JP3552878B2 - Method for manufacturing low-temperature sintered dielectric porcelain - Google Patents

Method for manufacturing low-temperature sintered dielectric porcelain Download PDF

Info

Publication number
JP3552878B2
JP3552878B2 JP15781397A JP15781397A JP3552878B2 JP 3552878 B2 JP3552878 B2 JP 3552878B2 JP 15781397 A JP15781397 A JP 15781397A JP 15781397 A JP15781397 A JP 15781397A JP 3552878 B2 JP3552878 B2 JP 3552878B2
Authority
JP
Japan
Prior art keywords
weight
volume
mol
dielectric
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15781397A
Other languages
Japanese (ja)
Other versions
JPH10330161A (en
Inventor
佳成 野寄
靖生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP15781397A priority Critical patent/JP3552878B2/en
Publication of JPH10330161A publication Critical patent/JPH10330161A/en
Application granted granted Critical
Publication of JP3552878B2 publication Critical patent/JP3552878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波帯において使用する積層構造の共振器等に好適な高誘電率誘電体磁器の製造方法に関するものである。更に詳しく述べると、Bi2 3 とAl2 3 を含有するBaO−TiO2 −Nd2 3 系の高誘電率材料に対して、ZnO−B2 3 −SiO2 −Al2 3 系のガラス材料と金属酸化物(ZnO又はSnO)を適量添加することにより、誘電体磁器組成物の低温焼結化と誘電特性の向上を図る技術に関するものである。
【0002】
【従来の技術】
自動車電話や携帯電話など、マイクロ波を利用した移動体通信用機器では、フィルタ等の材料として誘電体磁器が使用されている。近年の通信機器の小形化に伴い、誘電体フィルタも一層の小形化が要求され、それに対応すべく一部で積層型ストリップ線路フィルタが採用されている。これは、内部の直線状のストリップ線路型共振器内導体を電極材(導体ペースト)のスクリーン印刷法で未焼成の誘電体シート(グリーンシート)上にパターニングし、それを含めて誘電体シートを多数積層して圧着一体化し、外部アース導体と入出力電極を形成して焼結することによって製造する。通常、多数個取りができるように、大きな誘電体シートを使用し、圧着一体化した後に縦横に切断してチップ状にする製法を採用している。λ/4共振器では、共振器内導体は共振波長の1/4の奇数倍の長さに設定し、その一端が開放となり、他端が誘電体チップの外表面の外部アース導体に短絡されるように構成する。誘電体チップの内部で、このような共振器内導体を複数個、フィルタ特性に応じた結合度が得られるように所定の間隔で配列することによって、帯域通過フィルタが得られる。
【0003】
このような構造を実現するためには、内部電極材による各種導体パターンが崩れない温度で焼結できる高誘電率の誘電体磁器が必要となる。誘電体磁器の低温焼結化を図る方法として、ガラス材料を添加する技術が開発されている(例えば特開平7−69719号公報参照)。そこではSiO−B−BaO系のガラス材料を用いている。ガラス材料を添加することによる利点は低温焼結が可能になることであるが、反面、ガラス材料の添加によって比誘電率が低下する問題が生じる。また低温焼結による他の問題点は、焼結体の相対密度が低くなり、そのため焼結した誘電体磁器の比誘電率が変動することである。
【0004】
そのような問題を解決できる方法として、本発明者等は先に、BiとAlを含有するBaO−TiO−Nd系の高誘電率材料に対して、ZnO−B−SiO−Al系のガラス材料を添加し、粉体を微粉砕処理することにより、誘電体磁器の低温焼結化と誘電特性の安定化を図る製造方法を提案した(特開平8−239263号公報参照)。具体的には、主成分としてBaOが10〜16モル%、TiOが67〜72モル%、Ndが16〜18モル%の組成を有し、それに対し副成分としてBiを7〜10重量%、Alを0.3〜1.0重量%含有している仮焼済みのBaO−TiO−Nd系の高誘電率材料に、ZnOが45〜70重量%、Bが5〜13重量%、SiOが7〜40重量%、Alが8〜20重量%である組成の既にガラス化されている材料を、前記高誘電率材料に対して3〜20容積%添加し、粉体の平均粒径を0.1μm以下に調整して、880〜1000℃で焼成し相対密度を95%以上にする低温焼結誘電体磁器の製造方法である(以下、これを「先行技術」という)。その有効性を裏付ける実験結果の一例を表1に再掲する。
【0005】
【表1】

Figure 0003552878
【0006】
表1において良否判定の基準で○(良品)と判定したのは、相対密度が95%以上、フィルタなどの材料として特に問題の生じないQf が1500(GHz)以上、τf が±15(ppm/℃)以内となる材料である。良品は、1000℃以下の焼成温度で、良好な誘電特性が得られる。特に試料▲1▼の条件では、1000℃の焼成温度で相対密度98%、比誘電率85を達成した。Ag(銀)の融点は960℃であるが、内部電極材にAgを用いて誘電体材料を積層して焼成した場合、1000℃で焼成しても内部電極パターンの崩れが生じないことが分かっており、その点から見てもこの試料▲1▼の条件で得られる誘電体磁器は有用である。更に試料▲2▼の条件では、銀の融点以下である930℃の焼成で相対密度99%が達成された。従って、この試料▲2▼の条件で得られる誘電体磁器は、特に低い温度で焼結可能な材料として極めて有用である。
【0007】
【発明が解決しようとする課題】
上記の先行技術は、880〜1000℃で焼結して相対密度を95%以上にできる優れた方法である。しかし、所望の特性を発現させるためには、粉体を平均粒径が0.1μm以下となるまで超微粉化処理する必要がある。しかし、このような誘電体材料の超微粉化は、その工程に多くの時間を要し、経済的に不利である。また誘電体磁器の相対密度が向上することで比誘電率の変動を抑えることができるが、反面、材料の超微粉化の工程を経るために、それに起因する特性不安定性が生じる恐れがある。
【0008】
本発明の目的は、内部電極材を含んだ構造の各種の誘電体部品を低温で(内部電極材に損傷を与えない温度で)焼結でき、粉体の微粉砕工程が長くなりすぎることもなく、誘電特性及び特性安定性が向上するような低温焼結誘電体磁器の製造方法を提供することである。
【0009】
【課題を解決するための手段】
本発明は、上記の先行技術を利用し、更に改良を加えたものである。そのために高誘電率材料とガラス材料の基本組成はそのまま利用している。即ち、主成分としてBaOが10〜16モル%、TiO2 が67〜72モル%、Nd2 3 が16〜18モル%の組成を有し、それに対し副成分としてBi2 3 を7〜10重量%、Al2 3 を0.3〜1.0重量%含有している仮焼済みのBaO−TiO2 −Nd2 3 系の高誘電率材料に、ZnOが45〜70重量%、B2 3 が5〜13重量%、SiO2 が7〜40重量%、Al2 3 が8〜20重量%である組成の既にガラス化されている材料を適量添加し、低温焼成する誘電体磁器の製造方法である。ここで本発明では、高誘電率材料に対して、既にガラス化されている材料を3−x〜20−x容積%添加すると共に、それとは別にZnOをx容積%(但し、x=0.〜1.5容積%)添加し、粉体の平均粒径を0.3μm以下に調整して、成形後、1000℃以下の温度で焼成する。ZnOに代えて、SnOを0.3〜1.2容積%添加してもよい。なお、組成を示す数値範囲(モル%、重量%及び容積%)の両端は、全ての場合に本発明の範囲内に含まれる。
【0010】
更に好ましい金属酸化物の添加範囲は、ZnOでは0.2〜1.2容積%、SnOでは0.5〜1.0容積%であり、それらの中でも特にZnOを0.5〜1.0容積%添加することが最も効果的であり比誘電率を高めることができる。
【0011】
母材となるBiとAlを含有するBaO−TiO−Nd系の誘電体材料は、それ自身、高誘電率を呈する誘電特性をもつ。しかし、それ単独で良好な特性を発現させるためには1300℃程度以上の高温での通常焼成を行わねばならない。内部電極材として、例えばCu(銅)あるいはAg(銀)を用いると1000℃程度の焼成温度に耐えられる。因に、Cu(銅)の融点は1083℃、Au(金)の融点は1063℃である。なおAg(銀)の融点は960℃であるが、誘電体材料の内部にAgを埋設して焼成した場合、1000℃で焼成しても内部の銀電極パターンは崩れないことが分かっている。従って、1000℃以下(可能であれば更に低い温度で)で焼結できれば、内部電極材を含んだ誘電体成形物を焼成して、誘電体部品を製造できることになる。
【0012】
このような低温焼結化のために、本発明では、Bi2 3 とAl2 3 を含有するBaO−TiO2 −Nd2 3 系の誘電体材料(母材)に対して、ZnO−B2 3 −SiO2 −Al2 3 系ガラス材料の添加と、SnO又はZnOの微少添加という手法を採用し、材料粉体の過度の微粉化を避けている。
【0013】
BaO−TiO−Nd系の誘電体材料において、各成分範囲を限定した理由は、材料自体の最良の特性を発現させるためであり、次の通りである。主成分であるBaOは、10モル%未満では比誘電率が小さくなり、16モル%を超えると温度係数が大きくなる。TiOは、67モル%未満では焼結性が悪くなり、72モル%を超えると温度係数が大きくなる。Ndは、16モル%未満では温度係数が悪く、18モル%を超えると比誘電率が小さくなる。また副成分であるBiは、7重量%未満では温度係数の改善効果が小さく、10重量%を超えると焼結性が悪くなる。Alは、0.3重量%未満ではQ及び温度係数の改善効果が少なく、1.0重量%を超えると比誘電率が小さくQが減少する。
【0014】
次にガラス材料は、高誘電率材料を低温焼結化するためのものであるが、種々の組成系のガラスについて実験を行った結果、ZnO−B−SiO−Al系のガラス材料の適量添加が焼結磁器の相対密度(実際の密度/理論密度)の向上に有効であることが分かった。各成分範囲の限定は次の理由による。ZnOは、45重量%未満では相対密度が低下するし、70重量%を超えると比誘電率が小さくなる。Bは、5重量%未満ではQが低くなり、13重量%を超えると相対密度が低くなる。SiOは、7重量%未満では温度係数改善の効果が少なく、40重量%を超えると相対密度が低くなる。Alは、8重量%未満ではQが低くなり、20重量%を超えると比誘電率が小さくなる。このようなガラス材料を、母材であるBaO−TiO−Nd系の誘電体材料に対して3〜20容積%添加することで、880〜1000℃の適当な温度で焼成した時に、相対密度95%以上を達成することができる。ガラス質材料の添加量が3容積%未満では低温焼結化せず、20容積%を超えると比誘電率が低下してしまう。
【0015】
更に本発明において、ZnO又はSnOを適量同時添加するのは、誘電特性を向上させるためである。ここで重要なことは、これらの金属酸化物は、母材となる高誘電率材料及び既にガラス化された材料とは別に添加し、それらと一緒に平均粒径0.3μm以下まで微粉化することである。実験の結果によれば、高誘電率材料中あるいはガラス材料中に、それらの金属酸化物が余分に含まれていたとしても本発明の所望の効果は生じなかった。平均粒径を0.3μm以下まで微粉化するのは、反応性を高めて低温焼結化を促進するためである。上記のような特定の金属酸化物を適量添加することで、先行技術のような過度(0.1μm以下)の超微粉化を避けることができる。但し、実験結果によると、平均粒径が0.5μmあるいは0.4μmの場合には所望の特性が得られなかったため、0.3μm以下にすることは必要である。なお金属酸化物としてMgO、B2 3 、Al2 3 を同様に添加した実験では、Qf のみならず相対密度や比誘電率も低下し、好ましくない結果となった。
【0016】
ガラス材料の添加による低温焼結のメカニズムは、焼成時にガラス材料が軟化して高誘電率材料粒子を引きつけ合い、固相成長させることによる。そこで特定の金属酸化物(ZnO又はSnO)を適量、ガラス材料とは別に添加すると、それがガラス材料に付着してその軟化を促進し、全体として焼結温度を下げ、誘電特性を向上させるものと考えられる。具体的には、先行技術に対して、更に30〜50℃程度、焼成温度を下げることが可能であり、970℃以下で焼成できるようになる。そのため、平均粒径を0.1μm以下まで超微粉化しなくても、所望の特性が発現することになる。
【0017】
【実施例】
実施した誘電体磁器の製造フローは次の通りである。
▲1▼配合
既に仮焼が終了した高誘電率材料に、予めガラス化した材料と特定の金属酸化物(CuO、ZnO、SnOのいずれか1種)を適量添加する。ここで使用した高誘電率材料は、主成分として、
BaO…15モル%、
TiO…69モル%、
Nd…16モル%に対して、副成分として
Bi…8重量%、
Al…0.3重量%を添加した組成である。またガラス材料は、
ZnO…70重量%、
…7重量%、
SiO…11重量%、
Al…12重量%からなる組成である。これらを容積比率で、高誘電率材料:ガラス材料:金属酸化物=95:(5−x):xの割合で混合して種々の試料を調整した。添加量xは、0.1〜2.0容積%までの範囲で変化させた。高誘電率材料及びガラス材料は、前記従来技術で、特に低い温度で焼結可能な材料として極めて有用とされた試料▲2▼を基本とする組成である。
▲2▼粉砕
媒体攪拌ミルにより平均粒径0.3μmに微粉砕した。粉砕に使用したボールは、直径1mmφ以下の部分安定化ジルコニア製である。粉砕時は、粉体が微粉化するため凝集しないように必要に応じて分散剤を適量添加した。
▲3▼乾燥
粉砕した粉体を乾燥し、これによって低温焼結用の材料粉体を得た。
▲4▼造粒、成形、焼成
その後の工程は、従来方法と同様であり、バインダーを加えて造粒し、所定形状にプレス成形した後、所定温度で焼成した。焼成は全て900℃で行った。
【0018】
実験結果を表2に示す。比誘電率及びQf の測定は、空洞開放形誘電体共振器法(測定周波数:6GHz)で行った。なお、CuOの添加は参考例である。
【0019】
【表2】
Figure 0003552878
【0020】
CuO(参考例)、ZnO、SnOのいずれか1種を適量添加すると(○を付した添加量x)、添加しない場合(比較例)よりも比誘電率εr が向上する。その様子を図1に示す。なおQf が若干低下する場合もあるが、フィルタとして使用する場合には1500GHz以上あればよいとされるため、十分な値と考えられる。これらのことから、添加量xは、ZnOでは0.1〜1.5容積%、SnOでは0.3〜1.2容積%とする。なかでも、ZnOを0.2〜1.2容積%、SnOを0.5〜1.0容積%とすると、比誘電率は74以上と大きくなり好ましい。とりわけ、ZnOを0.5〜1.0容積%とすると、比誘電率は75以上と更に大きくなり最適である。また900℃という低い温度で良質の誘電体磁器を焼成でき、銀ペーストを用いての外部電極の同時焼付けも十分可能となる。
【0021】
上記の実施例では、基本組成となる高誘電率材料及びガラス材料については、それぞれ1種のみで系統的に行った結果を示しているが、非系統的な各種の実験でも、また前記先行技術を踏まえてみても、前記従来技術で規定する基本組成の範囲内では、ほぼ同様の傾向を示すことが分かっており、本発明で規定する範囲内で有効であることは十分推測できる。
【0022】
【発明の効果】
本発明は、Bi2 3 とAl2 3 を含有するBaO−TiO2 −Nd2 3 系の高誘電率材料に対して、ZnO−B2 3 −SiO2 −Al2 3 系のガラス材料と金属酸化物(ZnO又はSnO)を適量添加する製造方法であり、それによって粉体の微粉砕工程が長くなりすぎることもなく、内部電極材を含んだ構造の各種の誘電体部品を1000℃以下の低温で(内部電極材に損傷を与えない温度で)焼結でき、経済性に優れ工程管理も容易で、且つ誘電特性及び特性安定性が向上する。

【図面の簡単な説明】
【図1】金属酸化物添加量xに対する比誘電率εr の関係を示すグラフ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a high dielectric constant dielectric porcelain suitable for a resonator having a laminated structure used in a microwave band. More particularly, Bi 2 O 3 and Al 2 O 3 with respect to BaO-TiO 2 -Nd 2 O 3 based high dielectric constant material containing, ZnO-B 2 O 3 -SiO 2 -Al 2 O 3 The present invention relates to a technique for adding a suitable amount of a glass material and a metal oxide ( ZnO or SnO 2 ) to achieve low-temperature sintering of a dielectric ceramic composition and improvement of dielectric characteristics.
[0002]
[Prior art]
2. Description of the Related Art In mobile communication devices using microwaves, such as mobile phones and mobile phones, dielectric porcelain is used as a material for filters and the like. With the recent miniaturization of communication devices, dielectric filters have been required to be further miniaturized, and in order to cope with this, laminated strip line filters have been partially adopted. This is done by patterning the inner straight stripline type resonator inner conductor on an unfired dielectric sheet (green sheet) by screen printing of an electrode material (conductor paste), and forming a dielectric sheet including it. It is manufactured by laminating a large number, crimping and integrating, forming an external ground conductor and input / output electrodes, and sintering. Usually, a large dielectric sheet is used so that a large number of pieces can be formed, and a manufacturing method in which a large dielectric sheet is crimped and integrated and then cut vertically and horizontally into chips is adopted. In the λ / 4 resonator, the length of the conductor in the resonator is set to an odd multiple of 1/4 of the resonance wavelength, one end of the resonator is open, and the other end is short-circuited to the external ground conductor on the outer surface of the dielectric chip. It is configured so that: By arranging a plurality of such conductors in the resonator inside the dielectric chip at predetermined intervals so as to obtain a degree of coupling according to the filter characteristics, a bandpass filter can be obtained.
[0003]
In order to realize such a structure, a dielectric ceramic having a high dielectric constant that can be sintered at a temperature at which various conductor patterns formed by the internal electrode material do not collapse is required. As a method of achieving low-temperature sintering of dielectric ceramics, a technique of adding a glass material has been developed (for example, see Japanese Patent Application Laid-Open No. 7-69719). Here, a SiO 2 —B 2 O 3 —BaO-based glass material is used. The advantage of adding a glass material is that low-temperature sintering becomes possible, but on the other hand, there is a problem that the relative permittivity is lowered by the addition of the glass material. Another problem with low-temperature sintering is that the relative density of the sintered body is reduced, and the relative dielectric constant of the sintered dielectric ceramic fluctuates.
[0004]
As a method capable of solving such a problem, the present inventors have first proposed a method of using a BaO—TiO 2 —Nd 2 O 3 -based high dielectric constant material containing Bi 2 O 3 and Al 2 O 3 with ZnO. -B 2 O 3 was added -SiO 2 -Al 2 O 3 based glass material by the powder milling process, a manufacturing method of stabilizing the low temperature co Yuika and dielectric properties of the dielectric ceramic It has been proposed (see Japanese Patent Application Laid-Open No. 8-239263). Specifically, BaO has a composition of 10 to 16 mol%, TiO 2 has a composition of 67 to 72 mol%, and Nd 2 O 3 has a composition of 16 to 18 mol%, whereas Bi 2 O 3 is a sub component. 7-10 wt%, the Al 2 O 3 with high dielectric constant material calcined already BaO-TiO 2 -Nd 2 O 3 system containing 0.3 to 1.0 wt%, ZnO is 45 An already vitrified material having a composition of 70% by weight, 5 to 13% by weight of B 2 O 3, 7 to 40% by weight of SiO 2 , and 8 to 20% by weight of Al 2 O 3 Low-temperature sintered dielectric porcelain which is added at 3 to 20% by volume with respect to the rate material, adjusts the average particle diameter of the powder to 0.1 μm or less, and is fired at 880 to 1000 ° C. to make the relative density 95% or more. (Hereinafter referred to as “prior art”). An example of the experimental results supporting the effectiveness is shown in Table 1.
[0005]
[Table 1]
Figure 0003552878
[0006]
In Table 1, the criteria of good or bad in the criteria of good or bad are that the relative density is 95% or more, Qf is 1500 (GHz) or more which does not cause any problem as a material for a filter or the like, and τf is ± 15 (ppm / ppm). C). Good products have good dielectric properties at a firing temperature of 1000 ° C. or lower. In particular, under the conditions of sample (1), a relative density of 98% and a relative dielectric constant of 85 were achieved at a firing temperature of 1000 ° C. Although the melting point of Ag (silver) is 960 ° C., it has been found that when a dielectric material is laminated and fired using Ag as the internal electrode material, the internal electrode pattern does not collapse even when fired at 1000 ° C. From this point of view, the dielectric ceramic obtained under the conditions of the sample (1) is useful. Further, under the conditions of sample (2), a relative density of 99% was achieved by firing at 930 ° C., which is lower than the melting point of silver. Therefore, the dielectric porcelain obtained under the conditions of the sample (2) is extremely useful as a material which can be sintered particularly at a low temperature.
[0007]
[Problems to be solved by the invention]
The above prior art is an excellent method that can be sintered at 880 to 1000 ° C. to make the relative density 95% or more. However, in order to exhibit desired properties, it is necessary to subject the powder to ultrafine powder treatment until the average particle size becomes 0.1 μm or less. However, such ultra-fine pulverization of a dielectric material requires a lot of time in the process, and is economically disadvantageous. Further, the relative density of the dielectric porcelain can be improved to suppress a change in the relative dielectric constant. However, since the material is subjected to a process of ultra-fine pulverization, characteristic instability due to the process may be caused.
[0008]
An object of the present invention is to sinter various dielectric components having a structure including an internal electrode material at a low temperature (at a temperature at which the internal electrode material is not damaged), and it is also possible to make the powder pulverization process too long. It is another object of the present invention to provide a method for producing a low-temperature sintered dielectric porcelain having improved dielectric characteristics and characteristic stability.
[0009]
[Means for Solving the Problems]
The present invention utilizes the above-mentioned prior art and further improves it. For this purpose, the basic compositions of the high dielectric constant material and the glass material are used as they are. That, BaO 10 to 16 mol% as a main component, TiO 2 is 67 to 72 mol%, Nd 2 O 3 has a composition of 16 to 18 mol%, the Bi 2 O 3 with respect to it as a sub-component 7 10 wt%, the high dielectric constant material calcined already BaO-TiO 2 -Nd 2 O 3 system which contains Al 2 O 3 0.3 to 1.0 wt%, ZnO 45-70 wt% , B 2 O 3 is 5 to 13 wt%, SiO 2 is 7-40 wt%, Al 2 O 3 is added an appropriate amount of previously material being vitrified composition is 8-20 wt%, a low temperature fired This is a method for manufacturing a dielectric porcelain. Here in the present invention, the high dielectric constant material, along with already added material being vitrified 3-x~20-x volume%, x% by volume separately Zn O from that (where, x = 0 ( 1 to 1.5% by volume), adjust the average particle size of the powder to 0.3 μm or less, and after the compacting, bake at a temperature of 1000 ° C. or less. Instead of Zn O, it may be added to S nO 0.3 to 1.2 volume%. In addition, both ends of the numerical range (mol%, weight%, and volume%) indicating the composition are included in the scope of the present invention in all cases.
[0010]
Further addition range of preferred metal oxides, Z nO in 0.2 to 1.2 volume%, a SnO at 0.5 to 1.0% by volume, in particular ZnO Among these 0.5-1.0 It is most effective to add% by volume, and the relative dielectric constant can be increased.
[0011]
BaO-TiO 2 -Nd 2 O 3 based dielectric material containing Bi 2 O 3 and Al 2 O 3 as a base material itself has dielectric properties that exhibits a high dielectric constant. However, in order to exhibit good characteristics by itself, ordinary firing at a high temperature of about 1300 ° C. or more must be performed. If Cu (copper) or Ag (silver) is used as the internal electrode material, it can withstand a firing temperature of about 1000 ° C. Incidentally, the melting point of Cu (copper) is 1083 ° C., and the melting point of Au (gold) is 1063 ° C. Although the melting point of Ag (silver) is 960 ° C., it has been found that when Ag is embedded in a dielectric material and fired, the silver electrode pattern inside does not collapse even when fired at 1000 ° C. Therefore, if sintering can be performed at a temperature of 1000 ° C. or less (at a lower temperature if possible), a dielectric component including the internal electrode material can be fired to produce a dielectric component.
[0012]
For such low-temperature sintering Yuika, in the present invention, with respect to Bi 2 O 3 and Al 2 O 3 containing BaO-TiO 2 -Nd 2 O 3 based dielectric material (base material), ZnO and adding -B 2 O 3 -SiO 2 -Al 2 O 3 based glass material, SnO or employ a technique called micro addition of Zn O, and avoiding excessive pulverization of the material powder.
[0013]
In BaO-TiO 2 -Nd 2 O 3 based dielectric material, reasons for limiting the components range is in order to express the best characteristics of the material itself, is as follows. When BaO, which is a main component, is less than 10 mol%, the relative dielectric constant becomes small, and when it exceeds 16 mol%, the temperature coefficient becomes large. If TiO 2 is less than 67 mol%, the sinterability deteriorates, and if it exceeds 72 mol%, the temperature coefficient increases. If Nd 2 O 3 is less than 16 mol%, the temperature coefficient is poor, and if it exceeds 18 mol%, the relative permittivity becomes small. When the content of Bi 2 O 3 as a subcomponent is less than 7% by weight, the effect of improving the temperature coefficient is small, and when it exceeds 10% by weight, the sinterability deteriorates. If the content of Al 2 O 3 is less than 0.3% by weight, the effect of improving the Q and temperature coefficient is small, and if it exceeds 1.0% by weight, the relative dielectric constant is small and Q is reduced.
[0014]
Next, the glass material is for sintering a high dielectric constant material at a low temperature. As a result of conducting experiments on glasses of various composition systems, ZnO—B 2 O 3 —SiO 2 —Al 2 O 3 It has been found that the addition of an appropriate amount of the glass material of the system is effective for improving the relative density (actual density / theoretical density) of the sintered porcelain. The limitation of each component range is based on the following reason. If the ZnO content is less than 45% by weight, the relative density decreases, and if it exceeds 70% by weight, the relative dielectric constant decreases. When B 2 O 3 is less than 5% by weight, Q is low, and when it exceeds 13% by weight, the relative density is low. If the content of SiO 2 is less than 7% by weight, the effect of improving the temperature coefficient is small, and if it exceeds 40% by weight, the relative density becomes low. When Al 2 O 3 is less than 8% by weight, Q becomes low, and when it exceeds 20% by weight, the relative dielectric constant becomes small. Such glass materials, by adding 3 to 20 volume% relative to the BaO-TiO 2 -Nd 2 O 3 based dielectric material as the base material, when fired at a suitable temperature of from 880 to 1,000 ° C. , A relative density of 95% or more can be achieved. If the amount of the vitreous material is less than 3% by volume, low-temperature sintering will not be performed, and if it exceeds 20% by volume, the relative dielectric constant will be reduced.
[0015]
Further, in the present invention, the reason why ZnO or SnO is simultaneously added in an appropriate amount is to improve the dielectric properties. What is important here is that these metal oxides are added separately from the base material of the high dielectric constant material and the already vitrified material, and pulverized together with them to an average particle size of 0.3 μm or less. That is. According to the results of the experiment, the desired effects of the present invention did not occur even if the metal oxide was excessively contained in the high dielectric constant material or the glass material. The reason why the average particle size is reduced to 0.3 μm or less is to increase reactivity and promote low-temperature sintering. By adding an appropriate amount of the specific metal oxide as described above, excessive (0.1 μm or less) ultrafine powdering as in the prior art can be avoided. However, according to the experimental results, when the average particle size was 0.5 μm or 0.4 μm, the desired characteristics could not be obtained, so it is necessary to reduce the average particle size to 0.3 μm or less. In an experiment in which MgO, B 2 O 3 , and Al 2 O 3 were similarly added as metal oxides, not only Qf but also the relative density and the relative permittivity decreased, resulting in undesirable results.
[0016]
The mechanism of the low-temperature sintering by the addition of the glass material is based on the fact that the glass material softens at the time of firing, attracts the high dielectric constant material particles, and causes solid phase growth. Therefore, when an appropriate amount of a specific metal oxide ( ZnO or SnO 2 ) is added separately from the glass material, it adheres to the glass material to promote its softening, lower the sintering temperature as a whole, and improve the dielectric properties. it is conceivable that. Specifically, the firing temperature can be further reduced by about 30 to 50 ° C. with respect to the prior art, and firing can be performed at 970 ° C. or lower. Therefore, the desired characteristics can be exhibited even if the average particle size is not ultrafinely reduced to 0.1 μm or less.
[0017]
【Example】
The manufacturing flow of the implemented dielectric porcelain is as follows.
{Circle around (1)} Compounding A suitable amount of a vitrified material and a specific metal oxide (one of CuO, ZnO and SnO) are added to the high dielectric constant material which has already been calcined. The high dielectric constant material used here is, as a main component,
BaO: 15 mol%,
TiO 2 ... 69 mol%,
Nd 2 O 3 … 16 mol%, Bi 2 O 3 … 8% by weight as an auxiliary component,
Al 2 O 3 ... A composition to which 0.3% by weight is added. The glass material is
ZnO: 70% by weight,
B 2 O 3 ... 7% by weight,
SiO 2 ... 11% by weight,
Al 2 O 3 ... A composition comprising 12% by weight. These were mixed at a volume ratio of high dielectric constant material: glass material: metal oxide = 95: (5-x): x to prepare various samples. The addition amount x was changed in a range from 0.1 to 2.0% by volume. The high dielectric constant material and the glass material are compositions based on the sample (2) which is extremely useful as a material which can be sintered at a low temperature in the above-mentioned conventional technology.
{Circle around (2)} Finely pulverized to an average particle size of 0.3 μm by a pulverizing medium stirring mill. The ball used for the pulverization is made of partially stabilized zirconia having a diameter of 1 mmφ or less. At the time of pulverization, an appropriate amount of a dispersant was added as necessary so that the powder was pulverized and did not agglomerate.
{Circle around (3)} The dried and pulverized powder was dried to obtain a material powder for low-temperature sintering.
{Circle around (4)} Granulation, molding, and firing The subsequent steps are the same as those in the conventional method. The binder was added, granulated, press-molded into a predetermined shape, and fired at a predetermined temperature. All firings were performed at 900 ° C.
[0018]
Table 2 shows the experimental results. The relative permittivity and Qf were measured by the open cavity dielectric resonator method (measuring frequency: 6 GHz). The addition of CuO is a reference example.
[0019]
[Table 2]
Figure 0003552878
[0020]
When an appropriate amount of any one of CuO (Reference Example) , ZnO, and SnO is added (addition amount x with a circle), the relative dielectric constant εr is improved as compared with the case where no addition is performed (Comparative Example). This is shown in FIG. Although Qf may be slightly reduced, it is considered to be a sufficient value since it is sufficient that the frequency is 1500 GHz or more when used as a filter. For these reasons, the addition amount x is the Z in nO 0.1 to 1.5 volume%, SnO in 0.3 to 1.2% by volume. Above all , when ZnO is 0.2 to 1.2% by volume and SnO is 0.5 to 1.0% by volume, the relative dielectric constant is preferably as large as 74 or more. In particular, when ZnO is 0.5 to 1.0% by volume, the relative dielectric constant is further increased to 75 or more, which is optimal. In addition, high-quality dielectric porcelain can be fired at a temperature as low as 900 ° C., and simultaneous firing of external electrodes using silver paste is sufficiently possible.
[0021]
In the above examples, the results of systematically performing only one kind each for the high dielectric constant material and the glass material, which are the basic compositions, are shown. In view of the above, it is known that the same tendency is exhibited within the range of the basic composition defined by the above-mentioned conventional technology, and it can be sufficiently inferred that the composition is effective within the range defined by the present invention.
[0022]
【The invention's effect】
The present invention relates to a ZnO—B 2 O 3 —SiO 2 —Al 2 O 3 -based material for a BaO—TiO 2 —Nd 2 O 3 -based high dielectric constant material containing Bi 2 O 3 and Al 2 O 3. A suitable amount of a glass material and a metal oxide ( ZnO or SnO 2 ), whereby the powder fine grinding step does not become too long, and various dielectric components having a structure including an internal electrode material are provided. Can be sintered at a low temperature of 1000 ° C. or less (at a temperature that does not damage the internal electrode material), and it is economical, easy in process control, and has improved dielectric characteristics and characteristic stability.

[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the relative dielectric constant εr and the amount x of a metal oxide added.

Claims (2)

主成分としてBaOが10〜16モル%、TiO2 が67〜72モル%、Nd2 3 が16〜18モル%の組成を有し、それに対し副成分としてBi2 3 を7〜10重量%、Al2 3 を0.3〜1.0重量%含有している仮焼済みのBaO−TiO2 −Nd2 3 系の高誘電率材料に、ZnOが45〜70重量%、B2 3 が5〜13重量%、SiO2 が7〜40重量%、Al2 3 が8〜20重量%である組成の既にガラス化されている材料を添加し、低温焼成する誘電体磁器の製造方法において、
高誘電率材料に対して、既にガラス化されている材料を3−x〜20−x容積%添加すると共に、それとは別にZnOをx容積%(但し、x=0.1〜1.5容積%)添加し、粉体の平均粒径を0.3μm以下に調整して、成形後、1000℃以下で焼成することを特徴とする低温焼結誘電体磁器の製造方法。
BaO 10 to 16 mol% as a main component, TiO 2 is 67 to 72 mol%, Nd 2 O 3 has a composition of 16-18 mol%, 7-10 weight Bi 2 O 3 with respect to it as a sub-component % Of Al 2 O 3 , a calcined BaO—TiO 2 —Nd 2 O 3 -based high dielectric material containing 0.3 to 1.0% by weight, ZnO being 45 to 70% by weight, B Dielectric porcelain which is added with an already vitrified material having a composition of 5 to 13% by weight of 2 O 3, 7 to 40% by weight of SiO 2 and 8 to 20% by weight of Al 2 O 3 and fired at a low temperature. In the manufacturing method of
To the high dielectric constant material, 3-x to 20-x volume% of the already vitrified material is added, and ZnO is separately added to x volume% (where x = 0.1 to 1.5 volume%). %), The powder is adjusted to have an average particle diameter of 0.3 μm or less, molded, and fired at 1000 ° C. or less.
主成分としてBaOが10〜16モル%、TiO2 が67〜72モル%、Nd2 3 が16〜18モル%の組成を有し、それに対し副成分としてBi2 3 を7〜10重量%、Al2 3 を0.3〜1.0重量%含有している仮焼済みのBaO−TiO2 −Nd2 3 系の高誘電率材料に、ZnOが45〜70重量%、B2 3 が5〜13重量%、SiO2 が7〜40重量%、Al2 3 が8〜20重量%である組成の既にガラス化されている材料を添加し、低温焼成する誘電体磁器の製造方法において、
高誘電率材料に対して、既にガラス化されている材料を3−x〜20−x容積%添加すると共に、それとは別にSnOをx容積%(但し、x=0.3〜1.2容積%)添加し、粉体の平均粒径を0.3μm以下に調整して、成形後、1000℃以下で焼成することを特徴とする低温焼結誘電体磁器の製造方法。
BaO 10 to 16 mol% as a main component, TiO 2 is 67 to 72 mol%, Nd 2 O 3 has a composition of 16-18 mol%, 7-10 weight Bi 2 O 3 with respect to it as a sub-component % Of Al 2 O 3 , a calcined BaO—TiO 2 —Nd 2 O 3 -based high dielectric material containing 0.3 to 1.0% by weight, ZnO being 45 to 70% by weight, B Dielectric porcelain which is added with an already vitrified material having a composition of 5 to 13% by weight of 2 O 3, 7 to 40% by weight of SiO 2 and 8 to 20% by weight of Al 2 O 3 and fired at a low temperature. In the manufacturing method of
To the high dielectric constant material, 3-x to 20-x volume% of the already vitrified material is added and SnO is separately added to x volume% (where x = 0.3 to 1.2 volume%). %), The powder is adjusted to have an average particle diameter of 0.3 μm or less, molded, and fired at 1000 ° C. or less.
JP15781397A 1997-05-30 1997-05-30 Method for manufacturing low-temperature sintered dielectric porcelain Expired - Fee Related JP3552878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15781397A JP3552878B2 (en) 1997-05-30 1997-05-30 Method for manufacturing low-temperature sintered dielectric porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15781397A JP3552878B2 (en) 1997-05-30 1997-05-30 Method for manufacturing low-temperature sintered dielectric porcelain

Publications (2)

Publication Number Publication Date
JPH10330161A JPH10330161A (en) 1998-12-15
JP3552878B2 true JP3552878B2 (en) 2004-08-11

Family

ID=15657862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15781397A Expired - Fee Related JP3552878B2 (en) 1997-05-30 1997-05-30 Method for manufacturing low-temperature sintered dielectric porcelain

Country Status (1)

Country Link
JP (1) JP3552878B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837204B2 (en) * 2001-05-01 2011-12-14 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric porcelain composition, porcelain capacitor using the same, and manufacturing method thereof
JP2002326867A (en) * 2001-05-01 2002-11-12 Samsung Electro Mech Co Ltd Dielectric ceramic composition and ceramic capacitor using it and method of manufacturing them
US7276461B2 (en) 2003-05-20 2007-10-02 Ube Industries, Ltd. Dielectric ceramic composition, method of manufacturing the same, and dielectric ceramics and laminated ceramic part using the same
US7396785B2 (en) 2004-01-30 2008-07-08 Murata Manufacturing Co. Ltd Composition for ceramic substrate, ceramic substrate, process for producing ceramic substrate and glass composition
CN100532323C (en) 2004-03-05 2009-08-26 宇部兴产株式会社 Dielectric particle aggregate, low temperature sinterable dielectric ceramic composition using same, low temperature sintered dielectric ceramic produced by using same
JP2007043162A (en) * 2006-07-31 2007-02-15 Ngk Insulators Ltd Electronic component
KR101581925B1 (en) 2011-02-14 2015-12-31 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor and multilayer ceramic capacitor manufacturing method
JP6063729B2 (en) * 2012-12-21 2017-01-18 Fdk株式会社 Method for manufacturing dielectric ceramic composition, method for manufacturing multilayer chip component

Also Published As

Publication number Publication date
JPH10330161A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
EP0779257B1 (en) Dielectric porcelain, process for production thereof, and electronic parts produced therefrom
JP3552878B2 (en) Method for manufacturing low-temperature sintered dielectric porcelain
JP3737774B2 (en) Dielectric ceramic composition
JP4613952B2 (en) Dielectric ceramic composition and high frequency device using the same
JP2781500B2 (en) Dielectric ceramic composition for low temperature firing
JP2786977B2 (en) Dielectric porcelain composition for low-temperature firing and method for producing the same
JP2781503B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JP2515611B2 (en) Dielectric porcelain composition
JP2526701B2 (en) Dielectric porcelain composition
JP3595596B2 (en) Method for manufacturing low-temperature sintered dielectric porcelain
JP3002613B2 (en) Dielectric porcelain composition for producing dielectric resonator or filter for microwave, method for producing the same, dielectric resonator or filter for microwave obtained using the dielectric porcelain composition, and method for producing the same
JPH0597508A (en) Dielectric porcelain composition for high-frequency
JP2526702B2 (en) Dielectric porcelain composition
JP2781501B2 (en) Dielectric ceramic composition for low temperature firing
JP2000086337A (en) Dielectric porcelain composition for low-temperature firing
KR100343523B1 (en) Method for Manufacturing Ceramic Electronic Device
JP3375450B2 (en) Dielectric porcelain composition
JP2781502B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JP3909366B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JPH0769719A (en) Production of low-temperature sintering dielectric porcelain
JP3193157B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JP4235896B2 (en) DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
JPH03290359A (en) Dielectric ceramic composition
JP3597244B2 (en) Dielectric porcelain composition
JP4006655B2 (en) Dielectric porcelain composition for microwave

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees