JP3554913B2 - チャープパルス圧縮装置およびチャープパルス増幅装置 - Google Patents

チャープパルス圧縮装置およびチャープパルス増幅装置 Download PDF

Info

Publication number
JP3554913B2
JP3554913B2 JP11480498A JP11480498A JP3554913B2 JP 3554913 B2 JP3554913 B2 JP 3554913B2 JP 11480498 A JP11480498 A JP 11480498A JP 11480498 A JP11480498 A JP 11480498A JP 3554913 B2 JP3554913 B2 JP 3554913B2
Authority
JP
Japan
Prior art keywords
pulse
chirped
amplifier
fiber
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11480498A
Other languages
English (en)
Other versions
JPH10333194A (ja
Inventor
ガルバナスカス アルマンテス
ジェー ハーター ドナルド
Original Assignee
イムラ アメリカ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イムラ アメリカ インコーポレイテッド filed Critical イムラ アメリカ インコーポレイテッド
Publication of JPH10333194A publication Critical patent/JPH10333194A/ja
Application granted granted Critical
Publication of JP3554913B2 publication Critical patent/JP3554913B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06725Fibre characterized by a specific dispersion, e.g. for pulse shaping in soliton lasers or for dispersion compensating [DCF]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レーザパルス技術の技術分野に属し、特にチャープパルス圧縮装置およびチャープパルス増幅装置の技術分野に属する。
【0002】
【従来の技術】
チャープパルス増幅は、光増幅器から最大の超短パルスを得るための一般的な方法である。(Compression of Amplified Chirped Optical Pulses, D. Strickland and G.Mouro,Opt.Commun.56,219 (1985) を参照)。特殊な増幅媒質における最大のパルスエネルギーは、飽和光子束によって決定される。しかし、伝播する超短光パルスに対しては、受容できない高いピーク強度は増幅媒質の飽和光子束以下の光子束である。それ故、増幅媒質の主成分に対して、増幅前に超短パルスを伸張することが必要である。初期の超短持続時間は、伸張されたパルスを再圧縮することにより、増幅した後蓄積されなければならない。チャープパルス増幅をすれば、増幅時のパルス強度を減少させ、超短パルスの非線形の乱れを避けることが出来る。
【0003】
希土類元素をドープしたファイバー増幅器は、例外的な技術的利点を持った増幅媒質の一つの例である。ファイバーに基づくレーザーまたは増幅器は、レーザーダイオードによって直接ポンピングすることが出来る。それゆえ、小型で丈夫な装置とすることが出来る。Erをドープしたシングルモード・ファイバーにおける飽和値は、10〜100μJの範囲のエネルギーを持った光パルスである。しかし、Erをドープしたファイバーによって、サブピコ秒の光パルスを直接増幅しようとすると、大約nJレベル以上のエネルギーにのみに限られる。ファイバーの全ての利点を引き出すためには、増幅前に光パルスの幅を大約0.1〜1nsか、それ以上に伸張することが必要である。
【0004】
チャープパルスを増幅する従来の方法では、メイン(P.Maine)の論文“Chirped Pulse Amplification ,IEEE J, Quantum Elect. Vol. 24, No.2, Feb. 1988.”に述べられているように、回折格子による超短パルス伸張器と圧縮器とが用いられていた。これらの回折格子の装置は高エネルギーパルスに対して特に有効である。なぜなら回折格子は光による損傷を受けず、また、非常に大きいパルス強度に対する非線型効果にも不感であるからである。1J以上のエネルギーを持つ超短パルスの再圧縮は、このようなパルス圧縮器で行われる。回折格子を使った伸張器および圧縮器の欠点は、装置が大型になることである。ナノ秒またはそれ以上の幅に伸張されたパルスに対する回折格子による装置は、数mにもなる。典型的な最も小型な装置でも、数10cmである。更に、パルスの位相を厳密に補償するためには格子を非常に精密に調整する必要がある。この操作は簡単な仕事ではない。調整が必要であるということは、このような装置は大量生産には向かない事を意味する。
【0005】
チャープブラッグ格子によるパルスの伸張器および圧縮器は、最近、小型なバルクの回折格子に置き代えることが提唱されている(米国特許第5499134号を参照のこと、なお同特許は以後特許’134と略記)。チャープ格子は直接、光学ファイバーの芯に書き込むことが出来る。チャープ・ファイバーブラッグ格子を備えた非常に小型な装置は、回折格子を使った装置に比べてより長く伸張したパルスを出射することが出来る。チャープ・ファイバー格子の長さLは伸張パルスの幅Δτに直接関係する。すなわち、Δτ=2L/Vg(パルスと格子の空間幅は完全に重畳するとする)である。ここでVgは格子ファイバー中の光の群速度である。例えば、ナノ秒に伸張されたパルスは10cmのファイバー格子で得られる。このようなチャープ・ファイバー・ブラッグ格子はファイバーによる増幅技術と完全に両立し、小型な全フィバー・チャープ・パルス増幅装置にすることができる(A. Galvanauskas et al., All−fiber Femtosecond Pulse Amplification Circuit Using Chirped Bragg Grating, Appl. Phys. Lett.,Vol. 66 (9), 27 February 1955 参照)。ファイバー格子装置の一つの技術的な長所は半導体回路技術と同様、位相マスク技術を使うことにより、比較的低価格で多量生産が出来ることである。
【0006】
チャープファイバー格子圧縮器は、光学ファイバーによる直接増幅より、本質的に高エネルギーの出力パルスを得ることが出来る。ファイバー格子は標準のファイバーに比べ、2〜4桁も大きい分散がある。従って、回折格子における再圧縮パルスの伝播距離は増幅用ファイバー中より短く、そして、本質的に、より大きい尖頭値で非線型効果が起こる。
【0007】
しかし、ファイバー格子圧縮器から得られるエネルギーは、回折格子による圧縮器に比べて限界がある。ファイバー格子圧縮器に基づくチャープパルス増幅(CPA)装置は、最大100nJのエネルギーしか処理することができない。これは、ファイバー増幅器の飽和光子束の100分の1以下である。それ故、ファイバー圧縮器を使うことによっては、ファイバー増幅器の性能を十分に活用していない。
【0008】
高エネルギーパルスを利用することが欠かせない多くの応用例がある。その一つの例は、波長可変出力装置として広く使われているCPA原理による光パラメトリック発生装置のファイバー増幅器である。光のパラメトリックな発生は、ある閾値を超えた励起エネルギーでのみ実現される。その閾値とは、通常、ファイバー格子圧縮器で射出できる値よりは大きい。このエネルギー的な要請のため、回折格子圧縮器を使わざるをえず、これが上述した理由で欠点となる。
【0009】
これに対する一つの解決策は、大きな光束を処理でき、したがって非線形効果の限界を除くことができるバルクのチャープブラッグ回折格子を使うことであろう。しかし、この装置は、ブラッグ格子の必要とする特性を大容量な光感受性材料に書き込むための本質的な技術的問題が原因で、まだ実現されていない。
部分的な解決策は、1995年5月19日出願の米国特許出願第08/445287号に開示されている。回折格子圧縮器を使う不利な点は、若し混成回路が使われると、部分的にしか解決されないことである。米国特許出願第08/445287号での記載では、ファイバーCPA装置はファイバー格子伸張器と圧縮器とから成り、付属の回折格子圧縮器はファイバー格子圧縮器に直接接続されている。ファイバー格子圧縮器の機能は、回折格子圧縮器の大きさを小さくするために増幅されたパルスを圧縮することと、ファイバー格子圧縮器の非線形限界を避けることとにある。この設計の一つの欠点は、回折格子装置の大きさと配置とが、単に縮小されているだけで、取り除かれていないことである。他の欠点は、二つの圧縮器を通った後のパルスエネルギーの損失が大きいことである。もし、パルス圧縮(例えば、ポンピングと光学的パラメトリックな生成のために)の後に、第2高調波を発生させるような周波数変換が必要であるならば、これらの損失は増加する。
【0010】
チャープで準位相同期結晶(QPM)では、チャープを補償し、周波数を変換する能力は、結晶の二つの鍵となる特性に基づいている。第一の特性は、典型的な非線形材料であり、これは基本波波長のパルスと第二高調波のパルスの群速度が、同じ伝播路で異なっているもので、これら二つのパルス間で一時的な消去が起こることである。第二の特性は、チャープされたQPM結晶では、種々の入力波長に対する第二高調波は、パルスの伝播路に沿った種々の空間位置に局在して発生することである。結果的に、基本波長にバンド幅が限定されたパルスがこのような結晶に送り出され、周波数チャープを持った第二高調波パルスが発生する。この第二高調波(SH)のパルスの幅ΔTは、群速度の消失の大きさによって決定される。すなわち、ΔT=L/VSH−L/VFundであり、ここで、Lは結晶の長さ、VSH,VFundはそれぞれ第二高調波、基本波の群速度である。SHパルスの周波数バンド幅ΔVはQPMの時間幅変化(QPMチャープバンド幅)の大きさによって与えられる。光学的パルスに等価な周波数チャープは、ΔT/ΔVに等しい群速度の分散によって作り出すことができる。特記すべきことは、伝播の相対する二方向から発生する第二高調波のパルスの周波数チャープは互いに逆の符号を持つことである。
【0011】
しかし、QPM結晶を、従来のパルス伸張器や圧縮器として、直接置き換えることは出来ない。一つの本質的な相違は、(非線形材料のわずかな本質的な分散を無視すれば)QPM結晶には実際の群速度分散がないことである。それ故、 CPA設計の道具に対しては必要であるが、基本波パルスを伸張することは出来ない。また、群速度が消失する値が限られるため、また、技術的にQPM結晶の長さが限られるために、SHパルスに関する伸張パルスの補償量は、ファイバー格子または回折格子圧縮器でなし得るより本質的に小さい。
【0012】
Arboreらは、結晶長さに沿ってチャープされたQPMの時間幅を持った準位相同期(QPM)第二高調波発生器(SHG)が、効果的に、第二高調波の波長における群速度の分散をすることが出来ることを明らかにした。この性質のため、基本波入力パルスに対して、第二高調波の発生と、第二高調波の出力の一時的な伸張と圧縮を同時に処理できる独特なデバイスを作ることが出来る。
【0013】
A.Galvanauskas, M.Arbore, M.FejerおよびD.Harterらは、CPA装置において、チャープされたQPM素子の利用を明らかにしている。本提案は、ファイバーを基本とする装置において、チャープされたQPM素子の利用に関するものである。
【0014】
【発明が解決しようとする課題】
本発明の目的は、最終的な圧縮器素子として、チャープされた周期の準位相同期する結晶を使うことにより、ファイバー格子圧縮器から得られる再圧縮されたパルスのピーク強さとエネルギーに関する、上述の限界を避けることである。このことにより、伸張器/圧縮器の配置の小型化をそのまま生かしつつ、チャープされたパルスの増幅装置から得られ、周波数変換され、再圧縮されたパルスのエネルギーは本質的に増加することになる。
【0015】
バンド幅の限界か、限界に近い持続時間をもつ第二高調波パルスを得るために、ファイバー増幅器から得られ基本波長パルスの線形と非線形の周波数チャープをともに補償するチャープされた周期の準位相同期する材料を使うことが、本発明の更なる目的である。このことにより、ファイバーチャープパルス増幅装置で起こる種々の問題(伸張器と圧縮器との間の位相ずれ、またはファイバー増幅器における非線形変調などが原因となって発振器から発生する非線形チャープを補正することなど)を回避することが出来る。また、任意のチャープを補償する能力により、より短い第二高調波パルスを得るための非線形のスペクトル伸張技術が開発でき、そして限られた増幅バンド幅により起こる限界を軽減できる。
【0016】
本発明のもう一つの目的は、パルス増幅装置の設計と製作における公差と不確定性を許容するため、チャープQPM結晶の調整可能な位相特性を実現することである。また、このように調整が可能であることにより、パルス持続時間を最も短くするための正確なチャープ補償をすることができる。QPM構造が二次元である有利性によって、このような調整をすることが出来る。このことは本質的に一次元であるファイバー格子圧縮器と対照的である。
【0017】
従来よりもっと小型で、丈夫で、簡単なパルス増幅装置にすることが出来るチャープQPM結晶を使うことが、本発明の次の目的である。
また、最大のエネルギーを生成し、増幅出力を圧縮し、周波数変換するとき、パルスの性質と持続時間の損失を最少にするため、チャープQPM結晶を用いることが、本発明のまたの目的でもある。
【0018】
発明の目的は、結合した圧縮器を用いることにより達成できる。この結合した圧縮器は、チャープ格子圧縮器とチャープQPM結晶とから構成されている。
【0019】
【発明の実施の形態】
本発明のチャープパルス圧縮装置およびチャープパルス増幅装置の実施の形態については、当業者に実施可能な理解が得られるよう、以下の実施例で明確かつ十分に説明する。
[実施例1]
本発明の実施例1にしたがったチャープ格子圧縮器とチャープQPM結晶との組み合わせは、図1に示されている。伸張された基本波(FH)パルスは、ビーム結合装置(BCA)10に入射する。そこで入射波とチャープブラッグ格子20からの反射波とは分離される。図1に示した例では、BCA10は、偏光ビーム分離器(PBS)12とファラデー回転子(FR)14と半波長板(λ/2)とから構成される。図1の例では、他の半波長板(λ/2)30は、BCA10とチャープQPM結晶40との間の光路に置かれている。図1の例で、半波長板16,30は、格子20とQPM素子40とにそれぞれ正確に偏光を入射するために使われている。半波長板16,30によって、この実施例は容易に実施することが出来る。しかし基本的なものではない。
【0020】
BCA10に入力される伸張された光学的パルスは、最初、チャープブラッグ格子20に送り込まれる。入力伸張パルスの幅とチャープブラッグ格子20の分散とは、格子におけるパルスの圧縮が不完全であるように選ばれる。チャープブラッグ格子20の出力におけるパルスは、完全な圧縮に比較して、低いパルスピーク強さを持つ。したがって、パルスエネルギーの非線形効果の限界が緩和される。
【0021】
部分的に再圧縮されたパルスは、BCA10を通ってチャープQPM結晶に送られる。第二高調波の発生と第二高調波(SH)出力の圧縮が同時に、チャープQPM結晶40で行われる。若し、格子圧縮器20からの基本波波長パルスの他のチャープが、チャープQPM結晶40の設計された位相特性に正確に同期するならば、バンド幅が限定されたSH出力が得られる。
【0022】
一般的に、チャープ・ブラッグ格子20はバルク格子である。しかし、図1に例示するように結合された圧縮器は、チャープブラッグ格子20がチャープファイバー格子であるならば、特に有利な点がある。
ファイバー格子圧縮器からの圧縮パルスのエネルギーに関する限界を、図2に示す。1cm、2cmおよび10cm長さのチャープファイバー格子に対する反射率は、無次元パラメータΓの関数として図示されている。パルスピーク強度I とファイバー格子長さLとの積は、無次元パラメータ Γ=4πnLI /λAeff に含まれる。ここで、Aeff はファイバーの芯の面積、n はファイバーのカー指数、λは波長である。この図は、格子長さとパルスピーク強度とに関する大きさの法則を現わしている。非線形の乱れが、Γ>100における三つ曲線に対して認められる。ここで、三つの格子全ての反射能は、Γの増加とともに減少する。
【0023】
図2に示すように、三つの曲線全ては低いΓ値で重なる。非線形の乱れの閾値(Γ≒10)において、得られるピーク強度、したがってエネルギーは、格子長さおよび再圧縮パルスピーク強度と一次の関係にあることを示している。例えば、標準的なファイバーにおける10cm格子では、50nJ以上のエネルギーを持った乱れの無い500fsのパルスが得られる。2cm格子では5倍大きいパルスエネルギーが得られる。同じ尺度は、パルス幅にも同様に適用できることが明らかである。5psのパルスに対する非線型効果の閾値におけるパルスエネルギーは、500fsに対するより約10倍大きい。この解析により、ファイバー格子を適当な長さに選び、十分長いチャープQPM結晶を用いることにより、再圧縮SHパルスエネルギーは数マイクロジュールになることが明らかになった。本発明から得られる大きな利点である一つの応用は、フェムト秒パルスの波長の可変範囲が広い、ファイバーから成る小型な光学的パラメトリック発生装置である。
【0024】
チャープQPM結晶における材料の第三高調波光の非線形に起因する位相の乱れは、限界が無いことに注意する必要がある。第一に、第二次の高調波光の非線形性は、第三次の非線形に比べて非常に多い。第二に、非線形結晶における過剰なピーク強度は、結晶中でビームを単純に広げることにより、避けることが出来る。
非線形チャープを補償するためチャープQPM結晶を用いることの利点は、擬似的に位相が同期する周期がブラグ格子の周期より長いという事実からもたらされる。ブラッグ格子周期Λ は、材料の屈折率nできまり、2nΛ =λである。周期的な分極を持つQPM材料における領域反転周期ΛQPM は、基本波と第二高調波との波長の屈折率の差Δnにより、2ΔnΛQPM=λ の関係で決定される。このために、これらの周期の間に二桁の大きさの違いが生ずる。例えば、ガラスファイバー中の1550nmにおけるブラッグ周期は約500nmで、一方、1550nmで第二高調波を発生するリチウムナイオベートに対するQPM周期は約20μmである。このような格子を書き込む精度に関しては、写真製版上の限界があるから、任意のチャープブラッグ格子を設計することには技術的能力の限界がある。これに対して、任意のチャープQPM格子は、標準的なリソグラフィー技術を使って容易に作ることが出来る。
【0025】
[実施例2]
本発明の実施例2を実施する方法は、図3に示されている。実施例2によれば、基本波長におけるパルスには、共に伸張と圧縮とがなされている。実施例2の装置には、超短光パルスの光源(図示されていない)、チャープ格子の伸張器/圧縮器22、分散制御用の素子25、光増幅器50、チャープ格子の伸張器/圧縮器22における入射ビームと反射ビームとを分離する光路に配置された種々の光学素子、それにチャープQPM素子などが含まれている。光学的増幅器50は、好ましくはファイバー増幅器で、一段または数段から構成されている。
【0026】
図3に示されている装置は、チャープQPM素子40を除いて、前述した特許‘134でに記述したものと同じ構図である。光学的部品をここに示した構図およびそれらの配置に選んだ基準は、前述の‘134特許に詳述されている。実施例2の増幅装置には、単一の伸張器/圧縮器格子22または二つの分離した格子(一つはパルスの伸張用、一つは圧縮用)を含むことができる。格子は、好ましくはチャープファイバー格子である。
【0027】
分散制御は、例えば、群速度分散の正の符号を持った分散補償ファイバーで行われる。しかし、‘134特許で明らかにされた装置とは対照的に、本発明の実施例2における分散制御素子25として、分散補償ファイバーが使われるとき、ファイバーによって、全システムの零ではない正味の分散が設定される。この零ではない正味の分散は、格子伸張器/圧縮器22の出力において、伸張されたパルスチャープの小さく制御可能な量を生成するのに必要である。この残余のチャープは、チャープQPM結晶40の作用によって、第二高調波の波長において、完全にまたは部分的に補償される。または、必要とされる残りのチャープは、伸張器および圧縮器の格子の位相特性の不一致の結果から発生する(すなわち、チャープブラッグ格子22が二つに分離された格子から成るとき)。
【0028】
入射波と反射波との分離は、構成要素を変えることによって行うことが出来る。構成要素は、50:50の光スプリッタ、光回転子、およびファラデー回転子を持つ偏光スプリッタなどである。図3の例示は、チャープ・ブラッグ格子伸張器/圧縮器22の伸張器側に、偏光スプリッタ12Aとファラデー回転子14Aと半波長板16Aとを使用し、また、チャープ・ブラッグ格子伸張器/圧縮器22の圧縮側には、偏光スプリッタ12Bとファラデー回転子14Bと半波長板16Bとを使っている。
【0029】
図3の配置の特長は、同じ格子22が伸張器と圧縮器ともに使われていることである。格子22の不完全性(すなわち、格子周期の不規則あるいは格子22に沿った屈折率の変化)反射パルスの質に影響する。しかし、もし、伸張と再圧縮に同じ格子が使われるならば、縦の不整は打ち消される。そして、再圧縮されたパルスの歪は最小になる。
【0030】
本発明の結合された圧縮器の技術的な魅力は、ファイバー格子伸張器/圧縮器22とチャープQPM素子40とが、光学的印刷技術を使って大量生産出来ることである。
チャープの準位相同期された非線形素子40を作るには材料を変えることが適当である。高エネルギーにするには、ウエーブガイド素子よりむしろバルク結晶を使う方が良い。バルク結晶には、ビームの大きさの制限が無く、またウエーブガイドへの結合損失も無いからである。しかし、伝播モードの閉じ込めのため、比較的低い入力ピーク強度で高い変換効率が得られるときは、低いパルスエネルギーにおいてはウエーブガイドが適当である。非線形結晶としては、たとえば、周期的に分極を示すリチウムナイオベート(PPLN)、周期的にポーリングされるリチウムタンタレート(PPLT)、または、周期的にポーリングされる強誘電材料を挙げることが出来る。同様な性質をもつ他の材料をも、使うことが出来る。
【0031】
図3に示すように、伸張器と圧縮器との両方を使うことは、ファイバー増幅器からの最大のパルスエネルギーを得るためには、基本的なことであることを強調しなければならない。前に説明したように、増幅の限界となる飽和光子束は、少なくとも100ピコ秒の持続時間を持つ伸張パルスを必要とする。いずれのチャープQPM結晶でも、このような大きなチャープを補償を出来そうもない。これは群速度の不一致の大きな量とQPM結晶の長さとが、非現実的な値になるからである。それ故、圧縮器を使うことにより、基本波長パルスのチャープを、困難を伴わずに、実用的なQPM材料を使って補償できるレベルまで下げることができる。
【0032】
[実施例3]
図4に示す本発明の実施例3では、パルス伸張器は使われていない。図4の増幅器の構成の詳細(チャープQPM部品は省いてある)は、前述の‘134特許に述べられている。波長可変レーザーダイオード70は、エネルギーを限定する飽和光子束までに増幅するに適合する特性を持ったチャープされた広いバンド幅パルスを、直接出すことが出来る。伸張されたパルスは、増幅器50に入力され、そして増幅されたパルスは、偏光ビームスプリッタ12Cを通って、チャープブラッグ圧縮器に入力される。チャープブラッグ圧縮器25からの出力は、PBS12CによってQPM素子40の方向に変向される。
[実施例4]
本発明の実施例4は、図5に示されている。実施例4によれば、格子圧縮器の段階は共に省略されている。増幅に先立って、発振器5で発生するパルスは伸張器26で基本波長において少しだけ伸張される。ファイバー格子伸張器を使うことが出来るときは、伸張には極く少量のみが必要であるので、伸張器として標準ファイバーの切片を使うことが好ましい。かくして簡単で、安価な装置となる。増幅器50で増幅されたのち、伸張器26で行われる伸張はチャープQPM素子40で補償される。伸張の正確な量は二つの目標の間の背反関係を考慮して決められる。すなわち、増幅器において、非線形な位相の乱れを避けるのに、十分低い光パルスのピーク強度を持ち、そして、第二高調波の変換効率が十分に達成されるほどのパルスの出力強度があることである。実験結果から、約500W〜1kWのピーク強度をもつ伸張されたパルスであれば、ファイバー増幅器と、固体QPM材料としてPPLNを使っても、両方とも満足されることが明らかになった。
【0033】
他の方法としては、パルス発振器(すなわち、モード固定のファイバーレーザー)を、わずかにチャープした光パルスを直接発生する発振器5として使うことができ、これによって伸張器26の必要性はなくなる。圧縮された第二高調波パルスは、増幅パルスを直接、チャープQPM素子40中に発射することにより生成される。上記に議論した理由のため、この代替法では、最大の飽和光子束がパルスエネルギーを限定することは出来ない。しかし、この構想によれば、ファイバー増幅器(チャープパルス増幅器に頼ることなく)から直接得ることができるエネルギーを超えるエネルギーを持った超短パルスを発生することが出来る。
【0034】
フェムト秒から数ピコ秒へ伸張されたパルスの幅は、単一のQPM結晶で補償されうるので、図5に示した装置では、ナノジュールの10倍以上のエネルギーが得られる。この装置の利点は、圧縮段階が無いので、増幅器の構成は図3に示すものより、更に小型で簡略になる。このことは、或る種の応用に対しては、パルスエネルギーの限界が重要になる。また、圧縮器と第二高調波発生作用とが単一素子に結合されたときに、全体の効率は増加する。付加したパルス圧縮器に常に付きまとう付加的なエネルギー損失は、実施例4の装置では完全に除かれる。
【0035】
[実施例5]
図6に示す本発明の実施例5によれば、非線形圧縮器27は、増幅器50とチャープQPM素子40との間に置かれている。非線形圧縮器27は、そのスペクトルを拡げることによってより短いパルスを発生する。チャープQPM素子の周波数変換バンド幅は、任意の大きさにされうるので、このようにスペクトルを拡げることは有利である。
【0036】
典型的には、パルスバンド幅と、したがって、その持続時間は線形ファイバー増幅器の利得バンド幅によって限定される。パルスバンド幅を広げる通常の方法は、自己位相変調、ソリトン圧縮、誘導ラマン散乱などのような非線形効果を採用することである。これはバルク、またはウエーブガイド構造(光学的なファイバーまたは中空のウエーブガイド)を使うことで実現できる。一般に、図3、図4および図6に示す三つのうちいずれの実施例においても、非線形圧縮器27をチャープQPM素子の前に直接置くことが出来る。しかし、このような非線形要素として光学的ファイバーを使うことは、技術的に有利である。典型的には、ファイバーはナノジュールからその数十倍までのエネルギー規模において、制御可能な非線形効果を得るのに使われる。それ故、図6の例では、非線形要素としてファイバーを使うのが特に有利である。図6での通常の出力は、ナノジュールから数十ナノジュールのエネルギー範囲である。
【0037】
非線形要素の後に、チャープQPMを使うのに、明らかに区別できる二つのモードがある。非線形要素が正の分散ファイバーを構成していれば、それはスペクトル的に広がった伸張されたパルスを発生する。ファイバーと入力パルスのパラメータとを適当に選ぶことにより、誘起されるチャープは本質的に線形と成り得る。このチャープは、QPM素子40において、第二高調波が発生している間に補償される。この場合、チャープQPM結晶の位相特性は、スペクトル的に、かつ、一時的に伸張された基本波パルスの線形パルスのみを補償するように設計されなければならない。
【0038】
図7は、本発明の考えによる装置から得られた実験結果である。図7には、1560nmの初期パルスと、最終的に780nmに圧縮されたパルスとの、自己相関軌跡を示す。初期の基本波パルスは800fsの持続時間であり、第二高調波出力は100fsまで圧縮されている。ファイバー発振器から得られる初期に約4nmのバンド幅のパルスは、伸張され、Erドープファイバーで増幅され、再圧縮され、その後に、1560nmにおいてスペクトル的な広がりが30nmのパルスを作るために、正分散長さのファイバーに入射される。スペクトル的に拡げられたパルスはチャープPPLN結晶で圧縮され周波数逓倍される。そのセットアップは、図3では付加される非線形圧縮ファイバーが、チャープQPM素子の前に置かれる。
【0039】
もし、負分散ファイバーがスペクトルを拡げるのに使われるならば、その出力は、典型的に、圧縮パルスであり(例えばソリトン)、多分、可成りの量の非線形周波数チャープを持っている。更に、パルスエネルギーが十分高ければ、分散距離より短い距離でスペクトルの拡がりが効果的に起こる。非線形ファイバー増幅器は、正および負の分散効果を除くのに十分な短さに作ることが出来る。かくして、スペクトルを拡げることのみが行われる。このことにより、高度な非線形チャープが産み出される。QPM結晶は、スペクトル的に広げられた基本波パルスのこの非線形周波数チャープを補償するように設計されなければならない。
【0040】
一般的に、上記のことは、明細書に更に述べるように、本発明に使われる非線形スペクトル拡張素子の種類によって異なってくる。全ての場合に、チャープQPM結晶は、第二高調波パルスの質を高める付加的な作用をすることは特記すべきである。非線型効果による典型的な結果である低強度の基盤と翼状の広がりとは、非線形チャープの補償とSHG過程の「浄化(クリーニング)」作用によって除くことが出来る。
【0041】
[実施例6]
図3および図4に示される位置にあるファイバー格子圧縮器それ自身は、非線形素子として役目を果たすことが出来る。これは、非線形効果が制御出来るエネルギー範囲を拡大することになる。前に述べたように、ファイバー格子に対してこれらのエネルギーは、標準的なファイバーにおけるより本質的に大きい。更に、そのエネルギーは、格子長さの尺度をもっている。非線形ファイバー格子圧縮器の種々の長さに対して、100nJ〜1μJの範囲のパルスが得られる。更に、最高のエネルギーを実現する装置を最適化するため、二つのファイバー格子圧縮器を使うことは有利であろう。第一のものは長い物で、線形圧縮器として役に立つ。そして、第二のものは、非線形圧縮器として役立つ短い物である。
【0042】
図8は、本発明の実施例6にしたがった一般的な配置を示したものである。この例では、線形パルス伸張器も線形圧縮器も使われていない。基本的には、この装置はパルス源(発振器5)、非線形増幅器55、それにチャープQPM素子40のみから成る。この例でのエネルギーは、ナノジュールの範囲に限られている。このような非線形素子(分散の大きさと符号に依存)の種々の動作モードと、それに続く、QPM素子による線形、非線形チャープの補償とに関する上記の議論は、非線形ファイバー増幅器にも適用できる。図8の例の第一の利点は、究極的な簡単化である。パルスエネルギーに関する限界にも関わらず、それはより高いパルスエネルギーを発生することが出来る構成であるが、複雑さが避けられ、大きさも小さくなる有利さを持っている。
【0043】
[実施例7,8]
図9および図10に示される本発明の実施例7および実施例8によれば、それぞれの装置には、非線形ファイバー増幅器が線形増幅段の前に配置されている。このような構成は、スペクトルの拡張(パルスの短縮)と高いパルスエネルギーを実現できる。図9に示される第7の実施例では、非線形増幅器55は正の分散ファイバー56から構成されている。発振器5から直接入射されたパルスは、続いて正の分散ファイバー56における非線効果によって、スペクトルが拡張される。スペクトル的に拡げられたパルスは、それから光学的伸張器28により伸張され、線形増幅器60に入射し、さらにパルスエネルギーが増加する。
【0044】
二つの増幅段の間に挿入された選択可能な伸張器28は、例えば正の分散ファイバーの切片か、あるいはチャープ・ファイバー格子である。この付加的な伸張器は、正分散ファイバー56が用いられれば、付加することは随意である。そして、それ自体はパルスエネルギーを更に増加させるのに役立つ。負分散、或いは短い非線形増幅器をこの構成に用いることが出来るが、この場合、二つの増幅段の間の伸張器は必要な部品である。
【0045】
増幅されたパルスは、チャープQPM素子40に導かれる。ここで誘導されたチャープは、第二高調波の発生によって補償される。
図10に示される実施例8では、非線形増幅段55は完全なCPA増幅段80に繋がっている。特に、CPA増幅器80は非線形増幅器55とQPM素子40との間に挿入される。例えば、CPA増幅器80は、図3に示した配置と同じである。図10に示した構成では、非線形素子55からのパルス出力は、チャープブラッグ格子22の中で伸張され、ファイバー増幅器58で増幅され、さらにチャープブラッグ格子22で線形に圧縮され、QPM素子40に入射されるので、精密な非線形増幅器55には顕著な役割はない(負か正かのいずれか、または分散長さより短い長さで)。
【0046】
図9に示した実施例7に重ねて図10に示した実施例8の主な利点は、ファイバー増幅器58の飽和光束限界以上のエネルギーを実現する可能性があることである。
図9および図10に示した構成は、それぞれ図11および図12に示したようなもっと経済的な二重経路の構成(変形態様)に置き換えることが出来る。図11および図12に示した構成の鍵となる利点は、単一の増幅器が非線形要素として、またCPA配置の線形増幅器として、共に使われていることである。
【0047】
図11において、発振器5から直接得られた超短パルスは、ファイバー増幅器90に入射し、第一過程でスペクトルの拡張がなされる。そして伸張器100で伸張されたのち、第二過程でパルスは増幅器90で、線形に増幅される。同様な作用は図12に示した構成でも期待できる。図12に示した構成では、圧縮器110を付加的に利用することにより、実質的により長いパルス、したがってより大きいパルスエネルギーを準備することが出来る。ファラデー回転子105を図11および図12の構成に付加することは随意である。二重経路構成におけるファラデー回転子は、ファイバー素子の偏光への感度をなくするということは良く知られている。このことは、第二高調波の発生が基本波パルスの入力偏光に対して敏感であるから、非常に好ましいことである。
【0048】
一般的に、このように知られたダブルパスの配置は、図3〜8に示すように、線形または非線形の増幅器または線形の伸張器に使われる。図13は、ファイバー伸張器あるいはファイバー圧縮器に対する基本的なダブルパスの配置を示す。本質的には、ダブルパス配置を使うことにより、本発明の上に述べた装置それぞれにおける偏光感度を除くことが可能である。基本波パルスの非線形チャープに対する補償にチャープQPM素子を使うことは、すでに一部述べた。そこでは、非線形成分におけるスペクトルの広がりの効果に対する補償の必要性を強調した。この非線形チャープの補償は、本発明の他の視点では、また本質的なことである。たとえば、線形伸張器と線形圧縮器との間に高次の位相の不一致が存在する場合には、非線形に対する補償が必要となる。位相の不一致は二つのファイバー格子の製造上の限界が原因で、またはファイバー伸張器と格子圧縮器のような混成の伸張器・圧縮器の組み合わせが原因で発生する。さらに、モード固定のレーザーあるいは波長可変レーザーダイオードなどの発振器から直接発生する非線形チャープを補償することが必要である(1994年9月29日出願の米国特許出願第08/312912号と、ここに引用された文献とに明らかにされている)。また、高次の位相の乱れは、増幅パルスの最高の許容エネルギーで動作するとき、線形のファイバー増幅器において伸張された非線形変調から生ずる。
【0049】
前述のように、QPM構造の二次元性により、位相補償特性を可変に出来る。QPM結晶は、決められた長さと幅と厚さとを持っている。QPM格子は、その長さ方向に書かれる。PPLNまたはPPLTのような電気的に分極した材料に対して、QPM構造は結晶の厚さ方向に均質である。しかしQPMパラメーターは、結晶の幅方向(ビームの伝播方向に垂直)に沿った位置の関数である。このパラメーターが、QPM周期のスペクトル幅ΔVであるならば、実質的な分散ΔT/ΔVもまた、幅に沿った位置(固定したQPM長さ)の関数である。結晶を光ビームに垂直方向に単純に移動することにより、位相特性はこのような結晶で調整できる。このような可変の補償は、基本波パルスの線形と非線形のチャープに対して装置化できる。例えば、QPM構造の線形チャープは、二次元チャープ要素が結晶面を横切った位置の一次関数にされるとき、固定値に調整することが出来る。この場合、基本波パルスの線形チャープは、約100fs以下の時間幅を持ちバンド幅が限定されたパルスを得るためには本質的なことである。
【0050】
[付記]
本発明については、好ましい実施例について記述し図示したが、冒頭の特許請求の範囲に規定したような発明の精神と視点を離れずに、各種変形態様が可能であることは、当業者には明らかであろう。
【図面の簡単な説明】
【図1】図1は、チャープ格子圧縮器とチャープQPM結晶とを組み合わせた本発明の実施例1の構成を示した模式図である。
【図2】図2は、ファイバー格子圧縮器からの再圧縮パルスエネルギーの限界を示したグラフである。
【図3】図3は、本発明の実施例2の一般的な構成を示した模式図である。
【図4】図4は、本発明の実施例3の構成を示した模式図であり、ここではパルス伸張器を使っていない。
【図5】図5は、本発明の実施例4の構成を示した模式図であり、ここでは増幅器とチャープQPM素子の間の圧縮器は省略されている。
【図6】図6は、本発明の実施例5の構成を示した模式図であり、ここではチャープQPM素子の前に非線形圧縮器が置かれている。
【図7】図7は、1560nmの初期パルスと最終的に780nmに圧縮されたパルスとの自己相関の軌跡を示したグラフである。
【図8】図8は、本発明の実施例6の構成を示す模式図であり、ここでは非線形素子としてファイバー増幅器が使われている。
【図9】図9は、本発明の実施例7の構成を示す模式図であり、ここでは線形増幅段の前に非線形ファイバー増幅器が置かれている。
【図10】図10は、本発明の実施例8の構成を示す模式図であり、ここでは線形増幅段の前に非線形ファイバー増幅器が置かれている。
【図11】図11は、図9の実施例7の変形態様の構成を示す模式図であり、ここではダブルパス装置が使われている。
【図12】図12は、図10の実施例8の変形態様の構成を示す模式図であり、ここではダブルパス装置が使われている。
【図13】図13は、ファイバー伸張器またはファイバー増幅器に対する基本的なダブルパス装置の構成を示した模式図である。
【符号の説明】
5:発振器
10:ビーム結合装置(BCA)
12,12A,12B,12C:偏光ビームスプリッタ(PBS)
14,14A,14B:ファラデー回転子(FR)
16,16A,16B:半波長板(λ/2)
20,22:チャープブラッグ格子 25:チャープブラッグ圧縮器
25:分散制御素子(DC)
26:伸張器 27:非線形圧縮器 28:伸張器
30:半波長板(λ/2)
40:チャープQPM(準位相整合)結晶、QPM要素、チャープQPM素子
50:光増幅器 55:非線形増幅器 56:正の分散ファイバー
58:ファイバー増幅器 60:線形増幅器
70:波長可変(チューナブル)レーザーダイオード
80:CPA増幅器 90:増幅器 100:伸張器
105:ファラデー回転子(FR) 110:圧縮器 115:伸張器

Claims (55)

  1. 信号パルスを受信して圧縮し、そこで圧縮された信号パルスを発生するファイバーを使用する圧縮器と、
    該圧縮された信号パルスを受信して周波数チャープを補償することでさらに圧縮するチャープ準位相同期(QPM:Quasi-Phase-Matched)結晶と、
    を有することを特徴とするチャープパルス圧縮装置。
  2. 前記ファイバーを使用する圧縮器は、チャープ・ブラッグ格子をもつ、
    請求項1記載のチャープパルス圧縮装置。
  3. チャープブラッグ格子とチャープされた準位相同期結晶との間の経路に、さらに少なくとも一つの半波長板を持つ、
    請求項2記載のチャープパルス圧縮装置。
  4. 前記チャープ・ブラッグ格子は、チャープ・ファイバー格子をもつ、
    請求項2記載のチャープパルス圧縮装置。
  5. 前記ファイバーを使用とする圧縮器は、非線形圧縮器をもつ、
    請求項1記載のチャープパルス圧縮装置。
  6. 前記ファイバーを使用する圧縮器は、分散ファイバー圧縮器をもつ、
    請求項5記載のチャープパルス圧縮装置。
  7. 前記信号パルスを前記ファイバーを使用する圧縮器に直接導き、該ファイバーを使用する圧縮器からの前記圧縮された信号パルスを受け、そして前記圧縮された信号パルスを前記チャープ準位相同期結晶に導くビーム結合装置をさらにもつ、
    請求項1記載のチャープパルス圧縮装置。
  8. 前記チャープ準位相同期結晶により受信された前記圧縮されたパルスは基本波であり、さらに圧縮された第二高調波パルスが前記チャープ準位相同期結晶により発生する、
    請求項1記載のチャープパルス圧縮装置。
  9. 光パルスを受けて増幅しそれによって増幅されたパルスを発生する増幅器と、
    該増幅されたパルスを受けて圧縮しそれによって圧縮されたパルスを発生するファイバーを使用する圧縮器と、
    該圧縮されたパルスを受けて周波数チャープを補償することで更に圧縮するチャープ準位相同期結晶と、
    を有することを特徴とするチャープパルス増幅装置。
  10. 前記増幅器に入力される前に、前記光パルスを受けて伸張する伸張器をさらにもつ、
    請求項9記載のチャープパルス増幅装置。
  11. 前記伸張器と前記増幅器との間に群速度分散を補償する分散制御素子を有する、
    請求項10記載のチャープパルス増幅装置。
  12. 前記伸張器に入力される前に、前記光パルスを受けて増幅する非線形増幅器をさらに有する、
    請求項11記載のチャープパルス増幅装置。
  13. 前記ファイバーを使用する圧縮器は、チャープ格子をもち、
    前記伸張器は、チャープ格子をもつ、
    請求項10記載のチャープパルス増幅装置。
  14. 前記光パルスを発生するパルス源をさらにもつ、
    請求項10記載のチャープパルス増幅装置。
  15. 前記増幅器は、ファイバー増幅器である、
    請求項9記載のチャープパルス増幅装置。
  16. 前記増幅器は、多段のファイバー増幅器である、
    請求項9記載のチャープパルス増幅装置。
  17. 前記増幅器によって受けられた前記光パルスは、チャープパルスであり、
    該チャープパルスを発生するパルス源をさらに有する、
    請求項9記載のチャープパルス増幅装置。
  18. 前記パルス源は、波長可変レーザーダイオードである、
    請求項17記載のチャープパルス増幅装置。
  19. 前記ファイバーを使用する圧縮器は、前記増幅されたパルスが該圧縮器内を往復するようにダブルパス配置で配設されている、
    請求項9記載のチャープパルス増幅装置。
  20. 前記ファイバーを使用する圧縮器に前記信号パルスを直接導き、該ファイバーを使用する圧縮器からの前記圧縮された信号パルスを受け、そして該圧縮された信号パルスを前記チャープ準位相同期結晶に導くビーム結合装置(BCA)をさらに有する、
    請求項19記載のチャープパルス増幅装置。
  21. チャープ格子と、
    入力信号パルスを該チャープ格子に導き、該チャープ格子によって伸張された信号パルスを受け、出力端で伸張されたパルスを供給する第一のビーム結合装置と、
    該伸張されたパルスを受けて増幅し、増幅パルスを発生する増幅器と、
    該増幅パルスを受けて該増幅されたパルスを該チャープ格子に導き、該チャープ格子で圧縮された信号パルスを受け、出力端で圧縮されたパルスを供給する第二のビーム結合装置と、
    該圧縮されたパルスを受けて周波数チャープを補償することで更に圧縮するチャープ準位相同期結晶と、
    を有することを特徴とするチャープパルス増幅装置。
  22. 前記第一のビーム結合装置と前記増幅器との間に挿入された群速度分散を補償する分散制御素子をさらに有する、
    請求項21記載のチャープパルス増幅装置。
  23. 前記第一のビーム結合装置に入力される前に、前記信号パルスを増幅する非線形増幅器をさらに有する、
    請求項21記載のチャープパルス増幅装置。
  24. チャープパルスを発生するパルス源と、
    該チャープパルスを受けて増幅し、増幅されたパルスを発生する増幅器と、
    該増幅されたパルスを受けて圧縮し、圧縮された信号パルスを発生するファイバーを使用する圧縮器と、
    該圧縮された信号パルスを受けて周波数チャープを補償することで更に圧縮するチャープ準位相同期結晶と、
    を有することを特徴とするチャープパルス増幅装置。
  25. 前記ファイバーを使用する圧縮器は、前記増幅されたパルスが該圧縮器内を往復するようにダブルパス配置で配設されている、
    請求項24記載のチャープパルス増幅装置。
  26. 前記ファイバーを使用する圧縮器に前記信号パルスを導き、該ファイバーを使用する圧縮器からの前記圧縮された信号パルスを受けて、該圧縮された信号パルスを前記チャープ位相同期結晶に導くビーム結合装置をさらに有する、
    請求項25記載のチャープパルス増幅装置。
  27. 超短パルスを発生するパルス源と、
    該超短パルスを伸張し、伸張されたパルスを発生するファイバーを使用する伸張器と、
    該伸張されたパルスを受けて増幅し、増幅されたパルスを発生する増幅器と、
    該増幅されたパルスを受けて周波数チャープを補償することで圧縮するチャープ準位相同期結晶と、
    を有することを特徴とするチャープパルス増幅装置。
  28. 前記増幅器と前記チャープ準位相同期結晶との間に挿入され、該チャープ準位相同期結晶に入力される前に前記増幅されたパルスを受けて再圧縮する圧縮器をさらに有する、
    請求項27記載のチャープパルス増幅装置。
  29. 前記圧縮器は、非線形圧縮器をもつ、
    請求項28記載のチャープパルス増幅装置。
  30. 前記パルス源と前記ファイバーを使用する伸張器との間に、非線形増幅器をさらに有する、
    請求項27記載のチャープパルス増幅装置。
  31. 前記超短パルスが前記ファイバーを使用する伸張器に達する前に前記増幅器を一度通過し、該ファイバーを使用する伸張器で伸張された後に再び該増幅器を通過するように、該増幅器は前記パルス源と該ファイバーを使用する伸張器との間に挿入されたダブルパス増幅器である、
    請求項27記載のチャープパルス増幅装置。
  32. 前記増幅器と前記ファイバーを使用する伸張器との間に挿入されたファラデー回転子をさらに有する、
    請求項31記載のチャープパルス増幅装置。
  33. 超短パルスの発生源と、
    該超短パルスを受けて増幅し、増幅されたパルスを発生する非線形増幅器と、
    該増幅されたパルスを受けて周波数チャープを補償することで圧縮するチャープ準位相同期結晶と、
    を有することを特徴とするチャープパルス増幅装置。
  34. 前記非線形増幅器は、ファイバー増幅器である、
    請求項33記載のチャープパルス増幅装置。
  35. 光パルスを受けて増幅し、増幅されたパルスを発生するファイバー増幅器と、
    該増幅されたパルスを受けて圧縮し、圧縮されたパルスを発生する圧縮器と、
    該圧縮されたパルスを受けて周波数チャープを補償することでさらに圧縮するチャープ準位相同期結晶と、
    を有することを特徴とするチャープパルス増幅装置。
  36. 前記ファイバー増幅器に入力される前に、前記光パルスを受けて伸張する伸張器をさらに有する、
    請求項35記載のチャープパルス増幅装置。
  37. 前記伸張器と前記ファイバー増幅器との間に挿入された群速度分散を補償する分散制御素子をさらに有する、
    請求項36記載のチャープパルス増幅装置。
  38. 前記伸張器に入力される前に、前記光パルスを受けて増幅する非線形増幅器をさらに有する、
    請求項37記載のチャープパルス増幅装置。
  39. 前記圧縮器は、チャープ格子圧縮器をもち、
    前記伸張器は、チャープ格子伸張器をもつ、
    請求項36記載のチャープパルス増幅装置。
  40. 前記光パルスを発生する光源をさらに有する、
    請求項36記載のチャープパルス増幅装置。
  41. 前記圧縮器は、ファイバー増幅器である、
    請求項35記載のチャープパルス増幅装置。
  42. 前記ファイバー増幅器は、多段ファイバー増幅器である、
    請求項35記載のチャープパルス増幅装置。
  43. 前記ファイバー増幅器が受ける前記光パルスは、チャープパルスであり、
    該チャープパルスを発生するパルス源をさらに有する、
    請求項35記載のチャープパルス増幅装置。
  44. 前記パルス源は、波長可変レーザーダイオードである、
    請求項43記載のチャープパルス増幅装置。
  45. 前記圧縮器は、前記増幅されたパルスが該圧縮器内を往復するようにダブルパス配置で配設されている、
    請求項35記載のチャープパルス増幅装置。
  46. 前記信号パルスを前記圧縮器に導き、該圧縮器からの圧縮された信号パルスを受けて、該圧縮された信号パルスを前記チャープ準位相同期結晶に導くビーム結合装置をさらに有する、
    請求項45記載のチャープパルス増幅装置。
  47. チャープパルスを発生するパルス源と、
    増幅されたパルスを発生するために、該チャープパルスを受けて増幅するファイバー増幅器と、
    圧縮された信号パルスを発生するために、該増幅されたパルスを受けて圧縮する圧縮器と、
    該圧縮された信号パルスを受けて周波数チャープを補償することで圧縮するチャープ準位相同期結晶と、
    を有することを特徴とするチャープパルス増幅装置。
  48. 前記圧縮器は、前記増幅されたパルスが該圧縮器内を往復するようにダブルパス配置で配設されている、
    請求項47記載のチャープパルス増幅装置。
  49. 前記信号パルスを前記圧縮器に導き、該圧縮器からの前記圧縮された信号パルスを受けて前記チャープ準位相同期結晶に導くビーム結合装置をさらに有する、
    請求項48記載のチャープパルス増幅装置。
  50. 超短パルスを発生するパルス源と、
    伸張パルスを発生するために、該超短パルスを伸張する伸張器と、
    増幅されたパルスを発生するために、該伸張されたパルスを受けて増幅するファイバー増幅器と、
    該増幅された信号パルスを受けて周波数チャープを補償することで圧縮するチャープ準位相同期結晶と、
    を有することを特徴とするチャープパルス増幅装置。
  51. 前記ファイバー増幅器と前記チャープ準位相同期結晶との間に挿入され、前記チャープ準位相同期結晶に入力する前の前記増幅されたパルスを受けて予備圧縮をする圧縮器をさらに有する、
    請求項50記載のチャープパルス増幅装置。
  52. 前記圧縮器は、非線形圧縮器をもつ、
    請求項51記載のチャープパルス増幅装置。
  53. 前記パルス源と前記伸張器との間に挿入された非線形増幅器をさらに有する、
    請求項50記載のチャープパルス増幅装置。
  54. 前記ファイバー増幅器は、前記超短パルスが前記伸張器に達する前に該ファイバー増幅器を一度通過し、該超短パルスが該伸張器で伸張された後に再び通過するように、該パルス源と該伸張器との間に挿入されたダブルパス増幅器である、
    請求項50記載のチャープパルス増幅装置。
  55. 前記ファイバー増幅器と前記伸張器との間に挿入されたファラデー回転子をさらに有する、
    請求項54記載のチャープパルス増幅装置。
JP11480498A 1997-04-25 1998-04-24 チャープパルス圧縮装置およびチャープパルス増幅装置 Expired - Fee Related JP3554913B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/845409 1997-04-25
US08/845,409 US6198568B1 (en) 1997-04-25 1997-04-25 Use of Chirped Quasi-phase-matched materials in chirped pulse amplification systems

Publications (2)

Publication Number Publication Date
JPH10333194A JPH10333194A (ja) 1998-12-18
JP3554913B2 true JP3554913B2 (ja) 2004-08-18

Family

ID=25295173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11480498A Expired - Fee Related JP3554913B2 (ja) 1997-04-25 1998-04-24 チャープパルス圧縮装置およびチャープパルス増幅装置

Country Status (2)

Country Link
US (1) US6198568B1 (ja)
JP (1) JP3554913B2 (ja)

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100248056B1 (ko) * 1997-08-26 2000-03-15 윤종용 광펄스 증폭기
US6275512B1 (en) * 1998-11-25 2001-08-14 Imra America, Inc. Mode-locked multimode fiber laser pulse source
US6542285B1 (en) * 1998-12-14 2003-04-01 The Board Of Trustees Of The Leland Stanford Junior University Backswitch poling method for domain patterning of ferroelectric materials
GB9917880D0 (en) * 1999-07-30 1999-09-29 Roke Manor Research Fast data modulator
JP3784585B2 (ja) * 1999-08-26 2006-06-14 富士通株式会社 光ファイバ伝送のための方法、光デバイス及びシステム
US6834134B2 (en) * 2000-04-11 2004-12-21 3M Innovative Properties Company Method and apparatus for generating frequency modulated pulses
US7088756B2 (en) * 2003-07-25 2006-08-08 Imra America, Inc. Polarization maintaining dispersion controlled fiber laser source of ultrashort pulses
US7190705B2 (en) 2000-05-23 2007-03-13 Imra America. Inc. Pulsed laser sources
JP3629515B2 (ja) * 2000-09-11 2005-03-16 独立行政法人情報通信研究機構 モード同期レーザ装置
US6570704B2 (en) * 2001-03-14 2003-05-27 Northrop Grumman Corporation High average power chirped pulse fiber amplifier array
US6775053B2 (en) * 2001-04-12 2004-08-10 The Regents Of The University Of California High gain preamplifier based on optical parametric amplification
US6603600B2 (en) * 2001-11-21 2003-08-05 Coherent, Inc. Chirped pulse amplification method and apparatus
US6870664B2 (en) * 2001-12-13 2005-03-22 The Regents Of The University Of California Nondegenerate optical parametric chirped pulse amplifier
US6791743B2 (en) * 2001-12-13 2004-09-14 The Regents Of The University Of California High average power scaling of optical parametric amplification through cascaded difference-frequency generators
US6873454B2 (en) 2001-12-13 2005-03-29 The Regents Of The University Of California Hybrid chirped pulse amplification system
US6741388B2 (en) * 2001-12-13 2004-05-25 The Regents Of The University Of California Coherent white light amplification
US6804057B1 (en) * 2002-02-06 2004-10-12 Novera Optics, Inc. Various methods and apparatuses for a tunable chromatic dispersion compensator
US6760356B2 (en) * 2002-04-08 2004-07-06 The Regents Of The University Of California Application of Yb:YAG short pulse laser system
US6739728B2 (en) 2002-04-08 2004-05-25 The Regents Of The University Of California Short pulse laser stretcher-compressor using a single common reflective grating
US7224518B2 (en) * 2003-02-25 2007-05-29 Toptica Photonics Ag Fiber-optic amplification of light pulses
US7361171B2 (en) * 2003-05-20 2008-04-22 Raydiance, Inc. Man-portable optical ablation system
US7095772B1 (en) 2003-05-22 2006-08-22 Research Foundation Of The University Of Central Florida, Inc. Extreme chirped/stretched pulsed amplification and laser
US7257302B2 (en) * 2003-06-03 2007-08-14 Imra America, Inc. In-line, high energy fiber chirped pulse amplification system
US7414780B2 (en) 2003-06-30 2008-08-19 Imra America, Inc. All-fiber chirped pulse amplification systems
US7113327B2 (en) * 2003-06-27 2006-09-26 Imra America, Inc. High power fiber chirped pulse amplification system utilizing telecom-type components
US20050038487A1 (en) * 2003-08-11 2005-02-17 Richard Stoltz Controlling pulse energy of an optical amplifier by controlling pump diode current
US7367969B2 (en) * 2003-08-11 2008-05-06 Raydiance, Inc. Ablative material removal with a preset removal rate or volume or depth
US7143769B2 (en) * 2003-08-11 2006-12-05 Richard Stoltz Controlling pulse energy of an optical amplifier by controlling pump diode current
US8921733B2 (en) 2003-08-11 2014-12-30 Raydiance, Inc. Methods and systems for trimming circuits
US8173929B1 (en) 2003-08-11 2012-05-08 Raydiance, Inc. Methods and systems for trimming circuits
US9022037B2 (en) * 2003-08-11 2015-05-05 Raydiance, Inc. Laser ablation method and apparatus having a feedback loop and control unit
US7115514B2 (en) * 2003-10-02 2006-10-03 Raydiance, Inc. Semiconductor manufacturing using optical ablation
US20050065502A1 (en) * 2003-08-11 2005-03-24 Richard Stoltz Enabling or blocking the emission of an ablation beam based on color of target
US7413847B2 (en) * 2004-02-09 2008-08-19 Raydiance, Inc. Semiconductor-type processing for solid-state lasers
WO2005094275A2 (en) 2004-03-25 2005-10-13 Imra America, Inc. Optical parametric amplification, optical parametric generation, and optical pumping in optical fibers systems
US7804864B2 (en) 2004-03-31 2010-09-28 Imra America, Inc. High power short pulse fiber laser
US7486705B2 (en) * 2004-03-31 2009-02-03 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
US7711013B2 (en) * 2004-03-31 2010-05-04 Imra America, Inc. Modular fiber-based chirped pulse amplification system
US20050254035A1 (en) * 2004-05-11 2005-11-17 Chromaplex, Inc. Multi-photon lithography
US20060000814A1 (en) * 2004-06-30 2006-01-05 Bo Gu Laser-based method and system for processing targeted surface material and article produced thereby
US7570851B2 (en) * 2004-07-21 2009-08-04 Purdue Research Foundation Ultrashort photonic waveform measurement using quasi-phase-matched non-linear optics
US7349452B2 (en) * 2004-12-13 2008-03-25 Raydiance, Inc. Bragg fibers in systems for the generation of high peak power light
US7630418B2 (en) * 2005-01-10 2009-12-08 Kresimir Franjic Laser system for generation of high-power sub-nanosecond pulses with controllable wavelength in 2-15 μm region
EP1851532A1 (en) * 2005-02-14 2007-11-07 Board of Trustees of Michigan State University Ultra-fast laser system
JP4526409B2 (ja) * 2005-02-18 2010-08-18 独立行政法人 日本原子力研究開発機構 レーザー光のコントラスト向上法及びレーザー発生装置
US8135050B1 (en) 2005-07-19 2012-03-13 Raydiance, Inc. Automated polarization correction
US7245419B2 (en) * 2005-09-22 2007-07-17 Raydiance, Inc. Wavelength-stabilized pump diodes for pumping gain media in an ultrashort pulsed laser system
US7308171B2 (en) * 2005-11-16 2007-12-11 Raydiance, Inc. Method and apparatus for optical isolation in high power fiber-optic systems
WO2007064703A2 (en) * 2005-11-30 2007-06-07 Board Of Trustees Of Michigan State University Laser based identification of molecular characteristics
US7436866B2 (en) 2005-11-30 2008-10-14 Raydiance, Inc. Combination optical isolator and pulse compressor
US7444049B1 (en) * 2006-01-23 2008-10-28 Raydiance, Inc. Pulse stretcher and compressor including a multi-pass Bragg grating
US8189971B1 (en) 2006-01-23 2012-05-29 Raydiance, Inc. Dispersion compensation in a chirped pulse amplification system
US9130344B2 (en) * 2006-01-23 2015-09-08 Raydiance, Inc. Automated laser tuning
US8232687B2 (en) 2006-04-26 2012-07-31 Raydiance, Inc. Intelligent laser interlock system
US7822347B1 (en) 2006-03-28 2010-10-26 Raydiance, Inc. Active tuning of temporal dispersion in an ultrashort pulse laser system
CN100504566C (zh) * 2006-04-21 2009-06-24 中国科学院物理研究所 一种啁啾脉冲压缩方法及装置
CN100383571C (zh) * 2006-05-08 2008-04-23 中国科学院上海光学精密机械研究所 双折射自由空间光桥接器
WO2007142843A2 (en) * 2006-05-24 2007-12-13 Cornell Research Foundation, Inc. Chirped-pulse quadratic nonlinearity-based high-energy pulse compressor
US7917039B1 (en) 2007-02-09 2011-03-29 University Of Central Florida Research Foundation, Inc. Signal processing using spectrally phase-encoded optical frequency combs
US7903326B2 (en) 2007-11-30 2011-03-08 Radiance, Inc. Static phase mask for high-order spectral phase control in a hybrid chirped pulse amplifier system
JP5600601B2 (ja) * 2008-02-07 2014-10-01 イムラ アメリカ インコーポレイテッド 高出力並列ファイバアレイ
US8023538B2 (en) * 2008-03-27 2011-09-20 Imra America, Inc. Ultra-high power parametric amplifier system at high repetition rates
US20090289382A1 (en) * 2008-05-22 2009-11-26 Raydiance, Inc. System and method for modifying characteristics of a contact lens utilizing an ultra-short pulsed laser
US8125704B2 (en) * 2008-08-18 2012-02-28 Raydiance, Inc. Systems and methods for controlling a pulsed laser by combining laser signals
US8498538B2 (en) * 2008-11-14 2013-07-30 Raydiance, Inc. Compact monolithic dispersion compensator
US8675699B2 (en) * 2009-01-23 2014-03-18 Board Of Trustees Of Michigan State University Laser pulse synthesis system
US8861075B2 (en) 2009-03-05 2014-10-14 Board Of Trustees Of Michigan State University Laser amplification system
FR2952243B1 (fr) * 2009-11-03 2012-05-11 Univ Bordeaux 1 Source optique mettant en oeuvre une fibre dopee, fibre pour une telle source optique et procede de fabrication d'une telle fibre
US9054479B2 (en) * 2010-02-24 2015-06-09 Alcon Lensx, Inc. High power femtosecond laser with adjustable repetition rate
US20110206071A1 (en) * 2010-02-24 2011-08-25 Michael Karavitis Compact High Power Femtosecond Laser with Adjustable Repetition Rate
US8279901B2 (en) * 2010-02-24 2012-10-02 Alcon Lensx, Inc. High power femtosecond laser with adjustable repetition rate and simplified structure
US8953651B2 (en) * 2010-02-24 2015-02-10 Alcon Lensx, Inc. High power femtosecond laser with repetition rate adjustable according to scanning speed
KR20140018183A (ko) 2010-09-16 2014-02-12 레이디안스, 아이엔씨. 적층 재료의 레이저 기반 처리
US8554037B2 (en) 2010-09-30 2013-10-08 Raydiance, Inc. Hybrid waveguide device in powerful laser systems
JP2014504802A (ja) 2010-12-30 2014-02-24 ロッキード・マーチン・コーポレーション 小型高エネルギー中波opcpaレーザ
EP2756562A4 (en) * 2011-09-14 2015-06-17 Fianium Inc METHODS AND APPARATUS FOR PICOSECOND IMPULSE FIBER LASERS
WO2013039756A1 (en) 2011-09-14 2013-03-21 Imra America, Inc. Controllable multi-wavelength fiber laser source
US10239160B2 (en) 2011-09-21 2019-03-26 Coherent, Inc. Systems and processes that singulate materials
CN102570254A (zh) * 2011-12-14 2012-07-11 上海大学 带有非线性补偿的超短脉冲光纤激光器
US8908739B2 (en) 2011-12-23 2014-12-09 Alcon Lensx, Inc. Transverse adjustable laser beam restrictor
PL220928B1 (pl) * 2012-09-12 2016-01-29 Inst Chemii Fizycznej Polskiej Akademii Nauk Sposób kompresji spektralnej krótkich impulsów laserowych światła o szerokim widmie oraz układ optyczny do takiej kompresji
WO2014062759A2 (en) * 2012-10-16 2014-04-24 Imra America, Inc. Compact ultra-short pulse source amplifiers
FR3015135B1 (fr) * 2013-12-13 2017-05-19 Thales Sa Source laser a largeur de raies reduite
US9419407B2 (en) * 2014-09-25 2016-08-16 Kla-Tencor Corporation Laser assembly and inspection system using monolithic bandwidth narrowing apparatus
JP7023629B2 (ja) * 2017-07-07 2022-02-22 株式会社ディスコ レーザー加工装置
US11181804B2 (en) * 2017-07-17 2021-11-23 Ramot At Tel-Aviv University Ltd. Method and system for frequency conversion
WO2019050724A1 (en) * 2017-09-07 2019-03-14 Board Of Trustees Of Michigan State University LASER DEVICE COMPRISING AN OPTICAL DISPERSION COMPENSATOR
JP7215060B2 (ja) * 2018-10-12 2023-01-31 ウシオ電機株式会社 分光分析用光源、分光分析装置及び分光分析方法
CN111256281B (zh) * 2018-11-30 2021-10-22 广东美的制冷设备有限公司 运行控制方法及系统、压缩机和空调器
CN109936041A (zh) * 2019-03-18 2019-06-25 苏州贝林激光有限公司 一种固体飞秒放大装置及其方法
US11233372B2 (en) * 2019-06-25 2022-01-25 Lumentum Operations Llc Femtosecond pulse stretching fiber oscillator
FR3143892A1 (fr) * 2022-12-14 2024-06-21 Ilasis Laser Dispositif optique dispersif et système laser à impulsions brèves comprenant un tel dispositif optique dispersif

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3729690A (en) 1961-10-27 1973-04-24 American Optical Corp Means for producing and amplifying optical energy
US4546476A (en) 1982-12-10 1985-10-08 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic amplifier
US4815079A (en) 1987-12-17 1989-03-21 Polaroid Corporation Optical fiber lasers and amplifiers
US5499134A (en) 1994-08-24 1996-03-12 Imra America Optical pulse amplification using chirped Bragg gratings
EP0766123A4 (en) * 1995-04-11 1998-08-05 Keisuke Sasaki OPTICAL DEVICE AND ITS MANUFACTURING METHOD
US5541947A (en) * 1995-05-10 1996-07-30 The Regents Of The University Of Michigan Selectively triggered, high contrast laser
US5696782A (en) * 1995-05-19 1997-12-09 Imra America, Inc. High power fiber chirped pulse amplification systems based on cladding pumped rare-earth doped fibers
US5862287A (en) * 1996-12-13 1999-01-19 Imra America, Inc. Apparatus and method for delivery of dispersion compensated ultrashort optical pulses with high peak power
US5815307A (en) * 1997-03-26 1998-09-29 The Board Of Trustees Of The Leland Stanford Junior University Aperiodic quasi-phasematching gratings for chirp adjustments and frequency conversion of ultra-short pulses

Also Published As

Publication number Publication date
JPH10333194A (ja) 1998-12-18
US6198568B1 (en) 2001-03-06

Similar Documents

Publication Publication Date Title
JP3554913B2 (ja) チャープパルス圧縮装置およびチャープパルス増幅装置
US8040929B2 (en) Optical parametric amplification, optical parametric generation, and optical pumping in optical fibers systems
JP3598216B2 (ja) 光パルス増幅装置、チャープパルス増幅装置およびパラメトリック・チャープパルス増幅装置
US9219344B2 (en) Generating ultrashort laser pulses based on two-stage pulse processing
JP2014515175A (ja) 中赤外線および遠赤外線のための小型でコヒーレントで高輝度の光源
US20050271094A1 (en) Method and apparatus for high power optical amplification in the infrared wavelength range (0.7-20 mum)
US7830928B2 (en) Quasi-phase matching and quantum control of high harmonic generation in waveguides using counterpropagating beams
JP2007086108A (ja) 深紫外レーザー光の発生方法および深紫外レーザー装置
Matousek et al. Design of a multi-petawatt optical parametric chirped pulse amplifier for the iodine laser ASTERIX IV
US7538935B2 (en) All-optical, continuously tunable, pulse delay generator using wavelength conversion and dispersion
US6775053B2 (en) High gain preamplifier based on optical parametric amplification
Hasan et al. Midinfrared pulse generation by pumping in the normal-dispersion regime of a gas-filled hollow-core fiber
Xu et al. Experimental generation of an ultra-broad spectrum based on induced-phase modulation in a single-mode glass fiber
JP2017517038A (ja) 光学パラメトリック発生器
US11563299B2 (en) All-fiber configuration system and method for generating temporally coherent supercontinuum pulsed emission
CN110544868B (zh) 一种啁啾方波脉冲放大激光系统
US20210098960A1 (en) Generation of Ultrashort Laser Pulses
JPH04357892A (ja) モード同期光ファイバレーザ装置
Pupeikis Next Generation Attosecond Technology
Sharp et al. Tunable, high-power, subpicosecond blue-green dye laser system with a two-stage dye amplifier
Thorin Towards the carrier-envelope phase stabilization of a16 TW 4.5 fs laser system
Baudisch High power, high intensity few-cycle pulses in the mid-IR for strong-field experiments
IMPERIO Fiber optical parametric amplifer for chirped pump pulses
JPWO2004029713A1 (ja) 超短レーザーパルス発生方法及び装置
Lou et al. Green and ultraviolet pulse generation using a low-repetition-rate mode-locked Yb-doped fiber laser

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040212

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees