】本発明に係わる熱電変換装置が腕時計に組み込まれた場合の腕時計主用部の断面を示した図である。
【図4】腕時計に組み込まれた本発明の熱電変換装置の発電性能を表した図表である。
【符号の説明】
1001 熱電変換装置
1002 第1基板
1003 第2基板
1004 P型熱電エレメント
1005 N型熱電エレメント
1006 第1電極
1007 第2電極
1008 樹脂
1010 第1吸放熱板
1011 第2吸放熱板
1012 断熱構造体
1013 接着剤層
1014 シリコーンコンパウンド
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermoelectric conversion device including an element made of P-type and N-type thermoelectric materials, and capable of performing temperature difference power generation (thermal power generation) by the Seebeck effect and electronic cooling and heat generation by the Peltier effect.
[0002]
[Prior art]
When a so-called π-type thermoelectric conversion element having a structure in which a thermoelectric element is sandwiched between two substrates is used as a power generation device, in order to efficiently inflow and outflow heat to the thermoelectric conversion element, these two sheets are used. Connecting the board with a heat-absorbing and radiating plate made of a material with high thermal conductivity such as metal (one of which functions as a heat-absorbing plate and the other functions as a heat radiating plate, of course, depending on the situation), At the same time, connection was made by means of a screw or the like via an elastic member such as a spring or rubber.
[0003]
In recent years, by using a small-sized thermoelectric conversion element as a power generation device, power generation is performed by a temperature difference between body temperature and outside air temperature, and a movement of driving a portable small electronic device such as a wristwatch has been widely seen. It has become to. The structure and manufacturing method of such a small thermoelectric conversion element are described and disclosed in JP-A-63-20880, JP-A-8-18109, and JP-A-8-97472.
[0004]
Further, the application of such a thermoelectric conversion element to a wristwatch or the like as a power generation device and the mounting structure thereof are described in JP-A-55-20483, JP-A-8-46249, JP-A-6-109868, and the like. Is described and disclosed.
[0005]
[Problems to be solved by the invention]
However, when the two substrates of the thermoelectric conversion element and the heat sink / radiator plate are firmly bonded or connected with an adhesive or a screw, etc., when a force is applied to the heat sink / radiator plate, particularly in the shear direction, the thermoelectric conversion element There was a problem that would be damaged.
On the other hand, when a thermoelectric conversion element is used as a thermoelectric generator in a wristwatch or the like and is mounted on an electronic device such as a wristwatch, particularly a portable electronic device, bismuth, which is generally said to have the highest thermoelectric conversion performance near room temperature, is used. -A tellurium-based material is used, which is a substance with very low mechanical strength. Therefore, a portable electronic device such as a wristwatch also requires a structural design that considers mechanical strength enough to withstand shocks such as vibration and dropping. In this case, when a heat absorbing / radiating plate is attached to the thermoelectric conversion element, not only a general thermoelectric conversion element but also an element constituting a thermoelectric conversion element disclosed in JP-A-63-20880, JP-A-8-18109, and the like. There is a problem that even the element reinforced by filling the gap with the resin may damage the thermoelectric conversion element.
[0006]
[Means for Solving the Problems]
In the thermoelectric conversion device of the present invention, the connection between the two substrates and the two heat absorbing and dissipating plates of the thermoelectric conversion element has fluidity and viscoelasticity, particularly usually a constant form, in at least one of the connections. This is achieved through a material having a thixotropic property, which means a property of being deformed by the addition of water. With this material, external shocks transmitted through the heat absorbing and dissipating plate can be absorbed, and destruction and damage of the thermoelectric conversion element can be prevented. In this case, it is necessary to select a material having a high thermal conductivity as the material having thixotropic properties. However, fats and oils such as so-called silicone compounds made by mixing fine particles such as alumina with silicone oil, etc. And fine particles of a highly heat-conductive substance dispersed therein and clay.
[0007]
Further, in the thermoelectric conversion device of the present invention, as described above, the two heat absorbing and radiating plates connected to the substrate of the thermoelectric conversion element are made of a structure made of a material having a low thermal conductivity such as resin, glass, ceramics, and metal. Strongly connected. Accordingly, even when an external force is applied to the heat absorbing and dissipating plate, the configuration as a thermoelectric conversion device can be maintained, and at the same time, the connection between the thermoelectric conversion element and the heat absorbing and dissipating plate is deformed by the external force as described above. The thermoelectric conversion element is not damaged because of the connection material having the property.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic sectional view of a thermoelectric converter according to the present invention. As shown in FIG. 1, the thermoelectric element 1009 includes a P-type thermoelectric element 1004 and an N-type thermoelectric element 1005 sandwiched between a first substrate 1002 and a second substrate 1003, and at the same time via a first electrode 1006 and a second electrode 1007. And the resin 1008 is filled in the gaps between the elements. The thermoelectric element is constituted by the thermoelectric element 1009, the first heat absorbing and dissipating plate 1010, the second heat absorbing and dissipating plate 1011, and the plastic heat insulating structure 1012 for connecting these heat absorbing and dissipating plates to each other. Here, the first substrate 1002 and the first heat absorbing and dissipating plate 1010 are firmly connected by an adhesive layer 1013, and the second substrate 1003 and the second heat absorbing and dissipating plate 1011 are thermally connected by a heat conductive silicone compound 1014 having thixotropic properties. It is designed to keep contact. The thermoelectric conversion device 1001 is electrically connected to the outside by a lead wire 1016 connected to an input / output electrode 1015 provided on the first substrate 1002 of the thermoelectric conversion element 1009 filled with resin. It has become.
[0009]
Next, a method for manufacturing the thermoelectric conversion device 1001 of this embodiment will be described.
FIG. 2 schematically shows a manufacturing process of a portion of the thermoelectric conversion element 1009 filled with the resin except for the resin 1008. First, as shown in FIG. 2A, a P-type thermoelectric material plate 2001 polished to a certain thickness is prepared. Next, as shown in FIG. 2B, a photoresist is applied to both surfaces of the P-type thermoelectric material plate 2001, and is exposed and developed to form a resist layer 2002 having a desired pattern. Next, as shown in FIG. 2C, a nickel layer 2003 is formed by a wet method. Further, as shown in FIG. 2D, a solder layer 2004 is formed thereon. FIG. 2E shows a state where the resist layer 2002 is peeled and removed. Next, as shown in FIG. 2F, a solder bump 2005 is formed by a reflow process (melting process) for the purpose of equalizing the composition of the solder layer 2004 and adjusting the height by making the solder layer spherical. I do. Here, the above-described nickel layer 2003 is referred to as a nickel bump 2006 because of its shape. Through a series of these processes, a P-type thermoelectric material plate 2007 having a solder bump structure was obtained.
[0010]
Next, a silicon wafer 2008 shown in FIG. This silicon wafer is insulated by thermally oxidizing the surface. Next, as shown in FIG. 2H, a metal layer 2009 made of chromium, nickel, and gold is formed on the silicon wafer 2008 by a sputtering method. By forming the metal layer 2009 into an electrode 2010 having a desired pattern by a photolithography method, a first substrate 2011 is formed (FIG. 2I). The electrode 2001 serves as an electrode for performing a PN junction and an electrode for performing input and output to and from the outside.
[0011]
Next, as shown in FIG. 2J, the P-type thermoelectric material plate 2007 having the bump structures on both surfaces manufactured in this way and the first substrate 2011 are connected by soldering by melting the solder bumps 2005. At this time, a gap is provided between the P-type thermoelectric material plate 2001 and the first substrate 2011 by the nickel bump 2006. Next, the joined body of the P-type thermoelectric material plate and the first substrate 2011 formed as described above is connected to a cutting tool as needed by using the P-type thermoelectric material between the solder bumps formed on the P-type thermoelectric material. Unnecessary parts are removed by cutting with a cutting device such as a dicing machine or a wire saw provided. At this time, the cutting device is operated so that the cutting edge of the cutting tool is accommodated in the gap formed by the nickel bump so as not to damage the electrode 2010 on the first substrate 2011 or the first substrate itself. Thus, a P-type thermoelectric element bonded substrate 2013A in which the P-type thermoelectric element 2012 is bonded to the first substrate 2011 was manufactured (FIG. 2 (k)).
[0012]
Next, similarly for the N-type thermoelectric material, an N-type thermoelectric element bonding substrate 2013B having a desired element arrangement is prepared in advance, and these are opposed to each other, aligned, and then pressurized and heated. Was bonded to the electrodes on the substrate via solder bumps, thereby producing a thermoelectric conversion element 2014.
[0013]
Specifically, a compound composed of bismuth, antimony, and tellurium was used for the P-type thermoelectric material plate, and a compound composed of bismuth and tellurium was used for the N-type thermoelectric material plate. The thickness was set to 600 μm. The nickel bumps were cylindrical with a diameter of 80 μm and a height of 20 μm, and the solder bumps were nearly spherical with a diameter of about 80 μm. The distance between the bump centers was 220 μm, and the width of the cutting blade was 140 μm. As a result, the size of the element was 80 μm square and the height was 600 μm. Also, as for the number of elements, 102 P-type and N-type elements were connected in series.
[0014]
The thermoelectric conversion element 2014 was filled with the resin 1008 by pouring a resin having fluidity into the thermoelectric conversion element 2014 and curing the resin. Specifically, an epoxy resin was used as the resin.
After bonding the ten thermoelectric conversion elements 1009 on a first heat absorbing and dissipating plate 1010 made of nickel plated brass with an epoxy adhesive, each was connected in series with a gold wire by wire bonding, and A lead wire 1016 was attached to the output electrode 1015. That is, a device in which 102 × 10 = 1020 thermoelectric elements were connected in series was produced. Next, a heat insulating structure 1012 made of plastic was connected to the first heat sink / radiator plate 1010 using an epoxy adhesive. After an appropriate amount of silicon compound 1014 is placed on all of the second substrates 1003 of the ten thermoelectric conversion elements 1009 so that thermal contact between the second substrate 1003 and the second heat sink / radiator plate 1011 is sufficient, nickel plating is applied to brass. A second heat absorbing and radiating plate 1011 made of a material subjected to the above process is placed on these, and the thermoelectric conversion device 1001 of the present invention is fabricated by adhering and fixing the plastic heat insulating structure 1012 with an adhesive.
[0015]
When the performance of the thermoelectric conversion device 1001 manufactured in this manner was examined, the electrical resistance was 1000Ω, and when a temperature difference was given between the first heat absorbing and radiating plate 1010 and the second heat absorbing and radiating plate 1011, 150 mV / ° C. Open-circuit voltage was obtained.
Next, the thermoelectric conversion device 1001 was incorporated into a wristwatch and its performance was examined.
FIG. 3 is a view showing a cross section of a thermoelectric conversion device 1001 of the present invention incorporated in a wristwatch. In the thermoelectric conversion device 1001, the second heat absorbing and radiating plate is connected to a metal case 3001 via a metal heat conductive plate 3002 having elasticity. The other first heat absorbing and radiating plate is connected to the back cover 3003 by a rubber 3004 having high thermal conductivity while maintaining thermal contact. On the other hand, a plastic heat insulating frame 3005 is provided between the case 3001 and the back cover 3003, and heat insulation between the case and the back cover is achieved by the heat insulating frame. With such a structure, the heat generated from the arm efficiently passes through the back cover 3003 and the thermoelectric conversion device 1001 and radiates heat from the case 3001 and the glass 3006 to the outside. As a result, power is generated by the heat passing through the thermoelectric converter 1001, and if the generated power is 0.2 V or more, the generated power is stabilized at 1.5 V by a step-up / rectifier device contained in the clock move 3007. It is designed to drive a watch.
[0016]
When this watch was carried, power generation characteristics from the thermoelectric converter 1001 as shown in FIG. 4 were obtained. Curve A is a power generation characteristic when the outside air temperature is 18 ° C., and the peak voltage reaches 1.2 V about 15 seconds after immediately after carrying, and shows 0.4 V even in a steady state. Curve B is data at an outside air temperature of 22 ° C, and curve C is at 28 ° C. In each case, it exceeded 0.2 V and was shown to have sufficient output to drive the watch.
[0017]
Further, a drop test was performed on the impact resistance of the timepiece as in Example 1. The drop test was carried out by dropping onto the concrete from a height of 1 m with the back cover surface, the glass surface, the 12 o'clock direction, the 3 o'clock direction, the 6 o'clock direction, and the 9 o'clock direction as the drop directions. In the test of the above, there was no damage to the thermoelectric converter. As described above, according to the thermoelectric conversion device of the present invention, the thermoelectric conversion device is excellent in impact resistance and acts as a sufficient thermoelectric device.
[0018]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the thermoelectric conversion device of this invention, what is excellent not only in impact resistance but also in environmental resistance at high temperature, high humidity, etc. can be provided. In addition, it can be used as an energy source of a small portable device such as a wristwatch, and at the same time, can be used as a Peltier device having high reliability, that is, a cooling device.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a thermoelectric conversion device according to the present invention.
FIG. 2 is a view schematically showing a manufacturing process of a thermoelectric conversion element according to the present invention.
FIG. 3 is a diagram showing a cross section of a main part of a wristwatch when the thermoelectric conversion device according to the present invention is incorporated in a wristwatch.
FIG. 4 is a table showing the power generation performance of the thermoelectric converter of the present invention incorporated in a wristwatch.
[Explanation of symbols]
1001 Thermoelectric conversion device 1002 First substrate 1003 Second substrate 1004 P-type thermoelectric element 1005 N-type thermoelectric element 1006 First electrode 1007 Second electrode 1008 Resin 1010 First heat absorbing / radiating plate 1011 Second heat absorbing / radiating plate 1012 Heat insulating structure 1013 Adhesion Agent layer 1014 silicone compound

Claims (5)

P型熱電材料からなる複数のP型エレメントと、
N型熱電材料からなる複数のN型エレメントと、
前記P型及びN型エレメントを一対ずつ接合してPN接合対を形成するための電極をそれぞれ有するとともに、互いに対向して前記P型及びN型エレメントを挟持する第1基板及び第2基板からなる熱電変換装置において、
接着剤により前記第1基板に接続される第1吸放熱板と、
チキンソトロピー性を有する高熱伝導性物質により前記第2基板に接続される第2吸放熱板と、
前記第1吸放熱板と前記第2吸放熱板とを接続する低熱伝導性物質からなる補強部材と、を備えることを特徴とする熱電変換装置。
A plurality of P-type elements made of P-type thermoelectric material;
A plurality of N-type elements made of N-type thermoelectric material;
With each having an electrode to form a PN junction pair by joining the P-type and N-type elements in pairs consist of a first substrate and a second substrate that sandwich the P-type and N-type elements facing each other In the thermoelectric converter,
A first heat sink / radiator plate connected to the first substrate by an adhesive ;
A second heat sink / radiator plate connected to the second substrate by a high heat conductive material having chicken sotropic properties ;
A thermoelectric conversion device, comprising: a reinforcing member made of a low heat conductive material that connects the first heat absorbing and radiating plate and the second heat absorbing and radiating plate.
前記高熱伝導性物質は、油脂に高熱伝導性物質を分散してなることを特徴とする請求項1記載の熱電変換装置。 The thermoelectric conversion device according to claim 1 , wherein the high heat conductive substance is formed by dispersing a high heat conductive substance in fats and oils . 前記高熱伝導物質は、シリコーン・コンパウンドにアルミナの微粒子を分散してなることを特徴とする請求項1記載の熱電変換装置。2. The thermoelectric conversion device according to claim 1, wherein the high thermal conductive material is obtained by dispersing fine particles of alumina in a silicone compound. 前記第1基板と前記第2基板との間に樹脂材料が充填されたことを特徴とする請求項1記載の熱電変換装置。The thermoelectric conversion device according to claim 1, wherein a resin material is filled between the first substrate and the second substrate. 請求項1から請求項4のうち何れかに記載の熱電変換装置を発電装置として用いたことを特徴とする小型電子機器。A small electronic device using the thermoelectric conversion device according to any one of claims 1 to 4 as a power generation device.
JP35308698A 1998-12-11 1998-12-11 Thermoelectric converter Expired - Fee Related JP3556494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35308698A JP3556494B2 (en) 1998-12-11 1998-12-11 Thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35308698A JP3556494B2 (en) 1998-12-11 1998-12-11 Thermoelectric converter

Publications (2)

Publication Number Publication Date
JP2000183409A JP2000183409A (en) 2000-06-30
JP3556494B2 true JP3556494B2 (en) 2004-08-18

Family

ID=18428473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35308698A Expired - Fee Related JP3556494B2 (en) 1998-12-11 1998-12-11 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JP3556494B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210082168A (en) * 2018-10-12 2021-07-02 청두 슈퍼손 커뮤니케이션 테크놀로지 컴퍼니 리미티드 Heat dissipation assembly and communication module

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523306B2 (en) * 2004-03-19 2010-08-11 シチズンホールディングス株式会社 Method for manufacturing thermoelectric element
CN102158139A (en) * 2011-03-11 2011-08-17 中国人民解放军国防科学技术大学 Solar radiant heat energy generating set on water surface
JP2013042862A (en) * 2011-08-23 2013-03-04 National Institute Of Advanced Industrial Science & Technology Cooking device with power generation capability
JP5956155B2 (en) * 2012-01-05 2016-07-27 フタバ産業株式会社 Thermoelectric generator
KR20220032284A (en) * 2020-09-07 2022-03-15 엘지이노텍 주식회사 Thermoelectric module and power generating apparatus comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210082168A (en) * 2018-10-12 2021-07-02 청두 슈퍼손 커뮤니케이션 테크놀로지 컴퍼니 리미티드 Heat dissipation assembly and communication module
KR102541949B1 (en) 2018-10-12 2023-06-13 청두 슈퍼손 커뮤니케이션 테크놀로지 컴퍼니 리미티드 Thermal assembly and communication module

Also Published As

Publication number Publication date
JP2000183409A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
Sugahara et al. Fabrication with semiconductor packaging technologies and characterization of a large‐scale flexible thermoelectric module
JP2008277584A (en) Thermoelectric substrate member, thermoelectric module, and manufacturing method of them
JPH11145381A (en) Semiconductor multi-chip module
JP3556494B2 (en) Thermoelectric converter
JPH0818109A (en) Thermoionic element and manufacture thereof
JP2006261505A (en) Insulating heat transfer sheet
JP4284589B2 (en) Thermoelectric semiconductor manufacturing method, thermoelectric conversion element manufacturing method, and thermoelectric conversion device manufacturing method
JP2003197982A (en) Gold-tin joint peltier element thermoelectric conversion module
JP4797676B2 (en) Insulated heat transfer structure, power module substrate, and method of manufacturing insulated heat transfer structure
JP2000022224A (en) Manufacture of thermoelectric element and manufacture thereof
JP2019140265A (en) Semiconductor device and manufacturing method thereof
JP3592395B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP2004221109A (en) Thermoelectric element module and manufacturing method therefor
JP2003282970A (en) Thermoelectric converter and thermoelectric conversion element and their manufacturing method
JP6471241B2 (en) Thermoelectric module
JP2010161297A (en) Thermoelectric conversion module and method for manufacturing the same
JP2004140064A (en) Thermoelement and its manufacturing method
JP4011692B2 (en) Thermoelectric element
EP3041056A1 (en) Thermoelectric generator
JP2009252956A (en) Mounting frame, semiconductor device, and method of manufacturing the same
JP6595320B2 (en) Thermoelectric module assembly
JP2000244026A (en) Thermoelectric transfer element and its manufacture
JP3549426B2 (en) Thermoelectric element and method for manufacturing the same
JP3377944B2 (en) Thermoelectric element and method of manufacturing the same
JPS6092642A (en) Forced cooling device for semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees