JP3555381B2 - Tape with adhesive for semiconductor device, copper-clad laminate using the same, substrate for semiconductor connection, and semiconductor device - Google Patents

Tape with adhesive for semiconductor device, copper-clad laminate using the same, substrate for semiconductor connection, and semiconductor device Download PDF

Info

Publication number
JP3555381B2
JP3555381B2 JP10097097A JP10097097A JP3555381B2 JP 3555381 B2 JP3555381 B2 JP 3555381B2 JP 10097097 A JP10097097 A JP 10097097A JP 10097097 A JP10097097 A JP 10097097A JP 3555381 B2 JP3555381 B2 JP 3555381B2
Authority
JP
Japan
Prior art keywords
adhesive
semiconductor device
tape
semiconductor
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10097097A
Other languages
Japanese (ja)
Other versions
JPH10107093A (en
Inventor
将次 木越
拓 波多野
幸綱 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP10097097A priority Critical patent/JP3555381B2/en
Publication of JPH10107093A publication Critical patent/JPH10107093A/en
Application granted granted Critical
Publication of JP3555381B2 publication Critical patent/JP3555381B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/79Apparatus for Tape Automated Bonding [TAB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/50Tape automated bonding [TAB] connectors, i.e. film carriers; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/50Tape automated bonding [TAB] connectors, i.e. film carriers; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive

Description

【0001】
【発明の属する技術分野】
本発明は半導体集積回路を実装する際に用いられる、テープオートメーテッドボンディング(TAB)方式のパターン加工テープ、ボールグリッドアレイ(BGA)パッケージ用インターポーザー等の半導体接続用基板を作成するために適した、半導体装置用接着剤付きテープおよびそれを用いた銅張り積層板、半導体接続用基板ならびに半導体装置に関する。
【0002】
【従来の技術】
半導体集積回路(IC)の実装には、金属製のリードフレームを用いた方式がもっとも多く用いられているが、近年ではガラスエポキシやポリイミド等の有機絶縁性フィルム上にIC接続用の導体パターンを形成した、接続用基板を介した方式が増加している。代表的なものとして、テープオートメーテッドボンディング(TAB)方式によるテープキャリアパッケージ(TCP)が挙げられる。
【0003】
TCPの接続用基板(パターンテープ)にはTAB用接着剤付きテープ(以下TAB用テープと称する)が使用されるのが一般的である。通常のTAB用テープは、ポリイミドフィルム等の可撓性を有する有機絶縁性フィルム上に、未硬化状態の接着剤層および保護フィルム層として離型性を有するポリエステルフィルム等を積層した3層構造より構成されている。
【0004】
TAB用テープは、(1) スプロケットおよびデバイス孔の穿孔、(2) 銅箔との熱ラミネートおよび接着剤の加熱硬化、(3) パターン形成(レジスト塗布、エッチング、レジスト除去)、(4) スズまたは金−メッキ処理などの加工工程を経て、接続用基板であるTABテープ(パターンテープ)に加工される。図1にパターンテープの形状を示す。図2に本発明のTCP型半導体装置の一態様の断面図を示す。パターンテープのインナーリード部6を、半導体集積回路8の金バンプ10に熱圧着(インナーリードボンディング)し、半導体集積回路を搭載する。次いで、封止樹脂9による樹脂封止工程を経て半導体装置が作成される。最後に、TCP型半導体装置は、他の部品を搭載した回路基板等とアウターリード7を介して接続され、電子機器への実装がなされる。
【0005】
一方、近年の電子機器の小型・軽量化に伴い、半導体パッケージも高密度実装化を目的に、パッケージの裏面に接続端子を配列するBGA(ボールグリッドアレイ)、CSP(チップスケールパッケージ)が用いられるようになってきた。
【0006】
BGA、CSPではTCPと同様に、インターポーザーと称する接続用基板が必須である。しかし、ICの接続方法において、従来のTCPでは大半がTAB方式のギャングボンディングであるのに対し、BGA、CSPではTAB方式およびワイヤーボンディング方式のいずれかを、個々のパッケージの仕様、用途、設計方針等により選択している点が異なっている。図3および図4に本発明の半導体装置(BGA,CSP)の一態様の断面図を示す。
【0007】
ここでいうインターポーザーは、前述のTCPのパターンテープと同様の機能を有するものなので、本発明の半導体用接着剤付きテープを使用することができる。インナーリードを有する接続方式に有利であることは当然であるが、半田ボール用の孔やIC用のデバイスホールを機械的に打ち抜いた後に銅箔をラミネートするプロセスに特に適している。一方、ワイヤーボンディングにより接続するため、インナーリードが不要であったり、銅箔ごと半田ボール用の孔やIC用のデバイスホールを開けるプロセスでは、すでに銅箔を積層し接着剤を加熱硬化させた銅張り積層板を用いてもよい。
【0008】
上記のパッケージ形態ではいずれも最終的に半導体用接着剤付きテープの接着剤層は、パッケージ内に残留するため、絶縁性、耐熱性、接着性等の諸特性を満たすことが要求される。電子機器の小型化、高密度化が進行するに伴い、半導体接続用基板のパターンピッチ(導体幅および導体間幅)が非常に狭くなってきており、高い絶縁信頼性と狭い導体幅における銅箔接着力(以下、接着力と称する)を有する接着剤の必要性が高まっている。最近は特に、絶縁信頼性の加速試験として、130℃,85%R.Hの高温高湿あるいは、125℃〜150℃の高温で連続した電圧印加状態における絶縁抵抗の低下速度が重要視されるようになった。
【0009】
従来、半導体用接着剤付きテープとして用いられてきたTAB用テープの接着剤層は、エポキシ樹脂および/またはフェノール樹脂とポリアミド樹脂の混合組成物を主としたものであった(特開平2−143447号公報、特開平3−217035号公報等)。
【0010】
【発明が解決しようとする課題】
しかし、上述の絶縁信頼性および接着力において、従来の半導体用接着剤付きテープ(TAB用テープ)は必ずしも十分とはいえない。たとえば、高温高湿での連続した電圧印加状態における絶縁低下が早いため、絶縁信頼性が不足である。特に、高速動作する集積回路等で発熱量が大きい場合、重篤な事態をまねく。しかし、接着性と絶縁性とのバランスをとることは困難であり、接着性と絶縁性のいずれかを向上させると、他方が低下し、総合的に必ずしも十分な特性とはいえない。接着性について言えば、導体幅が細くなるに従い、接着強度が低下し、ボンディング等の後工程で導体の剥離を生じ、集積回路および回路基板と接続できないことがある。これは接着強度の絶対値の不足と、導体と接着剤の間へのメッキ液の侵入による実効の接着面積の減少が主な原因である。また、絶縁性および耐熱性はポリアミド樹脂が加熱下で軟化することにより低下する。これらの問題点は、基本的に熱可塑性樹脂と熱硬化性樹脂の複合材料としての接着剤構造の制御が十分になされていないことに起因している。
【0011】
本発明はこのような問題点を解決し、優れた絶縁性を保持しつつ、優れた接着性を同時に達成し得る半導体装置用接着剤付きテープおよびそれを用いた銅張り積層板、半導体接続用基板ならびに半導体装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者らは、上記の目的を達成するために半導体用接着剤付きテープの、接着剤成分の電子顕微鏡レベルでのミクロ相分離構造と金属に対する接着性および絶縁性との関係を鋭意検討した結果、接着剤のミクロ相分離構造を巧みに制御することにより、接着性および絶縁性に優れた半導体用装置接着剤付きテープが得られることを見い出し、本発明に至ったものである。
【0013】
すなわち、本発明は可撓性を有する有機絶縁性フィルム上に、接着剤層および保護フィルム層を有する積層構造テープであり、加熱硬化後の該接着剤層が、個々に相が連結された、少なくとも2つ以上の連続相を含むミクロ相分離構造を有し、当該連続相がラメラ状であることを特徴とする、半導体装置用接着剤付きテープおよびそれを用いた銅張り積層板、半導体接続用基板ならびに半導体装置に関する。
【0014】
【発明の実施の形態】
ミクロ相分離構造は、従来よりポリマーブレンドあるいはブロックおよびグラフト共重合体において、透過型電子顕微鏡(TEM) 、示差走査熱量計(DSC) 、光散乱、X線小角散乱、赤外吸収スペクトル(IR)、等の種々の方法で確認される微細な不均一構造のことであるが、本発明における接着剤層のミクロ相分離構造とは、特に、超薄切片を金属化合物で染色する方法で、透過型電子顕微鏡により確認されるものをいう。
【0015】
本発明における接着剤層は、加熱硬化後に少なくとも2つ以上の連続相から構成されるミクロ相分離構造を有するものである。ここでいう連続相は、各成分が連結しており、かつ実質的に相互にマトリクス成分として不定型あるいは層状に混在した状態にあるものであれば特に制限されない。たとえば、A相およびB相からなる2相系の場合、A相またはB相の一方が棒状ドメインを形成し、他方の相中に分散した構造またはA相およびB相がラメラ構造をとるもの等が例示される。一方、球状あるいは不定型の孤立したドメインが、他方の相のマトリクス中に分散した、いわゆる海島構造のものはこれに該当しない。
【0016】
本発明の接着剤層では、2つ以上の特性の異なる成分をミクロな連続相として混在させることにより、単なる混合物以上の特性が発現されるものと推測される。
【0017】
したがって、本発明の接着剤層では、連続相の平均幅が、いずれも5〜1000nmであることが好ましく、10〜700nmであればより好ましく、20〜500nmであればさらに好ましくい。5nm以下であれば、接着性、絶縁性等が単なる混合物としての平均的特性に近づき、1000nm以上であれば、不均一すぎてそれぞれの成分のいずれかの特性のみが発現されるので、いずれの場合も好ましくない。
【0018】
本発明の接着剤層は、上記のミクロ相分離構造を有していれば、それを構成する成分は特に限定されないが、連続となる各成分の相溶性が重要であり、相溶性が良好過ぎても、不良でも目的とする構造は得られない。半導体装置用接着剤付きテープの要求特性から、好ましい成分を例示すれば、熱可塑性樹脂および熱硬化性樹脂をそれぞれ連続相とする系が挙げられる。
【0019】
相溶性を表わす特性値は種々あるが、たとえば、下記の方法で測定したヘイズが、連続相を形成する成分のいずれの組合せについても、7〜50であるようなものが好適である。
7以下では相溶性が良好過ぎ、50以上では相溶性が不良である。
【0020】
ヘイズは、連続相を形成する成分のうち2成分を選択し、それらを等量混合して、12μmの厚みのサンプルを作成し、JIS−K7105に準拠した方法で測定する。
【0021】
また、連続となる各成分の相溶性の効果に加えて、連続となる各成分を相溶させる、相溶化効果を有する物質(いわゆる相溶化剤)を添加するとさらに好適である。
【0022】
この場合、相溶化剤には、連続となる各成分のいずれに対しても相溶することにより効果を発揮する、非反応型と、連続となる各成分に対して反応し、共有結合により相溶化効果を発揮する反応型がある。いずれの場合も少量の添加が有効であり、量が多いとそれ自身が球状のドメインを形成するので、好ましくない。
【0023】
非反応型は各成分をセグメントに有するブロックポリマ、グラフトポリマが例示できる。また、反応型はエポキシ基、イソシアネート基、ビニル基、等の官能基を2つ以上有する物質が例示できる。特に、反応型は少量の添加でも効果を発揮させるべく、官能基当量が小さく、連続相成分の有する官能基との反応速度の速いものが好ましい。
【0024】
熱可塑性樹脂としては、ポリアミド、ポリエステル、ポリイミド、ポリアミドイミド、ポリウレタン、NBRゴム、アクリル、ポリビニルブチラール、等公知のものが例示される。銅箔との接着性や絶縁性の点からポリアミドは特に好ましく、公知の種々のものが使用できるが、接着剤層に可撓性を持たせ、かつ低吸水率のため絶縁性にすぐれる、炭素数が36であるジカルボン酸(いわゆるダイマー酸)を含むものが好適である。ダイマー酸を含むポリアミド樹脂は、常法によるダイマー酸とジアミンの重縮合により得られるが、この際にダイマー酸以外のアジピン酸、アゼライン酸、セバシン酸等のジカルボン酸を共重合成分として含有してもよい。ジアミンはエチレンジアミン、ヘキサメチレンジアミン、ピペラジン、等の公知のものが使用でき、吸湿性、溶解性の点から2種以上の混合でもよい。
【0025】
熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、キシレン樹脂、フラン樹脂、シアン酸エステル樹脂、等公知のものが例示される。特に、エポキシ樹脂およびフェノール樹脂は絶縁性に優れるので好適である。
【0026】
たとえば、フェノール樹脂としては、フェノール、クレゾール、p−t−ブチルフェノール、ノニルフェノール等のアルキル置換フェノール、p−フェニルフェノール、テルペン、ジシクロペンタジエン等の環状アルキル変性フェノール、ナフタレン、アントラセン等の骨格を有するものでもよい。
【0027】
エポキシ樹脂は1分子内に2個以上のエポキシ基を有するものであれば特に制限されないが、ビスフェノールF、ビスフェノールA、ビスフェノールS、ジヒドロキシナフタレン、ダイマー酸、レゾルシノール、ジシクロペンタジエンジフェノール、ジシクロペンタジエンジキシレノール、テルペンジフェノール、ビフェニル、等のジグリシジルエーテル、エポキシ化フェノールノボラック、エポキシ化クレゾールノボラック、エポキシ化トリスフェニロールメタン、エポキシ化テトラフェニロールエタン、エポキシ化メタキシレンジアミン、等が挙げられる。
【0028】
本発明の接着剤層にエポキシ樹脂およびフェノール樹脂の硬化剤および硬化促進剤を添加することは何等制限されない。たとえば、芳香族ポリアミン、三フッ化ホウ素トリエチルアミン錯体等の三フッ化ホウ素のアミン錯体、2−アルキル−4−メチルイミダゾール、2−フェニル−4−アルキルイミダゾール等のイミダゾール誘導体、無水フタル酸、無水トリメリット酸等の有機酸、ジシアンジアミド、トリフェニルフォスフィン、ジアザビシクロウンデセン、等公知のものが使用できる。添加量はエポキシ樹脂およびフェノール樹脂100重量部に対して0.1〜10重量部であると好ましい。
【0029】
以上の成分以外に、接着剤の特性を損なわない範囲で酸化防止剤、イオン捕捉剤などの有機、無機成分を添加することは何ら制限されるものではない。
【0030】
本発明でいう可撓性を有する絶縁性フィルムとはポリイミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリエーテルエーテルケトン、アラミド、ポリカーボネート、ポリアリレート、等のプラスチックあるいはエポキシ樹脂含浸ガラスクロス等の複合材料からなる厚さ25〜125μmのフィルムであり、これらから選ばれる複数のフィルムを積層して用いても良い。また必要に応じて、加水分解、コロナ放電、低温プラズマ、物理的粗面化、易接着コーティング処理等の表面処理を施すことができる。
【0031】
本発明でいう保護フィルム層とは、銅箔を熱ラミネートする前に接着剤面からTAB用テープの形態を損なうことなく剥離できれば特に限定されないが、たとえばシリコーンあるいはフッ素化合物のコーティング処理を施したポリエステルフィルム、ポリオレフィンフィルム、およびこれらをラミネートした紙が挙げられる。
【0032】
本発明の接着剤層にミクロ相分離構造を形成させるには、具体的には下記の様な方法が例示できるが、この方法に限定されるものではない。
【0033】
まず、連続を形成する成分として、熱可塑性樹脂から有機溶剤に可溶のポリアミド樹脂、熱硬化性樹脂からフェノールレゾール樹脂をそれぞれ選択する。次に、これらをほぼ同量混合し、さらに適量のエポキシ樹脂および硬化促進剤を添加し、溶剤に溶解した後に絶縁性フィルムに塗布、加熱乾燥して接着剤層を形成する。
【0034】
ポリアミド樹脂とフェノールレゾール樹脂は相互に適度な相溶性を有していることが必要である。この場合、エポキシ樹脂は、加熱乾燥時の塗膜形成の際に、ポリアミド樹脂とフェノールレゾール樹脂と反応して、これらの反応型相溶化剤として働くものと推測され、硬化促進剤はこの反応を促進するものである。したがって、この場合これらは、ポリアミド樹脂とフェノールレゾール樹脂に対し、少量の添加が有効であり、量が多いとそれ自身が球状のドメインを形成するので、好ましくない。好ましい例としては、ポリアミド樹脂の有する官能基(カルボキシル基および/またはアミノ基)に対して、0.5〜5.0倍のエポキシ基が含まれるような添加量が挙げられる。また、エポキシ樹脂もポリアミドとフェノール樹脂の双方に相容する性質を有するように、適宜混合するとさらに好適である。このような例として、ポリアミドに相容のよいダイマー酸ジグリシジルエーテル型エポキシ樹脂と、ポリアミドに相容の悪いナフタレン型エポキシ樹脂の組み合わせが挙げられる。
【0035】
溶剤は限定されないが、ポリアミド樹脂とフェノールレゾール樹脂双方に対して良溶剤であると好ましい。
【0036】
上記の条件を満たす例をさらに具体的に挙げると、重量平均分子量20000〜200000、のダイマー酸ポリアミド樹脂に対してストレート型および/またはビスフェノールA型のレゾールフェノール樹脂の組合せがこれに相当する。エポキシ樹脂および硬化促進剤はビスフェノールA型エポキシ樹脂および三級アミン等が例示できる。
【0037】
次にTAB用接着剤付きテープの製造方法について説明する。
【0038】
可撓性を有する絶縁性フィルムに、接着剤組成物を溶剤に溶解した塗料を塗布、乾燥する。接着剤層の膜厚は10〜25μmとなるように塗布することが好ましい。乾燥条件は、100〜200℃、1〜5分である。溶剤は特に限定されないが、トルエン、キシレン、クロルベンゼン等の芳香族系とメタノール、エタノール、プロパノール等のアルコール系の混合、あるいはこれらにクロロホルムを添加した系が好適である。このようにして得られた接着剤付きフィルムに保護フィルムをラミネートし、最後に35〜158mm程度の幅にスリットする。
【0039】
【実施例】
以下に実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。実施例の説明に入る前に評価方法について述べる。
【0040】
評価方法
(1)評価用サンプル作成方法
半導体装置用接着剤付きテープサンプルに18μの電解銅箔を、140℃、1kg/cmの条件でラミネートした。続いてエアオーブン中で、80℃、3時間、100℃、5時間、150℃、5時間の順次加熱硬化処理を行ない、銅箔付きの半導体装置用接着剤付きテープを作成した。◎
得られた銅箔付きの半導体装置用接着剤付きテープの銅箔面に常法によりフォトレジスト膜形成、エッチング、レジスト剥離を行ない、接着強度および絶縁性の評価用サンプルをそれぞれ作成した。
(2)スズメッキ処理
上記(1)の方法で得られたサンプルを、ホウフッ酸系の無電解スズメッキ液に70℃、5分浸漬処理し、0.5μ厚のメッキを施した。
(3)剥離強度
上記(1)および(2)の方法で得た導体幅50μの評価用サンプルを用いて、導体を90°方向に10mm/min の速度で剥離し、その際の剥離力を測定した。
(4)高温高湿絶縁信頼性
上記(1)および(2)の方法で得た、図5に示す導体幅25μ、導体間距離25μのくし型形状の評価用サンプルを用いて、恒温恒湿槽(タバイエスペック(株)製、TPC−211D型)中で130℃,85%R.H,直流100Vの電圧を連続的に印加した状態において、抵抗値が10Ω以下となる絶縁抵抗低下時間を測定した。
(5)高温絶縁信頼性
上記(4)と同形状の評価用サンプルを用いて、エアオーブン(ヤマト科学(株)製、ID−21型)中で150℃,直流100Vの電圧を連続的に印加した状態において、抵抗値が10Ω以下となる絶縁抵抗低下時間を測定した。
(6)透過型電子顕微鏡観察
サンプルは、80℃4時間、160℃4時間の熱硬化反応後のパターンテープから接着剤層の超薄切片を作成後、80℃で、リンタングステン酸(PTA)で染色して得た。
【0041】
観察は、透過型電子顕微鏡(日立製作所(株)製、H−7100FA型)を用い、加速電圧75kVで行った。連続相の幅は写真から適宜サンプリングした20箇所を測定した平均値として求めた。
(7)ヘイズ測定
熱可塑性樹脂および熱硬化性樹脂樹脂を重量で1/1に混合し、両者の共通溶剤で濃度約10重量%となるように溶解した後、キャスティング法により、乾燥後の膜厚約12μmとなるように製膜する。得られたサンプルを用いて、JIS−K7105に準拠の方法でヘイズを測定した。
参考例(ポリアミド樹脂の合成)
ダイマー酸/ヘキサメチレンジアミン比を1.1〜0.9の範囲とし、酸/アミン反応物、消泡剤および1%以下のリン酸触媒を加え、反応体を調製した。この反応体を、140℃,1時間撹拌加熱後、205℃まで昇温し、約1.5時間撹拌した。約2kPaの真空下で、0.5時間保持し、温度を低下させた。最後に、酸化防止剤を添加し、重量平均分子量20000、酸価10のポリアミド樹脂を取り出した。
実施例1
(1)半導体用接着剤付きテープの作成
参考例で得たポリアミド樹脂45重量%、ビスフェノールA/クレゾール共縮合型フェノールレゾール樹脂(昭和高分子(株)製、CKS394)27重量%(固形分として)、p−t−Bu/ストレート共縮合型フェノールレゾール樹脂(昭和高分子(株)製、CKM1282)10重量%、ストレート型フェノールレゾール樹脂(住友ベークライト(株)製、PR11078)10重量%、2,6ジヒドロキシナフタレン型エポキシ樹脂(大日本インキ化学(株)製、”エピクロン”HP4032D、エポキシ当量140)5重量%、ダイマー酸ジグリシジルエーテル型エポキシ樹脂(油化シェルエポキシ(株)製、”エピコート”871、エポキシ当量420)3重量%に対し、硬化促進剤(サンアプロ(株)製、UCAT SA831)を、他の樹脂成分の総和を100としたときに0.5となるように配合し、固形分濃度20重量%となるようにメタノール/モノクロルベンゼン/クロロホルム混合溶媒に30℃で撹拌、混合して接着剤溶液を作成した。
【0042】
この接着剤をバーコータで、厚さ75μmのポリイミドフィルム(宇部興産(株)製“ユーピレックス”75S)に約18μmの乾燥厚さとなるように塗布し、160℃で8分間の乾燥を行ない、接着剤付シートを作成した。さらに、保護フィルムとして、厚さ25μmのポリエチレンテレフタレートフィルム(東レ(株)製“ルミラー”)を80℃、0.1MPaの条件でラミネートして、TAB用接着剤付きテープを作成した。
【0043】
このTAB用接着剤付きテープの接着剤層の透過型電子顕微鏡写真を図6に示す。また、図7に、図6中のA1、B1、C1、D1で囲まれる部分の相分離構造を明確にするため、図6の写真をトレースし、模式的に示した。図6において濃く染色されている部分がポリアミド樹脂を含有する相で、淡く染色された部分がフェノール樹脂とエポキシ樹脂からなる成分である。特性は表1に示した。接着性および絶縁性に優れることがわかる。
【0044】
(2)銅張り積層板の作成
上記の接着剤溶液を有機絶縁フィルムである厚さ25μのポリイミドフィルム(東レデュポン(株)製“カプトン”100V)に約10μの乾燥厚さとなるように塗布し、100℃、1分および160℃で5分間の乾燥を行ない、さらに18μの電解銅箔を、140℃、0.1MPaの条件でラミネートし、未硬化の銅張り積層板を作成した。続いてエアオーブン中で、80℃、3時間、100℃、5時間、150℃、5時間の順次加熱硬化処理を行ない、銅張り積層板を得た。
(3)半導体接続用基板の作成
上記の手順で得られた半導体装置用接着剤付きテープを用いて、前述の評価方法(1)および(2)と同一の方法で半導体集積回路接続用の導体回路を形成し、図1に示す半導体接続用基板(パターンテープ)を得た。
(4)半導体装置の作成
上記(3)のパターンテープを用いて、450℃,1分の条件でインナーリードボンディングを行ない、半導体集積回路を接続した。しかるのちに、エポキシ系液状封止剤(北陸塗料(株)製“チップコート”1320−617)で樹脂封止を行ない、半導体装置を得た。図2は得られた半導体装置の断面を示したものである。
実施例2〜3
実施例1と同様の方法で、それぞれ表1に示した原料および組成比で調合した接着剤を用いて半導体装置用接着剤付きテープを得た。特性を同じく表1に示す。透過型電子顕微鏡写真および、相分離構造の模式図をそれぞれ図8,10および図9,11に示す。
比較例
実施例と同一のポリアミド樹脂50重量%、フェノールノボラック樹脂(群栄化学(株)製、PSM4324)40重量%、ビスフェノールA型エポキシ樹脂(油化シェルエポキシ(株)製、”エピコート”828、エポキシ当量186)20重量%に対し、硬化促進剤(サンアプロ(株)製、UCAT SA831)を、他の樹脂成分の総和を100としたときに0.5となるように配合し、実施例と同様にして作成した接着剤を用いてTAB用接着剤付きテープを得た。
【0045】
得られた半導体装置用接着剤付きテープの接着剤層の透過型電子顕微鏡写真を図12に、特性を表1にそれぞれ示す。図12において濃く染色されている部分がポリアミド樹脂とフェノール樹脂で、相溶性が良好なため、明確な相分離構造ではない。淡く染色された部分がエポキシ樹脂からなる成分で、球状ドメイン構造である。したがって、海島構造を有する接着剤層である。
表1に示すように、接着力、特にスズメッキによる低下が著しく、さらに絶縁性が低い。
【0046】
【表1】

Figure 0003555381


実施例および比較例から本発明により得られる半導体装置用接着剤付きテープは、接着性および絶縁信頼性に優れることがわかる。
【0047】
【発明の効果】
本発明は接着性に優れた新規な半導体装置用接着剤付きテープおよびそれを用いた銅張り積層板、半導体接続用基板ならびに半導体装置をを工業的に提供するものであり、本発明の半導体装置用接着剤付きテープによって高密度実装用の半導体装置の信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の半導体装置用接着剤付きテープを加工して得られた、半導体集積回路搭載前のパターンテープの一態様の斜視図。
【図2】本発明の半導体装置用接着剤付きテープを用いた半導体装置(TCP)の一態様の断面図
【図3】本発明の半導体装置用接着剤付きテープを用いた半導体装置(BGA)の一態様の断面図半導体装置の一態様の断面図。
【図4】本発明の半導体装置用接着剤付きテープを用いた半導体装置(CSP)の一態様の断面図半導体装置の一態様の断面図。
【図5】絶縁抵抗測定用のくし型形状の評価用サンプルの概略図。
【図6】実施例1の接着剤層の透過型電子顕微鏡写真。
【図7】実施例1の接着剤層の透過型電子顕微鏡写真をトレースした相分離構造の模式図。
【図8】実施例2の接着剤層の透過型電子顕微鏡写真。
【図9】実施例2の接着剤層の透過型電子顕微鏡写真をトレースした相分離構造の模式図。
【図10】実施例3の接着剤層の透過型電子顕微鏡写真。
【図11】実施例3の接着剤層の透過型電子顕微鏡写真をトレースした相分離構造の模式図。
【図12】比較例の接着剤層の透過型電子顕微鏡写真。
【符号の説明】
1,18 可撓性を有する絶縁性フィルム
2,12,17 接着剤
3 スプロケット孔
4 デバイス孔
5 半導体集積回路接続用の導体
6 インナーリード部
7 アウターリード部
8 半導体集積回路
9 封止樹脂
10 金バンプ
11 保護膜
13 補強板
14 ハンダボール
19 補強板
15 ソルダーレジスト
16 絶縁抵抗測定用パターンの導体部分[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is suitable for preparing a semiconductor connection substrate such as a tape automated bonding (TAB) type pattern processing tape and a ball grid array (BGA) package interposer used when mounting a semiconductor integrated circuit. The present invention relates to a tape with an adhesive for semiconductor devices, a copper-clad laminate using the same, a substrate for semiconductor connection, and a semiconductor device.
[0002]
[Prior art]
A method using a metal lead frame is most often used for mounting a semiconductor integrated circuit (IC). In recent years, however, a conductor pattern for IC connection has been formed on an organic insulating film such as glass epoxy or polyimide. The number of systems formed via a connecting substrate is increasing. A typical example is a tape carrier package (TCP) based on a tape automated bonding (TAB) method.
[0003]
In general, a tape with an adhesive for TAB (hereinafter referred to as TAB tape) is used as a connection substrate (pattern tape) for TCP. An ordinary TAB tape has a three-layer structure in which an uncured adhesive layer and a polyester film having release properties are laminated as a protective film layer on a flexible organic insulating film such as a polyimide film. It is configured.
[0004]
TAB tapes include (1) perforation of sprockets and device holes, (2) heat lamination with copper foil and heat curing of adhesive, (3) pattern formation (resist coating, etching, resist removal), (4) tin Alternatively, through a processing step such as a gold-plating process, it is processed into a TAB tape (pattern tape) as a connection substrate. FIG. 1 shows the shape of the pattern tape. FIG. 2 is a cross-sectional view of one embodiment of the TCP semiconductor device of the present invention. The inner lead portion 6 of the pattern tape is thermocompression-bonded (inner lead bonding) to the gold bump 10 of the semiconductor integrated circuit 8 to mount the semiconductor integrated circuit. Next, a semiconductor device is manufactured through a resin sealing step using a sealing resin 9. Finally, the TCP type semiconductor device is connected to a circuit board or the like on which other components are mounted via outer leads 7, and is mounted on an electronic device.
[0005]
On the other hand, as electronic devices have become smaller and lighter in recent years, BGAs (ball grid arrays) and CSPs (chip scale packages) in which connection terminals are arranged on the back surface of the packages have been used for the purpose of high-density mounting of semiconductor packages. It has become.
[0006]
In BGA and CSP, a connection substrate called an interposer is essential as in TCP. However, in the connection method of the IC, most of the conventional TCP uses the gang bonding of the TAB method, whereas the BGA and the CSP use the TAB method or the wire bonding method. The selection point is different depending on, for example, 3 and 4 are cross-sectional views of one embodiment of the semiconductor device (BGA, CSP) of the present invention.
[0007]
Since the interposer has the same function as the above-mentioned TCP pattern tape, the tape with an adhesive for semiconductors of the present invention can be used. Naturally, it is advantageous to a connection method having inner leads, but it is particularly suitable for a process of laminating a copper foil after mechanically punching a hole for a solder ball or a device hole for an IC. On the other hand, since the connection is made by wire bonding, inner leads are not required, and in the process of opening holes for solder balls and device holes for ICs together with the copper foil, the copper foil is already laminated and the adhesive is heated and cured. A laminated board may be used.
[0008]
In any of the above-mentioned package forms, the adhesive layer of the tape with an adhesive for semiconductors is finally left in the package, so that it is required to satisfy various properties such as insulation, heat resistance, and adhesiveness. As electronic devices have become smaller and more dense, the pattern pitch (conductor width and conductor width) of semiconductor connection substrates has become extremely narrow, and copper foil with high insulation reliability and narrow conductor widths has been developed. There is an increasing need for an adhesive having an adhesive force (hereinafter, referred to as an adhesive force). Recently, as an accelerated test of insulation reliability, 130 ° C., 85% R.C. Attention has been paid to the rate of decrease in insulation resistance in a high-temperature and high-humidity H state or a continuous voltage application state at a high temperature of 125 ° C. to 150 ° C.
[0009]
Conventionally, an adhesive layer of a TAB tape which has been used as a tape with an adhesive for semiconductors is mainly composed of a mixed composition of an epoxy resin and / or a phenol resin and a polyamide resin (Japanese Patent Laid-Open No. 2-143447). JP-A-3-217035, and the like.
[0010]
[Problems to be solved by the invention]
However, the conventional tape with an adhesive for a semiconductor (TAB tape) is not always sufficient in the above-described insulation reliability and adhesive strength. For example, the insulation reliability is insufficient due to a rapid decrease in insulation under a continuous voltage application state at high temperature and high humidity. In particular, when an integrated circuit or the like that operates at a high speed generates a large amount of heat, a serious situation may occur. However, it is difficult to balance the adhesiveness and the insulating property, and if one of the adhesiveness and the insulating property is improved, the other is reduced, and it cannot be said that the overall properties are necessarily sufficient. As for the adhesiveness, as the conductor width becomes narrower, the adhesive strength is reduced, and the conductor may be peeled off in a post-process such as bonding, so that the connection with the integrated circuit and the circuit board may not be achieved. This is mainly due to a shortage of the absolute value of the bonding strength and a decrease in the effective bonding area due to the penetration of the plating solution between the conductor and the adhesive. Insulation and heat resistance are reduced by the polyamide resin softening under heating. These problems are basically caused by insufficient control of the adhesive structure as a composite material of a thermoplastic resin and a thermosetting resin.
[0011]
The present invention solves such problems, and while maintaining excellent insulation properties, a tape with an adhesive for a semiconductor device capable of simultaneously achieving excellent adhesion, a copper-clad laminate using the same, It is an object to provide a substrate and a semiconductor device.
[0012]
[Means for Solving the Problems]
The present inventors have intensively studied the relationship between the microphase-separated structure of an adhesive component at the electron microscope level and the adhesion to metal and insulation properties of the tape with an adhesive for semiconductors in order to achieve the above object. As a result, the present inventors have found that a tape with an adhesive for a semiconductor device excellent in adhesiveness and insulating property can be obtained by skillfully controlling the microphase-separated structure of the adhesive, leading to the present invention.
[0013]
That is, the present invention is a laminated structure tape having an adhesive layer and a protective film layer on an organic insulating film having flexibility, the adhesive layer after heat curing, the phases were individually connected, Has a microphase-separated structure containing at least two or more continuous phases And the continuous phase is lamellar The present invention relates to a tape with an adhesive for semiconductor devices, a copper-clad laminate using the same, a substrate for semiconductor connection, and a semiconductor device.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The micro phase separation structure has been conventionally used for polymer blends or block and graft copolymers, such as transmission electron microscope (TEM), differential scanning calorimeter (DSC), light scattering, small-angle X-ray scattering, and infrared absorption spectrum (IR). The micro-phase-separated structure of the adhesive layer in the present invention refers to a fine heterogeneous structure confirmed by various methods such as, for example, a method of dyeing an ultrathin section with a metal compound. What is confirmed by a scanning electron microscope.
[0015]
The adhesive layer in the present invention has a microphase separation structure composed of at least two or more continuous phases after heat curing. The continuous phase referred to here is not particularly limited as long as the components are connected and are substantially in an amorphous or layered state as matrix components. For example, in the case of a two-phase system consisting of an A phase and a B phase, one of the A phase or the B phase forms a rod-shaped domain and the structure dispersed in the other phase or the A phase and the B phase have a lamellar structure. Is exemplified. On the other hand, a so-called sea-island structure in which spherical or amorphous isolated domains are dispersed in the matrix of the other phase does not correspond to this.
[0016]
In the adhesive layer of the present invention, it is presumed that by mixing two or more components having different properties as a micro continuous phase, properties more than a mere mixture are exhibited.
[0017]
Therefore, in the adhesive layer of the present invention, the average width of the continuous phase is preferably from 5 to 1000 nm, more preferably from 10 to 700 nm, even more preferably from 20 to 500 nm. If it is 5 nm or less, the adhesive properties, insulating properties and the like approach the average properties of a mere mixture, and if it is 1000 nm or more, it is too uneven and only one property of each component is expressed. This is not preferred.
[0018]
As long as the adhesive layer of the present invention has the above-described microphase-separated structure, the constituent components thereof are not particularly limited, but may be continuous. phase The compatibility of each component is important, and the desired structure cannot be obtained even if the compatibility is too good or bad. In view of the required characteristics of the tape with an adhesive for semiconductor devices, examples of preferable components include a system in which a thermoplastic resin and a thermosetting resin are each used as a continuous phase.
[0019]
Although there are various characteristic values indicating the compatibility, for example, those having a haze measured by the following method of 7 to 50 for any combination of components forming a continuous phase are preferable.
If it is 7 or less, the compatibility is too good, and if it is 50 or more, the compatibility is poor.
[0020]
The haze is measured by a method according to JIS-K7105, selecting two components from components forming a continuous phase, mixing them in equal amounts to prepare a sample having a thickness of 12 μm.
[0021]
Also continuous phase In addition to the compatibility effect of each component phase It is more preferable to add a substance having a compatibilizing effect (a so-called compatibilizing agent) for compatibilizing the components to be formed.
[0022]
In this case, the compatibilizer should be continuous phase Non-reactive type, which is effective by being compatible with any of the components phase There is a reaction type that reacts with each component to produce a compatibilizing effect by a covalent bond. In any case, the addition of a small amount is effective, and a large amount is not preferable because it itself forms a spherical domain.
[0023]
Examples of the non-reactive type include a block polymer and a graft polymer having each component in a segment. Examples of the reaction type include substances having two or more functional groups such as an epoxy group, an isocyanate group, and a vinyl group. In particular, the reaction type is preferably one having a small functional group equivalent and a high reaction rate with the functional group of the continuous phase component so that the effect can be exerted even with a small amount of addition.
[0024]
Examples of the thermoplastic resin include known resins such as polyamide, polyester, polyimide, polyamide imide, polyurethane, NBR rubber, acrylic, and polyvinyl butyral. Polyamide is particularly preferable from the viewpoint of adhesiveness and insulating properties with copper foil, and various known ones can be used.However, the adhesive layer has flexibility, and has excellent insulating properties due to low water absorption. Those containing a dicarboxylic acid having 36 carbon atoms (so-called dimer acid) are preferred. Polyamide resin containing dimer acid can be obtained by polycondensation of dimer acid and diamine according to a conventional method.In this case, adipic acid other than dimer acid, azelaic acid, containing dicarboxylic acid such as sebacic acid as a copolymer component Is also good. Known diamines such as ethylenediamine, hexamethylenediamine, and piperazine can be used as the diamine, and two or more diamines may be mixed from the viewpoint of hygroscopicity and solubility.
[0025]
Examples of the thermosetting resin include known resins such as an epoxy resin, a phenol resin, a melamine resin, a xylene resin, a furan resin, and a cyanate ester resin. Particularly, epoxy resin and phenol resin are preferable because of their excellent insulating properties.
[0026]
For example, phenolic resins include those having a skeleton such as alkyl-substituted phenols such as phenol, cresol, pt-butylphenol and nonylphenol, cyclic alkyl-modified phenols such as p-phenylphenol, terpene and dicyclopentadiene, naphthalene and anthracene. May be.
[0027]
The epoxy resin is not particularly limited as long as it has two or more epoxy groups in one molecule. However, bisphenol F, bisphenol A, bisphenol S, dihydroxynaphthalene, dimer acid, resorcinol, dicyclopentadiene diphenol, dicyclopentadiene Examples include diglycidyl ethers such as dixylenol, terpene diphenol, and biphenyl, epoxidized phenol novolak, epoxidized cresol novolak, epoxidized trisphenylolmethane, epoxidized tetraphenylolethane, and epoxidized metaxylenediamine.
[0028]
The addition of a curing agent and a curing accelerator for epoxy resin and phenol resin to the adhesive layer of the present invention is not limited at all. For example, aromatic polyamines, boron trifluoride amine complexes such as boron trifluoride triethylamine complex, imidazole derivatives such as 2-alkyl-4-methylimidazole and 2-phenyl-4-alkylimidazole, phthalic anhydride, trianhydride Organic acids such as melitic acid, dicyandiamide, triphenylphosphine, diazabicycloundecene and the like can be used. The addition amount is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the epoxy resin and the phenol resin.
[0029]
In addition to the above components, addition of organic or inorganic components such as an antioxidant and an ion scavenger as long as the properties of the adhesive are not impaired is not limited at all.
[0030]
The flexible insulating film referred to in the present invention is a plastic such as polyimide, polyester, polyphenylene sulfide, polyether sulfone, polyether ether ketone, aramid, polycarbonate, polyarylate, or a composite material such as an epoxy resin impregnated glass cloth. And a film having a thickness of 25 to 125 [mu] m, and a plurality of films selected from these may be laminated and used. Further, if necessary, a surface treatment such as hydrolysis, corona discharge, low-temperature plasma, physical roughening, and easy adhesion coating treatment can be performed.
[0031]
The protective film layer referred to in the present invention is not particularly limited as long as it can be peeled off from the adhesive surface without damaging the form of the TAB tape before heat laminating the copper foil. For example, polyester coated with silicone or a fluorine compound is applied. Films, polyolefin films, and paper laminated with them.
[0032]
In order to form a microphase-separated structure in the adhesive layer of the present invention, the following method can be specifically exemplified, but it is not limited to this method.
[0033]
First, continuous phase Is selected from a thermoplastic resin and a polyamide resin soluble in an organic solvent, and a thermosetting resin from a phenol resole resin. Next, these are mixed in substantially the same amount, an appropriate amount of an epoxy resin and a curing accelerator are further added, dissolved in a solvent, applied to an insulating film, and dried by heating to form an adhesive layer.
[0034]
It is necessary that the polyamide resin and the phenol resole resin have an appropriate mutual compatibility. In this case, it is presumed that the epoxy resin reacts with the polyamide resin and the phenol resole resin at the time of forming a coating film during heating and drying, and acts as a reaction type compatibilizer. To promote. Accordingly, in this case, it is not preferable to add a small amount of these to the polyamide resin and the phenol resole resin, and a large amount thereof is not preferable because it forms a spherical domain itself. As a preferred example, the amount of addition is such that the epoxy group is contained 0.5 to 5.0 times the functional group (carboxyl group and / or amino group) of the polyamide resin. It is more preferable that the epoxy resin is appropriately mixed so as to have properties compatible with both the polyamide and the phenol resin. As such an example, a combination of a diglycidyl ether dimer acid epoxy resin having a good compatibility with polyamide and a naphthalene type epoxy resin having a bad compatibility with polyamide can be given.
[0035]
The solvent is not limited, but is preferably a good solvent for both the polyamide resin and the phenol resole resin.
[0036]
More specifically, an example satisfying the above conditions corresponds to a combination of a dimer acid polyamide resin having a weight average molecular weight of 20,000 to 200,000 and a straight type and / or bisphenol A type resole phenol resin. Examples of the epoxy resin and the curing accelerator include a bisphenol A type epoxy resin and a tertiary amine.
[0037]
Next, a method of manufacturing a tape with an adhesive for TAB will be described.
[0038]
A paint obtained by dissolving an adhesive composition in a solvent is applied to a flexible insulating film and dried. It is preferable to apply the adhesive layer so that the film thickness is 10 to 25 μm. Drying conditions are 100 to 200 ° C. for 1 to 5 minutes. The solvent is not particularly limited, but a mixture of an aromatic system such as toluene, xylene and chlorobenzene and an alcohol system such as methanol, ethanol and propanol, or a system in which chloroform is added thereto is preferable. A protective film is laminated on the film with the adhesive obtained in this way, and finally slit into a width of about 35 to 158 mm.
[0039]
【Example】
Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples. Before the description of the embodiments, an evaluation method will be described.
[0040]
Evaluation method
(1) Method of making evaluation sample
An 18μ electrolytic copper foil was applied to a tape sample with an adhesive for a semiconductor device at 140 ° C., 1 kg / cm. 2 Were laminated under the following conditions. Subsequently, in an air oven, 80 ° C., 3 hours, 100 ° C., 5 hours, 150 ° C., and 5 hours were sequentially heat-cured to prepare an adhesive tape for a semiconductor device with a copper foil. ◎
A photoresist film was formed on the copper foil surface of the adhesive tape for a semiconductor device with the copper foil, etched, and the resist was peeled off by a conventional method to prepare samples for evaluating the adhesive strength and the insulating property, respectively.
(2) Tin plating
The sample obtained by the above method (1) was immersed in a borofluoric acid-based electroless tin plating solution at 70 ° C. for 5 minutes, and plated to a thickness of 0.5 μm.
(3) Peel strength
The conductor was peeled in the direction of 90 ° at a speed of 10 mm / min using the evaluation sample having a conductor width of 50 μ obtained by the above methods (1) and (2), and the peeling force at that time was measured.
(4) High temperature and high humidity insulation reliability
Using a sample for evaluation of a comb shape having a conductor width of 25 μ and a conductor-to-conductor distance of 25 μ shown in FIG. 5 obtained by the methods (1) and (2), a thermo-hygrostat (manufactured by Tabai Espec Corp., TPC-211D) at 130 ° C, 85% R.F. H, when the voltage of DC 100V is continuously applied, the resistance value is 10 7 The insulation resistance drop time to be Ω or less was measured.
(5) High temperature insulation reliability
Using the evaluation sample having the same shape as the above (4), the resistance value was measured in a state where a voltage of 150 ° C. and a direct current of 100 V were continuously applied in an air oven (ID-21, manufactured by Yamato Scientific Co., Ltd.). Is 10 9 The insulation resistance drop time to be Ω or less was measured.
(6) Transmission electron microscope observation
The sample was obtained by forming an ultrathin section of the adhesive layer from the pattern tape after the thermosetting reaction at 80 ° C. for 4 hours and 160 ° C. for 4 hours, and then dyeing it with phosphotungstic acid (PTA) at 80 ° C.
[0041]
The observation was performed using a transmission electron microscope (H-7100FA, manufactured by Hitachi, Ltd.) at an acceleration voltage of 75 kV. The width of the continuous phase was determined as an average value measured at 20 points appropriately sampled from the photograph.
(7) Haze measurement
A thermoplastic resin and a thermosetting resin are mixed in 1/1 by weight, dissolved in a common solvent of both so as to have a concentration of about 10% by weight, and then dried to a film thickness of about 12 μm by a casting method. The film is formed as follows. Using the obtained sample, haze was measured by a method according to JIS-K7105.
Reference example (synthesis of polyamide resin)
The dimer acid / hexamethylenediamine ratio was set in the range of 1.1 to 0.9, and an acid / amine reactant, an antifoaming agent and 1% or less of a phosphoric acid catalyst were added to prepare a reactant. The reactants were stirred and heated at 140 ° C. for 1 hour, then heated to 205 ° C. and stirred for about 1.5 hours. It was kept under vacuum of about 2 kPa for 0.5 hours to lower the temperature. Finally, an antioxidant was added, and a polyamide resin having a weight average molecular weight of 20,000 and an acid value of 10 was taken out.
Example 1
(1) Preparation of tape with adhesive for semiconductor
45% by weight of polyamide resin obtained in Reference Example, 27% by weight (as solid content) of bisphenol A / cresol cocondensation type phenol resole resin (manufactured by Showa Polymer Co., Ltd., CKS394), pt-Bu / straight cocondensation 10% by weight of a phenolic resole resin (CKM1282, manufactured by Showa Polymer Co., Ltd.), 10% by weight of a straight-type phenolic resole resin (PR11078, manufactured by Sumitomo Bakelite Co., Ltd.), and an epoxy resin of 2,6 dihydroxynaphthalene (Dainippon Ink) 5% by weight of “Epiclon” HP4032D, epoxy equivalent 140, manufactured by Chemical Co., Ltd., and 3% by weight of diglycidyl ether dimer acid epoxy resin (“Epicoat 871, Epoxy equivalent 420, manufactured by Yuka Shell Epoxy Co., Ltd.”) On the other hand, a curing accelerator (UCAT SA831 manufactured by San Apro Co., Ltd.) ) Was mixed at 0.5 with respect to the sum of the other resin components as 100, and stirred and mixed at 30 ° C. in a methanol / monochlorobenzene / chloroform mixed solvent so that the solid content concentration became 20% by weight. Thus, an adhesive solution was prepared.
[0042]
This adhesive was applied to a 75 μm-thick polyimide film (“UPILEX” 75S manufactured by Ube Industries, Ltd.) to a dry thickness of about 18 μm using a bar coater, and dried at 160 ° C. for 8 minutes. An attached sheet was created. Furthermore, as a protective film, a 25 μm-thick polyethylene terephthalate film (“Lumirror” manufactured by Toray Industries, Inc.) was laminated at 80 ° C. and 0.1 MPa to prepare a tape with an adhesive for TAB.
[0043]
FIG. 6 shows a transmission electron micrograph of the adhesive layer of the TAB adhesive tape. In addition, FIG. 7 shows a trace of the photograph of FIG. 6 to clarify the phase separation structure of a portion surrounded by A1, B1, C1, and D1 in FIG. In FIG. 6, the darkly dyed portion is a phase containing a polyamide resin, and the lightly dyed portion is a component composed of a phenol resin and an epoxy resin. The characteristics are shown in Table 1. It turns out that it is excellent in adhesiveness and insulation.
[0044]
(2) Preparation of copper-clad laminate
The above adhesive solution was applied to a 25 μm-thick polyimide film (“Kapton” 100 V manufactured by Toray Dupont Co., Ltd.) as an organic insulating film so as to have a dry thickness of about 10 μm, and 100 ° C., 1 minute and 160 ° C. For 5 minutes, and an 18 μm electrolytic copper foil was further laminated at 140 ° C. and 0.1 MPa to prepare an uncured copper-clad laminate. Subsequently, a heat-cure treatment was sequentially performed at 80 ° C., 3 hours, 100 ° C., 5 hours, 150 ° C., and 5 hours in an air oven to obtain a copper-clad laminate.
(3) Preparation of substrate for semiconductor connection
A conductor circuit for connecting a semiconductor integrated circuit is formed by the same method as the above-mentioned evaluation methods (1) and (2) using the adhesive tape for a semiconductor device obtained by the above procedure, and is shown in FIG. A semiconductor connection substrate (pattern tape) was obtained.
(4) Creation of semiconductor device
Using the pattern tape of (3) above, inner lead bonding was performed at 450 ° C. for 1 minute to connect a semiconductor integrated circuit. Thereafter, resin sealing was performed with an epoxy liquid sealing agent (“Chipcoat” 1320-617, manufactured by Hokuriku Paint Co., Ltd.) to obtain a semiconductor device. FIG. 2 shows a cross section of the obtained semiconductor device.
Examples 2-3
In the same manner as in Example 1, a tape with an adhesive for a semiconductor device was obtained using the raw materials and the adhesives prepared at the respective composition ratios shown in Table 1. The characteristics are also shown in Table 1. FIGS. 8 and 10 and FIGS. 9 and 11 show transmission electron micrographs and schematic diagrams of the phase separation structure, respectively.
Comparative example
50% by weight of the same polyamide resin as in the example, 40% by weight of a phenol novolak resin (PSM4324, manufactured by Gun Ei Chemical Co., Ltd.), bisphenol A type epoxy resin (manufactured by Yuka Shell Epoxy, "Epicoat" 828, epoxy Equivalent 186) A curing accelerator (UCAT SA831 manufactured by San Apro Co., Ltd.) was blended with 20% by weight so as to be 0.5 when the total of other resin components was 100, and the same as in Examples. Using the adhesive prepared as described above, a tape with an adhesive for TAB was obtained.
[0045]
FIG. 12 shows a transmission electron micrograph of the adhesive layer of the obtained tape with adhesive for a semiconductor device, and Table 1 shows the characteristics thereof. In FIG. 12, the portions that are deeply dyed are the polyamide resin and the phenol resin, and have good compatibility, and thus do not have a clear phase-separated structure. The lightly stained portion is a component composed of an epoxy resin and has a spherical domain structure. Therefore, the adhesive layer has a sea-island structure.
As shown in Table 1, the adhesive strength, particularly the decrease due to tin plating, is remarkable, and the insulating property is low.
[0046]
[Table 1]
Figure 0003555381


Examples and Comparative Examples show that the adhesive tape for a semiconductor device obtained by the present invention is excellent in adhesiveness and insulation reliability.
[0047]
【The invention's effect】
The present invention industrially provides a novel adhesive tape for a semiconductor device having excellent adhesiveness, a copper-clad laminate using the same, a substrate for semiconductor connection, and a semiconductor device. The reliability of the semiconductor device for high-density mounting can be improved by the adhesive tape.
[Brief description of the drawings]
FIG. 1 is a perspective view of one embodiment of a pattern tape before mounting a semiconductor integrated circuit, obtained by processing a tape with an adhesive for a semiconductor device of the present invention.
FIG. 2 is a cross-sectional view of one embodiment of a semiconductor device (TCP) using the adhesive tape for a semiconductor device of the present invention.
FIG. 3 is a cross-sectional view of one embodiment of a semiconductor device (BGA) using a tape with an adhesive for a semiconductor device of the present invention;
FIG. 4 is a cross-sectional view of one embodiment of a semiconductor device (CSP) using a tape with an adhesive for a semiconductor device of the present invention;
FIG. 5 is a schematic view of a sample for evaluating a comb shape for measuring insulation resistance.
FIG. 6 is a transmission electron micrograph of the adhesive layer of Example 1.
FIG. 7 is a schematic diagram of a phase separation structure obtained by tracing a transmission electron microscope photograph of the adhesive layer of Example 1.
FIG. 8 is a transmission electron micrograph of the adhesive layer of Example 2.
FIG. 9 is a schematic diagram of a phase separation structure obtained by tracing a transmission electron microscope photograph of the adhesive layer of Example 2.
FIG. 10 is a transmission electron micrograph of the adhesive layer of Example 3.
FIG. 11 is a schematic diagram of a phase separation structure obtained by tracing a transmission electron micrograph of the adhesive layer of Example 3.
FIG. 12 is a transmission electron micrograph of an adhesive layer of a comparative example.
[Explanation of symbols]
1,18 Flexible insulating film
2,12,17 adhesive
3 sprocket holes
4 Device hole
5 Conductors for connecting semiconductor integrated circuits
6 Inner lead section
7 Outer lead part
8 Semiconductor integrated circuit
9 Sealing resin
10 Gold bump
11 Protective film
13 Reinforcement plate
14 Solder ball
19 Reinforcement plate
15 Solder resist
16 Conductor part of insulation resistance measurement pattern

Claims (14)

可撓性を有する有機絶縁性フィルム上に、接着剤層および保護フィルム層を有する積層構造テープであり、加熱硬化後の該接着剤層が、個々に相が連結された、少なくとも2相以上の複数の連続相を含むミクロ相分離構造を有し、連続相がラメラ状であることを特徴とする半導体装置用接着剤付きテープ。A laminated structure tape having an adhesive layer and a protective film layer on an organic insulating film having flexibility, wherein the adhesive layer after heat curing has at least two phases in which phases are individually connected. multiple continuous phase have a microphase-separated structure containing a semiconductor device for adhesive tape with, wherein the continuous phase is a lamellar. 各連続相の平均幅が、いずれも5〜1000nmであることを特徴とする請求項1記載の半導体装置用接着剤付きテープ。2. The tape with adhesive for a semiconductor device according to claim 1, wherein the average width of each continuous phase is 5 to 1000 nm. 複数の連続相のうち少なくとも1相が、1種以上の熱可塑性樹脂を含有し、かつ、他の連続相のうち少なくとも1相が、1種以上の熱硬化性樹脂を含有することを特徴とする請求項1記載の半導体装置用接着剤付きテープ。At least one phase among a plurality of continuous phases contains one or more kinds of thermoplastic resins, and at least one phase among other continuous phases contains one or more kinds of thermosetting resins. The tape with an adhesive for a semiconductor device according to claim 1. 接着剤層が、ポリアミド樹脂を含有することを特徴とする請求項1記載の半導体装置用接着剤付きテープ。The adhesive tape according to claim 1, wherein the adhesive layer contains a polyamide resin. 接着剤層が、フェノール樹脂を含有することを特徴とする請求項1記載の半導体装置用接着剤付きテープ。The adhesive tape for a semiconductor device according to claim 1, wherein the adhesive layer contains a phenol resin. 接着剤層が、エポキシ樹脂を含有することを特徴とする請求項1記載の半導体装置用接着剤付きテープ。The adhesive tape according to claim 1, wherein the adhesive layer contains an epoxy resin. ポリアミド樹脂が炭素数36のジカルボン酸を必須構成成分として含むことを特徴とする請求項1記載の半導体装置用接着剤付きテープ。2. The adhesive tape according to claim 1, wherein the polyamide resin contains a dicarboxylic acid having 36 carbon atoms as an essential component. 各連続相を形成する成分の、混合物のヘイズがいずれの組み合せにおいても7以上50以下であることを特徴とする請求項1記載の半導体装置用接着剤付きテープ。2. The adhesive tape for a semiconductor device according to claim 1, wherein the haze of the mixture of the components forming each continuous phase is 7 or more and 50 or less in any combination. エポキシ樹脂の添加量が、ポリアミド樹脂の有する官能基に対し0.5倍以上5倍以下のエポキシ基になる量であることを特徴とする請求項1記載の半導体装置用接着剤付きテープ。2. The adhesive tape for a semiconductor device according to claim 1, wherein the amount of the epoxy resin added is 0.5 to 5 times the epoxy group with respect to the functional group of the polyamide resin. 請求項1〜のいずれか記載の半導体装置用接着剤付きテープを用いた銅張り積層板。Copper-clad laminate using the semiconductor device for adhesive backed tape according to any one of claims 1-9. 請求項1〜のいずれか記載の半導体装置用接着剤付きテープを用いた半導体接続用基板。Semiconductor connection substrate including a semiconductor device for adhesive backed tape according to any one of claims 1-9. 請求項11記載の半導体接続用基板を用いた半導体装置。A semiconductor device using the semiconductor connection substrate according to claim 11 . 請求項10記載の銅張り積層板を用いた半導体接続用基板。A substrate for semiconductor connection using the copper-clad laminate according to claim 10 . 請求項13記載の半導体接続用基板を用いた半導体装置。A semiconductor device using the semiconductor connection substrate according to claim 13 .
JP10097097A 1996-04-02 1997-04-02 Tape with adhesive for semiconductor device, copper-clad laminate using the same, substrate for semiconductor connection, and semiconductor device Expired - Lifetime JP3555381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10097097A JP3555381B2 (en) 1996-04-02 1997-04-02 Tape with adhesive for semiconductor device, copper-clad laminate using the same, substrate for semiconductor connection, and semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-106279 1996-04-02
JP10627996 1996-04-02
JP10097097A JP3555381B2 (en) 1996-04-02 1997-04-02 Tape with adhesive for semiconductor device, copper-clad laminate using the same, substrate for semiconductor connection, and semiconductor device

Publications (2)

Publication Number Publication Date
JPH10107093A JPH10107093A (en) 1998-04-24
JP3555381B2 true JP3555381B2 (en) 2004-08-18

Family

ID=26441899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10097097A Expired - Lifetime JP3555381B2 (en) 1996-04-02 1997-04-02 Tape with adhesive for semiconductor device, copper-clad laminate using the same, substrate for semiconductor connection, and semiconductor device

Country Status (1)

Country Link
JP (1) JP3555381B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665298B2 (en) 2000-08-25 2011-04-06 東レ株式会社 TAPE WITH ADHESIVE FOR SEMICONDUCTOR DEVICE, COPPER-CLAD LAMINATE USING SAME, SEMICONDUCTOR CONNECTION BOARD AND SEMICONDUCTOR DEVICE
KR100785249B1 (en) * 2004-11-29 2007-12-13 도요 보세키 가부시키가이샤 Laminated thermoplastic resin film and laminated thermoplastic resin film roll
JP4029356B2 (en) * 2006-05-29 2008-01-09 東洋紡績株式会社 Hard coat film and optical functional film
JP4797810B2 (en) * 2006-05-31 2011-10-19 東洋紡績株式会社 Laminated thermoplastic resin film and laminated thermoplastic resin film roll
JP5109572B2 (en) * 2006-10-20 2012-12-26 日立化成工業株式会社 Adhesive composition, adhesive composition semi-cured product, adhesive film, laminated adhesive film, and production method thereof
JP2014181268A (en) * 2013-03-18 2014-09-29 Unitika Ltd Adhesive composition and laminate

Also Published As

Publication number Publication date
JPH10107093A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
US6303219B1 (en) Adhesive sheet for semiconductor connecting substrate, adhesive-backed tape for tab, adhesive-backed tape for wire-bonding connection, semiconductor connecting substrate, and semiconductor device
JP2006176764A (en) Adhesive composition for electronic equipment, adhesive sheet for electronic equipment, and electronic part and electronic equipment using the same
JP3777734B2 (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
JP3555381B2 (en) Tape with adhesive for semiconductor device, copper-clad laminate using the same, substrate for semiconductor connection, and semiconductor device
JPH10335534A (en) Wire bonding connection tape with adhesive agent, copper clad laminated board, semiconductor connecting substrate and semiconductor device
JP3951418B2 (en) Tape with adhesive for TAB, substrate for connecting semiconductor integrated circuit, and semiconductor device
JP2001354938A (en) Adhesive composition for semiconductor device, and adhesive sheet prepared by using the composition, semiconductor-connecting substrate, and semiconductor device prepared by using the composition
JP3769853B2 (en) Tape with adhesive for TAB, semiconductor connection substrate, and semiconductor device
JP3804260B2 (en) Tape with adhesive for TAB, substrate for connecting semiconductor integrated circuit, and semiconductor device
JP3560064B2 (en) TAB tape with adhesive
JP2004356368A (en) Tape with adhesive for semiconductor and copper-clad laminate using the same, substrate for connecting semiconductor integrated circuit, and semiconductor device
JP3911776B2 (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
JP3407335B2 (en) Adhesive composition for flexible printed circuit board, flexible printed circuit board using the same, tape with adhesive for TAB, and method for producing the same
JP3396989B2 (en) Tape with adhesive for TAB and semiconductor device
JP3572815B2 (en) Tape with adhesive for TAB and semiconductor device
JP3503392B2 (en) Tape with adhesive for TAB, semiconductor connection substrate, and semiconductor device
JP3525448B2 (en) TAB tape with adhesive
JPH09237808A (en) Adhesive-coated tape for tab, semiconductor connection board and semiconductor device
JP2991484B2 (en) Flexible printed wiring board
JP3451657B2 (en) Adhesive composition for flexible printed circuit board, flexible printed circuit board using the same, and tape with adhesive for TAB
JP2002050661A (en) Adhesive sheet for semiconductor device, and semiconductor device using the same
JPH11354592A (en) Adhesive-backed tape for tab, and tab tape and semiconductor device using the same
JP2005248004A (en) Adhesive composition for semiconductor device, cover lay film using the same, adhesive sheet and copper-clad polyimide film
JP2015065295A (en) Method for manufacturing multilayer printed wiring board
JPH11233567A (en) Tape with adhesive for semiconductor device, copper clad lamination board wherein the same is used, board for semiconductor connection, and semiconductor device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

EXPY Cancellation because of completion of term