JP3553647B2 - Manufacturing method of road pavement material using waste - Google Patents

Manufacturing method of road pavement material using waste Download PDF

Info

Publication number
JP3553647B2
JP3553647B2 JP15494394A JP15494394A JP3553647B2 JP 3553647 B2 JP3553647 B2 JP 3553647B2 JP 15494394 A JP15494394 A JP 15494394A JP 15494394 A JP15494394 A JP 15494394A JP 3553647 B2 JP3553647 B2 JP 3553647B2
Authority
JP
Japan
Prior art keywords
aggregate
waste
sand
weight
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15494394A
Other languages
Japanese (ja)
Other versions
JPH0819768A (en
Inventor
直樹 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP15494394A priority Critical patent/JP3553647B2/en
Publication of JPH0819768A publication Critical patent/JPH0819768A/en
Application granted granted Critical
Publication of JP3553647B2 publication Critical patent/JP3553647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、下水処理によって発生する汚泥を焼却した焼却灰や、下水処理によって発生する洗砂及び下水道工事に伴い発生する使用済みの陶管屑といった廃棄物を利用して、透水性及び強度に優れた道路舗装材を製造する方法に関するものである。
【0002】
【従来の技術】
廃棄物、特に下水処理システムからは、沈殿池から回収された汚泥を濃縮、消化、脱水後に焼却して得られる下水汚泥焼却灰(以下焼却灰という)と、管渠等の浚渫時に回収される沈砂と、この砂を水洗いして得られる洗砂が発生し、又下水道工事においては、使用済みの陶管である陶管屑が発生している。これらは埋め立て処分されるのが通常であるが、近年廃棄物の再利用が重要視される中、特に焼却灰においてはその試みが盛んで、焼却灰だけを加圧成形後、或は焼却灰に可塑性窯業原料や骨材を混合して加圧成形後、焼成してレンガ等の窯業製品を製造する等、焼却灰を利用した土木、建築材料の製造方法は既に多く知られている。
【0003】
【発明が解決しようとする課題】
上記焼却灰を用いた窯業製品は、前者の焼却灰のみを用いた場合、焼却灰自体の嵩比重が0.4〜0.6と小さく、成形に際しては一般的な窯業製品の成形圧力が成形品1cm 当り200kg〜300kg程度であるのに対して、約1トン程度の大きな圧力を必要とするため、製造設備が非常に大掛かりなものとなる。加えて成形品はその焼成後の収縮率が15〜20%になる上、焼却灰はその自然環境条件や下水処理条件によって化学組成の変動が大きいために焼結温度が大きく変動して製品の品質の安定性が悪く、工業的な製造には未だ多くの問題を抱えている。又後者の可塑性窯業原料や骨材を加えた場合、製品の寸法や品質が安定する効果はあるものの、焼却灰の使用量が低くなってその大量消費に繋がらず、原料コストの軽減も期待できない。
一方前記管渠浚渫や下水処理過程等で発生する沈砂、洗砂や下水道工事で発生する陶管屑や、せっ器質、磁器質製品屑等の廃棄物は再利用としての用途は少なく、その殆どは埋め立て処理されているのが現状である。
【0004】
【課題を解決するための手段】
そこで本発明は、前記洗砂や陶管屑といった他の廃棄物に着目し、焼却灰に加える骨材に代えて洗砂や陶管屑を用いることで、品質の安定と廃棄物全体の大量消費を可能とする廃棄物を用いた道路舗装材の製造方法を提供するもので、その構成は、前記焼却灰を重量部40〜50%、下水処理によって発生する洗砂と、下水道工事によって発生する陶管屑とからなる骨材を重量部45%以上、無機質バインダーを重量部4〜6%とすると共に、前記骨材中の洗砂の重量部を40%以下、残りの重量部を陶管屑として、これらを混合して坏土を形成し、この坏土を成形後、焼却灰が軟化溶融する温度で焼成することを特徴とするものである。
更に前記焼成時の燃料として、下水処理工程で発生する消化ガスを利用することもできる。
【0005】
【実施例】
まず本発明の製造方法における各要素を説明する。
「焼却灰」
焼却灰は公共の下水処理施設から排出されるものを利用できるが、焼却灰には、下水汚泥からの脱水時に添加する凝集剤の種類により高分子系と石灰系とがあり、本発明においては、CaOを多く含有して焼成温度が比較的高く、軟化溶融温度幅が狭い石灰系より、消費熱量、焼成管理上から好ましい高分子系焼却灰を使用する。又焼却灰は一般的にその粒度が40μm以下のものが略90%を占め、5〜20μmの範囲に50〜60%が集中している細かい粉末のため、以下本発明では微粒子原料として取り扱う。
又焼却灰自体は可塑性が乏しく、成形品の強度もあまり大きくないため、取扱上の問題から、必要に応じて無機質若しくは有機質のバインダーを加えても良い。無機質としては木節粘土、蛙目粘土、ベントナイト等があり、有機質としては親水性結合材が望ましく、天然物では澱粉やゴム等、半合成若しくは合成品ではCMC、PVA等がある。これらは焼却灰に対して無機質の場合には5〜15%、有機質の場合には0.1〜5%程度添加すれば良い。
「骨材」
これは焼却灰の軟化溶融温度でその原形を保つ粗粒子原料である。下水処理時に発生する沈砂、洗砂には砂成分以外に多量の金属やプラスチック等の異物が混在しているので磁石や篩で、又陶管屑は泥などの汚れが付着しているので水洗いなどでできるだけ除去する。この除去によって成形品の焼成時に発泡、色点等の欠点を防ぐことができる。
以上のように処理した沈砂、洗砂及び陶管屑を篩で粉砕、分級し、必要があれば仮焼し、仮焼品の粒度を調整する。粗粒子原料の粒度は、透水性製品の場合、5.0mm以下、しかし製品の品質上0.2〜3.0mm程度が望ましい。その他粗粒子原料としては、陶器質、せっ器質、磁器質製品屑が挙げられる。
これらの粗粒子原料2は図16の如く、焼成時に微粒子原料3が軟化溶融して容積減少しても、成形品1全体の減容を阻み、焼成品1´の収縮率を小さくすると共に、気孔4を生じさせて透水性を有するものとなる。
「焼成燃料」
焼成の燃料には、下水処理の消化槽で発生する消化ガスを使用できる。一般的に消化が順調に行われている場合には、含水率97%前後の汚泥では有機物1kg当り350〜550Nリットル、投入汚泥に対し7〜10倍量の消化ガスが発生し、消化ガス成分は汚泥の消化状態によっても異なるが、およそメタン60〜65%vol.%含有されており、低位発熱量は、5000〜5500kcal/Nmである。勿論これらは焼成時に限らず、沈砂や洗砂等の乾燥、坏土成形時の乾燥、成形品の乾燥時においても燃料として用いることができる。
【0006】
上記要素を用いた本発明の実施例を図及び表に基いて説明する。
実施例1
表1の調合条件A、焼成条件Bを組み合わせて試験を行った。微粒子原料としての焼却灰は高分子系のもの、粘土は蛙目粘土を使用する。粗粒子原料として、洗砂は約200℃で乾燥させて篩で20〜60メッシュ(粒径で0.25〜0.84mm)に分級し、磁器質骨材は、粉砕後篩で7〜20メッシュ(粒径で0.84〜2.83mm)に分級したものを使用する。これらの原料を表1の調合条件Aの4調合で攪拌混合した後、水を加えながら混練、造粒し、乾燥させて坏土とする。次に油圧プレスで200kgf /cm の圧力で成形し、成形品を電気炉で表1に示す焼成条件Bの4温度で夫々焼成する。焼成品の各種特性を測定した結果を図1、2に示す。
【0007】
【表1】

Figure 0003553647
【0008】
図1、2に示す結果より、道路舗装材として使用が可能な透水係数1.0×10−2cm/sec以上、曲げ強度30kgf/cm 以上のものは、調合A1における焼成温度B2,3、調合A2における焼成温度B2,B3、調合A3における焼成温度B3、調合A4における焼成温度B3が挙げられる。又焼成温度が高くなると曲げ強度も高くなる傾向が確認でき、透水係数との関連では焼成温度1050,1075℃のものが好ましい値を示している。
【0009】
実施例2
上記実施例1は調合条件に焼成温度を組み合わせたものであったが、ここでは表2のように洗砂粒度条件、調合条件、成形条件を組み合わせて試験を行った。微粒子原料として焼却灰は高分子系のもの、粘土は蛙目粘土を使用する。粗粒子原料として、洗砂は約200℃で乾燥させ、篩で2つの粒度条件A:7〜20メッシュ(粒径で0.84〜2.83mm)、20〜60メッシュ(粒径で0.25〜0.84mm)で分級し、磁器質骨材は、粉砕後、篩で7〜20メッシュに分級したものを使用する。これらの原料を4つの調合条件B、4つの磁器質骨材/洗砂比条件C、3つの成形圧力条件Dで夫々成形する。成形品を電気炉で焼成温度1075℃で焼成する。焼成品の各種特性を図3〜6に示す。
【0010】
【表2】
Figure 0003553647
【0011】
図3〜6の結果より、前記道路舗装材としての特性に着目すると、洗砂粒度は比較的粒度の大きい条件A1が、調合条件では焼却灰が40,50重量部となるB1,B2が好ましいことが解り、磁器質骨材/洗砂比条件は特に特性を左右するものとは認め難い。又成形圧力は100,200kgf/cm となるD1,D2の範囲において所定の値以上の透水係数を得られるものが多い。
【0012】
実施例3
よって次の実施例では、上記実施例2ではっきり確認できなかった骨材の調合比の要因に着目した実験例を行った。即ち表3の調合条件、成形条件、骨材条件を組み合わせたもので、微粒子原料として、焼却灰は高分子系のものを、粘土は蛙目粘土を使用する。ここで用いる骨材は、洗砂、陶管屑、磁器質骨材である。まず洗砂は約200℃で乾燥させ、篩で7〜20メッシュに分級し、陶管屑は約200℃で乾燥させて粉砕後、篩で7〜20メッシュに分級し、そして磁器質骨材は、粉砕後、篩で7〜20メッシュに分級したものを夫々使用する。これらの原料を3つの調合条件Aで調合し、このうち骨材を図7の三角座標で示す21の骨材調合条件として攪拌混合した後、水を加えながら混練、造粒し、乾燥させて坏土とする。次にこの坏土を油圧プレスで2つの成形圧力条件で成形し、成形品を電気炉で焼成温度1075℃で焼成する。焼成品の各特性は図8〜11に示す通りであった。又ここでは別に骨材調合比と各特性との関連を図12〜15に示す。
【0013】
【表3】
Figure 0003553647
【0014】
ここでも透水係数に着目すると、成形圧力が150,200kgf /cm 双方において、焼却灰40%では所定の値をクリアし、焼却灰50%以上では所定の値をクリアしないことが認められた。従って骨材は少なくとも45%以上は必要であることが確認できる。又調合比との関係では、洗砂量比率が高くなるに従って高くなり、陶管屑量比率が高くなるに従って低くなる傾向がある。しかし曲げ強度も合わせて推察すると、透水性道路舗装材として使用し得るものとしては、骨材中の洗砂量比率は40%以下が望ましい。
【0015】
尚上記のように焼却灰をその主要原料とした場合、焼成品は焼却灰に含まれる着色成分、特にFe の存在により、固有の焼成呈色を示す。即ち黄褐色〜黒褐色となるため道路舗装材として用いるためには製品の色幅が乏しいので、図17に示すように表層部に別途作成された着色上層部5や釉薬層6を施し、2層又は3層構造とすることによって色幅を増やすことができる。
【0016】
【発明の効果】
以上本発明によれば、焼却灰を利用した場合でも品質が安定し、所定の特性を有した透水性製品が得られ、又用いる原料の殆どを廃棄物で賄うことができるから、廃棄物の大量消費が可能となる。
特に焼却灰の重量部を40〜50%、骨材の重量部を45%以上、無機質バインダーの重量部を4〜6%に設定すると共に、骨材をその40%以下の重量部の洗砂と残部の陶管屑としたことで、透水性は勿論、曲げ強さ等の他の特性においても透水性道路舗装材としての機能を満たし、而も形状の安定性等に優れた好適な製品が得られる。
更に焼成時の燃料に、下水処理工程で発生する消化ガスを利用すると、限りある天然資源である化石燃料の節約に繋がるものとなり、下水処理時に発生する殆どの廃棄物を再利用可能となる。
【図面の簡単な説明】
【図1】実施例1で得られた製品の特性を測定した結果を示す表である。
【図2】実施例1で得られた製品の特性を測定した結果を示すグラフである。
【図3】実施例2で得られた製品の特性を測定した結果を示す表である。
【図4】実施例2で得られた製品の特性を測定した結果を示す表である。
【図5】実施例2で得られた製品の特性を測定した結果を示す表である。
【図6】実施例2で得られた製品の特性を測定した結果の平均値を示すグラフである。
【図7】実施例3での骨材調合比の条件設定を示す三角座標である。
【図8】実施例3で得られた製品の曲げ強度の測定結果を示す表である。
【図9】実施例3で得られた製品の透水係数の測定結果を示す表である。
【図10】実施例3で得られた製品の収縮率の測定結果を示す表である。
【図11】実施例3で得られた製品の嵩比重の測定結果を示す表である。
【図12】実施例3で得られた製品の骨材調合比と曲げ強度との関係を示す表である。
【図13】実施例3で得られた製品の骨材調合比と透水係数との関係を示す表である。
【図14】実施例3で得られた製品の骨材調合比と収縮率との関係を示す表である。
【図15】実施例3で得られた製品の骨材調合比と嵩比重との関係を示す表である。
【図16】本発明の粗粒子原料と微粒子原料との焼成時の状態を示す説明図である。
【図17】本発明の成形品の他の実施例を示す説明図である。
【符号の説明】
1・・成形品、1´・・焼成品、2・・粗粒子原料、3・・微粒子原料、4・・気孔、5・・着色上層部、6・・釉薬層。[0001]
[Industrial applications]
The present invention utilizes incineration ash obtained by incinerating sludge generated by sewage treatment, and waste such as sand washes generated by sewage treatment and used pottery waste generated by sewage works. The present invention relates to a method for producing an excellent road pavement material.
[0002]
[Prior art]
Waste, especially from sewage treatment systems, is collected from sludge collected from the sedimentation basin after being concentrated, digested, dewatered, and incinerated after incineration (hereinafter referred to as incinerated ash), and at the time of dredging of sewers. Sedimentation and sand washing obtained by washing the sand with water are generated, and in sewerage works, pottery swarf, which is used porcelain pipe, is generated. These are usually disposed of in landfills, but in recent years the importance of reusing waste has been emphasized, especially in incinerated ash, and attempts have been made in this area. Many methods for manufacturing civil engineering and building materials using incinerated ash have been known, such as mixing plastic ceramic raw materials and aggregates, press forming, firing, and manufacturing ceramic products such as bricks.
[0003]
[Problems to be solved by the invention]
Ceramic products using the above incinerated ash, when only the former incinerated ash is used, the bulk specific gravity of the incinerated ash itself is as small as 0.4 to 0.6, and the molding pressure of general ceramic products is reduced during molding. Since the pressure is about 200 to 300 kg per 1 cm 2 of the article, a large pressure of about 1 ton is required, so that the manufacturing equipment becomes very large. In addition, the molded product has a shrinkage rate of 15 to 20% after firing, and the incinerated ash has a large variation in chemical composition depending on its natural environment and sewage treatment conditions. Poor quality stability and still have many problems in industrial production. In addition, when the latter plastic ceramic raw material or aggregate is added, although the effect of stabilizing the dimensions and quality of the product is obtained, the amount of incinerated ash used is low, which does not lead to large consumption, and reduction in raw material cost cannot be expected. .
On the other hand, waste such as sedimentation generated in the above-mentioned sewer dredging and sewage treatment processes, pottery tub waste generated in washing and sewerage works, waste of pottery, porcelain product waste, etc. has few uses as reuse, and most Is currently being landfilled.
[0004]
[Means for Solving the Problems]
Therefore, the present invention focuses on other wastes such as the above-mentioned sand washes and pottery wastes, and uses sand washes and pottery wastes instead of aggregate added to the incineration ash, thereby stabilizing the quality and producing a large amount of the whole wastes. The present invention provides a method for manufacturing a road pavement material using wastes that can be consumed, and the configuration is such that the incinerated ash is 40 to 50% by weight, sand wash generated by sewage treatment, and sewerage work generated. 45% by weight or more of aggregate made of pottery waste and 4 to 6% by weight of inorganic binder, 40% by weight or less of sand wash in the aggregate, and the remaining part by weight These are mixed as pipe waste to form a kneaded material, which is formed and then fired at a temperature at which incinerated ash softens and melts.
Further, digestion gas generated in a sewage treatment step can be used as a fuel during the firing.
[0005]
【Example】
First, each element in the manufacturing method of the present invention will be described.
"Incineration ash"
Incinerated ash can be used from those discharged from public sewage treatment facilities, but incinerated ash is classified into polymer type and lime type depending on the type of coagulant added during dehydration from sewage sludge. Higher incineration ash is used because it contains a large amount of CaO, has a relatively high calcination temperature, and has a narrow softening / melting temperature range. In general, incineration ash having a particle size of 40 μm or less occupies approximately 90% and is a fine powder in which 50 to 60% is concentrated in a range of 5 to 20 μm.
Further, the incineration ash itself is poor in plasticity and the strength of the molded product is not so large. Therefore, an inorganic or organic binder may be added as necessary due to handling problems. Examples of the inorganic substance include Kibushi clay, frog-eye clay, bentonite, and the like, and preferable examples of the organic substance include a hydrophilic binder. Natural substances include starch and rubber, and semi-synthetic or synthetic products include CMC and PVA. These may be added to the incineration ash by about 5 to 15% in the case of an inorganic substance and about 0.1 to 5% in the case of an organic substance.
"aggregate"
This is a coarse-grained raw material that maintains its original shape at the softening and melting temperature of incinerated ash. The sedimentation and washing sand generated during sewage treatment contains a large amount of foreign substances such as metal and plastic in addition to the sand component. Use a magnet or a sieve, and wash the porcelain waste with dirt such as mud. Remove as much as possible. This removal can prevent defects such as foaming and color point during firing of the molded article.
The settling sand, washing sand and porcelain swarf treated as described above are pulverized and classified with a sieve, and if necessary, calcined to adjust the particle size of the calcined product. The particle size of the coarse particle raw material is 5.0 mm or less in the case of a water-permeable product, but is preferably about 0.2 to 3.0 mm in terms of product quality. Other coarse particle raw materials include pottery, stoneware, and porcelain product waste.
As shown in FIG. 16, these coarse particle raw materials 2 prevent the volume reduction of the whole molded product 1 and reduce the shrinkage rate of the fired product 1 ′, even if the fine particle raw material 3 softens and melts during firing to reduce the volume. The pores 4 are generated to have water permeability.
"Fired fuel"
Digestion gas generated in digestion tanks for sewage treatment can be used as fuel for firing. In general, when digestion is carried out smoothly, sludge having a water content of about 97% generates 350 to 550 N liters per kg of organic matter, and 7 to 10 times the amount of digested gas with respect to the input sludge. Is about 60 to 65% vol. %, And the lower heating value is 5000 to 5500 kcal / Nm 3 . Of course, these can be used as fuels not only during firing, but also during drying of sedimentation or washing sand, drying during kneading, and drying of molded products.
[0006]
An embodiment of the present invention using the above elements will be described with reference to the drawings and tables.
Example 1
The test was conducted by combining the blending conditions A and firing conditions B shown in Table 1. The incineration ash used as the raw material for the fine particles is of a polymer type, and the clay is Frogme clay. As a raw material for coarse particles, the washing sand is dried at about 200 ° C., and classified with a sieve to 20 to 60 mesh (0.25 to 0.84 mm in particle size). The one classified into a mesh (particle diameter: 0.84 to 2.83 mm) is used. These raw materials are stirred and mixed under four mixing conditions A shown in Table 1, kneaded, granulated, and dried while adding water to obtain a clay. Next, it is molded at a pressure of 200 kgf 2 / cm 2 by a hydraulic press, and the molded product is fired in an electric furnace at four temperatures of firing conditions B shown in Table 1. 1 and 2 show the results of measuring various characteristics of the fired product.
[0007]
[Table 1]
Figure 0003553647
[0008]
From the results shown in FIGS. 1 and 2, those having a water permeability of 1.0 × 10 −2 cm / sec or more and a flexural strength of 30 kgf / cm 2 or more that can be used as a road pavement material have firing temperatures B2 and 3 in the preparation A1. , Baking temperature B2, B3 in preparation A2, baking temperature B3 in preparation A3, and baking temperature B3 in preparation A4. Also, it can be confirmed that the higher the firing temperature, the higher the bending strength, and the preferable values for the firing temperatures of 1050 and 1075 ° C. in relation to the water permeability.
[0009]
Example 2
In Example 1 described above, the sintering temperature was combined with the blending condition. Here, as shown in Table 2, the test was performed by combining the sand washing particle size condition, the blending condition, and the molding condition. The incineration ash used as the raw material for fine particles is polymer-based, and the clay used is Frogme clay. As a coarse particle raw material, the washing sand is dried at about 200 ° C. and sieved with two particle size conditions A: 7 to 20 mesh (0.84 to 2.83 mm in particle size) and 20 to 60 mesh (0 to 0.8 in particle size). 25-0.84 mm), and the porcelain aggregate used after crushing is classified into 7 to 20 mesh with a sieve. These raw materials are molded under four mixing conditions B, four porcelain aggregate / sand washing ratio conditions C, and three molding pressure conditions D, respectively. The molded article is fired in an electric furnace at a firing temperature of 1075 ° C. Various characteristics of the fired product are shown in FIGS.
[0010]
[Table 2]
Figure 0003553647
[0011]
From the results of FIGS. 3 to 6, when focusing on the characteristics as the road pavement material, the condition A1 of relatively large sand washing particle size is preferable, and B1 and B2 in which the incinerated ash is 40, 50 parts by weight under the mixing condition are preferable. It can be seen that the condition of the porcelain aggregate / sand washing ratio does not particularly affect the characteristics. Further, in many cases, a water permeability of a predetermined value or more can be obtained in a range of D1 and D2 in which the molding pressure is 100 or 200 kgf / cm 2 .
[0012]
Example 3
Therefore, in the next example, an experimental example focusing on the factor of the mixture ratio of the aggregate that could not be clearly confirmed in the above Example 2 was performed. That is, it is a combination of the blending conditions, molding conditions, and aggregate conditions shown in Table 3. As the fine particle raw material, a polymer-based incinerated ash is used, and a frog-eye clay is used as a clay. The aggregate used here is washing sand, pottery waste, and porcelain aggregate. First, wash sand is dried at about 200 ° C., and classified with a sieve at 7 to 20 mesh. Porcelain waste is dried at about 200 ° C., pulverized, classified with a sieve at 7 to 20 mesh, and porcelain aggregate. After the pulverization, those which are classified into 7 to 20 mesh by a sieve are used. These raw materials were mixed under three mixing conditions A, and among these, the aggregate was stirred and mixed under 21 aggregate preparation conditions indicated by the triangular coordinates in FIG. 7, then kneaded, granulated, and dried while adding water. Clay clay. Next, this kneaded material is formed by a hydraulic press under two forming pressure conditions, and the formed product is fired in an electric furnace at a firing temperature of 1075 ° C. Each characteristic of the fired product was as shown in FIGS. Also, here, the relationship between the aggregate mixing ratio and each characteristic is shown separately in FIGS.
[0013]
[Table 3]
Figure 0003553647
[0014]
Here, paying attention to the hydraulic conductivity, it was recognized that the predetermined value was cleared at 40% incineration ash and the predetermined value was not cleared at 50% or more of incineration ash at both molding pressures of 150 and 200 kgf / cm 2 . Therefore, it can be confirmed that at least 45% or more of the aggregate is necessary. Also, in relation to the mixing ratio, the ratio tends to increase as the ratio of the amount of sand washed increases, and to decrease as the ratio of the amount of pottery swarf increases. However, when the bending strength is also estimated, as a material that can be used as a permeable road pavement material, the sand washing ratio in the aggregate is desirably 40% or less.
[0015]
When incinerated ash is used as the main raw material as described above, the fired product exhibits a unique fired color due to the presence of coloring components, particularly Fe 2 O 3 , contained in the incinerated ash. In other words, the color of the product is poor in order to be used as a road pavement material because it becomes yellowish brown to blackish brown. Therefore, as shown in FIG. Alternatively, the color width can be increased by adopting a three-layer structure.
[0016]
【The invention's effect】
As described above, according to the present invention, even when incinerated ash is used, the quality is stable, a water-permeable product having predetermined characteristics can be obtained, and most of the raw materials used can be covered by waste. Mass consumption is possible.
In particular the weight of the ash from 40 to 50%, by weight of the aggregate 45% or more, both by setting the weight of the inorganic binder 4-6% wash sand parts below 40% aggregate And the remaining pottery waste, it satisfies the function as a permeable road pavement material not only in permeability but also in other properties such as bending strength, and is a suitable product with excellent shape stability etc. Is obtained.
Furthermore, if the digestion gas generated in the sewage treatment process is used as the fuel during firing, fossil fuel, which is a limited natural resource, can be saved, and most of the waste generated during sewage treatment can be reused.
[Brief description of the drawings]
FIG. 1 is a table showing the results obtained by measuring the characteristics of the product obtained in Example 1.
FIG. 2 is a graph showing the results of measuring the characteristics of the product obtained in Example 1.
FIG. 3 is a table showing results of measuring characteristics of a product obtained in Example 2.
FIG. 4 is a table showing the results of measuring characteristics of the product obtained in Example 2.
FIG. 5 is a table showing the results of measuring characteristics of the product obtained in Example 2.
FIG. 6 is a graph showing the average value of the results of measuring the characteristics of the product obtained in Example 2.
FIG. 7 shows triangular coordinates indicating the condition setting of the aggregate mixing ratio in the third embodiment.
FIG. 8 is a table showing the measurement results of the bending strength of the product obtained in Example 3.
FIG. 9 is a table showing the measurement results of the water permeability of the product obtained in Example 3.
FIG. 10 is a table showing the measurement results of the shrinkage of the product obtained in Example 3.
FIG. 11 is a table showing measurement results of bulk specific gravity of the product obtained in Example 3.
FIG. 12 is a table showing a relationship between an aggregate mixing ratio and bending strength of the product obtained in Example 3.
FIG. 13 is a table showing a relationship between an aggregate mixing ratio and a water permeability of the product obtained in Example 3.
FIG. 14 is a table showing a relationship between an aggregate mixing ratio and a shrinkage ratio of the product obtained in Example 3.
FIG. 15 is a table showing a relationship between an aggregate mixing ratio and a bulk specific gravity of the product obtained in Example 3.
FIG. 16 is an explanatory diagram showing a state of the coarse particle material and the fine particle material of the present invention during firing.
FIG. 17 is an explanatory view showing another embodiment of the molded article of the present invention.
[Explanation of symbols]
1. Molded product, 1'-baked product, 2. Coarse particle raw material, 3. Fine particle raw material, 4. Porosity, 5. Colored upper layer, 6. Glaze layer.

Claims (2)

下水処理によって発生する下水汚泥焼却灰を重量部40〜50%、下水処理によって発生する洗砂と、下水道工事によって発生する陶管屑とからなる骨材を重量部45%以上、無機質バインダーを重量部4〜6%とすると共に、前記骨材中の前記洗砂の重量部を40%以下、残りの重量部を前記陶管屑として、これらを混合して坏土を形成し、この坏土を成形後、前記下水汚泥焼却灰が軟化溶融する温度で焼成することを特徴とする廃棄物を用いた道路舗装材の製造方法。 40 to 50% by weight of sewage sludge incineration ash generated by sewage treatment, 45% or more by weight of aggregate composed of sand wash generated by sewage treatment and porcelain waste generated by sewage works , and inorganic binder by weight 4 to 6% by weight, the weight part of the washing sand in the aggregate is 40% or less, and the remaining weight part is the pottery swarf. And then firing at a temperature at which the sewage sludge incineration ash softens and melts. 前記焼成時の燃料に、下水処理工程で発生する消化ガスを利用したものである請求項1に記載の廃棄物を用いた道路舗装材の製造方法。 The method for producing a road pavement material using waste according to claim 1, wherein a digestive gas generated in a sewage treatment process is used as a fuel during the firing .
JP15494394A 1994-07-06 1994-07-06 Manufacturing method of road pavement material using waste Expired - Lifetime JP3553647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15494394A JP3553647B2 (en) 1994-07-06 1994-07-06 Manufacturing method of road pavement material using waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15494394A JP3553647B2 (en) 1994-07-06 1994-07-06 Manufacturing method of road pavement material using waste

Publications (2)

Publication Number Publication Date
JPH0819768A JPH0819768A (en) 1996-01-23
JP3553647B2 true JP3553647B2 (en) 2004-08-11

Family

ID=15595326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15494394A Expired - Lifetime JP3553647B2 (en) 1994-07-06 1994-07-06 Manufacturing method of road pavement material using waste

Country Status (1)

Country Link
JP (1) JP3553647B2 (en)

Also Published As

Publication number Publication date
JPH0819768A (en) 1996-01-23

Similar Documents

Publication Publication Date Title
JP5658270B2 (en) Manufacturing method of lightweight construction materials using sludge waste
AU2007244118B2 (en) Method for manufacturing an artificial lightweight aggregate containing bottom ash
WO1990007474A1 (en) Method of producing ceramic products using sludge of sewage treatment
KR101216411B1 (en) The method of preparing lightweight-aggregate for concrete products using sludge of dyeing-waste water
JP3188200B2 (en) Manufacturing method of artificial lightweight aggregate
KR100490731B1 (en) A Method for constuction material and civil engineering using waste materials
KR100450898B1 (en) production of incinerated construction materials using wastewater sludge
JP3553647B2 (en) Manufacturing method of road pavement material using waste
KR20190014396A (en) Blocks recycled from wastes generated during stone processing and their manufacturing methods
JP2008126185A (en) Calcined object and its manufacturing method
KR19980068412A (en) Method for manufacturing lightweight foamed ceramic building materials using waste
JP2002097062A (en) Method for manufacturing ceramic product by using service water sludge waste material as main raw material
KR19990083777A (en) Process for production of construction material by use of waste-burnt ashes
JP2603599B2 (en) Artificial lightweight aggregate and manufacturing method thereof
KR100293771B1 (en) Mixed brick using waste and its manufacturing method
KR100237349B1 (en) The process of manufacturing ceramics using wastes
KR102682060B1 (en) Method of manufacturing sidewalk blocks using granite sludge
JP2005255496A (en) Method of manufacturing ceramic product using sewage sludge incineration ash and resultant ceramic product
KR102631822B1 (en) Mixed composition containing inorganic waste composition, And the material using a mix composition
JPH10156392A (en) Treatment of construction sludge
JPH1036152A (en) Artificial aggregate and its production
JPH07172900A (en) Ceramic paving material and its production
JP3343562B2 (en) Manufacturing method of permeable pavement material
JPH07144958A (en) Production of pottery having continuous pore by utilizing waste
JP3723161B2 (en) Aggregate manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term