JPH0819768A - Manufacture of road pavement material using waste - Google Patents

Manufacture of road pavement material using waste

Info

Publication number
JPH0819768A
JPH0819768A JP6154943A JP15494394A JPH0819768A JP H0819768 A JPH0819768 A JP H0819768A JP 6154943 A JP6154943 A JP 6154943A JP 15494394 A JP15494394 A JP 15494394A JP H0819768 A JPH0819768 A JP H0819768A
Authority
JP
Japan
Prior art keywords
aggregate
waste
sand
road pavement
pavement material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6154943A
Other languages
Japanese (ja)
Other versions
JP3553647B2 (en
Inventor
Naoki Hiraga
直樹 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Osaka City
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Osaka City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd, Osaka City filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP15494394A priority Critical patent/JP3553647B2/en
Publication of JPH0819768A publication Critical patent/JPH0819768A/en
Application granted granted Critical
Publication of JP3553647B2 publication Critical patent/JP3553647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To stabilize the quality, if incineration ash is used and at the same time, make it possible to consume a large quantiy of other waste. CONSTITUTION:In cineration ash to be used is of a polymer. Washed sand as an aggregate is dried at about 200 deg.C and classified as 20-to 60-mesh sizes by a sieve. A ceramic waste is classified to 7-to-20 mesh sizes using a sieve after crushing for use. These materials are stirred and mixed, then are kneaded by adding water, and are granulated, dried into a body. Next, the body is formed using a hydraulic press at 200kgf/cm<2>, and the molding is baked in an electric furnace at 1075 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下水処理によって発生
する汚泥を焼却した焼却灰や、下水処理によって発生す
る沈砂、洗砂及び下水道工事に伴い発生する使用済みの
陶管屑等の廃棄物を利用して、透水性及び強度に優れた
道路舗装材を製造する方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to waste such as incinerated ash obtained by incinerating sludge generated by sewage treatment, sand settled by sewage treatment, sand washing, and used porcelain waste generated by sewer construction. The present invention relates to a method for producing a road pavement material excellent in water permeability and strength by utilizing.

【0002】[0002]

【従来の技術】廃棄物、特に下水処理システムからは、
沈殿池から回収された汚泥を濃縮、消化、脱水後に焼却
して得られる下水汚泥焼却灰(以下焼却灰という)と、
管渠等の浚渫時に回収される沈砂と、この砂を水洗いし
て得られる洗砂が発生し、又下水道工事においては、使
用済みの陶管である陶管屑が発生している。これらは埋
め立て処分されるのが通常であるが、近年廃棄物の再利
用が重要視される中、特に焼却灰においてはその試みが
盛んで、焼却灰だけを加圧成形後、或は焼却灰に可塑性
窯業原料や骨材を混合して加圧成形後、焼成してレンガ
等の窯業製品を製造する等、焼却灰を利用した土木、建
築材料の製造方法は既に多く知られている。
BACKGROUND OF THE INVENTION From waste, especially sewage treatment systems,
Sewage sludge incineration ash (hereinafter referred to as incineration ash) obtained by incinerating sludge recovered from the sedimentation tank after concentration, digestion, dehydration, and
Settled sand collected during dredging of pipes and the like, and washed sand obtained by washing this sand with water are generated, and used sewer pipes, which are used ceramic pipes, are generated. These are usually disposed of in landfills, but with the importance of recycling wastes in recent years, attempts are being made especially for incinerated ash, and only incinerated ash is pressure-molded or incinerated ash. There are already many known methods for manufacturing civil engineering and building materials using incinerated ash, such as mixing a plastic ceramic raw material and an aggregate into a mixture, press-molding, and then firing to manufacture a ceramic product such as brick.

【0003】[0003]

【発明が解決しようとする課題】上記焼却灰を用いた窯
業製品は、前者の焼却灰のみを用いた場合、焼却灰自体
の嵩比重が0.4〜0.6と小さく、成形に際しては一
般的な窯業製品の成形圧力が成形品1cm2 当り200kg
〜300kg程度であるのに対して、約1トン程度の大き
な圧力を必要とするため、製造設備が非常に大掛かりな
ものとなる。加えて成形品はその焼成後の収縮率が15
〜20%になる上、焼却灰はその自然環境条件や下水処
理条件によって化学組成の変動が大きいために焼結温度
が大きく変動して製品の品質の安定性が悪く、工業的な
製造には未だ多くの問題を抱えている。又後者の可塑性
窯業原料や骨材を加えた場合、製品の寸法や品質が安定
する効果はあるものの、焼却灰の使用量が低くなってそ
の大量消費に繋がらず、原料コストの軽減も期待できな
い。一方前記管渠浚渫や下水処理過程等で発生する沈
砂、洗砂や下水道工事で発生する陶管屑や、せっ器質、
磁器質製品屑等の廃棄物は再利用としての用途は少な
く、その殆どは埋め立て処理されているのが現状であ
る。
The ceramic products using the above-mentioned incinerated ash have a low bulk specific gravity of 0.4 to 0.6 in the incinerated ash itself when only the former incinerated ash is used. Molding pressure of typical ceramic products is 200 kg per 1 cm 2 of molded product
Although it is about 300 kg, a large pressure of about 1 ton is required, so that the manufacturing facility becomes very large. In addition, the molded product has a shrinkage ratio of 15 after firing.
In addition, the incineration ash has a large variation in chemical composition depending on its natural environmental conditions and sewage treatment conditions, resulting in a large variation in the sintering temperature and poor product quality stability. I still have many problems. In addition, when the latter plastic ceramic raw materials and aggregates are added, the size and quality of the product will be stabilized, but the amount of incinerated ash will be low and it will not lead to large consumption, and reduction of raw material cost cannot be expected. . On the other hand, sand settling generated in the above-mentioned pipe dredging and sewage treatment process, pottery tube scraps generated in sand washing and sewer construction, stoneware,
Wastes such as porcelain product scraps have few uses for reuse, and most of them are currently landfilled.

【0004】[0004]

【課題を解決するための手段】そこで本発明は、前記沈
砂や洗砂、陶管屑といった他の廃棄物に着目し、焼却灰
に加える骨材に代えて沈砂や洗砂、陶管屑を用いること
で、品質の安定と廃棄物全体の大量消費を可能とする廃
棄物を用いた道路舗装材の製造方法を提供するもので、
その構成は、前記焼却灰に、沈砂、洗砂、陶管屑のうち
少なくとも1種類を骨材として加え、混合して坏土を形
成し、この坏土を成形後、焼却灰が焼結する温度で焼成
することを特徴とするものである。又前記骨材に、粉
砕、分級した陶器質、せっ器質、磁器質製品屑を加える
ことが望ましい。又前記焼却灰の重量部を35〜50
%、骨材の重量部を45%以上に設定することが望まし
い。更に前記焼成時の燃料として、下水処理工程で発生
する消化ガスを利用することもできる。
In view of the above, the present invention focuses on other wastes such as sand settling, washing sand, and ceramic shavings, and replaces the aggregate added to the incineration ash with the setting sand, washing shavings, and ceramic shavings. It provides a method for manufacturing road pavement materials using waste that enables stable quality and large-scale consumption of waste as a whole.
The structure is such that at least one kind of sand, washed sand, and ceramic waste is added to the incineration ash as an aggregate and mixed to form a kneaded clay, and after the kneaded clay is formed, the incinerated ash is sintered. It is characterized by being fired at a temperature. Further, it is desirable to add crushed and classified porcelain, stoneware and porcelain product scraps to the aggregate. Moreover, the weight part of the incineration ash is 35 to 50
%, And the weight part of the aggregate is preferably set to 45% or more. Further, as the fuel for the above-mentioned calcination, digestive gas generated in the sewage treatment process can be used.

【0005】[0005]

【実施例】まず本発明の製造方法における各要素を説明
する。 「焼却灰」焼却灰は公共の下水処理施設から排出される
ものを利用できるが、焼却灰には、下水汚泥からの脱水
時に添加する凝集剤の種類により高分子系と石灰系とが
あり、本発明においては、CaOを多く含有して焼成温
度が比較的高く、軟化溶融温度幅が狭い石灰系より、消
費熱量、焼成管理上から好ましい高分子系焼却灰を使用
する。又焼却灰は一般的にその粒度が40μm以下のも
のが略90%を占め、5〜20μmの範囲に50〜60
%が集中している細かい粉末のため、以下本発明では微
粒子原料として取り扱う。又焼却灰自体は可塑性が乏し
く、成形品の強度もあまり大きくないため、取扱上の問
題から、必要に応じて無機質若しくは有機質のバインダ
ーを加えても良い。無機質としては木節粘土、蛙目粘
土、ベントナイト等があり、有機質としては親水性結合
材が望ましく、天然物では澱粉やゴム等、半合成若しく
は合成品ではCMC、PVA等がある。これらは焼却灰
に対して無機質の場合には5〜15%、有機質の場合に
は0.1〜5%程度添加すれば良い。 「骨材」これは焼却灰の軟化溶融温度でその原形を保つ
粗粒子原料である。下水処理時に発生する沈砂、洗砂に
は砂成分以外に多量の金属やプラスチック等の異物が混
在しているので磁石や篩で、又陶管屑は泥などの汚れが
付着しているので水洗いなどでできるだけ除去する。こ
の除去によって成形品の焼成時に発泡、色点等の欠点を
防ぐことができる。以上のように処理した沈砂、洗砂及
び陶管屑を篩で粉砕、分級し、必要があれば仮焼し、仮
焼品の粒度を調整する。粗粒子原料の粒度は、透水性製
品の場合、5.0mm以下、しかし製品の品質上0.2〜
3.0mm程度が望ましい。その他粗粒子原料としては、
陶器質、せっ器質、磁器質製品屑が挙げられる。これら
の粗粒子原料2は図16の如く、焼成時に微粒子原料3
が軟化溶融して容積減少しても、成形品1全体の減容を
阻み、焼成品1´の収縮率を小さくすると共に、気孔4
を生じさせて透水性を有するものとなる。 「焼成燃料」焼成の燃料には、下水処理の消化槽で発生
する消化ガスを使用できる。一般的に消化が順調に行わ
れている場合には、含水率97%前後の汚泥では有機物
1kg当り350〜550Nリットル、投入汚泥に対し7
〜10倍量の消化ガスが発生し、消化ガス成分は汚泥の
消化状態によっても異なるが、およそメタン60〜65
%vol.%含有されており、低位発熱量は、5000〜5
500kcal/Nm3である。勿論これらは焼成時に限ら
ず、沈砂や洗砂等の乾燥、坏土成形時の乾燥、成形品の
乾燥時においても燃料として用いることができる。
First, each element in the manufacturing method of the present invention will be described. "Incineration ash" Incineration ash can be used from those discharged from public sewage treatment facilities, but incineration ash has polymer type and lime type, depending on the type of coagulant added during dehydration from sewage sludge, In the present invention, a polymer incineration ash that is preferable in terms of heat consumption and firing control is used rather than a lime type that contains a large amount of CaO and has a relatively high firing temperature and a narrow softening and melting temperature range. In general, 90% of the incinerated ash has a particle size of 40 μm or less, and 50 to 60 μm in the range of 5 to 20 μm.
Since it is a fine powder in which% is concentrated, it will be treated as a fine particle raw material in the present invention hereinafter. Further, since the incinerated ash itself has poor plasticity and the strength of the molded product is not so great, an inorganic or organic binder may be added if necessary due to handling problems. Inorganic substances include kibushi clay, frog clay, bentonite, etc., and organic substances are preferably hydrophilic binders, such as starch and rubber for natural products, and CMC, PVA for semi-synthetic or synthetic products. These may be added to the incinerated ash in an amount of 5 to 15% in the case of an inorganic substance and 0.1 to 5% in the case of an organic substance. "Aggregate" This is a coarse-grain raw material that maintains its original shape at the softening and melting temperature of incinerated ash. In addition to sand components, a large amount of foreign substances such as metals and plastics are mixed in the settling sand and washing sand generated during sewage treatment, so use a magnet or a sieve. Etc. to remove as much as possible. This removal can prevent defects such as foaming and color point during firing of the molded product. The settled sand, washed sand, and porcelain waste that have been treated as described above are crushed with a sieve, classified, and if necessary, calcined to adjust the particle size of the calcined product. The particle size of the coarse particle raw material is 5.0 mm or less in the case of a water-permeable product, but 0.2-
About 3.0 mm is desirable. As other coarse particle raw materials,
Pottery, stoneware, porcelain product waste. As shown in FIG. 16, these coarse particle raw materials 2 are fine particle raw materials 3 during firing.
Even if the softened and melted material is reduced in volume, the volume of the molded product 1 as a whole is prevented, the shrinkage rate of the baked product 1'is reduced, and the pores 4
Is generated and becomes water permeable. "Burning fuel" As a fuel for firing, a digestion gas generated in a digestion tank for sewage treatment can be used. Generally, when digestion is carried out smoothly, in the case of sludge with a water content of around 97%, 350 to 550 Nl / kg of organic matter, and 7 to the sludge input.
Approximately 10 times the amount of digestive gas is generated, and the digestive gas component varies depending on the digested state of sludge, but it is approximately 60 to 65 methane.
% Vol.% Is included, and the lower heating value is 5000-5
It is 500 kcal / Nm 3 . Needless to say, these can be used as fuel not only during firing but also during drying of settling sand, washing sand, etc., during drying of kneaded clay, and during drying of molded products.

【0006】上記要素を用いた本発明の実施例を図及び
表に基いて説明する。実施例1 表1の調合条件A、焼成条件Bを組み合わせて試験を行
った。微粒子原料としての焼却灰は高分子系のもの、粘
土は蛙目粘土を使用する。粗粒子原料として、洗砂は約
200℃で乾燥させて篩で20〜60メッシュ(粒径で
0.25〜0.84mm)に分級し、磁器質骨材は、粉砕
後篩で7〜20メッシュ(粒径で0.84〜2.83m
m)に分級したものを使用する。これらの原料を表1の
調合条件Aの4調合で攪拌混合した後、水を加えながら
混練、造粒し、乾燥させて坏土とする。次に油圧プレス
で200kgf /cm2 の圧力で成形し、成形品を電気炉で
表1に示す焼成条件Bの4温度で夫々焼成する。焼成品
の各種特性を測定した結果を図1、2に示す。
An embodiment of the present invention using the above elements will be described with reference to the drawings and tables. Example 1 A test was conducted by combining the mixing condition A and the baking condition B shown in Table 1. The incineration ash used as the raw material for the fine particles is a high-polymer type, and the clay is frog-eyed clay. As coarse particle raw material, the washed sand is dried at about 200 ° C. and classified with a sieve to 20 to 60 mesh (particle size: 0.25 to 0.84 mm), and the porcelain aggregate is crushed to 7 to 20 with a sieve. Mesh (particle size 0.84 to 2.83m
Use the one classified in m). These raw materials are mixed by stirring under four mixing conditions of the mixing condition A in Table 1, and then kneaded while adding water, granulated, and dried to obtain a kneaded clay. Next, it is molded with a hydraulic press at a pressure of 200 kgf / cm 2 , and the molded product is baked in an electric furnace at four temperatures of baking conditions B shown in Table 1. The results of measuring various characteristics of the fired product are shown in FIGS.

【0007】[0007]

【表1】 [Table 1]

【0008】図1、2に示す結果より、道路舗装材とし
て使用が可能な透水係数1.0×10-2cm/sec以上、曲
げ強度30kgf/cm2 以上のものは、調合A1における焼
成温度B2,3、調合A2における焼成温度B2,B
3、調合A3における焼成温度B3、調合A4における
焼成温度B3が挙げられる。又焼成温度が高くなると曲
げ強度も高くなる傾向が確認でき、透水係数との関連で
は焼成温度1050,1075℃のものが好ましい値を
示している。
From the results shown in FIGS. 1 and 2, those having a water permeability of 1.0 × 10 -2 cm / sec or more and a bending strength of 30 kgf / cm 2 or more, which can be used as a road paving material, have a firing temperature in the preparation A1. B2,3, firing temperature B2, B in preparation A2
3, firing temperature B3 in preparation A3, firing temperature B3 in preparation A4. Further, it can be confirmed that the bending strength tends to increase as the firing temperature increases, and in relation to the water permeability, the ones at the firing temperatures of 1050 and 1075 ° C. show preferable values.

【0009】実施例2 上記実施例1は調合条件に焼成温度を組み合わせたもの
であったが、ここでは表2のように洗砂粒度条件、調合
条件、成形条件を組み合わせて試験を行った。微粒子原
料として焼却灰は高分子系のもの、粘土は蛙目粘土を使
用する。粗粒子原料として、洗砂は約200℃で乾燥さ
せ、篩で2つの粒度条件A:7〜20メッシュ(粒径で
0.84〜2.83mm)、20〜60メッシュ(粒径で
0.25〜0.84mm)で分級し、磁器質骨材は、粉砕
後、篩で7〜20メッシュに分級したものを使用する。
これらの原料を4つの調合条件B、4つの磁器質骨材/
洗砂比条件C、3つの成形圧力条件Dで夫々成形する。
成形品を電気炉で焼成温度1075℃で焼成する。焼成
品の各種特性を図3〜6に示す。
Example 2 In Example 1 described above, the firing conditions were combined with the mixing conditions. Here, as shown in Table 2, tests were conducted by combining the sand washing particle size conditions, the mixing conditions, and the molding conditions. As the fine particle raw material, incineration ash uses a high-polymer-type one, and clay uses frog-eyed clay. As the coarse particle raw material, the washed sand is dried at about 200 ° C. and two particle size conditions A: 7 to 20 mesh (particle size: 0.84 to 2.83 mm), 20 to 60 mesh (particle size: 0. 25 to 0.84 mm), and the porcelain aggregate is crushed and then sieved to 7 to 20 mesh.
These raw materials are prepared under four mixing conditions B, four porcelain aggregates /
Molding is performed under the sand washing ratio condition C and the three molding pressure conditions D, respectively.
The molded product is fired in an electric furnace at a firing temperature of 1075 ° C. Various characteristics of the fired product are shown in FIGS.

【0010】[0010]

【表2】 [Table 2]

【0011】図3〜6の結果より、前記道路舗装材とし
ての特性に着目すると、洗砂粒度は比較的粒度の大きい
条件A1が、調合条件では焼却灰が40,50重量部と
なるB1,B2が好ましいことが解り、磁器質骨材/洗
砂比条件は特に特性を左右するものとは認め難い。又成
形圧力は100,200kgf/cm2 となるD1,D2の範
囲において所定の値以上の透水係数を得られるものが多
い。
From the results of FIGS. 3 to 6, focusing on the characteristics as the road pavement material, the condition A1 in which the particle size of washed sand is relatively large, and the compounded condition is 40,50 parts by weight of incinerated ash B1, It is understood that B2 is preferable, and it is difficult to recognize that the condition of the porcelain aggregate / washing sand ratio particularly affects the characteristics. Further, in many cases, the molding pressure is 100, 200 kgf / cm 2, and in the range of D1 and D2, it is possible to obtain a water permeability coefficient higher than a predetermined value.

【0012】実施例3 よって次の実施例では、上記実施例2ではっきり確認で
きなかった骨材の調合比の要因に着目した実験例を行っ
た。即ち表3の調合条件、成形条件、骨材条件を組み合
わせたもので、微粒子原料として、焼却灰は高分子系の
ものを、粘土は蛙目粘土を使用する。ここで用いる骨材
は、洗砂、陶管屑、磁器質骨材である。まず洗砂は約2
00℃で乾燥させ、篩で7〜20メッシュに分級し、陶
管屑は約200℃で乾燥させて粉砕後、篩で7〜20メ
ッシュに分級し、そして磁器質骨材は、粉砕後、篩で7
〜20メッシュに分級したものを夫々使用する。これら
の原料を3つの調合条件Aで調合し、このうち骨材を図
7の三角座標で示す21の骨材調合条件として攪拌混合
した後、水を加えながら混練、造粒し、乾燥させて坏土
とする。次にこの坏土を油圧プレスで2つの成形圧力条
件で成形し、成形品を電気炉で焼成温度1075℃で焼
成する。焼成品の各特性は図8〜11に示す通りであっ
た。又ここでは別に骨材調合比と各特性との関連を図1
2〜15に示す。
According to the third embodiment, in the next embodiment, an experiment example was conducted in which attention was paid to the factor of the mixing ratio of the aggregate which could not be clearly confirmed in the second embodiment. That is, a combination of the compounding conditions, molding conditions and aggregate conditions shown in Table 3 is used. As the fine particle raw material, the incineration ash is a high-molecular one and the clay is a frog grain clay. The aggregates used here are sand washing, porcelain waste, and porcelain aggregates. First, wash sand about 2
Dry at 00 ° C., classify to 7-20 mesh with a sieve, shavings are dried at about 200 ° C. and crushed, then classified to 7-20 mesh with a sieve, and porcelain aggregate is crushed to Sieve 7
Use the ones classified to ~ 20 mesh respectively. These raw materials were blended under three blending conditions A, and among them, the aggregate was agitated and mixed under the aggregate blending conditions of 21 shown by triangular coordinates in FIG. 7, and then kneaded while adding water, granulated, and dried. It will be kneaded clay. Next, this kneaded material is molded by a hydraulic press under two molding pressure conditions, and the molded product is baked in an electric furnace at a baking temperature of 1075 ° C. The properties of the fired product were as shown in FIGS. In addition, here, the relationship between the aggregate mixing ratio and each characteristic is separately shown in FIG.
2-15.

【0013】[0013]

【表3】 [Table 3]

【0014】ここでも透水係数に着目すると、成形圧力
が150,200kgf /cm2 双方において、焼却灰40
%では所定の値をクリアし、焼却灰50%以上では所定
の値をクリアしないことが認められた。従って骨材は少
なくとも45%以上は必要であることが確認できる。又
調合比との関係では、洗砂量比率が高くなるに従って高
くなり、陶管屑量比率が高くなるに従って低くなる傾向
がある。しかし曲げ強度も合わせて推察すると、透水性
道路舗装材として使用し得るものとしては、骨材中の洗
砂量比率は40%以下が望ましい。
Here again, paying attention to the water permeability, the incinerated ash 40 is obtained at both molding pressures of 150 and 200 kgf / cm 2.
It was confirmed that the specified value was cleared when%, and the specified value was not cleared when the incinerated ash was 50% or more. Therefore, it can be confirmed that at least 45% or more of the aggregate is necessary. In addition, in relation to the mixing ratio, it tends to be higher as the sand washing amount ratio is higher, and is lower as the ceramic waste amount ratio is higher. However, in consideration of the bending strength as well, it is desirable that the amount of sand washed in the aggregate be 40% or less as a material that can be used as a water-permeable road pavement material.

【0015】尚上記のように焼却灰をその主要原料とし
た場合、焼成品は焼却灰に含まれる着色成分、特にFe
23 の存在により、固有の焼成呈色を示す。即ち黄褐
色〜黒褐色となるため道路舗装材として用いるためには
製品の色幅が乏しいので、図17に示すように表層部に
別途作成された着色上層部5や釉薬層6を施し、2層又
は3層構造とすることによって色幅を増やすことができ
る。
When the incineration ash is used as the main raw material as described above, the calcined product is a coloring component contained in the incineration ash, particularly Fe.
Due to the presence of 2 O 3 , it exhibits a unique firing color. That is, since the color width of the product is poor for use as a road pavement material because it is yellowish brown to blackish brown, a colored upper layer portion 5 and a glaze layer 6 which are separately prepared on the surface layer portion are applied as shown in FIG. Alternatively, the three-layer structure can increase the color width.

【0016】[0016]

【発明の効果】以上本発明によれば、従来焼却灰を利用
した場合でも品質が安定し、所定の特性を有した透水性
製品が得られ、又用いる原料の殆どを廃棄物で賄うこと
ができるから、廃棄物の大量消費が可能となる。又骨材
として沈砂、洗砂、陶管屑以外にせっ器質や陶磁器質製
品屑を利用したことで、廃棄物の対象が下水処理、下水
道工事から発生するものに止まらず、幅広い再利用がで
きる。特に焼却灰の重量部をおよそ35〜50%、骨材
の重量部を45%以上に設定すると、透水性は勿論、曲
げ強さ等の他の特性においても透水性道路舗装材として
の機能を満たし、而も形状の安定性等に優れた好適な製
品が得られる。更に焼成時の燃料に、下水処理工程で発
生する消化ガスを利用すると、限りある天然資源である
化石燃料の節約に繋がるものとなり、下水処理時に発生
する殆どの廃棄物を再利用可能となる。
As described above, according to the present invention, it is possible to obtain a water permeable product having a stable quality and predetermined characteristics even when conventional incineration ash is used, and it is possible to cover most of the raw materials used with waste. As a result, a large amount of waste can be consumed. In addition to sand settling, sand washing, and ceramic shavings as aggregate, waste of stoneware and porcelain products can be reused widely, not limited to waste generated from sewage treatment and sewer construction. . In particular, when the weight part of incineration ash is set to about 35 to 50% and the weight part of aggregate is set to 45% or more, not only the water permeability but also other characteristics such as bending strength can function as a water permeable road pavement material. A suitable product that satisfies the above requirements and is excellent in shape stability and the like can be obtained. Furthermore, if the digestion gas generated in the sewage treatment process is used as the fuel during firing, it will lead to the saving of fossil fuel, which is a limited natural resource, and most of the waste generated during the sewage treatment can be reused.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた製品の特性を測定した結果
を示す表である。
FIG. 1 is a table showing the results of measuring the properties of the product obtained in Example 1.

【図2】実施例1で得られた製品の特性を測定した結果
を示すグラフである。
FIG. 2 is a graph showing the results of measuring the characteristics of the product obtained in Example 1.

【図3】実施例2で得られた製品の特性を測定した結果
を示す表である。
FIG. 3 is a table showing the results of measuring the characteristics of the product obtained in Example 2.

【図4】実施例2で得られた製品の特性を測定した結果
を示す表である。
FIG. 4 is a table showing the results of measuring the characteristics of the product obtained in Example 2.

【図5】実施例2で得られた製品の特性を測定した結果
を示す表である。
5 is a table showing the results of measuring the characteristics of the product obtained in Example 2. FIG.

【図6】実施例2で得られた製品の特性を測定した結果
の平均値を示すグラフである。
FIG. 6 is a graph showing an average value of the results of measuring the characteristics of the product obtained in Example 2.

【図7】実施例3での骨材調合比の条件設定を示す三角
座標である。
FIG. 7 is a triangular coordinate showing the condition setting of the aggregate mixing ratio in Example 3.

【図8】実施例3で得られた製品の曲げ強度の測定結果
を示す表である。
8 is a table showing measurement results of bending strength of the product obtained in Example 3. FIG.

【図9】実施例3で得られた製品の透水係数の測定結果
を示す表である。
FIG. 9 is a table showing the measurement results of water permeability of the product obtained in Example 3.

【図10】実施例3で得られた製品の収縮率の測定結果
を示す表である。
FIG. 10 is a table showing the measurement results of shrinkage rate of the product obtained in Example 3.

【図11】実施例3で得られた製品の嵩比重の測定結果
を示す表である。
11 is a table showing the measurement results of the bulk specific gravity of the product obtained in Example 3. FIG.

【図12】実施例3で得られた製品の骨材調合比と曲げ
強度との関係を示す表である。
FIG. 12 is a table showing the relationship between the aggregate mixing ratio and the bending strength of the product obtained in Example 3.

【図13】実施例3で得られた製品の骨材調合比と透水
係数との関係を示す表である。
FIG. 13 is a table showing the relationship between the aggregate mixing ratio and the water permeability of the product obtained in Example 3.

【図14】実施例3で得られた製品の骨材調合比と収縮
率との関係を示す表である。
FIG. 14 is a table showing the relationship between the aggregate mixing ratio and the shrinkage ratio of the product obtained in Example 3.

【図15】実施例3で得られた製品の骨材調合比と嵩比
重との関係を示す表である。
FIG. 15 is a table showing the relationship between the aggregate ratio and bulk specific gravity of the product obtained in Example 3.

【図16】本発明の粗粒子原料と微粒子原料との焼成時
の状態を示す説明図である。
FIG. 16 is an explanatory diagram showing a state of the coarse particle raw material and the fine particle raw material of the present invention during firing.

【図17】本発明の成形品の他の実施例を示す説明図で
ある。
FIG. 17 is an explanatory view showing another embodiment of the molded product of the present invention.

【符号の説明】[Explanation of symbols]

1・・成形品、1´・・焼成品、2・・粗粒子原料、3
・・微粒子原料、4・・気孔、5・・着色上層部、6・
・釉薬層。
1 ・ ・ Molded product, 1 '・ ・ Fired product, 2 ・ ・ Coarse particle raw material, 3
..Particulate raw material, 4. Porosity, 5. Colored upper layer, 6.
-Glazed layer.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 11/00 ZAB M Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C02F 11/00 ZAB M

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下水処理によって発生する下水汚泥焼却
灰に、下水処理によって発生する沈砂若しくは洗砂又は
下水道工事によって発生する陶管屑のうち少なくとも1
種類を骨材として加え、混合して坏土を形成し、この坏
土を成形後、前記下水汚泥焼却灰が軟化溶融する温度で
焼成することを特徴とする廃棄物を用いた道路舗装材の
製造方法。
1. At least one of sewage sludge incineration ash generated by sewage treatment, sand settling or washing sand generated by sewage treatment, and ceramic pipe scraps generated by sewer construction.
A kind of aggregate is added as an aggregate to form a kneaded clay, and after this kneaded clay is molded, a road pavement material using waste characterized by being baked at a temperature at which the sewage sludge incinerator ash softens and melts. Production method.
【請求項2】 前記骨材に、粉砕、分級した陶器質、せ
っ器質、磁器質製品屑を加えたものである請求項1に記
載の廃棄物を用いた道路舗装材の製造方法。
2. The method for producing a road pavement material using waste according to claim 1, wherein the aggregate is added with crushed and classified pottery, stoneware and porcelain product waste.
【請求項3】 前記焼却灰の重量部が35〜50%、骨
材の重量部が45%以上である請求項1又は請求項2に
記載の廃棄物を用いた道路舗装材の製造方法。
3. The method for producing a road pavement material using waste according to claim 1, wherein the incinerated ash has a weight part of 35 to 50% and the aggregate has a weight part of 45% or more.
【請求項4】 前記焼成時の燃料に、下水処理工程で発
生する消化ガスを利用したものである請求項1から請求
項3のいずれか1項に記載の廃棄物を用いた道路舗装材
の製造方法。
4. The road pavement material using waste according to claim 1, wherein digestion gas generated in a sewage treatment process is used as fuel for the firing. Production method.
JP15494394A 1994-07-06 1994-07-06 Manufacturing method of road pavement material using waste Expired - Lifetime JP3553647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15494394A JP3553647B2 (en) 1994-07-06 1994-07-06 Manufacturing method of road pavement material using waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15494394A JP3553647B2 (en) 1994-07-06 1994-07-06 Manufacturing method of road pavement material using waste

Publications (2)

Publication Number Publication Date
JPH0819768A true JPH0819768A (en) 1996-01-23
JP3553647B2 JP3553647B2 (en) 2004-08-11

Family

ID=15595326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15494394A Expired - Lifetime JP3553647B2 (en) 1994-07-06 1994-07-06 Manufacturing method of road pavement material using waste

Country Status (1)

Country Link
JP (1) JP3553647B2 (en)

Also Published As

Publication number Publication date
JP3553647B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
CN102838378B (en) Complete harmless and resourceful treatment process of building solid waste
AU2007244118B2 (en) Method for manufacturing an artificial lightweight aggregate containing bottom ash
KR101216411B1 (en) The method of preparing lightweight-aggregate for concrete products using sludge of dyeing-waste water
KR20150022033A (en) Compositions of pervious concrete products by using the aggregates from industrial wastes and method for the same
JP3188200B2 (en) Manufacturing method of artificial lightweight aggregate
CN110041051A (en) A kind of river bottom mud and construction slurry haydite and preparation method thereof
KR100450898B1 (en) production of incinerated construction materials using wastewater sludge
JP2008126185A (en) Calcined object and its manufacturing method
JPH09100151A (en) Feedstock composition for producing ceramic product and ceramic product made therefrom
KR20000072111A (en) Composition for lightweight aggregate and method for manufacturing the same
JPH0819768A (en) Manufacture of road pavement material using waste
CN104676595B (en) Method for lowering quantity and toxicity of flying ash of household garbage incineration plant
JP2002097062A (en) Method for manufacturing ceramic product by using service water sludge waste material as main raw material
JP4717364B2 (en) Method for producing ceramic product using sewage sludge incineration ash and obtained ceramic product
JP2603599B2 (en) Artificial lightweight aggregate and manufacturing method thereof
JP2001295210A (en) Water permeable block and manufacturing method therefor
KR20020044899A (en) Composition for lightweight aggregate and method for manufacturing the same
KR101053658B1 (en) Method of manufacturing sintering brick used sewage sludge ash
KR100237349B1 (en) The process of manufacturing ceramics using wastes
JPH07172900A (en) Ceramic paving material and its production
JPH1036152A (en) Artificial aggregate and its production
KR102631822B1 (en) Mixed composition containing inorganic waste composition, And the material using a mix composition
JPH07144958A (en) Production of pottery having continuous pore by utilizing waste
TW593198B (en) Polymer concrete containing industrial waste as raw material
JPH1072270A (en) Production of paving material excellent in water retentivity

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term