JP3554921B2 - Fuel evaporator - Google Patents

Fuel evaporator Download PDF

Info

Publication number
JP3554921B2
JP3554921B2 JP31599699A JP31599699A JP3554921B2 JP 3554921 B2 JP3554921 B2 JP 3554921B2 JP 31599699 A JP31599699 A JP 31599699A JP 31599699 A JP31599699 A JP 31599699A JP 3554921 B2 JP3554921 B2 JP 3554921B2
Authority
JP
Japan
Prior art keywords
fuel
catalytic combustor
evaporator
evaporation chamber
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31599699A
Other languages
Japanese (ja)
Other versions
JP2001135331A (en
Inventor
隆宏 立原
貢次 宮野
清志 笠原
雅人 中村
秀一 斗ヶ沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP31599699A priority Critical patent/JP3554921B2/en
Priority to US09/704,802 priority patent/US6617067B1/en
Priority to DE10054920A priority patent/DE10054920A1/en
Publication of JP2001135331A publication Critical patent/JP2001135331A/en
Application granted granted Critical
Publication of JP3554921B2 publication Critical patent/JP3554921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池システムにおける液体原燃料の燃料蒸発器に関するものであり、特に触媒燃焼器が付設された燃料蒸発器に関する。
【0002】
【従来の技術】
燃料電池システム(FCS)は、水素を燃料ガスとして燃料電池の水素極(陰極)に供給するとともに、酸素を含有する酸化ガスを燃料電池の酸素極(陽極)に供給して発電を行う燃料電池を中核とした発電システムである。この燃料電池システムは、化学エネルギーを直接電気エネルギーに変換するものであり、高い発電効率を有することや有害物質の排出量が極めて少ないこと等から最近注目されている。
【0003】
このようなシステムにおいて、一般にメタノールと水の混合液などからなる液体原燃料を、原燃料噴射装置を介して燃料蒸発器内に噴射し、液体原燃料を蒸発させて原燃料ガスを得、次いで、この原燃料ガスを改質器で改質すると共に一酸化炭素を除去して水素リッチな燃料ガスにし、そして、この燃料ガスを燃料電池に供給して発電を行っている。
このような燃料電池システムが負荷変動の極端に大きい条件で使用される場合、例えば、燃料電池電気自動車に搭載されて使用される場合、出力アップの要求に応じて液体原燃料を急激に燃料蒸発器内に噴射すると、熱量が不足して液体原燃料のすべてを蒸発させることができず、燃料蒸発器内に液体原燃料の液溜まり(以下「液溜まり」という)を生じることがある。また、燃料電池システムを起動する際など、燃料蒸発器が充分に温まっていない場合にも液溜まりを生じやすい。
【0004】
燃料蒸発器内に液溜まりが生じた場合、液体原燃料の噴射を停止した後も液溜まりが蒸発して、原燃料ガスを発生することになり、燃料蒸発器の応答性を悪くするので好ましくない。また、液体原燃料が混合物の場合は、生じた液溜まりは、蒸発しやすい成分から先に蒸発するため、原燃料ガスの組成にバラツキが生じ、改質器が充分に性能を発揮しない場合や、一酸化炭素が充分に除去できずに燃料電池の性能が低下する場合がある。
【0005】
このため、液溜まりの発生を有効に防止して燃料蒸発器の応答性を良くすると共に、燃料蒸発器の暖機を速やかに行うことができるように、特願平11−125666号(未公開)には、図9に示すような燃料蒸発器100が提案されている。この燃料蒸発器100は、蒸発器本体110と、この蒸発器本体110の後段側に過熱器130、蒸発器本体110の上部に原燃料ガス噴射装置140を備える。
この燃料ガス蒸発器100には、図示しない触媒燃焼器により、図示しない燃料電池で発生するオフガス(水素を含むガス)を触媒燃焼させた燃焼ガスHGが、熱源(熱媒ガス)として供給される。燃焼ガスHGは、入口部112inから蒸発器本体110内の蒸発室111に多数配設されたU字型の熱媒チューブ112の内側を通り、出口部112outに達する。次いで、燃焼ガスHGは、蒸発室本体110の下部に設けられた燃焼ガス通路113を通って、蒸発器本体110の下流側に取り付けられた過熱器130に導かれる。メタノールと水の混合液などからなる液体原燃料FLは、燃料噴射装置140から霧状に噴射され、熱媒チューブ112で熱せられて蒸発し、原燃料ガスFGになる。蒸発した愿燃料ガスFGはそのまま後段の改質器に導入してもよい。さらに原燃料ガスFGの温度調整を目的として、この原燃料ガスFGは、過熱部130の蒸気チューブ131内を通って過熱され、過熱部130後段の図示しない改質器に導かれる。
【0006】
この燃料蒸発器100は、蒸発器本体110における蒸発室111の底面111bが燃焼ガス通路113の上面113tを兼ねるものである。従って、蒸発室111の底面111bからも熱が供給されるため、液溜まりの発生が防止され、また液溜まりが生じた場合も速やかに蒸発する。従って、燃料蒸発器100の応答性が良くなる。
【0007】
【発明が解決しようとする課題】
しかしながら、従来の燃料蒸発器では、底面111bに与えられる熱量がさほど大きくないことから、燃料蒸発器100の蒸発室103の液溜まり発生防止効果が充分ではなく、また発生した液溜まりを効率よく加熱・蒸発させることができない。さらに触媒燃焼器からの熱を有効利用したいという要望もある。
また、燃料電池システム全体の構成も複雑であり、よりコンパクトにシステム全体を設計することも望まれていた。
従って、本発明の課題は、比較的簡単な構成で蒸発器内の液溜まりをより効率的に加熱・蒸発させることが可能であり、燃料電池システム全体をコンパクトに設計することが可能となり、かつ触媒燃焼器からの熱を有効利用することが可能な燃料蒸発器を提供することである。
【0008】
【課題を解決するための手段】
なわち、本発明は、 原燃料噴射装置から噴射される液体原燃料を高温熱媒体により蒸発させる蒸発室と、
前記蒸発室に隣接して設けられた触媒燃焼器とを備えた燃料蒸発器において、
前記蒸発室は、前記触媒燃焼器から供給される前記高温熱媒体が通過する熱媒チューブを有し、
前記触媒燃焼器は、前記高温熱媒体の通過方向における上流側に配置されていることを特徴とするものである。
このように構成することによって、従来技術の燃料蒸発器のように別に燃焼器を設ける場合に比較して、蒸発室の壁面に液滴として付着した液体原燃料や液溜まりとして存在する液体原燃料により多くの熱をより速やかに付与することが可能となる。また、触媒燃焼器を隣接して設けたので、よりシステム全体をコンパクトに設計することが可能となる。
【0009】
また本発明の燃料蒸発器において、前記熱媒チューブは、前記高温熱媒体を前記蒸発室の高温側から低温側に通過させる熱媒チューブであり、前記触媒燃焼器は、前記熱媒チューブの高温側に隣接又は密着していることが好ましい。
このように構成することによって、触媒燃焼器と密着した部分における液滴として付着した液体原燃料や液体原燃料の液溜まりに更に多くの熱をより速やかに付与することが可能となる。
前記態様において、前記触媒燃焼器は前記蒸発室に密着しており、前記触媒燃焼器と前記蒸発室との密着面は、前記蒸発室の高温側壁面を形成し、該高温側壁面は、前記蒸発室内に設けられ前記高温熱媒体が通る熱媒チューブのうち最も前記高温側壁面に近く配された前記熱媒チューブの外形に沿う形状を備えているのが好ましい。
このように構成することによって、蒸発室下方の液溜まり空間を減少させることが可能となる。
【0010】
また、本発明の燃料蒸発器において、前記触媒燃焼器は、その上部を他の周囲部よりも厚く形成することができる。このように構成することにより、上方に熱マスが備えられる。
逆に、本発明の燃料蒸発器において、前記触媒燃焼器は、その下部を他の周囲部よりも厚く形成することができる。このように構成することにより、下方に熱マスが備えられる。
【0011】
本発明の燃料蒸発器において、前記触媒燃焼器が前記蒸発室に密着した密着面は、前記蒸発室の底面を形成し、該底面が前記蒸発室内に設けられ前記高温媒体が通る熱媒チューブのうち最も前記底面に近く配された前記熱媒チューブの外形に沿う形状を備えている態様では、前記触媒燃焼器の前記底面が周縁部から中央部に向けて窪んだ形状を有するように構成してもよい。このように構成することによって、触媒燃焼器の中央付近の熱量が外周近傍よりも高くなり、より多くの貯溜液を蒸発させることが可能となる。
また、本発明の燃料蒸発器において、蒸発室の周面の少なくとも一面に隣接あるいは密着して設けられた高温熱媒体発生手段を蒸発室と分割可能に形成してもよい。
このように構成することによって、触媒燃焼器の点検・交換時に触媒燃焼器を脱着して行える。
【0012】
また、本発明の燃料蒸発器において、触媒燃焼器を長さ方向に長い略長方形に形成することができる。このように構成することによって、触媒燃焼器を略円形に形成した場合に比較して、蒸発室と密着する上面が広く形成される。
また、本発明の燃料蒸発器において、触媒燃焼器を、その断面が下弦の略円形になるように形成してもよい。
このように構成することによって、熱伝達可能な面積が増加して、蒸発室に熱を効率よく伝えることが可能となることに加えて、上面以外の表面積が減るので熱逃げが少なくなる
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面を参照してより具体的に説明する。しかしながら、本発明は、これらの実施の形態に限定されるものではない。
(燃料電池システム全体の説明)
図1は、本発明に係る燃料電池システムの全体系統図である。図1に示すように、燃料電池システムは、液体原燃料を蒸発させるための燃料蒸発器1と、燃料蒸発器1で前記液体原燃料を蒸発させた原燃料ガスを固体触媒上で反応させて燃料ガスにする改質器2と、改質器2で生成される前記燃料ガス中の一酸化炭素を除去するCO除去器3と、前記CO除去器3から供給される燃料ガス中の水素と酸化剤供給手段である空気圧縮機4により圧縮された空気中の酸素とを反応させて発電を行う燃料電池5と、燃料電池5の水素極のオフガスから水分を分離・除去する気液分離装置6と、気液分離装置6から供給されるオフガスを燃焼して燃料蒸発器1の加熱源となるガスを発生する補助燃料(例えばメタノール)の供給ラインを有する燃焼バーナ7と、から主として構成される。
【0014】
原燃料ガスを得る場合には、液体原燃料(例えばメタノールと水の混合燃料)が、ポンプにより、所定量液体原燃料貯蔵タンクTから燃料蒸発器1に供給される。燃料蒸発器1の蒸発室11に供給された液体原燃料は、原燃料噴射装置40により噴射されて原燃料ガスとして蒸発される。蒸発室11の加熱源としては、運転時は、燃料電池の水素極のオフガスを触媒燃焼器20で触媒燃焼することで発生する高温ガスを使用するが、起動時等で加熱源がない場合は、燃焼バーナ7で補助燃料(例えばメタノール)を燃焼して必要熱量を確保できるようになっている。
【0015】
前記蒸発室11で発生した原燃料ガスは、改質器2に導入され、固体触媒(例えばCu−Zn系の触媒)上で反応させられて水素リッチな燃料ガスを製造する。さらに、改質器2で生成された水素リッチな燃料ガスは、ガス中の一酸化炭素をCO除去器3で除去された後、前記CO除去器3から供給される燃料ガス中の水素と酸化剤供給手段である空気圧縮機4により圧縮された空気中の酸素とを反応させて発電を行う燃料電池5に導入される。燃料電池5で反応した後の水素極のオフガスは、気液分離装置6で水分を分離・除去された後、触媒燃焼器20で燃焼され蒸発室11の加熱源となる。
【0016】
本発明は、かかる燃料電池システムにおける燃料蒸発器1に関し、触媒燃焼器20を特定の位置に隣接して設けたことを特徴とする。以下、本発明の燃料蒸発器1を、図2〜図5に基づいて説明する。
図2は、本実施形態の燃料蒸発器の一部破断平面図であり、図3は、図2のA−A’線断面図であり、図4は、図2のB−B’線断面図であり、そして図5は図2のB−B’であり、本発明の別の実施形態を示す。
燃料蒸発器1は、蒸発室11から構成される蒸発器本体10と、蒸発室11と隣接,特に密着して設けられた触媒燃焼器20と、前記蒸発室11の周囲に設けた高温熱媒体通路である燃焼ガス通路12とから主として構成され、蒸発室11で蒸発した原燃料ガスを過熱部30で燃焼ガス通路を経由した燃焼ガスにより過熱する。
(蒸発室)
蒸発室11は、並列して多数配置されるU字形をした熱媒チューブ12と、前記熱媒チューブ12の両端部を保持するチューブ保持板12aと、これらを囲繞した部屋の上部に設けられ、前記熱媒チューブ12の外側に液体原燃料を熱媒チューブ12の入口側の方向に噴射するようにした原燃料噴射装置40とから主として構成される。
この熱媒チューブ12は、前記触媒燃焼器20で発生した液体原燃料を蒸発可能な高温熱媒体である燃焼ガスHGを底部12in(熱媒チューブ下方)から上部12out(熱媒チューブ上方)側へと通過させて燃料ガス流路13へと流すためのチューブであり、SUS316等の耐熱性および耐食性に優れたステンレス等の金属から構成されている。
【0017】
また、原燃料噴射装置40は、1流体ノズルの噴射装置、例えばインジェクターであり、液体原燃料FLを噴射(噴霧)して微小な液滴にするためのものである。蒸発室11上部に取り付けられ、高温の燃焼ガスHGの保有熱量を有効に利用するため、噴射方向は熱媒チューブ12に沿う方向(熱媒チューブ保持板12aに向かう方向)となっている。噴射量はノズルの背圧(噴射量は背圧の平方根に比例)で制御される。
蒸発室11の周りには、蒸発室11の保温と加熱を兼ねて、蒸発室11から出た燃焼ガスを流通させる燃焼ガス通路13が設けられている。そして、前記燃焼ガス通路13を通ってきた燃焼ガスを胴側に通過させて、管側に蒸発室11で蒸発した原燃料ガスを流して、原燃料ガスが凝縮しないように原燃料ガスの飽和温度以上に加熱するためのシェル&チューブ式の熱交換器である過熱部30に接続されている。
【0018】
(触媒燃焼器)
触媒燃焼器20は、オフガスOGを触媒燃焼して高温の燃焼ガスHGを発生させる燃焼器であり、オフガスOGの入口流路21、触媒層22、出口流路23から主として構成されており、その周囲は、前記熱媒チューブと同様にSUS316等の耐熱性および耐食性に優れたステンレス等の金属から構成された上面板20t、底面板20b、側面板20s、20s’で覆われている(後記の図6〜図8参照)。なお、本発明の好ましい態様において、前記上面板20tは、蒸発器11の底部を兼ねている。すなわち、前記触媒燃焼器20の上面が前記蒸発器11の下面に直付けされているのが好ましい。
触媒層22の断面形状は蒸発室11との伝熱面積を広くとるため蒸発室11の下面11bの幅に応じた幅に形成された略長方形であることが好ましく、その中にはハニカム形状の触媒が充填されている。触媒の材質としてはPt系の触媒が用いられる。担体としてはシリカ系やアルミナ系の担体が多く用いられている。触媒層22の前後には被燃焼体を触媒燃焼器20に導入するための入口流路21と、触媒層22で発生した高温の燃焼ガスが下流側に流れるときに、ガスの流れ方向を180度変えられるように燃焼ガス通路13内を区画した隔壁板24からなる出口流路23(図の例においては、断面が半円状)とを備えており、被燃焼体である燃料電池5の水素極のオフガスOG、すなわち水素と酸素の混合ガスを入口流路21から導入して触媒層22で触媒燃焼して高温の燃焼ガスHG(代表的には650〜700℃)とし、このようにして加熱した燃焼ガスHGを出口流路23から蒸発室11へと導く。
【0019】
本発明においては、触媒燃焼器20は、蒸発室11に隣接して設けることが必須であり、図2〜図4では触媒燃焼器の上面板20tが蒸発室11の下に特に密着した態様を示しているが、触媒燃焼器20の側面20sまたは20s’を蒸発室11の側面と隣接して構成してもよい。
このように構成することによって、触媒燃焼により高温になっている触媒燃焼器20の熱が、輻射または蒸発室11の触媒燃焼器20と隣接した部分に伝えられる。また、従来触媒燃焼器20と別体に設けられた場合と比較すると、触媒燃焼器20と蒸発器本体10とを配管で結ぶ必要がなくなり構成が簡単になるばかりか、よりコンパクトに設計可能となる。
また、図5に示す様に、触媒燃焼器20と蒸発室11との間に薄型ヒータH等を改装させても良い。
この場合、触媒燃焼器20が立ち上がらない場合でも蒸発室11にヒータHから熱を与え、蒸発を促すことが可能である。
従って、本発明において使用される用語「隣接する」とは、触媒燃焼器20からの熱を蒸発室11に有効に伝熱する位置に触媒燃焼器20を配置することを意味する。
このようにして蒸発器本体10に伝えられた熱により、蒸発室11の壁面に液滴として存在する液体原燃料FLや液溜まりがすみやかに蒸発して原料ガスFGとなる。
【0020】
なお、この際に触媒燃焼器20を設ける位置は、前記の通り蒸発室11に熱を伝えて蒸発器11内に液体として存在する液体原燃料を蒸発させることが可能であれば特に制限されるものではないが、図2〜図4に示すように触媒燃焼器20の上面20tと蒸発室11の下面とを密着させるのが好ましく、特に直付けするのが好ましい。また、より多くの熱を蒸発室11に伝えるため、触媒燃焼器20の断面形状は、蒸発室11の下面11bの幅に応じた幅の長さ方向に長い略長方形であることが好ましい。
このように構成すると、蒸発室11全体、特に液溜まりが生じやすい下面11bに熱が効率よく伝えることが可能となる。
【0021】
以下、本発明における触媒燃焼器20の上面20tを蒸発器11の下面11bに付設した場合の好ましい態様を、図6〜図8に基づいて説明する。なお、これらの図において、触媒燃焼器20の上面20tが蒸発器11の下面11bを兼ねる態様として示しているが、触媒燃焼器20の上面20tと蒸発器11の下面11bをそれぞれ別体として設けることも本発明の一部である。
図6〜図8は、各々本発明の実施形態を示す図2のB、B'線略式断面図であり、本発明の触媒燃焼器と蒸発室との密着関係を模式的に示している。
図6(a)に示す通り、蒸発室11の下面11bには断面が略円形の熱媒チューブ12が敷設されている。この熱媒チューブ12のうち、最も触媒燃焼器20近くに配された最下面12inの断面形状に沿うように触媒燃焼器20の上面板20tが波型の形状をしている。このように構成すると、図6(b)に示すように触媒燃焼器20の上面20tをフラットに形成した場合に比較して、蒸発室11の下方の液溜まりが発生しやすい液溜まり空間Rを減少させることが可能となる。
【0022】
また、図7(a)に示すように、触媒燃焼器20の上面20tを他の周囲部20b、20s、20s’よりも厚く形成すると、肉厚に形成された触媒燃焼器20の上方に熱マスが備えられるので、過渡応答レスポンスが向上し、触媒燃焼後も、貯溜した液体原燃料を蒸発させることが可能となる。
逆に、図7(b)に示すように、触媒燃焼器20の下面20bを他の周囲部20t、20s’よりも厚く形成することも可能である。このように構成すると、触媒燃焼器20の下方に熱マスが蓄えられ、蒸発室11との伝熱効率が向上し、放射面積が拡大することにより、急な蒸発原燃料の要求にも速やかに触媒燃焼器20が機能して燃料蒸発器1を暖め立ち上げ、原燃料ガスFGを得ることが可能となる。
【0023】
さらに、図8に示すように触媒燃焼器20の上面20tが周縁部から中央部にむかって窪んだ形状に構成してもよく、また特に触媒燃焼器20の断面が下弦の略半円形に形成するのが好ましい。このように最も液溜まりが存在し易い位置である蒸発室11の最下部を最も熱量の多い触媒燃焼器20の中心付近に配置することによって、触媒燃焼器20の中央付近の熱量が外周近傍よりも高くなり、より多くの液溜まりを蒸発させることが可能となって、熱量が無駄なく利用されて速やかに蒸発が行われる。また、触媒燃焼器20の断面が下弦の略半円形に形成すると、上面板20t以外の表面積を減らせるので、熱ロスが少なくなるという効果も奏する。
【0024】
また、本発明の燃料蒸発器1において、蒸発室11に隣接または密着して設けられた触媒燃焼器20を着脱自在に設けることも可能である。この際に触媒燃焼器20全体を着脱自在に設けることも可能であるが、触媒層22の部分を着脱自在に設けるのが一般的である。このように構成することによって、触媒燃焼器20の点検・交換時に触媒燃焼器、特に点検・交換を要する触媒層22を脱着して行えるので、点検が容易となり、また交換部品としてのコスト低減が可能となる。加えて、触媒燃焼器20と蒸発室11との間に、熱伝導率が高い薄形の部材を挟持させてもよい。この場合、触媒燃焼器20と蒸発室11の温度差に起因する熱応力での歪を回避し、振動入力に対する強度が向上する。
【0025】
【発明の効果】
このように、蒸発室に触媒燃焼器を隣接して設けてなる本発明の燃料蒸発器は、従来技術の燃料蒸発器のように別に燃焼器を設ける場合に比較して、蒸発室の壁面に液滴として付着した液体原燃料や蒸発室の液溜まりにより多くの熱をより速やかに付与することが可能となり、これらの液滴や液溜まりを容易に蒸発させることが可能となる。また、触媒燃焼器と蒸発器本体とを配管で結ぶ必要がなく、よりコンパクトに設計可能である。
また、触媒燃焼器を蒸発室に密着して設けると、伝熱効果が増加する。
さらに、触媒燃焼器が蒸発室に密着した密着面は、蒸発室の底面を形成し、底面が蒸発室内に設けられ高温媒体が通る熱媒チューブのうち最も蒸発器の底面に近く配された熱媒チューブの外形に沿う形状を備えていると蒸発室下方の液溜まり空間を減少させることが可能となり、これによって液溜まりの量が減少して速やかな液蒸発が可能となる。
また、触媒燃焼器の上部を他の周囲部よりも厚く形成すると、上方に熱マスが備えられるので、触媒燃焼後も液溜まりを蒸発さることが可能となり、利用率を上昇させることが可能となる。逆に触媒燃焼器の下部を他の周囲部よりも厚く形成すると、下方に熱マスが備えられるので、急な蒸発原燃料の要求にも速やかに触媒蒸発器が機能して蒸発器を暖め立ち上げられる。
さらに、触媒燃焼器の上面が周縁部から中央部にむかって窪んだ形状に構成すると、触媒燃焼器の中央付近の熱量が外周近傍よりも高くなり、より多くの液溜まりを蒸発させることが可能となり、熱量が無駄なく利用されて速やかに蒸発が行われる。
また、蒸発室に隣接または密着して設けられた触媒燃焼器を蒸発室と分割可能に形成すると、触媒燃焼器の点検・交換時に触媒燃焼器を脱着して行えるので、点検が容易となり、また交換部品としてのコスト低減が可能となる。
加えて、触媒燃焼器を長さ方向に長い略長方形に形成すると、触媒燃焼器を略円形に形成した場合に比較して、燃料蒸発器と隣接または密着する上面が広く形成されるので、熱伝達可能な面積が増加する。そのため、蒸発室に熱を効率よく伝えることが可能となる。
また、触媒燃焼器の断面が下弦の略円形になるように形成すると、熱伝達可能な面積が増加して、蒸発室に熱を効率よく伝えることが可能となることに加え、上面以外の表面積が減るので熱逃げが少なくなり、より効率的に蒸発室に熱を伝えることが可能となる。
【図面の簡単な説明】
【図1】本実施形態の燃料蒸発器が使用される燃料電池システムの構成図である。
【図2】本実施形態の燃料蒸発器の一部破断平面図である。
【図3】図2のA−A’線断面図である。
【図4】図2のB−B’線断面図である。
【図5】図2のB−B’であり、本発明の別の実施形態を示す。
【図6】図6(a)、(b)は各々、本発明の別の実施形態を示す図2のB−B’線断面図である。
【図7】図7(a)、(b)は各々、本発明の別の実施形態を示す図2のB−B’線断面図である。
【図8】本発明の更に別の実施形態を示す図2のB−B’線断面図である。
【図9】従来の燃料蒸発器を示す断面図である。
【符号の説明】
FG 原燃料ガス
FL 液体原燃料
OG オフガス
HG 燃焼ガス
H ヒーター
1 燃料蒸発器
2 改質器
3 CO除去器
10 蒸発器本体
11 蒸発室
12 熱媒チューブ
12a 熱媒チューブ下方
12b 熱媒チューブ上方
13 燃焼ガス通路
20 触媒燃焼器
20t 触媒燃焼器上面
20b 触媒燃焼器下面
20s、20S’ 触媒燃焼器側面
21 入口流路
22 触媒層
23 出口流路
30 過熱部
40 原燃料噴射装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel evaporator for liquid raw fuel in a fuel cell system, and more particularly to a fuel evaporator provided with a catalytic combustor.
[0002]
[Prior art]
A fuel cell system (FCS) supplies hydrogen as a fuel gas to a hydrogen electrode (cathode) of the fuel cell and supplies an oxidizing gas containing oxygen to an oxygen electrode (anode) of the fuel cell to generate power. Is the core of the power generation system. This fuel cell system directly converts chemical energy into electric energy, and has recently been receiving attention because of its high power generation efficiency and extremely low emission of harmful substances.
[0003]
In such a system, a liquid raw fuel generally comprising a mixture of methanol and water is injected into a fuel evaporator through a raw fuel injection device, and the raw liquid fuel is evaporated to obtain a raw fuel gas. The raw fuel gas is reformed by a reformer and carbon monoxide is removed to obtain a hydrogen-rich fuel gas, and the fuel gas is supplied to a fuel cell to generate power.
When such a fuel cell system is used under extremely large load fluctuation conditions, for example, when mounted on a fuel cell electric vehicle, the liquid raw fuel is rapidly vaporized in response to a request for an increase in output. When the fuel is injected into the container, the amount of heat of the liquid raw fuel is insufficient to evaporate all of the liquid raw fuel, and a liquid pool of the liquid raw fuel (hereinafter referred to as “liquid pool”) may be generated in the fuel evaporator. In addition, even when the fuel evaporator is not sufficiently heated, such as when starting up the fuel cell system, liquid accumulation is likely to occur.
[0004]
When a liquid pool is generated in the fuel evaporator, the liquid pool evaporates even after the injection of the liquid raw fuel is stopped, so that the raw fuel gas is generated, which deteriorates the responsiveness of the fuel evaporator. Absent. In addition, when the liquid raw fuel is a mixture, the generated liquid pool evaporates first from the easily vaporized components, so that the composition of the raw fuel gas varies, and when the reformer does not exhibit sufficient performance, In some cases, carbon monoxide cannot be sufficiently removed, and the performance of the fuel cell deteriorates.
[0005]
Therefore, in order to effectively prevent the occurrence of liquid pool and improve the responsiveness of the fuel evaporator, and to quickly warm up the fuel evaporator, Japanese Patent Application No. 11-125666 (not disclosed). 9) proposes a fuel evaporator 100 as shown in FIG. The fuel evaporator 100 includes an evaporator main body 110, a superheater 130 at a stage subsequent to the evaporator main body 110, and a raw fuel gas injection device 140 above the evaporator main body 110.
The fuel gas evaporator 100 is supplied with a combustion gas HG obtained by catalytically burning off-gas (gas containing hydrogen) generated in a fuel cell (not shown) by a catalytic combustor (not shown) as a heat source (heat medium gas). . The combustion gas HG reaches the outlet portion 112out from the inlet portion 112in through the inside of the U-shaped heat transfer tubes 112 provided in the evaporation chamber 111 in the evaporator main body 110. Next, the combustion gas HG passes through a combustion gas passage 113 provided at a lower portion of the evaporation chamber main body 110, and is guided to a superheater 130 mounted on the downstream side of the evaporator main body 110. The liquid raw fuel FL composed of a mixture of methanol and water is injected in a mist form from the fuel injection device 140, heated by the heating medium tube 112 and evaporated to become a raw fuel gas FG. The evaporated fuel gas FG may be directly introduced into a subsequent reformer. Further, for the purpose of adjusting the temperature of the raw fuel gas FG, the raw fuel gas FG is superheated through the inside of the steam tube 131 of the superheater 130 and is guided to a reformer (not shown) downstream of the superheater 130.
[0006]
In the fuel evaporator 100, the bottom surface 111b of the evaporation chamber 111 in the evaporator body 110 also serves as the upper surface 113t of the combustion gas passage 113. Therefore, since heat is also supplied from the bottom surface 111b of the evaporation chamber 111, the occurrence of a liquid pool is prevented, and when a liquid pool occurs, the liquid is quickly evaporated. Therefore, the responsiveness of the fuel evaporator 100 is improved.
[0007]
[Problems to be solved by the invention]
However, in the conventional fuel evaporator, since the amount of heat given to the bottom surface 111b is not so large, the effect of preventing the liquid pool from being generated in the evaporation chamber 103 of the fuel evaporator 100 is not sufficient, and the generated liquid pool is efficiently heated.・ Can not be evaporated. Further, there is a demand to effectively use heat from the catalytic combustor.
Further, the configuration of the entire fuel cell system is complicated, and it has been desired to design the entire system more compactly.
Therefore, an object of the present invention is to make it possible to more efficiently heat and evaporate a liquid pool in an evaporator with a relatively simple configuration, and to design a compact fuel cell system as a whole, and An object of the present invention is to provide a fuel evaporator capable of effectively utilizing heat from a catalytic combustor.
[0008]
[Means for Solving the Problems]
Ie, the present invention includes an evaporation chamber for evaporating the liquid raw fuel that is injected from the fuel injection device high temperature heating medium,
A fuel evaporator comprising a catalyst combustor provided adjacent to the evaporation chamber,
The evaporation chamber has a heating medium tube through which the high-temperature heating medium supplied from the catalytic combustor passes,
The catalyst combustor is arranged on an upstream side in a direction in which the high-temperature heat medium passes .
With this configuration, compared to the case where a separate combustor is provided as in the conventional fuel evaporator, the liquid raw fuel adhered as droplets to the wall surface of the evaporation chamber or the liquid raw fuel existing as a liquid pool is provided. Thus, more heat can be applied more quickly. Further, since the catalytic combustor is provided adjacent to the fuel cell, the whole system can be designed to be more compact.
[0009]
Further, in the fuel evaporator of the present invention, the heat medium tube is a heat medium tube that allows the high temperature heat medium to pass from the high temperature side to the low temperature side of the evaporation chamber, and the catalytic combustor has a high temperature medium of the heat medium tube. Preferably, it is adjacent or closely attached to the side .
With such a configuration, it is possible to more quickly apply more heat to the liquid raw fuel or the liquid pool of the liquid raw fuel that has adhered as droplets in a portion that is in close contact with the catalytic combustor.
In the above aspect, the catalytic combustor is in close contact with the evaporation chamber, and a contact surface between the catalytic combustor and the evaporation chamber forms a high-temperature side wall surface of the evaporation chamber , and the high-temperature side wall surface is preferably comprises a shape along the outer shape of the heating medium tube which is near placed on the most the hot side wall surface of the provided evaporation chamber heating medium tube through which the high temperature thermal medium.
With this configuration, it is possible to reduce the liquid pool space below the evaporation chamber.
[0010]
In the fuel evaporator of the present invention, the upper part of the catalytic combustor may be formed thicker than other peripheral parts. With this configuration, a heat mass is provided above.
Conversely, in the fuel evaporator of the present invention, the lower part of the catalytic combustor can be formed thicker than other peripheral parts. With this configuration, a heat mass is provided below.
[0011]
In the fuel evaporator of the present invention, the contact surface in which the catalytic combustor is in close contact with the evaporation chamber forms a bottom surface of the evaporation chamber, and the bottom surface is provided in the evaporation chamber and a heat medium tube through which the high-temperature medium passes. among the most the has a close placement to shape along the outer shape of the heating medium tubes to the bottom aspect, configured to have the catalytic combustor of the bottom surface recessed toward the central portion from the peripheral portion shape May be. With this configuration, the calorific value near the center of the catalytic combustor becomes higher than that near the outer periphery, and more stored liquid can be evaporated.
Further, in the fuel evaporator of the present invention, a high-temperature heat medium generating means provided adjacent or in close contact with at least one peripheral surface of the evaporation chamber may be formed so as to be separable from the evaporation chamber.
With this configuration, the catalyst combustor can be detached and attached at the time of inspection and replacement of the catalyst combustor.
[0012]
Further, in the fuel evaporator of the present invention, the catalytic combustor can be formed in a substantially rectangular shape that is long in the length direction. With this configuration, the upper surface in close contact with the evaporation chamber is formed wider than when the catalytic combustor is formed in a substantially circular shape.
Further, in the fuel evaporator of the present invention, the catalytic combustor may be formed so that its cross section is substantially circular with a lower chord.
With this configuration, the area capable of transferring heat is increased, so that heat can be efficiently transmitted to the evaporation chamber, and in addition, the surface area other than the upper surface is reduced, so that heat escape is reduced. ]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described more specifically with reference to the accompanying drawings. However, the present invention is not limited to these embodiments.
(Explanation of the whole fuel cell system)
FIG. 1 is an overall system diagram of a fuel cell system according to the present invention. As shown in FIG. 1, the fuel cell system comprises a fuel evaporator 1 for evaporating a liquid raw fuel, and a raw fuel gas obtained by evaporating the liquid raw fuel in the fuel evaporator 1 to react on a solid catalyst. A reformer 2 for converting the fuel gas, a CO remover 3 for removing carbon monoxide in the fuel gas generated by the reformer 2, and hydrogen in the fuel gas supplied from the CO remover 3. A fuel cell 5 that generates electricity by reacting with oxygen in the air compressed by an air compressor 4 that is an oxidant supply unit, and a gas-liquid separator that separates and removes moisture from off-gas of a hydrogen electrode of the fuel cell 5 6 and a combustion burner 7 having a supply line for an auxiliary fuel (for example, methanol) for burning off-gas supplied from the gas-liquid separation device 6 to generate a gas serving as a heating source of the fuel evaporator 1. You.
[0014]
When obtaining a raw fuel gas, a predetermined amount of a liquid raw fuel (for example, a mixed fuel of methanol and water) is supplied from a liquid raw fuel storage tank T to the fuel evaporator 1 by a pump. The liquid raw fuel supplied to the evaporation chamber 11 of the fuel evaporator 1 is injected by the raw fuel injection device 40 and evaporated as raw fuel gas. As a heating source for the evaporating chamber 11, a high-temperature gas generated by catalytically combusting off-gas of the hydrogen electrode of the fuel cell in the catalytic combustor 20 during operation is used. The auxiliary burner (for example, methanol) can be burned by the combustion burner 7 to secure a necessary amount of heat.
[0015]
The raw fuel gas generated in the evaporation chamber 11 is introduced into the reformer 2 and reacted on a solid catalyst (for example, a Cu—Zn-based catalyst) to produce a hydrogen-rich fuel gas. Further, in the hydrogen-rich fuel gas generated in the reformer 2, the carbon monoxide in the gas is removed by the CO remover 3, and the hydrogen-rich fuel gas is oxidized with hydrogen in the fuel gas supplied from the CO remover 3. It is introduced into a fuel cell 5 that generates electricity by reacting with oxygen in the air compressed by an air compressor 4 that is an agent supply unit. The hydrogen gas off-gas after the reaction in the fuel cell 5 is separated and removed in the gas-liquid separator 6 and then burned in the catalytic combustor 20 to serve as a heating source for the evaporation chamber 11.
[0016]
The present invention relates to the fuel evaporator 1 in such a fuel cell system, wherein the catalytic combustor 20 is provided adjacent to a specific position. Hereinafter, the fuel evaporator 1 of the present invention will be described with reference to FIGS.
FIG. 2 is a partially cutaway plan view of the fuel evaporator of the present embodiment, FIG. 3 is a sectional view taken along line AA ′ of FIG. 2, and FIG. 4 is a sectional view taken along line BB ′ of FIG. FIG. 5 is a diagram, and FIG. 5 is BB ′ of FIG. 2 and shows another embodiment of the present invention.
The fuel evaporator 1 includes an evaporator main body 10 including an evaporating chamber 11, a catalytic combustor 20 provided adjacent to, particularly in close contact with, the evaporating chamber 11, and a high-temperature heat medium provided around the evaporating chamber 11. The fuel gas is mainly constituted by a combustion gas passage 12 which is a passage, and the raw fuel gas evaporated in the evaporating chamber 11 is superheated by the combustion gas passing through the combustion gas passage in the superheating section 30.
(Evaporation chamber)
The evaporation chamber 11 is provided in the upper part of a room surrounding the U-shaped heat medium tubes 12, a tube holding plate 12a that holds both ends of the heat medium tubes 12, and a plurality of U-shaped heat medium tubes 12 arranged in parallel. It is mainly constituted by a raw fuel injection device 40 configured to inject liquid raw fuel to the outside of the heat medium tube 12 in the direction of the inlet side of the heat medium tube 12.
The heat medium tube 12 transfers the combustion gas HG, which is a high-temperature heat medium capable of evaporating the liquid raw fuel generated in the catalytic combustor 20, from the bottom 12in (below the heat medium tube) to the upper 12out (above the heat medium tube). And a tube for flowing the fuel gas flow path 13 to the fuel gas flow path 13. The tube is made of a metal such as SUS316 having excellent heat resistance and corrosion resistance, such as stainless steel.
[0017]
The raw fuel injection device 40 is a one-fluid nozzle injection device, for example, an injector, and is for injecting (spraying) the liquid raw fuel FL into fine droplets. The injection direction is the direction along the heat medium tube 12 (the direction toward the heat medium tube holding plate 12a) so as to be attached to the upper part of the evaporation chamber 11 and to effectively use the retained heat of the high-temperature combustion gas HG. The injection amount is controlled by the back pressure of the nozzle (the injection amount is proportional to the square root of the back pressure).
Around the evaporating chamber 11, there is provided a combustion gas passage 13 which serves both to keep the temperature of the evaporating chamber 11 and to heat the evaporating chamber 11 and to flow the combustion gas discharged from the evaporating chamber 11. Then, the combustion gas that has passed through the combustion gas passage 13 is passed to the body side, and the raw fuel gas evaporated in the evaporation chamber 11 is caused to flow to the pipe side, so that the raw fuel gas is saturated so that the raw fuel gas is not condensed. It is connected to a superheater 30 which is a shell-and-tube heat exchanger for heating to a temperature higher than the temperature.
[0018]
(Catalyst combustor)
The catalytic combustor 20 is a combustor that generates high-temperature combustion gas HG by catalytically burning the off-gas OG, and is mainly configured by an inlet passage 21, a catalyst layer 22, and an outlet passage 23 of the off-gas OG. The surroundings are covered with a top plate 20t, a bottom plate 20b, and side plates 20s and 20s' made of a metal such as stainless steel having excellent heat resistance and corrosion resistance such as SUS316 like the heat medium tube (described later). 6 to 8). In a preferred embodiment of the present invention, the upper plate 20t also serves as the bottom of the evaporator 11. That is, it is preferable that the upper surface of the catalytic combustor 20 is directly attached to the lower surface of the evaporator 11.
The cross-sectional shape of the catalyst layer 22 is preferably a substantially rectangular shape having a width corresponding to the width of the lower surface 11b of the evaporation chamber 11 in order to increase a heat transfer area with the evaporation chamber 11, and includes a honeycomb shape. The catalyst is filled. As the material of the catalyst, a Pt-based catalyst is used. As carriers, silica-based and alumina-based carriers are often used. Before and after the catalyst layer 22, an inlet flow path 21 for introducing an object to be burned into the catalytic combustor 20, and when the high-temperature combustion gas generated in the catalyst layer 22 flows downstream, the gas flows in a direction 180 °. An outlet flow path 23 (in the example of the figure, the cross section is a semicircle) formed of a partition plate 24 that divides the inside of the combustion gas passage 13 so as to be changed, An off-gas OG of the hydrogen electrode, that is, a mixed gas of hydrogen and oxygen is introduced from the inlet channel 21 and catalytically combusted in the catalyst layer 22 to produce a high-temperature combustion gas HG (typically 650 to 700 ° C.). The heated combustion gas HG is guided from the outlet channel 23 to the evaporation chamber 11.
[0019]
In the present invention, it is essential that the catalytic combustor 20 is provided adjacent to the evaporation chamber 11, and in FIGS. 2 to 4, the top plate 20 t of the catalytic combustor is particularly closely attached below the evaporation chamber 11. Although shown, the side surface 20 s or 20 s ′ of the catalytic combustor 20 may be configured adjacent to the side surface of the evaporation chamber 11.
With this configuration, the heat of the catalytic combustor 20, which has been heated to a high temperature by catalytic combustion, is transmitted to the radiation or the portion of the evaporation chamber 11 adjacent to the catalytic combustor 20. In addition, as compared with the case where the catalyst combustor 20 is provided separately from the conventional catalyst combustor 20, it is not necessary to connect the catalyst combustor 20 and the evaporator main body 10 with piping, so that not only the configuration is simplified, but also a more compact design can be achieved. Become.
In addition, as shown in FIG. 5, a thin heater H or the like may be retrofitted between the catalytic combustor 20 and the evaporation chamber 11.
In this case, even when the catalytic combustor 20 does not rise, it is possible to apply heat from the heater H to the evaporation chamber 11 to promote evaporation.
Therefore, the term “adjacent” as used in the present invention means that the catalytic combustor 20 is arranged at a position where heat from the catalytic combustor 20 is effectively transferred to the evaporation chamber 11.
By the heat transmitted to the evaporator body 10 in this manner, the liquid raw fuel FL and the liquid pool existing as droplets on the wall surface of the evaporating chamber 11 evaporate quickly to become the raw material gas FG.
[0020]
In this case, the position where the catalytic combustor 20 is provided is particularly limited as long as it is possible to transmit heat to the evaporation chamber 11 and evaporate the liquid raw fuel existing as a liquid in the evaporator 11 as described above. Although not intended, it is preferable that the upper surface 20t of the catalytic combustor 20 and the lower surface of the evaporating chamber 11 be in close contact with each other, as shown in FIGS. Further, in order to transmit more heat to the evaporation chamber 11, it is preferable that the cross-sectional shape of the catalytic combustor 20 be a substantially rectangular shape having a width corresponding to the width of the lower surface 11 b of the evaporation chamber 11 and extending in the length direction.
With this configuration, heat can be efficiently transmitted to the entire evaporating chamber 11, particularly to the lower surface 11 b where the liquid pool is likely to occur.
[0021]
Hereinafter, a preferred embodiment of the present invention in which the upper surface 20t of the catalytic combustor 20 is attached to the lower surface 11b of the evaporator 11 will be described with reference to FIGS. In these figures, the upper surface 20t of the catalytic combustor 20 is shown as also serving as the lower surface 11b of the evaporator 11, but the upper surface 20t of the catalytic combustor 20 and the lower surface 11b of the evaporator 11 are provided separately. This is also a part of the present invention.
6 to 8 are schematic sectional views taken along the lines B and B ′ of FIG. 2 showing the embodiment of the present invention, and schematically show the close contact relationship between the catalytic combustor of the present invention and the evaporation chamber.
As shown in FIG. 6A, a heating medium tube 12 having a substantially circular cross section is laid on the lower surface 11b of the evaporation chamber 11. Among the heating medium tube 12, the most upper plate 20t of the catalytic combustor 20 as the catalytic combustor 20 to close along the cross-sectional shape of the placed has been lowermost surface 12in is a wave-like shape. With this configuration, as shown in FIG. 6B, the liquid pool space R where the liquid pool below the evaporation chamber 11 is more likely to be generated as compared with the case where the upper surface 20t of the catalytic combustor 20 is formed flat. It can be reduced.
[0022]
Further, as shown in FIG. 7A, when the upper surface 20t of the catalytic combustor 20 is formed thicker than the other peripheral portions 20b, 20s, and 20s', heat is generated above the thick catalytic combustor 20. Since the mass is provided, the transient response response is improved, and the stored liquid fuel can be evaporated even after catalytic combustion.
Conversely, as shown in FIG. 7B, the lower surface 20b of the catalytic combustor 20 can be formed thicker than the other peripheral portions 20t and 20s'. With this configuration, the heat mass is stored below the catalytic combustor 20, the efficiency of heat transfer with the evaporating chamber 11 is improved, and the radiating area is enlarged. The combustor 20 functions to warm and start the fuel evaporator 1 and obtain the raw fuel gas FG.
[0023]
Further, as shown in FIG. 8, the upper surface 20t of the catalytic combustor 20 may be formed to have a shape depressed from the peripheral edge toward the center, and in particular, the cross section of the catalytic combustor 20 is formed in a substantially semicircular shape of the lower chord. Is preferred. By arranging the lowermost part of the evaporating chamber 11 where the liquid pool is most likely to exist near the center of the catalytic combustor 20 having the largest amount of heat, the amount of heat near the center of the catalytic combustor 20 is higher than that near the outer periphery. , So that more liquid pools can be evaporated, and the amount of heat is used without waste and evaporation is performed quickly. Further, when the cross section of the catalytic combustor 20 is formed in a substantially semicircular shape with a lower chord, the surface area other than the upper surface plate 20t can be reduced, so that the effect of reducing heat loss can be obtained.
[0024]
Further, in the fuel evaporator 1 of the present invention, the catalytic combustor 20 provided adjacent to or in close contact with the evaporating chamber 11 can be provided detachably. At this time, the entire catalytic combustor 20 can be detachably provided. However, it is general that the catalyst layer 22 is detachably provided. With this configuration, when the catalytic combustor 20 is inspected or replaced, the catalytic combustor, in particular, the catalyst layer 22 that needs to be inspected or replaced can be detached, so that the inspection can be easily performed and the cost as a replacement part can be reduced. It becomes possible. In addition, a thin member having high thermal conductivity may be sandwiched between the catalytic combustor 20 and the evaporation chamber 11. In this case, distortion due to thermal stress caused by the temperature difference between the catalytic combustor 20 and the evaporation chamber 11 is avoided, and the strength against vibration input is improved.
[0025]
【The invention's effect】
As described above, the fuel evaporator of the present invention in which the catalytic combustor is provided adjacent to the evaporating chamber is provided on the wall surface of the evaporating chamber in comparison with the case where a separate combustor is provided as in the conventional fuel evaporator. It is possible to more quickly apply more heat to the liquid raw fuel and the liquid pool in the evaporation chamber attached as liquid droplets, and it is possible to easily evaporate these liquid droplets and liquid pool. In addition, there is no need to connect the catalytic combustor and the evaporator body with a pipe, so that a more compact design can be achieved.
Further, when the catalytic combustor is provided in close contact with the evaporation chamber, the heat transfer effect increases.
Further, the contact surface of the catalytic combustor in close contact with the evaporation chamber, to form a bottom surface of the evaporation chamber, the bottom surface is closer placed on the bottom of most evaporator of the heat medium tubes through which hot medium provided in the evaporation chamber When the shape is provided along the outer shape of the heat medium tube, the liquid pool space below the evaporation chamber can be reduced, thereby reducing the amount of the liquid pool and enabling rapid liquid evaporation.
Also, if the upper part of the catalytic combustor is formed thicker than the other peripheral parts, a heat mass is provided above, so that the liquid pool can be evaporated even after catalytic combustion, and the utilization rate can be increased. Become. Conversely, if the lower part of the catalytic combustor is formed thicker than the other surrounding parts, a thermal mass is provided below, so that the catalyst evaporator functions quickly even in the case of a sudden request for raw fuel to evaporate and warms the evaporator. Can be raised.
Furthermore, if the upper surface of the catalytic combustor is configured to be concave from the periphery to the center, the amount of heat near the center of the catalytic combustor will be higher than that near the outer periphery, allowing more liquid pools to evaporate Thus, the amount of heat is used without waste, and evaporation is quickly performed.
Further, if the catalytic combustor provided adjacent to or in close contact with the evaporation chamber is formed so as to be separable from the evaporation chamber, the inspection and replacement of the catalytic combustor can be performed by detaching the catalytic combustor, which facilitates inspection. The cost as a replacement part can be reduced.
In addition, when the catalyst combustor is formed in a substantially rectangular shape that is long in the length direction, the upper surface adjacent to or in close contact with the fuel evaporator is formed wider than when the catalyst combustor is formed in a substantially circular shape. The area that can be transmitted increases. Therefore, heat can be efficiently transmitted to the evaporation chamber.
Further, when the cross section of the catalytic combustor is formed so as to have a substantially circular shape with a lower chord, the area capable of transmitting heat increases, and in addition to efficiently transmitting heat to the evaporation chamber, the surface area other than the upper surface is increased. , Heat escape is reduced, and heat can be more efficiently transferred to the evaporation chamber.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a fuel cell system in which a fuel evaporator of the present embodiment is used.
FIG. 2 is a partially cutaway plan view of the fuel evaporator of the embodiment.
FIG. 3 is a sectional view taken along line AA ′ of FIG. 2;
FIG. 4 is a sectional view taken along line BB ′ of FIG. 2;
FIG. 5 is BB ′ of FIG. 2 and shows another embodiment of the present invention.
6 (a) and 6 (b) are cross-sectional views taken along the line BB 'of FIG. 2 showing another embodiment of the present invention.
FIGS. 7A and 7B are cross-sectional views of another embodiment of the present invention, taken along line BB ′ of FIG. 2;
FIG. 8 is a sectional view taken along the line BB ′ of FIG. 2, showing still another embodiment of the present invention.
FIG. 9 is a sectional view showing a conventional fuel evaporator.
[Explanation of symbols]
FG Raw fuel gas FL Liquid raw fuel OG Off gas HG Combustion gas H Heater 1 Fuel evaporator 2 Reformer 3 CO remover 10 Evaporator body 11 Evaporation chamber 12 Heat medium tube 12a Heat medium tube lower 12b Heat medium tube upper 13 Combustion Gas passage 20 Catalytic combustor 20t Catalytic combustor upper surface 20b Catalytic combustor lower surface 20s, 20S 'Catalytic combustor side surface 21 Inlet passage 22 Catalyst layer 23 Outlet passage 30 Superheater 40 Raw fuel injection device

Claims (4)

原燃料噴射装置から噴射される液体原燃料を高温熱媒体により蒸発させる蒸発室と、
前記蒸発室に隣接して設けられた触媒燃焼器とを備えた燃料蒸発器において、
前記蒸発室は、前記触媒燃焼器から供給される前記高温熱媒体が通過する熱媒チューブを有し、
前記触媒燃焼器は、前記高温熱媒体の通過方向における上流側に配置されていることを特徴とする燃料蒸発器。
An evaporation chamber for evaporating liquid raw fuel injected from the raw fuel injection device by a high-temperature heat medium,
A fuel evaporator comprising a catalytic combustor provided adjacent to the evaporation chamber,
The evaporation chamber has a heating medium tube through which the high-temperature heating medium supplied from the catalytic combustor passes,
The fuel evaporator is characterized in that the catalytic combustor is arranged on an upstream side in a direction in which the high-temperature heat medium passes .
前記熱媒チューブは、前記高温熱媒体を前記蒸発室の高温側から低温側に通過させる熱媒チューブであり、前記触媒燃焼器は、前記熱媒チューブの高温側に隣接又は密着していることを特徴とする請求項1に記載の燃料蒸発器。 The heat medium tube is a heat medium tube that allows the high-temperature heat medium to pass from the high temperature side to the low temperature side of the evaporation chamber, and the catalytic combustor is adjacent to or close to the high temperature side of the heat medium tube . The fuel evaporator according to claim 1, wherein: 前記触媒燃焼器は前記蒸発室に密着しており、前記触媒燃焼器と前記蒸発室との密着面は、前記蒸発室の高温側壁面を形成し、該高温側壁面は、前記蒸発室内に設けられ前記高温熱媒体が通る熱媒チューブのうち最も前記高温側壁面に近く配された前記熱媒チューブの外形に沿う形状を備えていることを特徴とする請求項1又は2に記載の燃料蒸発器。The catalytic combustor is in close contact with the evaporating chamber, and a contact surface between the catalytic combustor and the evaporating chamber forms a high-temperature side wall surface of the evaporating chamber, and the high-temperature side wall surface is provided in the evaporating chamber. the fuel according to claim 1 or 2, characterized in that it comprises a shape most along the contour of the hot side near placed has been the heating medium tube wall of the high temperature thermal medium heat medium tubes through is Evaporator. 前記蒸発器の前記高温側壁面は、周縁部から中央部に向けて窪んだ形状を有していることを特徴とする請求項3に記載の燃料蒸発器。Wherein the hot side wall surface of the evaporator, a fuel vaporizer according to claim 3, characterized in that it has a recessed from the periphery toward the center portion.
JP31599699A 1999-11-05 1999-11-05 Fuel evaporator Expired - Fee Related JP3554921B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31599699A JP3554921B2 (en) 1999-11-05 1999-11-05 Fuel evaporator
US09/704,802 US6617067B1 (en) 1999-11-05 2000-11-03 Fuel evaporator
DE10054920A DE10054920A1 (en) 1999-11-05 2000-11-06 Liquid fuel evaporator for fuel cell has tube provided inside evaporation chamber for passing high temperature fluid that is formed with ramp which is inclined towards tube retainer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31599699A JP3554921B2 (en) 1999-11-05 1999-11-05 Fuel evaporator

Publications (2)

Publication Number Publication Date
JP2001135331A JP2001135331A (en) 2001-05-18
JP3554921B2 true JP3554921B2 (en) 2004-08-18

Family

ID=18072087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31599699A Expired - Fee Related JP3554921B2 (en) 1999-11-05 1999-11-05 Fuel evaporator

Country Status (1)

Country Link
JP (1) JP3554921B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7490580B2 (en) 2002-07-11 2009-02-17 Honda Motor Co., Ltd. Vaporizer that vaporizes a liquid to generate vapor
JP3961443B2 (en) 2003-04-08 2007-08-22 本田技研工業株式会社 Evaporator
US8486164B2 (en) * 2008-09-05 2013-07-16 Samsung Sdi Co., Ltd. Evaporator and fuel reformer having the same
JP5705414B2 (en) * 2009-03-30 2015-04-22 アイシン精機株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP2001135331A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
JP5616064B2 (en) Fuel cell heat exchange system and method
US8557451B2 (en) Fuel processor for fuel cell systems
AU2001272281B2 (en) Integrated module for solid oxide fuel cell systems
JP5705414B2 (en) Fuel cell system
JP6101781B2 (en) Fuel cell module
JP5851863B2 (en) Fuel cell module
JP4611513B2 (en) Fuel cell system
JP3685936B2 (en) Polymer electrolyte fuel cell system
JP2006331678A (en) Fuel cell system
JP2009096705A (en) Reforming apparatus for fuel cell
JP5606165B2 (en) Cell stack device, fuel cell module and fuel cell device
JP3554921B2 (en) Fuel evaporator
US8034135B2 (en) Fuel modification apparatus having an evaporator arranged around a superheater
JP6596856B2 (en) Reformed water evaporator and power generator
JP2003187849A (en) Solid polymer fuel cell power generator
JP4210912B2 (en) Fuel reformer and fuel cell power generator
JP4324304B2 (en) Fuel reformer
KR101250418B1 (en) fuel processor of fuel cell
JP3582059B2 (en) Fuel evaporator
JP4231172B2 (en) Fuel evaporator
JP2000063103A (en) Fuel reforming apparatus
JPH0881202A (en) Methanol reformer for fuel cell
JP3852815B2 (en) Fuel evaporator
JP2002326805A (en) Reformer and fuel cell system which is equipped with this
KR101352255B1 (en) Humidifying heat exchanger for fuel cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees