JP3852815B2 - Fuel evaporator - Google Patents

Fuel evaporator Download PDF

Info

Publication number
JP3852815B2
JP3852815B2 JP31600399A JP31600399A JP3852815B2 JP 3852815 B2 JP3852815 B2 JP 3852815B2 JP 31600399 A JP31600399 A JP 31600399A JP 31600399 A JP31600399 A JP 31600399A JP 3852815 B2 JP3852815 B2 JP 3852815B2
Authority
JP
Japan
Prior art keywords
fuel
heat medium
catalyst
evaporation chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31600399A
Other languages
Japanese (ja)
Other versions
JP2001132909A (en
Inventor
隆宏 立原
貢次 宮野
雅人 中村
清志 笠原
裕次 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP31600399A priority Critical patent/JP3852815B2/en
Publication of JP2001132909A publication Critical patent/JP2001132909A/en
Application granted granted Critical
Publication of JP3852815B2 publication Critical patent/JP3852815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Gas Burners (AREA)
  • Spray-Type Burners (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池システムにおける液体原燃料の燃料蒸発器に関し、さらに詳しくは、蒸発室内の熱媒チューブの内側に被燃焼体を燃焼させる触媒燃焼部を備えた燃料蒸発器に関する。
【0002】
【従来の技術】
燃料電池システムは、水素を燃料ガスとして燃料電池の水素極(陰極)に供給するとともに、酸素を含有する酸化ガスを燃料電池の酸素極(陽極)に供給して発電を行う燃料電池を中核とした発電システムである。この燃料電池システムは、化学エネルギーを直接電気エネルギーに変換するものであり、高い発電効率を有することや有害物質の排出量が極めて少ないこと等から最近注目されている。
【0003】
従来の燃料電池システムで使用される燃料蒸発器は、例えば特願平11―125366号に記載されている。この燃料蒸発器100は、図6に示すように、触媒燃焼器の中で、被燃焼体を触媒反応で燃焼させることにより発生させた高温熱媒体である燃焼ガスHGを、蒸発器本体110に導入するための入口部114と、前記燃焼ガスHGをU字形の熱媒チューブ112の入口部112aから出口部112bまでの内側に通流して、原燃料噴射装置140から前記熱媒チューブ112の外表面に噴射される液体原燃料FLを前記燃焼ガスHGから得られる熱により蒸発させる蒸発室111と、液体原燃料FLの蒸発を行った後の前記燃焼ガスHGが通流する蒸発室111の下面110Aに設けられる燃焼ガス通路113と、前記蒸発室111で蒸発した原燃料ガスFGを、前記燃焼ガス通路113を経由した燃焼ガスHGにより過熱するための過熱室132と蒸気チューブ131とから形成される過熱部130とから主要部が構成される。
【0004】
以上から構成される従来の燃料蒸発器100の作用について述べる。
図示しない触媒燃焼器で被燃焼体を燃焼させて生成した高温熱媒体である燃焼ガスHGは、蒸発器本体110の入口部114に導入される。入口部114に導入された燃焼ガスHGは、蒸発室111内のU字形をした熱媒チューブ112内の入口部112aから出口部112bまでを上から下に通過し、蒸発室111内で前記熱媒チューブ112の外表面に原燃料噴射装置140により噴射される液体原燃料FLを蒸発させる。次に、前記液体原燃料FLを蒸発させた後の燃焼ガスHGは、燃焼ガス通路113を経由して過熱部130の過熱室132へと導かれ、蒸発室111内で蒸発した原燃料ガスFGを蒸気チューブ131の外側からさらに過熱する。過熱された原燃料ガスFGは図示しない改質器へと導入され、原燃料ガスFGを過熱した後の燃焼ガスHGは排ガスとして系外に排出される。
【0005】
しかしながら、従来の燃料蒸発器100は、図6に示すような、蒸発器本体110の蒸発室111の下面110Aに燃焼ガス通路113を設けたり、図示しない触媒燃焼器を蒸発室111の下面110Aに隣接して設けるため、燃料蒸発器100の全体の高さH1が高くなり、燃料電池システムを車両に搭載したときに、車高が高くなってしまうという問題があった。
また、触媒燃焼器を蒸発室111の下面110Aに隣接して設ける場合に、触媒燃焼器の出口から蒸発室111内の熱媒チューブ112までの配管のところで系外への熱損失があり(温度降下ΔT=20〜30℃)、せっかく触媒燃焼器で発生した高温の燃焼ガスHGの保有熱量が無駄になってしまうという問題があった。
【0006】
【発明が解決しようとする課題】
本発明は、前記課題を解決するためになされたものであって、燃料蒸発器の高さを低くすることができ、かつ、触媒燃焼して発生した高温熱媒体の配管から系外への熱損失を少なくすることができる燃料蒸発器を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記課題を解決するための請求項1に記載された発明の要旨とするところは、液体原燃料を蒸発させることが可能な高温熱媒体を通す熱媒チューブを備え、前記熱媒チューブから得られる熱により前記液体原燃料を蒸発させる蒸発室を有する燃料蒸発器において、前記熱媒チューブの中には、被燃焼体を燃焼させる触媒燃焼部を備え、さらに、前記蒸発室に隣接する触媒燃焼器と、前記蒸発室が隣接した以外の部位に、前記液体原燃料を蒸発させた後の前記高温熱媒体が通流する高温熱媒体通路とを備えたことを特徴とするものである。
【0008】
蒸発室内の熱媒チューブの内側に、触媒燃焼反応により被燃焼体を燃焼させる触媒燃焼部を設けて、触媒燃焼器と燃料蒸発器を一体化した構成とすることにより、従来、燃料蒸発器の前段に設けられていた触媒燃焼器の設置スペースを不要とし、燃料蒸発器全体の高さHを小さくできる。その結果、車両に燃料電池システムを搭載したときの車高を小さくすることができる。また、一体化した構成とすることにより触媒燃焼器から燃料蒸発器の熱媒チューブまでの配管から系外への熱損失がなくなる。
さらに、蒸発室の下面に隣接するように触媒燃焼器を設けて、蒸発室の加熱・保温用の高温熱媒体を発生させるだけでなく、蒸発室内の熱媒チューブ内の触媒燃焼部で発生した高温熱媒体を蒸発室の周囲に設けた高温熱媒体通路に通流させて、さらに蒸発室を加熱・保温することにより、速やかに蒸発が行われる。従って、触媒燃焼器および高温熱媒体通路を設けない場合と比較して、オフガスを触媒燃焼する量を少なくできるので、触媒装填量を減らすことができる。その結果、触媒燃焼器の高さを低くでき、全体として燃料蒸発器をコンパクト化することができる。
【0011】
【発明の実施の形態】
本発明に係る燃料蒸発器の実施の形態について図面を参照して説明する。図1は、本発明に係る燃料電池システムの全体系統図、図2(a)は、本発明に係る燃料蒸発器の側断面図、図2(b)は、図2(a)のX−X′断面図(左半分省略)、図3(a)は、本発明に係る触媒燃焼部の第一実施形態を示す横断面の斜視図、図3(b)は、本発明に係る触媒燃焼部の第二実施形態を示す横断面の斜視図、図4(a)は、本発明に係る触媒燃焼器の第一実施形態を示す横断面の斜視図、図4(b)は、本発明に係る触媒燃焼器の第二実施形態を示す横断面の斜視図、図4(c)は、本発明に係る触媒燃焼器の第三実施形態を示す横断面の斜視図、図5は、本発明に係る燃料蒸発器の燃焼ガス通路を示す斜視図である。
【0012】
最初に、図1および図2を参照して本発明に係る燃料電池システムFCS全体について説明する。
車両に搭載される燃料電池システムFCSは、蒸発器本体10の蒸発室11内に、その内側に燃料電池5のオフガスOGを触媒燃焼して発生した高温熱媒体である燃焼ガスHGを通流して外表面で接触する前記液体原燃料FLを蒸発させるU字形の熱媒チューブ12と前記熱媒チューブ12の内側に触媒燃焼部14とを備えた燃料蒸発器1と、前記燃料蒸発器1で前記液体原燃料FLを蒸発させて生成した原燃料ガスFGを、固体触媒上で反応させて燃料ガスにする改質器2と、前記改質器2で生成される前記燃料ガス中の一酸化炭素を除去するCO除去器3と、前記CO除去器3から供給される燃料ガス中の水素と酸化剤供給手段である空気圧縮機4により圧縮された空気中の酸素とを反応させて発電を行う燃料電池5と、燃料電池5の水素極のオフガスOGから水分を分離・除去する気液分離装置6と、気液分離装置6から供給されるオフガスOGや補助燃料を燃焼して起動時等で燃料蒸発器1の加熱源となる高温熱媒体である燃焼ガスHGを発生する補助燃料(例えばメタノール)の供給ラインを有する燃焼バーナ7とを含んで構成される。
【0013】
前記のように構成される燃料電池システムFCSの作用について述べる。
液体原燃料FL(例えばメタノールと水の混合燃料)が、ポンプにより、液体原燃料貯蔵タンクTから燃料蒸発器1に所定量供給される。燃料蒸発器1の蒸発器本体10に供給された液体原燃料FLは、原燃料噴射装置40により蒸発器本体10の蒸発室11内に設けられたU字形の熱媒チューブ12の外表面に噴射される。前記蒸発室11内の前記熱媒チューブ12には、熱媒チューブ12の内側に設けられた触媒燃焼部14で、燃料電池5の水素極のオフガスOGを燃焼して発生した高温熱媒体である燃焼ガスHGが流れており、前記液体原燃料FLは、熱媒チューブ12を介して前記燃焼ガスHGから得られる熱により蒸発室11内で原燃料ガスFGとして蒸発される。蒸発器本体10の加熱源としては、運転時は、熱媒チューブ12内の触媒燃焼部14で燃料電池5の水素極のオフガスOGや補助燃料を燃焼して触媒燃焼することで発生する燃焼ガスHGを使用するが、起動時等で加熱源がない場合は、燃焼バーナ7で補助燃料(例えばメタノール)を燃焼して必要熱量を確保できるようになっている。
【0014】
前記蒸発器本体10で発生した原燃料ガスFGは、過熱部30で凝縮しない温度まで過熱されて改質器2に導入され、改質器2に導入された原燃料ガスFGは、固体触媒(例えばCu−Zn系の触媒)上で反応させられて水素リッチな燃料ガスを製造する。さらに、改質器2で生成された水素リッチな燃料ガスは、ガス中の一酸化炭素をCO除去器3で除去された後、前記CO除去器3から供給される燃料ガス中の水素と酸化剤供給手段である空気圧縮機4により圧縮された空気中の酸素とを反応させて発電を行う燃料電池5に導入される。燃料電池5で反応した後の水素極のオフガスOGは、気液分離装置6で水分を分離・除去された後、再び触媒燃焼部14で燃焼されて蒸発器本体10の加熱源となる。なお、蒸発器本体10で発生した原燃料ガスFGが充分に凝縮しない熱量を有していれば過熱器30を通さずに直接改質器2に導入しても良い。
【0015】
以下、図2乃至図5を参照して本発明に係る燃料蒸発器1の実施形態について詳細に説明する。
本発明に係る燃料蒸発器1は、
被燃焼体である燃料電池5の水素極のオフガスOGを導入する燃料蒸発器1の入口部21と、
前記入口部21に連設し、その内側に、前記オフガスOGの大部分を通して触媒燃焼させる触媒燃焼部14を有し、前記触媒燃焼部14から発生する高温熱媒体である燃焼ガスHGにより、外表面で接触する液体原燃料FLを蒸発させるU字形をした熱媒チューブ12と、
前記熱媒チューブ12を保持するチューブ保持部16と、
前記熱媒チューブ12および前記チューブ保持部16を囲んだ部屋である蒸発室11と、前記蒸発室11の上部に設けられ、液体原燃料FLを前記蒸発室11内に噴射する原燃料噴射装置40とから構成される蒸発器本体10と、
前記蒸発室11内で液体原燃料FLを蒸発させた後の燃焼ガスHGが、蒸発室11の側部を保温するように蒸発室11の周囲に設けられた高温熱媒体通路である燃焼ガス通路13,17,18,19と、
前記蒸発室11の下面10Aに隣接して設けられ、前記オフガスOGの残分を触媒燃焼させた高温熱媒体である燃焼ガスHG1により蒸発室11底部の液体原燃料FLを蒸発させる触媒燃焼器20と、
前記燃焼ガスHG1と前記燃焼ガス通路13,18を通った燃焼ガスHGとが合流した高温熱媒体である燃焼ガスHG2により原燃料ガスFGを過熱する図示しない過熱部30と、
から主要部が構成される。
【0016】
次に、本発明に係る燃料蒸発器1の作用について図2を参照して説明する。
被燃焼体である燃料電池5の水素極のオフガスOGは、燃料蒸発器1の入口部21を通って、チューブ保持部16に保持されたU字形の熱媒チューブ12の入口部12aで2つの流れに分岐する。
【0017】
分岐したうちの1つの流れは、図2に示すように、そのまま熱媒チューブ12の入口部12aに設けられた触媒燃焼部14へと流れ、オフガスOGを燃焼して高温熱媒体である燃焼ガスHGを生成し、生成した高温の燃焼ガスHGは、蒸発室11内に設けられたU字形の熱媒チューブ12内を下から上へと流れる。前記燃焼ガスHGは、蒸発室11内のU字形をした熱媒チューブ12内を通るときに、前記熱媒チューブ12の外表面へ原燃料噴射装置40により噴射される液体原燃料FLを燃焼ガスHGの保有熱で蒸発させ、原燃料ガスFGを生成する。
次に、液体原燃料FLを蒸発した後の燃焼ガスHGは、熱媒チューブ12の出口12bから燃焼ガス通路13に排出され、図5に示すように、蒸発室11の周りを囲むようにして設けられた燃焼ガス通路13,18を経由して、燃焼ガス通路17において触媒燃焼器20で発生した高温熱媒体である燃焼ガスHG1と合流する。さらに合流した高温熱媒体である燃焼ガスHG2は、燃焼ガス通路19および出口部22を通って過熱部30(図1参照)へと導かれ、蒸発室11内で蒸発した原燃料ガスFGを凝縮しない温度まで過熱する。
【0018】
一方、分岐したうちのもう1つの流れは、図2に示すように、蒸発室11の下面10Aに隣接して設けられ、長方形の断面形状をした触媒燃焼器20の入口部20aへと流れ、装填された触媒でオフガスOGを燃焼することにより触媒燃焼器の出口20bから高温熱媒体である燃焼ガスHG1を発生する。触媒燃焼器20で発生した燃焼ガスHG1は、蒸発室11底部の液体原燃料FLを蒸発した後、図5に示すように、蒸発室11から排出された燃焼ガスHGと燃焼ガス通路17で合流し、合流した燃焼ガスHG2は、燃焼ガス通路19,22を通って蒸発室11の後段に設けられる図示しない過熱部30へと導かれる。過熱部30を出た燃焼ガスHG2は、排ガスとして系外に排出され、過熱された原燃料ガスFGは改質器2へと導入される。
【0019】
次に、本発明に係る燃料蒸発器1の熱媒チューブ12に設けられる触媒燃焼部14について図3を参照して詳細に説明する。
触媒燃焼部14は、燃料蒸発器1の蒸発室11内の熱媒チューブ12の内側に従来の触媒燃焼器の触媒と同じ触媒をを装填して触媒燃焼器と燃料蒸発器を一体化したものである。
第一実施形態の触媒燃焼部14の構造は、図3(a)に示すように、格子状のハニカム触媒14aを熱媒チューブ12内に装填したものである。図3(a)では触媒セルの形状が4角形を示しているが6角形のものでも良い。
ハニカム触媒14aの製法としては、通常、セラミックス担体表面にγ-アルミナや酸化ジルコニウムなど比表面積の大きな担体を被覆し、その上に白金その他の活性成分を含浸する方法で触媒が調製される。
ハニカム触媒14aは、担体に触媒活性成分を担持したものを熱媒チューブ12に装填してもよいし、最初にハニカム担体のみを装填し、熱媒チューブ12の内面およびハニカム担体に後から触媒活性成分を担持させるように調製しても良い。
ハニカム触媒14aは、オフガスOGと触媒活性成分との接触面積および触媒内のガスの線速度を大きくとれるので、ダスト等の固形分粒子を多く含んだガスを流したときの詰まりに対しては、固定床用の粒状触媒を装填したときよりも寿命が長い。
ハニカム触媒14aの担体の材質は、セラミックスとしてはコーディエライト(2MgO-2Al23-5SiO)、ムライト(3Al2O3-2SiO2)等が良く使用されているが、金属も担体として使用できる。
前記ハニカム担体は、主として高流速条件下での圧力損失、および熱履歴による触媒の粉化を防ぐ目的で使用される蜂の巣状に押し出し成型された担体である。ハニカム担体は、比活性の高い貴金属触媒(例えば白金)を少量(ハニカム担体の重量をも含めた全触媒量に対して1%以下)担持するのに適している。
【0020】
第二実施形態の触媒燃焼部14の構造は、図3(b)に示すように、平板状フェライト系ステンレスPLと同じ素材の波板WPとをろう付け加工した触媒セルを交互に渦巻き状に巻き回したハニカム体からなり、それをステンレス製(例えばSUS316L)の熱媒チューブ12内に装填したものである。平板状フェライト系ステンレスPLと波板WPの間および前記ハニカム体と熱媒チューブ12の間は、耐熱性の高いNiろう材により接合される。
波板WPを設けたハニカム体とすることで燃料電池5のオフガスOGと触媒活性成分との接触面積を大きくすることができ、平板PLで波板WPの上下を挟むように巻き回したことで、熱媒チューブ12内に装填するときに、波板WPにかかる偏荷重による変形を防止できる。
触媒は、金属担体に触媒活性成分を担持したものを熱媒チューブ12に装填してもよいし、最初に金属担体のみを装填し、熱媒チューブ12の内面および前記金属担体に後から触媒活性成分を担持させるように調製しても良い。
【0021】
第三実施形態の触媒燃焼部14の構造は、図示しないが、1枚の長方形の板を捻った形状の捻れフィンの担体に金属活性成分を担持した捻れフィン触媒を、蒸発室11内の熱媒チューブ12内に装填したものである。
このようにすることにより、捻れフィンにより熱媒チューブ12内の触媒燃焼部14で発生した燃焼ガスHGの流れを乱流化することができる。
乱流化することにより、熱媒チューブ12内の半径方向の温度分布がなくなり伝熱係数が大きくなるので、触媒燃焼部14で発生させた燃焼ガスHGの保有熱量が、蒸発器本体10の蒸発室11内における液体原燃料FLの蒸発に有効に利用できる。従って、液体原燃料FLの蒸発を促進することができる。
触媒は、金属担体に触媒活性成分を担持したものを熱媒チューブ12に装填してもよいし、最初に金属担体のみを装填し、熱媒チューブ12の内面および前記金属担体に後から触媒活性成分を担持させるように調製しても良い。
【0022】
次に、蒸発室10の下面10Aに隣接して設けられる触媒燃焼器20の構造について図4を参照して説明する。
触媒燃焼器20は、燃料電池5の水素極から排出されるオフガスOGを触媒燃焼して発生した燃焼ガスにより蒸発室11の下面10Aから蒸発室11を加熱・保温するための設備であり、蒸発室11の下面10Aに隣接して好ましくは密着して設けられる。
第一実施形態の触媒燃焼器20の構造は、図4(a)に示すように、触媒セルの断面形状が、波板WP1の上下を平板PL1で挟んだ形状をしており、断面形状が長方形の配管の中に前記触媒セルを積層して装填したものである。
このように、触媒燃焼器20の断面形状を長方形とすることにより、蒸発室10の下面10Aと触媒燃焼器20との接触面積(伝熱面積)を最大限に大きくできるので、触媒燃焼器20で発生した高温熱媒体である燃焼ガスHG1の保有熱量を蒸発室10の下面10Aに有効に伝えることができる。また、触媒活性の高い触媒を使用すればさらに触媒燃焼器20の高さを小さくできる。従って、車両に燃料電池システムFCSを搭載したときの車高を低くできる。
【0023】
第二実施形態の触媒燃焼器20の構造は、図4(b)に示すように、触媒セルの断面形状が、図4(a)と同様な波板の上下を平板で挟んだ断面形状をしており、円筒形の配管中に前記触媒セルをドーナツ状(同心円状)に積層して装填した後、上下から円筒形の配管を潰して配管の上下に平担部を形成した横長の長円形をしている。
このような構造とすることにより、蒸発室10の下面10Aとの接触面積(伝熱面積)を円筒形の配管に触媒を装填したときよりも大きくすることができ、触媒燃焼器20で発生した高温熱媒体である燃焼ガスHG1の保有熱量を、蒸発室11底部の液体原燃料FLの蒸発に有効に利用できる。
【0024】
第三実施形態の触媒燃焼器20の構造は、図4(c)に示すように、第二実施形態の触媒燃焼器20の上面をカットして、上に平板を溶接付けした横長の半長円形をしている。
このような構造にすれば、第二実施形態の触媒燃焼器20よりもさらに蒸発室11の下面10Aとの接触面積(伝熱面積)を大きくでき、触媒燃焼器20で発生した燃焼ガスHG1の保有熱量を蒸発室11底部の液体原燃料FLの蒸発に有効に利用できる。
【0025】
第四実施形態の触媒燃焼器20の構造は、図示しないが、第一実施形態の触媒燃焼器(図4(a)参照)と同様な断面形状が長方形の中空配管の内側に、図3(a)の第一実施形態の触媒燃焼部または図3(b)の第二実施形態の触媒燃焼部である触媒を装填した円筒形の配管を水平方向に並列配置したものである。
水平方向に配置することにより、蒸発室11の底面と触媒燃焼器との接触面積(伝熱面積)を最大限大きくでき、並列配置にすることで触媒燃焼器の高さを高くしないで処理能力をアップすることができる。その結果、触媒燃焼器20の高さを低くでき、限られたスペースでも効率的な燃料蒸発器1の構成が可能となる。
【0026】
次に、本発明に係る燃料蒸発器1内の燃焼ガスが流れる高温熱媒体通路である燃焼ガス通路13,17,18,19について図2(a)および図5を参照して説明する。
燃焼ガス通路13,17,18,19は、蒸発器本体10の蒸発室11の周囲に設けられ、蒸発室11を加熱・保温するために設けられる高温熱媒体である燃焼ガスHG,HG1,HG2の通路である。
燃料電池5の水素極の被燃焼体であるオフガスOGは、燃料蒸発器1の入口部21で2つの流れに分岐する。1つの流れは、熱媒チューブ12の入口部12aに設けられた触媒燃焼部14を通って高温の燃焼ガスHGを発生し、蒸発室11内で液体原燃料FLを蒸発した後、熱媒チューブ12の上方の出口部12bから燃焼ガス通路13に排出される。排出された燃焼ガスHGは、燃料蒸発器1の手前に設けられた燃焼ガス通路18、左側面に設けられた燃焼ガス通路17を通過する。もう1つの流れは、蒸発室10の下面10Aに隣接して設けられた触媒燃焼器20を通って燃料蒸発器1の裏側から上昇して前記燃焼ガス通路17に排出される。燃焼ガス通路17に排出された高温熱媒体である燃焼ガスHG1は、前記燃焼ガス通路18からの高温熱媒体である燃焼ガスHGと合流し、合流した高温熱媒体である燃焼ガスHG2は、燃焼ガス通路19および出口部22を通って過熱部30へと導入され原燃料ガスFGを過熱する。過熱された原燃料ガスFGは改質器2へと導入され、燃焼ガスHG2は、排ガスとして系外に排出される。
【0027】
このように、熱媒チューブ12の内側に設けた触媒燃焼部14から排出される燃焼ガスHGおよび蒸発室11の下面10Aに設けた触媒燃焼器20から排出される燃焼ガスHG1を、蒸発室の加熱・保温ができるように高温熱媒体通路である燃焼ガス通路13,17,18,19を設けて蒸発室11の周囲に通流させることにより、燃焼ガスHG、HG1、HG2の保有熱量を蒸発室11に与え、蒸発室11内における液体原燃料FLの速やかな蒸発にさらに有効に利用できる。
【0028】
以上述べたように、燃料蒸発器1の蒸発室11内の熱媒チューブ12の内側に、触媒燃焼反応により被燃焼体であるオフガスOGを燃焼させる触媒燃焼部14を設け、触媒燃焼器と燃料蒸発器を一体化した構成とすることに燃料蒸発器全体の高さを小さくできる。また、一体化することにより、従来問題となっていた触媒燃焼器から燃料蒸発器の熱媒チューブ12までの配管から系外への熱損失がなくなる。
さらに蒸発室11の下面10Aに隣接するように触媒燃焼器20を設け、前記蒸発室11の周囲には高温熱媒体通路である燃焼ガス通路13,17,18,19を配設する構成としたことにより、燃料蒸発器1の高さHを低くすることができ、かつ、熱媒チューブ12の内側に設けた触媒燃焼部14および蒸発室11の下面に設けた触媒燃焼器20で発生した燃焼ガスHG,HG1の保有熱量を有効に利用することができる燃焼ガス通路13,17,18,19を備えた燃料蒸発器1を提供することができる。
【0029】
【発明の効果】
以上の構成と作用から明らかなように、本発明によれば、
1)蒸発室内の熱媒チューブの内側に、触媒燃焼反応により被燃焼体を燃焼させる触媒燃焼部を設けて、触媒燃焼器と燃料蒸発器を一体化した構成とすることにより、従来、燃料蒸発器の前段に設けられていた触媒燃焼器の設置スペースを不要とし、燃料蒸発器全体の高さを小さくできる。その結果、特に車両に燃料電池システムを搭載したときの車高を小さくすることができる。また、触媒燃焼器と燃料蒸発器を一体化した構成とすることにより、触媒燃焼器から燃料蒸発器の熱媒チューブまでの配管から系外への熱損失がなくなる。
2)蒸発室の下面に触媒燃焼器を隣接するように設けて、蒸発室の加熱・保温用の高温熱媒体を発生させ、蒸発室内の熱媒チューブ内の触媒燃焼部で発生した高温熱媒体を蒸発室の周囲に設けた高温熱媒体通路に通流させて、さらに蒸発室を加熱・保温することにより、速やかに蒸発が行われる。従って、触媒燃焼器および高温熱媒体通路を設けない場合と比較して、触媒燃焼器でのオフガスを燃焼する量を少なくできるので、触媒装填量を減らすことができる。その結果、触媒燃焼器の高さを低くでき、全体として燃料蒸発器をコンパクト化することができる。
【図面の簡単な説明】
【図1】本発明に係る燃料電池システムの全体系統図である。
【図2】(a)は、本発明に係る燃料蒸発器の側断面図である。
(b)は、図2(a)のX−X′断面図である。(左半分省略)。
【図3】(a)本発明に係る触媒燃焼部の第一実施形態を示す横断面の斜視図である。(b)本発明に係る触媒燃焼部の第二実施形態を示す横断面の斜視図である。
【図4】(a)本発明に係る触媒燃焼器の第一実施形態を示す横断面の斜視図である。(b)本発明に係る触媒燃焼器の第二実施形態を示す横断面の斜視図である。(c)本発明に係る触媒燃焼器の第三実施形態を示す横断面の斜視図である。
【図5】本発明に係る燃料蒸発器の燃焼ガス通路を示す斜視図である。
【図6】従来の燃料蒸発器の側断面図である。
【符号の説明】
1 燃料蒸発器
10 蒸発器本体
11 蒸発室
12 熱媒チューブ
13,17,18,19 燃焼ガス通路(高温熱媒体通路)
14 触媒燃焼部
20 触媒燃焼器
30 過熱部
H 燃料蒸発器の高さ
HG,HG1,HG2 燃焼ガス(高温熱媒体)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel evaporator for liquid raw fuel in a fuel cell system, and more particularly to a fuel evaporator provided with a catalytic combustion section for burning a combustible body inside a heat medium tube in an evaporation chamber.
[0002]
[Prior art]
The fuel cell system supplies hydrogen as a fuel gas to the hydrogen electrode (cathode) of the fuel cell and supplies a fuel cell that generates power by supplying an oxygen-containing oxidizing gas to the oxygen electrode (anode) of the fuel cell. Power generation system. This fuel cell system directly converts chemical energy into electrical energy, and has recently attracted attention because of its high power generation efficiency and extremely low emission of harmful substances.
[0003]
A fuel evaporator used in a conventional fuel cell system is described, for example, in Japanese Patent Application No. 11-125366. As shown in FIG. 6, the fuel evaporator 100 supplies combustion gas HG, which is a high-temperature heat medium generated by burning a combusted body through a catalytic reaction in the catalytic combustor, to the evaporator main body 110. An inlet portion 114 for introduction and the combustion gas HG are allowed to flow inwardly from the inlet portion 112a to the outlet portion 112b of the U-shaped heat medium tube 112, and from the raw fuel injector 140 to the outside of the heat medium tube 112. An evaporation chamber 111 for evaporating the liquid raw fuel FL injected onto the surface by heat obtained from the combustion gas HG, and a lower surface of the evaporation chamber 111 through which the combustion gas HG after the liquid raw fuel FL evaporates flows. Combustion gas passage 113 provided in 110 </ b> A and a superheating chamber for heating the raw fuel gas FG evaporated in the evaporation chamber 111 with the combustion gas HG passing through the combustion gas passage 113. Main portion 32 and a superheating portion 130. which is formed from the steam tube 131 Metropolitan constructed.
[0004]
The operation of the conventional fuel evaporator 100 configured as described above will be described.
Combustion gas HG, which is a high-temperature heat medium generated by burning a combusted body in a catalyst combustor (not shown), is introduced into the inlet 114 of the evaporator main body 110. Combustion gas HG introduced into the inlet portion 114 passes from the inlet portion 112a to the outlet portion 112b in the U-shaped heat medium tube 112 in the evaporation chamber 111 from the top to the bottom. The liquid raw fuel FL injected by the raw fuel injection device 140 is evaporated on the outer surface of the medium tube 112. Next, the combustion gas HG after evaporating the liquid raw fuel FL is guided to the superheat chamber 132 of the superheater 130 via the combustion gas passage 113, and the raw fuel gas FG evaporated in the evaporation chamber 111. Is further heated from the outside of the steam tube 131. The overheated raw fuel gas FG is introduced into a reformer (not shown), and the combustion gas HG after overheating the raw fuel gas FG is discharged out of the system as exhaust gas.
[0005]
However, in the conventional fuel evaporator 100, as shown in FIG. 6, a combustion gas passage 113 is provided on the lower surface 110A of the evaporation chamber 111 of the evaporator main body 110, or a catalyst combustor (not shown) is provided on the lower surface 110A of the evaporation chamber 111. Since the fuel evaporator 100 is provided adjacent to each other, the overall height H1 of the fuel evaporator 100 increases, and there is a problem that the vehicle height increases when the fuel cell system is mounted on the vehicle.
Further, when the catalyst combustor is provided adjacent to the lower surface 110A of the evaporation chamber 111, there is a heat loss outside the system at the piping from the outlet of the catalyst combustor to the heat medium tube 112 in the evaporation chamber 111 (temperature). Descent ΔT = 20 to 30 ° C.), there is a problem that the amount of heat held by the high-temperature combustion gas HG generated in the catalytic combustor is wasted.
[0006]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problem, and can reduce the height of the fuel evaporator and can also generate heat from the piping of a high-temperature heat medium generated by catalytic combustion to the outside of the system. An object of the present invention is to provide a fuel evaporator that can reduce loss.
[0007]
[Means for Solving the Problems]
  The gist of the invention described in claim 1 for solving the above-described problem is that the heat medium tube is provided from the heat medium tube, which includes a heat medium tube through which a high temperature heat medium capable of evaporating the liquid raw fuel is passed. In the fuel evaporator having an evaporation chamber for evaporating the liquid raw fuel by heat, the heat medium tube includes a catalytic combustion section for burning the combusted body.And a catalytic combustor adjacent to the evaporation chamber, and a high-temperature heat medium passage through which the high-temperature heat medium after the liquid raw fuel is evaporated flows in a portion other than the evaporation chamber adjacent to the combustion chamber. TheIt is characterized by this.
[0008]
  By providing a catalyst combustion part for combusting the combusted body by a catalytic combustion reaction inside the heat transfer medium tube in the evaporation chamber and integrating the catalyst combustor and the fuel evaporator, The installation space for the catalyst combustor provided in the previous stage is not necessary, and the height H of the entire fuel evaporator can be reduced. As a result, the vehicle height when the fuel cell system is mounted on the vehicle can be reduced. In addition, the integrated configuration eliminates heat loss from the piping from the catalyst combustor to the heat medium tube of the fuel evaporator to the outside of the system.
Furthermore, a catalytic combustor is provided adjacent to the lower surface of the evaporation chamber to generate a high-temperature heat medium for heating and keeping the evaporation chamber, as well as generated at the catalyst combustion section in the heat medium tube in the evaporation chamber. Evaporation is performed quickly by passing a high-temperature heat medium through a high-temperature heat medium passage provided around the evaporation chamber and further heating and keeping the evaporation chamber. Therefore, compared to the case where the catalyst combustor and the high-temperature heat medium passage are not provided, the amount of catalyst combustion of off-gas can be reduced, so that the catalyst loading can be reduced. As a result, the height of the catalytic combustor can be reduced, and the fuel evaporator can be made compact as a whole.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a fuel evaporator according to the present invention will be described with reference to the drawings. 1 is an overall system diagram of a fuel cell system according to the present invention, FIG. 2 (a) is a side sectional view of a fuel evaporator according to the present invention, and FIG. 2 (b) is an X- X 'sectional view (left half omitted), FIG. 3 (a) is a perspective view of a transverse section showing the first embodiment of the catalytic combustion section according to the present invention, and FIG. 3 (b) is the catalytic combustion according to the present invention. FIG. 4A is a perspective view of a transverse section showing the first embodiment of the catalytic combustor according to the present invention, and FIG. 4B is a perspective view of the present invention. FIG. 4C is a perspective view of a cross section showing a third embodiment of the catalytic combustor according to the present invention, and FIG. It is a perspective view which shows the combustion gas channel | path of the fuel evaporator which concerns on invention.
[0012]
First, the entire fuel cell system FCS according to the present invention will be described with reference to FIG. 1 and FIG.
A fuel cell system FCS mounted on a vehicle passes through a combustion gas HG that is a high-temperature heat medium generated by catalytic combustion of an off-gas OG of the fuel cell 5 inside the evaporation chamber 11 of the evaporator body 10. A fuel evaporator 1 having a U-shaped heat medium tube 12 for evaporating the liquid raw fuel FL in contact with the outer surface, a catalyst combustion section 14 inside the heat medium tube 12, and the fuel evaporator 1 A reformer 2 which reacts a raw fuel gas FG generated by evaporating the liquid raw fuel FL on a solid catalyst to form a fuel gas, and carbon monoxide in the fuel gas generated by the reformer 2 Is generated by reacting hydrogen in the fuel gas supplied from the CO remover 3 with oxygen in the air compressed by the air compressor 4 as an oxidant supply means. Fuel cell 5 and water of fuel cell 5 A gas-liquid separation device 6 that separates and removes moisture from the polar off-gas OG, and an off-gas OG or auxiliary fuel supplied from the gas-liquid separation device 6 burns off and becomes a heating source for the fuel evaporator 1 at the time of start-up. And a combustion burner 7 having an auxiliary fuel (for example, methanol) supply line that generates combustion gas HG as a heating medium.
[0013]
The operation of the fuel cell system FCS configured as described above will be described.
A predetermined amount of liquid raw fuel FL (for example, a mixed fuel of methanol and water) is supplied from the liquid raw fuel storage tank T to the fuel evaporator 1 by a pump. The liquid raw fuel FL supplied to the evaporator main body 10 of the fuel evaporator 1 is injected by the raw fuel injection device 40 onto the outer surface of the U-shaped heat medium tube 12 provided in the evaporation chamber 11 of the evaporator main body 10. Is done. The heat medium tube 12 in the evaporation chamber 11 is a high-temperature heat medium generated by burning off-gas OG at the hydrogen electrode of the fuel cell 5 in the catalyst combustion unit 14 provided inside the heat medium tube 12. The combustion gas HG is flowing, and the liquid raw fuel FL is evaporated as the raw fuel gas FG in the evaporation chamber 11 by the heat obtained from the combustion gas HG via the heat medium tube 12. As a heat source for the evaporator main body 10, during operation, combustion gas generated by catalytic combustion by burning off-gas OG and auxiliary fuel of the hydrogen electrode of the fuel cell 5 in the catalyst combustion unit 14 in the heat medium tube 12. When HG is used but there is no heating source at the time of start-up or the like, auxiliary fuel (for example, methanol) is burned by the combustion burner 7 so that a necessary heat amount can be secured.
[0014]
The raw fuel gas FG generated in the evaporator main body 10 is heated to a temperature at which the superheater 30 does not condense and is introduced into the reformer 2. The raw fuel gas FG introduced into the reformer 2 is a solid catalyst ( For example, a hydrogen-rich fuel gas is produced by reaction on a Cu—Zn-based catalyst. Further, the hydrogen-rich fuel gas generated in the reformer 2 is oxidized with hydrogen in the fuel gas supplied from the CO remover 3 after carbon monoxide in the gas is removed by the CO remover 3. It is introduced into a fuel cell 5 that generates electricity by reacting with oxygen in the air compressed by an air compressor 4 that is an agent supply means. The off-gas OG at the hydrogen electrode after reacting in the fuel cell 5 is separated and removed by the gas-liquid separator 6 and then burned again in the catalytic combustion unit 14 to become a heating source for the evaporator body 10. Note that the raw fuel gas FG generated in the evaporator main body 10 may be directly introduced into the reformer 2 without passing through the superheater 30 as long as it has a heat quantity that does not sufficiently condense.
[0015]
Hereinafter, an embodiment of the fuel evaporator 1 according to the present invention will be described in detail with reference to FIGS. 2 to 5.
The fuel evaporator 1 according to the present invention includes:
An inlet portion 21 of the fuel evaporator 1 for introducing the off-gas OG of the hydrogen electrode of the fuel cell 5 as a combusted body;
The inlet portion 21 is connected to the inside of the inlet portion 21 and has a catalytic combustion portion 14 for catalytic combustion through most of the off-gas OG. The combustion gas HG, which is a high-temperature heat medium generated from the catalytic combustion portion 14, A U-shaped heating medium tube 12 for evaporating the liquid raw fuel FL contacting the surface;
A tube holding portion 16 for holding the heat medium tube 12, and
An evaporation chamber 11 that is a chamber surrounding the heat medium tube 12 and the tube holding portion 16, and a raw fuel injection device 40 that is provided above the evaporation chamber 11 and injects the liquid raw fuel FL into the evaporation chamber 11. An evaporator body 10 comprising:
The combustion gas passage HG is a high-temperature heat medium passage provided around the evaporation chamber 11 so that the combustion gas HG after evaporating the liquid raw fuel FL in the evaporation chamber 11 keeps the side of the evaporation chamber 11 warm. 13, 17, 18, 19 and
A catalytic combustor 20 which is provided adjacent to the lower surface 10A of the evaporation chamber 11 and evaporates the liquid raw fuel FL at the bottom of the evaporation chamber 11 with the combustion gas HG1 which is a high-temperature heat medium in which the remainder of the off-gas OG is catalytically combusted. When,
A superheater 30 (not shown) that superheats the raw fuel gas FG with the combustion gas HG2 that is a high-temperature heat medium in which the combustion gas HG1 and the combustion gas HG that has passed through the combustion gas passages 13 and 18 merge;
The main part consists of
[0016]
Next, the operation of the fuel evaporator 1 according to the present invention will be described with reference to FIG.
The off-gas OG at the hydrogen electrode of the fuel cell 5 that is a combusted material passes through the inlet 21 of the fuel evaporator 1 and is passed through two inlets 12a of the U-shaped heat medium tube 12 held by the tube holder 16. Branch into the flow.
[0017]
As shown in FIG. 2, one of the branched flows flows directly to the catalytic combustion unit 14 provided at the inlet 12 a of the heat medium tube 12, and burns off-gas OG to form a combustion gas that is a high-temperature heat medium. The generated high-temperature combustion gas HG flows from the bottom to the top in the U-shaped heat medium tube 12 provided in the evaporation chamber 11. When the combustion gas HG passes through the U-shaped heat medium tube 12 in the evaporation chamber 11, the liquid raw fuel FL injected by the raw fuel injection device 40 to the outer surface of the heat medium tube 12 is combusted. Evaporation is performed with the retained heat of HG to generate raw fuel gas FG.
Next, the combustion gas HG after evaporating the liquid raw fuel FL is discharged from the outlet 12b of the heat medium tube 12 to the combustion gas passage 13, and is provided so as to surround the evaporation chamber 11 as shown in FIG. The combustion gas passages 13 and 18 merge with the combustion gas HG1 that is a high-temperature heat medium generated in the catalytic combustor 20 in the combustion gas passage 17. Further, the combined combustion gas HG2, which is a high-temperature heat medium, is led to the superheater 30 (see FIG. 1) through the combustion gas passage 19 and the outlet 22, and condenses the raw fuel gas FG evaporated in the evaporation chamber 11. Overheat to a temperature that does not.
[0018]
On the other hand, as shown in FIG. 2, the other flow of the branched flow is provided adjacent to the lower surface 10A of the evaporation chamber 11 and flows to the inlet 20a of the catalytic combustor 20 having a rectangular cross-sectional shape. By burning off-gas OG with the loaded catalyst, combustion gas HG1 which is a high-temperature heat medium is generated from the outlet 20b of the catalyst combustor. The combustion gas HG1 generated in the catalytic combustor 20 evaporates the liquid raw fuel FL at the bottom of the evaporation chamber 11 and then merges with the combustion gas HG discharged from the evaporation chamber 11 and the combustion gas passage 17, as shown in FIG. Then, the combined combustion gas HG2 is guided to the superheater 30 (not shown) provided at the rear stage of the evaporation chamber 11 through the combustion gas passages 19 and 22. The combustion gas HG2 exiting the superheater 30 is discharged out of the system as exhaust gas, and the overheated raw fuel gas FG is introduced into the reformer 2.
[0019]
Next, the catalyst combustion section 14 provided in the heat medium tube 12 of the fuel evaporator 1 according to the present invention will be described in detail with reference to FIG.
The catalyst combustion unit 14 is a unit in which the catalyst combustor and the fuel evaporator are integrated by loading the same catalyst as the catalyst of the conventional catalyst combustor inside the heating medium tube 12 in the evaporation chamber 11 of the fuel evaporator 1. It is.
The structure of the catalyst combustion unit 14 of the first embodiment is such that a lattice-shaped honeycomb catalyst 14a is loaded in the heat medium tube 12 as shown in FIG. In FIG. 3A, the shape of the catalyst cell is a quadrangular shape, but may be a hexagonal shape.
As a method for producing the honeycomb catalyst 14a, the catalyst is usually prepared by coating a ceramic carrier surface with a carrier having a large specific surface area such as γ-alumina or zirconium oxide and impregnating platinum or other active components thereon.
The honeycomb catalyst 14a may be loaded in the heat medium tube 12 with the catalyst active component supported on the carrier, or only the honeycomb carrier is loaded first, and the catalyst activity is later applied to the inner surface of the heat medium tube 12 and the honeycomb carrier. You may prepare so that a component may be carry | supported.
Since the honeycomb catalyst 14a can increase the contact area between the off-gas OG and the catalytic active component and the linear velocity of the gas in the catalyst, the clogging when flowing a gas containing a large amount of solid content particles such as dust, Longer life than when loaded with granular catalyst for fixed bed.
The material of the carrier of the honeycomb catalyst 14a is cordierite (2MgO-2Al as ceramics).2OThree-5SiO), mullite (3Al2O3-2SiO2) Etc. are often used, but metal can also be used as a carrier.
The honeycomb carrier is a carrier extruded into a honeycomb shape that is used mainly for the purpose of preventing pressure loss under high flow rate conditions and catalyst dusting due to thermal history. The honeycomb carrier is suitable for supporting a small amount of noble metal catalyst (for example, platinum) having a high specific activity (1% or less with respect to the total amount of catalyst including the weight of the honeycomb carrier).
[0020]
As shown in FIG. 3 (b), the structure of the catalytic combustion section 14 of the second embodiment is that the catalyst cells obtained by brazing the flat ferrite stainless steel PL and the corrugated sheet WP made of the same material are alternately spirally formed. It is made of a wound honeycomb body and is loaded into a heat medium tube 12 made of stainless steel (for example, SUS316L). The flat ferrite stainless steel PL and the corrugated sheet WP and between the honeycomb body and the heat transfer tube 12 are joined by a Ni brazing material having high heat resistance.
By making the honeycomb body provided with the corrugated plate WP, the contact area between the off-gas OG and the catalytically active component of the fuel cell 5 can be increased, and the upper and lower sides of the corrugated plate WP are sandwiched by the flat plate PL. When the heat medium tube 12 is loaded, it is possible to prevent deformation due to an uneven load applied to the corrugated sheet WP.
The catalyst may be loaded with a metal carrier carrying a catalytically active component into the heat medium tube 12 or may be loaded with only the metal carrier first, and the catalytic activity on the inner surface of the heat medium tube 12 and the metal carrier later. You may prepare so that a component may be carry | supported.
[0021]
Although the structure of the catalytic combustion unit 14 of the third embodiment is not shown, a twisted fin catalyst in which a metal active component is supported on a twisted fin carrier formed by twisting one rectangular plate is used as heat in the evaporation chamber 11. The medium tube 12 is loaded.
By doing in this way, the flow of the combustion gas HG which generate | occur | produced in the catalyst combustion part 14 in the heat-medium tube 12 by a twist fin can be turbulent.
By turbulent flow, the temperature distribution in the radial direction in the heat medium tube 12 disappears and the heat transfer coefficient increases, so the amount of heat held by the combustion gas HG generated in the catalytic combustion unit 14 is increased by the evaporation of the evaporator body 10. It can be effectively used for evaporation of the liquid raw fuel FL in the chamber 11. Therefore, evaporation of the liquid raw fuel FL can be promoted.
The catalyst may be loaded with a metal carrier carrying a catalytically active component into the heat medium tube 12 or may be loaded with only the metal carrier first, and the catalytic activity on the inner surface of the heat medium tube 12 and the metal carrier later. You may prepare so that a component may be carry | supported.
[0022]
Next, the structure of the catalytic combustor 20 provided adjacent to the lower surface 10A of the evaporation chamber 10 will be described with reference to FIG.
The catalytic combustor 20 is a facility for heating and keeping the evaporation chamber 11 from the lower surface 10A of the evaporation chamber 11 by the combustion gas generated by catalytic combustion of the off-gas OG discharged from the hydrogen electrode of the fuel cell 5. Adjacent to the lower surface 10A of the chamber 11 is preferably provided in close contact.
In the structure of the catalytic combustor 20 of the first embodiment, as shown in FIG. 4A, the cross-sectional shape of the catalyst cell is such that the top and bottom of the corrugated plate WP1 are sandwiched between the flat plates PL1, and the cross-sectional shape is The catalyst cells are stacked and loaded in a rectangular pipe.
Thus, by making the cross-sectional shape of the catalytic combustor 20 rectangular, the contact area (heat transfer area) between the lower surface 10A of the evaporation chamber 10 and the catalytic combustor 20 can be maximized. The amount of heat held by the combustion gas HG1 that is the high-temperature heat medium generated in step 1 can be effectively transmitted to the lower surface 10A of the evaporation chamber 10. Further, if a catalyst having high catalytic activity is used, the height of the catalytic combustor 20 can be further reduced. Therefore, the vehicle height when the fuel cell system FCS is mounted on the vehicle can be lowered.
[0023]
As shown in FIG. 4 (b), the structure of the catalytic combustor 20 of the second embodiment is such that the cross-sectional shape of the catalyst cell is the same as that of FIG. After the catalyst cells are stacked in a donut shape (concentric circle) and loaded in a cylindrical pipe, the cylindrical pipe is crushed from above and below to form flat support portions above and below the pipe. It is circular.
By adopting such a structure, the contact area (heat transfer area) with the lower surface 10 </ b> A of the evaporation chamber 10 can be made larger than when the catalyst is loaded into the cylindrical pipe, and is generated in the catalyst combustor 20. The amount of heat retained by the combustion gas HG1 that is a high-temperature heat medium can be effectively used for the evaporation of the liquid raw fuel FL at the bottom of the evaporation chamber 11.
[0024]
As shown in FIG. 4 (c), the structure of the catalytic combustor 20 of the third embodiment is a horizontally long half length in which the upper surface of the catalytic combustor 20 of the second embodiment is cut and a flat plate is welded thereon. It is circular.
With such a structure, the contact area (heat transfer area) with the lower surface 10A of the evaporation chamber 11 can be made larger than that of the catalytic combustor 20 of the second embodiment, and the combustion gas HG1 generated in the catalytic combustor 20 can be increased. The amount of retained heat can be effectively used for evaporation of the liquid raw fuel FL at the bottom of the evaporation chamber 11.
[0025]
Although the structure of the catalytic combustor 20 of the fourth embodiment is not shown, the cross-sectional shape similar to that of the catalytic combustor of the first embodiment (see FIG. 4A) is inside the hollow pipe having a rectangular shape as shown in FIG. The cylindrical pipe | tube loaded with the catalyst which is the catalyst combustion part of 1st embodiment of a) or the catalyst combustion part of 2nd embodiment of FIG.3 (b) is arranged in parallel in the horizontal direction.
By arranging in a horizontal direction, the contact area (heat transfer area) between the bottom surface of the evaporation chamber 11 and the catalytic combustor can be maximized, and by arranging in parallel, the processing capacity can be increased without increasing the height of the catalytic combustor. Can be up. As a result, the height of the catalytic combustor 20 can be reduced, and an efficient configuration of the fuel evaporator 1 can be achieved even in a limited space.
[0026]
Next, the combustion gas passages 13, 17, 18, and 19 that are high-temperature heat medium passages through which the combustion gas in the fuel evaporator 1 according to the present invention flows will be described with reference to FIGS.
The combustion gas passages 13, 17, 18, and 19 are provided around the evaporation chamber 11 of the evaporator main body 10, and combustion gases HG, HG1, and HG2 that are high-temperature heat media provided to heat and keep the evaporation chamber 11 warm. Is the passage.
The off-gas OG, which is a combusted body of the hydrogen electrode of the fuel cell 5, is branched into two flows at the inlet 21 of the fuel evaporator 1. One flow generates high-temperature combustion gas HG through the catalytic combustion unit 14 provided at the inlet 12a of the heat medium tube 12, evaporates the liquid raw fuel FL in the evaporation chamber 11, and then the heat medium tube. 12 is discharged to the combustion gas passage 13 from the outlet portion 12b above. The discharged combustion gas HG passes through the combustion gas passage 18 provided in front of the fuel evaporator 1 and the combustion gas passage 17 provided on the left side surface. The other flow passes through the catalytic combustor 20 provided adjacent to the lower surface 10 </ b> A of the evaporation chamber 10, rises from the back side of the fuel evaporator 1, and is discharged into the combustion gas passage 17. The combustion gas HG1, which is a high-temperature heat medium discharged into the combustion gas passage 17, merges with the combustion gas HG, which is a high-temperature heat medium from the combustion gas passage 18, and the combined combustion gas HG2 which is a high-temperature heat medium is combusted. The raw fuel gas FG is superheated by being introduced into the superheater 30 through the gas passage 19 and the outlet 22. The overheated raw fuel gas FG is introduced into the reformer 2, and the combustion gas HG2 is discharged out of the system as exhaust gas.
[0027]
In this way, the combustion gas HG discharged from the catalyst combustion section 14 provided inside the heat medium tube 12 and the combustion gas HG1 discharged from the catalyst combustor 20 provided on the lower surface 10A of the evaporation chamber 11 are Combustion gas passages 13, 17, 18, and 19 that are high-temperature heat medium passages are provided so that heating and heat retention can be performed, and flow around the evaporation chamber 11, thereby evaporating the amount of heat held by the combustion gases HG, HG1, and HG2. This can be applied to the chamber 11 and more effectively used for quick evaporation of the liquid raw fuel FL in the evaporation chamber 11.
[0028]
As described above, the catalytic combustion section 14 for combusting the off-gas OG as the combusted body by the catalytic combustion reaction is provided inside the heating medium tube 12 in the evaporation chamber 11 of the fuel evaporator 1, and the catalytic combustor and the fuel The height of the entire fuel evaporator can be reduced by integrating the evaporator. Further, by integrating, heat loss from the piping from the catalyst combustor to the heat medium tube 12 of the fuel evaporator, which has been a problem in the past, to the outside of the system is eliminated.
Further, a catalytic combustor 20 is provided so as to be adjacent to the lower surface 10A of the evaporation chamber 11, and the combustion gas passages 13, 17, 18, 19 which are high-temperature heat medium passages are disposed around the evaporation chamber 11. Thus, the height H of the fuel evaporator 1 can be reduced, and the combustion generated in the catalyst combustor 14 provided inside the heat medium tube 12 and the catalyst combustor 20 provided on the lower surface of the evaporation chamber 11 is achieved. It is possible to provide the fuel evaporator 1 including the combustion gas passages 13, 17, 18, and 19 that can effectively use the stored heat amount of the gases HG and HG1.
[0029]
【The invention's effect】
As is apparent from the above configuration and operation, according to the present invention,
1) Conventionally, fuel evaporation has been achieved by providing a catalyst combustion section for combusting the combusted body by a catalytic combustion reaction inside the heat transfer medium tube in the evaporation chamber and integrating the catalyst combustor and the fuel evaporator. The installation space of the catalyst combustor provided in the front stage of the combustor is unnecessary, and the height of the entire fuel evaporator can be reduced. As a result, the vehicle height can be reduced particularly when the fuel cell system is mounted on the vehicle. Further, by integrating the catalyst combustor and the fuel evaporator, heat loss from the piping from the catalyst combustor to the heat medium tube of the fuel evaporator to the outside of the system is eliminated.
2) A high temperature heat medium generated in the catalyst combustion part in the heat medium tube in the evaporation chamber by providing a catalyst combustor adjacent to the lower surface of the evaporation chamber to generate a high temperature heat medium for heating and keeping the evaporation chamber. Is allowed to flow through a high-temperature heat medium passage provided around the evaporation chamber, and the evaporation chamber is further heated and kept warm, whereby evaporation is performed quickly. Therefore, compared to the case where the catalyst combustor and the high-temperature heat medium passage are not provided, the amount of off-gas combusted in the catalyst combustor can be reduced, so that the catalyst loading can be reduced. As a result, the height of the catalytic combustor can be reduced, and the fuel evaporator can be made compact as a whole.
[Brief description of the drawings]
FIG. 1 is an overall system diagram of a fuel cell system according to the present invention.
FIG. 2 (a) is a side sectional view of a fuel evaporator according to the present invention.
(B) is XX 'sectional drawing of Fig.2 (a). (Left half omitted).
FIG. 3 (a) is a cross-sectional perspective view showing a first embodiment of a catalytic combustion section according to the present invention. (B) It is a perspective view of the cross section which shows 2nd embodiment of the catalyst combustion part which concerns on this invention.
FIG. 4 (a) is a cross-sectional perspective view showing a first embodiment of a catalytic combustor according to the present invention. (B) It is a perspective view of the cross section which shows 2nd embodiment of the catalytic combustor which concerns on this invention. (C) It is a perspective view of the cross section which shows 3rd embodiment of the catalytic combustor which concerns on this invention.
FIG. 5 is a perspective view showing a combustion gas passage of the fuel evaporator according to the present invention.
FIG. 6 is a side sectional view of a conventional fuel evaporator.
[Explanation of symbols]
1 Fuel evaporator
10 Evaporator body
11 Evaporation chamber
12 Heat transfer tube
13, 17, 18, 19 Combustion gas passage (high-temperature heat medium passage)
14 Catalytic combustion section
20 catalytic combustor
30 Superheated part
H Fuel evaporator height
HG, HG1, HG2 combustion gas (high temperature heat medium)

Claims (1)

液体原燃料を蒸発させることが可能な高温熱媒体を通す熱媒チューブを備え、前記熱媒チューブから得られる熱により前記液体原燃料を蒸発させる蒸発室を有する燃料蒸発器において、前記熱媒チューブの中には、被燃焼体を燃焼させる触媒燃焼部を備え、さらに、前記蒸発室に隣接する触媒燃焼器と、前記蒸発室が隣接した以外の部位に、前記液体原燃料を蒸発させた後の前記高温熱媒体が通流する高温熱媒体通路とを備えたことを特徴とする燃料蒸発器。In the fuel evaporator having a heating medium tube through which a high-temperature heating medium capable of evaporating the liquid raw fuel is passed, and having an evaporation chamber for evaporating the liquid raw fuel by heat obtained from the heating medium tube, the heating medium tube And a catalytic combustion section for combusting the combustible , and further, after evaporating the liquid raw fuel in a portion other than the catalytic combustor adjacent to the evaporation chamber and the evaporation chamber adjacent And a high-temperature heat medium passage through which the high-temperature heat medium flows .
JP31600399A 1999-11-05 1999-11-05 Fuel evaporator Expired - Fee Related JP3852815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31600399A JP3852815B2 (en) 1999-11-05 1999-11-05 Fuel evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31600399A JP3852815B2 (en) 1999-11-05 1999-11-05 Fuel evaporator

Publications (2)

Publication Number Publication Date
JP2001132909A JP2001132909A (en) 2001-05-18
JP3852815B2 true JP3852815B2 (en) 2006-12-06

Family

ID=18072169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31600399A Expired - Fee Related JP3852815B2 (en) 1999-11-05 1999-11-05 Fuel evaporator

Country Status (1)

Country Link
JP (1) JP3852815B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007355A1 (en) 2002-07-11 2004-01-22 Honda Giken Kogyo Kabushiki Kaisha Evaporator

Also Published As

Publication number Publication date
JP2001132909A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
US8557451B2 (en) Fuel processor for fuel cell systems
JP5705414B2 (en) Fuel cell system
JP4750374B2 (en) Operation method of fuel cell structure
EP3336946B1 (en) Solid oxide fuel cell system
JP2009099437A (en) Fuel cell module
JP2003142131A (en) Exhausted hydrogen treating device for fuel cell
JP3530413B2 (en) Fuel cell power generation system and operation method thereof
JP4644892B2 (en) Reformer
JPS63205058A (en) Fuel cell device
JP5000867B2 (en) Fuel cell power generation system
JPS62260701A (en) Raw material reforming apparatus
JP2005213133A (en) Reforming device and fuel cell system
JP3852815B2 (en) Fuel evaporator
JP2007080761A (en) Fuel cell and its starting method
KR101152586B1 (en) fuel reformer
JP2004071242A (en) Reformed steam generator of fuel cell power generator
JP4747469B2 (en) Combustion device
JP3554921B2 (en) Fuel evaporator
WO2021005973A1 (en) Fuel cell system
JP2005263603A (en) Reformer and fuel cell system
JP4231172B2 (en) Fuel evaporator
JPH0963618A (en) Fuel cell system
JP2006225192A (en) Reformer
JP3582059B2 (en) Fuel evaporator
JP3948885B2 (en) Hydrogen-containing gas generator for fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees