JP3552484B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP3552484B2
JP3552484B2 JP25058397A JP25058397A JP3552484B2 JP 3552484 B2 JP3552484 B2 JP 3552484B2 JP 25058397 A JP25058397 A JP 25058397A JP 25058397 A JP25058397 A JP 25058397A JP 3552484 B2 JP3552484 B2 JP 3552484B2
Authority
JP
Japan
Prior art keywords
base plate
aluminum base
aluminum
power module
rolling direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25058397A
Other languages
Japanese (ja)
Other versions
JPH1197587A (en
Inventor
英樹 舌間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25058397A priority Critical patent/JP3552484B2/en
Publication of JPH1197587A publication Critical patent/JPH1197587A/en
Application granted granted Critical
Publication of JP3552484B2 publication Critical patent/JP3552484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明はパワーモジュール等の半導体装置におけるエポキシ樹脂等の充填樹脂の熱硬化等に起因する金属圧延材からなるベース板の反りの改善に関するものである。
【0002】
【従来の技術】
図6は従来例としてのパワーモジュールの外観を示す図であり、図において、1はパワーモジュール、2は冷間圧延金属材からなるベース板としてのアルミベース板で、冷間圧延方向がその長辺方向と一致するように構成されたものである。3はアルミベース板2を底板とするケース、4は入力信号端子、5は出力電極端子、6はケース3内に充填された熱硬化樹脂としてのエポキシ樹脂である。
【0003】
図7は図6に示したパワーモジュール1において、エポキシ樹脂6を充填する前の外観を示す図であり、図において、7は半導体チップとしてのIGBTチップ、8は半導体チップとしてのICである。なお、IGBTチップ7、IC8以外の電子部品、後述の銅パターン、前述の入力信号端子4、出力電極端子5等は図面の煩雑さを避けるために省略されている。
【0004】
図8は図6、図7に示したパワーモジュール1におけるアルミベース板2の部分の断面図であり、図において、9A、9Bは絶縁板、10は接着層、11A、11Bは薄箔タイプの銅パターン、12は厚箔タイプの銅パターンである。
【0005】
そして、アルミベース板2の一方の面には絶縁板9Aが接合され、この絶縁板9A上に形成された厚箔タイプの銅パターン12上にはパワー素子であるIGBTチップ7がヒートシンク7Aを介して半田付けされており、又、絶縁板9A、接着層10、絶縁板9Bを介して形成された二層の薄箔タイプの銅パターン11A、11Bのうちの銅パターン11BにはIC8等の制御回路部品が半田付けされており、これらアルミベース板2、絶縁板9A、9B、接着層10、薄箔タイプの銅パターン11A、11B、厚箔タイプの銅パターン12等にてアルミ基板部(二層アルミ基板)13が構成されている。
【0006】
図9は、パワーモジュール1の放熱フィンへの取付けに関する説明図であり、図において、14は放熱フィン、15は取付用のネジ、16はアルミベース板2を含むケースの4隅に貫通するネジ15用の貫通穴、17は放熱フィン14に設けたネジ15対応のネジ穴(メネジ)を示す。
【0007】
パワーモジュール1はアルミ基板部13におけるアルミベース板2の一方の面側、即ち、入力信号端子4、出力電極端子5、IGBTチップ7、IC8等が半田付けされた銅パターン11、12の形成面側の外周部に外枠の一方の端部を接着してアルミベース板2を底板とするケース3を形成し、このケース3内に液状のエポキシ樹脂6を充填して熱硬化することにより製造され、このパワーモジュール1は放熱フィン14にネジ15で締付け固定されてなるものである。
【0008】
このように構成されたものにおいて、アルミベース板2はエポキシ樹脂6の熱硬化時の収縮の影響を受け、放熱フィン14に接合されるベース面が凸となるような反りが発生する。
【0009】
このように、アルミベース板2のベース面が放熱フィン14の取付面に対して凸に反ったものをネジ15による締付けにより、アルミベース板2のベース面と放熱フィン14のパワーモジュール取付け面とを密着させ、パワーモジュール1の発熱を放散する。
【0010】
【発明が解決しようとする課題】
従来のパワーモジュールは以上のようにアルミベース板2のベース面側、即ち、放熱フィン14への取付面側に凸状に反った状態で、放熱フィン14にネジ15で締付け固定するため、アルミベース板2に、前記反った状態が修正される方向の応力が作用し、この応力によってアルミベース板2に直接、若しくは、間接に接合された絶縁板9A、9Bにクラックが発生し、絶縁耐量が劣化するという問題点があった。
【0011】
この発明は、上記のような問題点を解消するためになされたもので、アルミベース板の反り量を低減し、アルミベース板を放熱フィンに締付け固定する際における絶縁板のクラックの発生を防止し、絶縁耐圧に関する信頼性の高い半導体装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
第1の発明に係わる半導体装置は、一方の面上に半導体チップが搭載された略矩形の金属圧延材からなるベース板を底板として上記半導体チップを内包するように構成されたケース内に熱硬化樹脂が充填され、熱硬化されたものにおいて、上記ベース板における上記金属圧延材の圧延方向と短辺方向と一致させたものである。
【0013】
第2の発明に係わる半導体装置は、一方の面上に半導体チップが搭載された略矩形の金属圧延材からなるベース板を底板として上記半導体チップを内包するように構成されたケース内に熱硬化樹脂が充填され、熱硬化されたものにおいて、上記ベース板における上記金属圧延材の圧延方向と対角線とを一致させたものである。
【0014】
【発明の実施の形態】
実施の形態1.
第1の発明としての実施の形態1を図1に基づき説明する。図1はパワーモジュールにおけるアルミ基板部を構成するアルミベース板を示す平面図である。図中、従来例と同じ符号で示されたものは従来例のそれと同一もしくは同等なものを示す。
【0015】
図1において、18はアルミベース板のベース面に残ったローラ圧延跡であり、ローラ圧延跡18の方向を短辺方向と一致させたものである。即ち、アルミベース板材の圧延方向に対する金型打抜き方向を、圧延方向が短辺方向と一致させたものであり、従来のアルミベース板2と区別するために、以下、アルミベース板20と記す。
【0016】
図2はアルミ基板部13におけるアルミベース板2、20の反り量を測定する際における「方向」及びその「方向」における「寸法」を定義したものであり、aは長辺方向の寸法を示し、bは短辺方向(長辺方向に直交する方向)の寸法を示す。寸法a、bはそれぞれ、アルミベース板2、20の4隅に開口されたネジ15用の貫通穴16の長辺、短辺に沿った中心間の距離より求める。
【0017】
図3は長辺方向と短辺方向の反り量の測定ポイントを定義したものであり、図3a)にはアルミベース板材の圧延方向と長辺方向とが一致している従来のアルミベース板2における反り量を、図3b)にはアルミベース板材の圧延方向と短辺方向とを一致させたアルミベース板20における反り量を示す。
なお、アルミベース板2における両端の貫通穴16の中心A、Bと、このA、B間の中心点Cを反り量の測定ポイントとし、反り量の絶対値はアルミベース板面における中心A、Bを結んだ線とアルミベース板面における中心点C間の距離c、dより求める。
【0018】
図3より、アルミベース板材の圧延方向を、アルミベース板の長辺方向と一致させた従来のものと、直交させたこの発明の実施の形態1のものについて、エポキシ樹脂6の熱硬化の工程における加熱の影響を、即ち、アルミベース板2、20の反り量の程度を比較した結果、圧延方向を長辺方向と直交させたこの発明の実施の形態1のアルミベース板20は、従来のアルミベース板2に比し、反り量の絶対量が小さいことが確認されている。上記のごとく、アルミベース板材の圧延方向に対する金型打抜き方向を短辺方向と一致させたアルミベース板20の反りは比較的小さく、かつ、バラツキも少ない。
【0019】
この実施の形態1では、打抜き金型の方向を、圧延方向がアルミベース板20の短辺方向と一致するように決めたので、アルミベース板20の反りが比較的小さく、放熱フィン14にネジ15によりネジ止めされた場合に受ける応力が比較的小さく、絶縁板9A、9Bのクラックが生じにくく、高い絶縁耐量を確保できる効果がある。
なお、この実施の形態1はアルミベース板2の縦横比が比較的大きなもの、例えば、縦横比が1.5倍以上であるものに適用した場合において顕著な効果が得られる。
【0020】
実施の形態2.
次に、第2の発明としての実施の形態2を図4及び図5に基づいて説明する。図4はパワーモジュール1におけるアルミ基板部を構成するアルミベース板を示す平面図であり、21は圧延方向を対角線方向に一致させたアルミベース板である。即ち、アルミベース板21のベース面に残ったローラ圧延跡18より明らかのように、圧延方向と対角線方向とを一致させたものである。
【0021】
図5は、図4に示したアルミベース板21を備えたパワーモジュール1を放熱フィン14にネジ止めする際における、4本のネジ15の締付け順序を示す説明図であり、最初に、圧延方向に直交した対角線側のネジ15A、15Cを締付け、然る後に圧延方向と一致した対角線側のネジ15B、15Dを締付ける。
【0022】
圧延方向と一致した対角線方向における変形量は比較的大きなものとなるが、最初に変形量の比較的小さな圧延方向に直交した対角線側のネジ15A、15Cを締付けるので、変形量の比較的大きな圧延方向と一致した対角線側のネジ15B、15Dの締付時には、アルミベース板21の中央凸部が放熱フィン14に固定されており、ネジ締付による基板部13にかかる応力を低減でき、絶縁板9A、9Bのクラックの発生による絶縁耐量の低下を防止できる。
なお、この第2の発明はアルミベース板2の縦横比が比較的小さなもの、例えば縦横比1.5倍以下であるものに適用した場合において顕著な効果が得られる。
【0023】
上記、実施の形態1又は2においては、アルミ基板部13が二層アルミ基板である場合の例について説明したが、アルミ基板部にかかる応力の低減による絶縁板9A、9Bのクラックの発生を防止し、絶縁耐量劣化を防止する効果は、銅パターン層が一層の場合でも、又、二層以上の多層アルミ基板である場合にも有効である。
【0024】
又、ベース板として、略矩形の金属圧延材からなるアルミベース板2を例に示したが、アルミの圧延材に限定されるものではなく、銅、真鍮、その他所定の展性と熱伝導性を備えた金属であっても効果が得られる。
【0025】
【発明の効果】
第1の発明によれば、略矩形の金属圧延材からなるベース板における前記金属圧延材の圧延方向と短辺方向と一致させたもので、ベース板の反りが比較的小さく、放熱フィンにネジ止めされた場合に受ける応力が比較的小さいので、絶縁層9のクラックが生じにくく、高い絶縁耐量を確保できるものが得られる効果がある。
【0026】
又、第2の発明によれば、略矩形の金属圧延材からなるベース板における上記金属圧延材の圧延方向と対角線とを一致させ、最初に圧延方向に直交した対角線側のネジ締め付け、然る後に圧延方向と一致した対角線側のネジを締め付けるようにしたので、基板部にかかる応力を低減でき、クラックの発生と絶縁耐量の劣化を改善できるものが得られる効果がある。
【図面の簡単な説明】
【図1】第1の発明の実施の形態としてのパワーモジュールにおけるアルミ基板部を構成するアルミベース板を示す平面図である。
【図2】アルミベース板の反り量を測定する際における「方向」及びその「方向」における「寸法」の定義例を示す図である。
【図3】長辺方向と、この長辺方向に直交する方向の反り量の測定ポイントの定義例を示す図である。
【図4】第2の発明の実施の形態としてのパワーモジュールにおけるアルミ基板部を構成するアルミベース板を示す平面図である。
【図5】図4に示したアルミベース板2を放熱フィンにネジ止めするネジの締付け順序を示す図である。
【図6】従来のパワーモジュールの外観を示す図である。
【図7】図6に示したパワーモジュールにおける熱硬化樹脂充填前の外観を示す図である。
【図8】図6及び図7に示したパワーモジュールにおけるアルミ基板部の断面図である。
【図9】パワーモジュールの放熱フィンへの取付け説明図である。
【符号の説明】
1 パワーモジュール、2 アルミベース板、3 ケース、4 入力信号端子、5 出力電極端子、6 エポキシ樹脂、7 IGBTチップ、8 IC、9A 絶縁板、9B 絶縁板、10 接着層、11 薄箔タイプの銅パターン、12 厚箔タイプの銅パターン、13 アルミ基板部、14 放熱フィン、15 ネジ、16 貫通穴、17 ネジ穴、18 ローラ圧延跡、19 溝、20、21 アルミベース板。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to improvement of warpage of a base plate made of a rolled metal material due to thermal curing of a filling resin such as an epoxy resin in a semiconductor device such as a power module.
[0002]
[Prior art]
FIG. 6 is a view showing the appearance of a power module as a conventional example. In the figure, reference numeral 1 denotes a power module, 2 denotes an aluminum base plate as a base plate made of a cold-rolled metal material, and its cold rolling direction is long. It is configured so as to coincide with the side direction. Reference numeral 3 denotes a case using the aluminum base plate 2 as a bottom plate, 4 denotes an input signal terminal, 5 denotes an output electrode terminal, and 6 denotes an epoxy resin filled in the case 3 as a thermosetting resin.
[0003]
FIG. 7 is a view showing the appearance of the power module 1 shown in FIG. 6 before filling with the epoxy resin 6, wherein 7 is an IGBT chip as a semiconductor chip, and 8 is an IC as a semiconductor chip. Note that electronic components other than the IGBT chip 7 and the IC 8, a copper pattern described later, the input signal terminal 4, the output electrode terminal 5, and the like are omitted to avoid complication of the drawing.
[0004]
FIG. 8 is a cross-sectional view of the aluminum base plate 2 in the power module 1 shown in FIGS. 6 and 7, where 9A and 9B are insulating plates, 10 is an adhesive layer, and 11A and 11B are thin foil type. The copper pattern 12 is a thick foil type copper pattern.
[0005]
An insulating plate 9A is joined to one surface of the aluminum base plate 2, and an IGBT chip 7 as a power element is placed on a thick foil type copper pattern 12 formed on the insulating plate 9A via a heat sink 7A. Of the two-layer thin foil type copper patterns 11A and 11B formed through the insulating plate 9A, the adhesive layer 10 and the insulating plate 9B, and the IC 8 and the like are controlled. The circuit components are soldered, and the aluminum base plate 2, the insulating plates 9A and 9B, the adhesive layer 10, the thin foil type copper patterns 11A and 11B, the thick foil type copper pattern 12 and the like are used to form an aluminum substrate part (not shown). (A layer aluminum substrate) 13 is formed.
[0006]
FIG. 9 is an explanatory diagram relating to the attachment of the power module 1 to the radiation fins. In the figure, 14 is a radiation fin, 15 is a screw for attachment, and 16 is a screw penetrating through four corners of a case including the aluminum base plate 2. Reference numeral 15 denotes a through hole, and reference numeral 17 denotes a screw hole (female screw) corresponding to the screw 15 provided on the radiation fin 14.
[0007]
The power module 1 has one surface side of the aluminum base plate 2 in the aluminum substrate portion 13, that is, the surface on which the copper patterns 11, 12 to which the input signal terminals 4, the output electrode terminals 5, the IGBT chips 7, the ICs 8 and the like are soldered. A case 3 having an aluminum base plate 2 as a bottom plate is formed by bonding one end of an outer frame to an outer peripheral portion on the side, and the case 3 is filled with a liquid epoxy resin 6 and thermoset to manufacture. The power module 1 is fastened and fixed to the radiation fins 14 with screws 15.
[0008]
In such a configuration, the aluminum base plate 2 is affected by the shrinkage of the epoxy resin 6 at the time of thermosetting, and warps such that the base surface joined to the radiation fin 14 becomes convex.
[0009]
In this way, the base surface of the aluminum base plate 2 that is warped convexly with respect to the mounting surface of the radiating fins 14 is tightened with the screw 15 so that the base surface of the aluminum base plate 2 and the power module mounting surface of the radiating fins 14 are separated. To dissipate the heat generated by the power module 1.
[0010]
[Problems to be solved by the invention]
As described above, the conventional power module is fixed to the radiating fin 14 with the screw 15 while being warped in a convex shape on the base surface side of the aluminum base plate 2, that is, the mounting surface side to the radiating fin 14. A stress is applied to the base plate 2 in a direction in which the warped state is corrected, and the stress causes cracks in the insulating plates 9A and 9B directly or indirectly joined to the aluminum base plate 2, thereby causing a dielectric strength. However, there is a problem in that the metal is deteriorated.
[0011]
The present invention has been made to solve the above-described problems, and reduces the amount of warpage of the aluminum base plate and prevents the occurrence of cracks in the insulating plate when the aluminum base plate is fastened and fixed to the radiation fins. It is another object of the present invention to provide a semiconductor device having high withstand voltage.
[0012]
[Means for Solving the Problems]
A semiconductor device according to a first aspect of the present invention provides a semiconductor device in which a semiconductor chip is mounted on one surface and a base plate made of a substantially rectangular metal rolled material is used as a bottom plate. In a resin-filled and heat-cured resin, the rolling direction of the rolled metal material on the base plate coincides with the short side direction.
[0013]
A semiconductor device according to a second aspect of the present invention is characterized in that a base plate made of a substantially rectangular rolled metal material having a semiconductor chip mounted on one surface is used as a bottom plate and a thermosetting case is formed in a case configured to contain the semiconductor chip. In a resin-filled and heat-cured resin, the rolling direction of the metal rolled material on the base plate is matched with a diagonal line.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Embodiment 1 of the first invention will be described with reference to FIG. FIG. 1 is a plan view showing an aluminum base plate constituting an aluminum substrate part in the power module. In the figure, those denoted by the same reference numerals as those of the conventional example indicate the same or equivalent parts as those of the conventional example.
[0015]
In FIG. 1, reference numeral 18 denotes a roller rolling trace remaining on the base surface of the aluminum base plate, in which the direction of the roller rolling trace 18 coincides with the short side direction. That is, the die punching direction with respect to the rolling direction of the aluminum base plate material is such that the rolling direction matches the short side direction, and is hereinafter referred to as an aluminum base plate 20 to distinguish it from the conventional aluminum base plate 2.
[0016]
FIG. 2 defines the “direction” and the “dimension” in the “direction” when measuring the amount of warpage of the aluminum base plates 2 and 20 in the aluminum substrate portion 13, and “a” indicates the dimension in the long side direction. , B indicate the dimension in the short side direction (the direction orthogonal to the long side direction). The dimensions a and b are determined from the distance between the centers along the long and short sides of the through holes 16 for the screws 15 opened at the four corners of the aluminum base plates 2 and 20, respectively.
[0017]
FIG. 3 defines measurement points of the amount of warpage in the long side direction and the short side direction. FIG. 3a) shows a conventional aluminum base plate 2 in which the rolling direction of the aluminum base plate material and the long side direction match. 3b) shows the amount of warpage in the aluminum base plate 20 in which the rolling direction of the aluminum base plate material and the short side direction are matched.
The centers A and B of the through holes 16 at both ends of the aluminum base plate 2 and the center point C between the holes A and B are used as measurement points of the amount of warpage. It is determined from the distances c and d between the line connecting B and the center point C on the aluminum base plate surface.
[0018]
From FIG. 3, the thermosetting process of the epoxy resin 6 was performed between the conventional one in which the rolling direction of the aluminum base plate material was made to match the long side direction of the aluminum base plate and the one in the first embodiment of the present invention in which the rolling direction was orthogonal. As a result of comparing the effect of heating in the above, that is, the degree of warpage of the aluminum base plates 2 and 20, the aluminum base plate 20 of the first embodiment of the present invention, in which the rolling direction is orthogonal to the long side direction, is a conventional one. It has been confirmed that the absolute amount of warpage is smaller than that of the aluminum base plate 2. As described above, the warpage of the aluminum base plate 20 in which the die punching direction with respect to the rolling direction of the aluminum base plate material coincides with the short side direction is relatively small, and there is little variation.
[0019]
In the first embodiment, since the direction of the punching die is determined so that the rolling direction coincides with the short side direction of the aluminum base plate 20, the warpage of the aluminum base plate 20 is relatively small. When the screws 15 are used, the stress received is relatively small, cracks in the insulating plates 9A and 9B are hardly generated, and there is an effect that a high dielectric strength can be secured.
The first embodiment has a remarkable effect when applied to an aluminum base plate 2 having a relatively large aspect ratio, for example, an aluminum base plate having an aspect ratio of 1.5 or more.
[0020]
Embodiment 2 FIG.
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a plan view showing an aluminum base plate constituting an aluminum substrate part in the power module 1, and reference numeral 21 denotes an aluminum base plate whose rolling direction is made to coincide with a diagonal direction. That is, as is apparent from the roller rolling traces 18 remaining on the base surface of the aluminum base plate 21, the rolling direction and the diagonal direction are matched.
[0021]
FIG. 5 is an explanatory diagram showing a tightening order of four screws 15 when screwing the power module 1 having the aluminum base plate 21 shown in FIG. The screws 15A and 15C on the diagonal side perpendicular to the above are tightened, and then the screws 15B and 15D on the diagonal side corresponding to the rolling direction are tightened.
[0022]
Although the amount of deformation in the diagonal direction coincident with the rolling direction becomes relatively large, first, the screws 15A and 15C on the diagonal side perpendicular to the rolling direction in which the amount of deformation is relatively small are tightened. At the time of tightening the screws 15B and 15D on the diagonal side corresponding to the direction, the central convex portion of the aluminum base plate 21 is fixed to the radiating fin 14, so that the stress applied to the substrate portion 13 due to the screw tightening can be reduced, and the insulating plate It is possible to prevent a decrease in the dielectric strength due to occurrence of cracks in 9A and 9B.
It should be noted that the second invention has a remarkable effect when applied to an aluminum base plate 2 having a relatively small aspect ratio, for example, one having an aspect ratio of 1.5 or less.
[0023]
In the first or second embodiment described above, the example in which the aluminum substrate 13 is a two-layer aluminum substrate has been described. However, the occurrence of cracks in the insulating plates 9A and 9B due to the reduction of the stress applied to the aluminum substrate is prevented. However, the effect of preventing the deterioration of the dielectric strength is effective even when the copper pattern layer is a single layer or a multilayer aluminum substrate having two or more layers.
[0024]
Further, as an example of the base plate, an aluminum base plate 2 made of a substantially rectangular metal rolled material has been described, but the present invention is not limited to a rolled aluminum material, but may be copper, brass, or other predetermined malleability and heat conductivity. The effect can be obtained even with a metal having
[0025]
【The invention's effect】
According to the first invention, in the base plate made of a substantially rectangular metal rolled material, the rolling direction of the metal rolled material coincides with the short-side direction. Since the stress received when stopping is relatively small, cracking of the insulating layer 9 is less likely to occur, and an effect that a high dielectric strength can be ensured is obtained.
[0026]
According to the second invention, the rolling direction and the diagonal line of the metal rolled material in the base plate made of a substantially rectangular metal rolled material are made to coincide with each other, and first, a screw on the diagonal side perpendicular to the rolling direction is tightened. Since the screws on the diagonal side which coincides with the rolling direction are later tightened, the stress applied to the substrate can be reduced, and there is an effect that cracks can be generated and the dielectric strength can be reduced.
[Brief description of the drawings]
FIG. 1 is a plan view showing an aluminum base plate constituting an aluminum substrate in a power module according to an embodiment of the first invention.
FIG. 2 is a diagram showing a definition example of “direction” and “dimension” in the “direction” when measuring the amount of warpage of an aluminum base plate.
FIG. 3 is a diagram illustrating an example of definitions of measurement points of the amount of warpage in a long side direction and a direction orthogonal to the long side direction.
FIG. 4 is a plan view showing an aluminum base plate constituting an aluminum substrate in a power module according to an embodiment of the second invention.
FIG. 5 is a diagram showing a tightening sequence of screws for screwing the aluminum base plate 2 shown in FIG. 4 to the radiation fins.
FIG. 6 is a diagram showing an appearance of a conventional power module.
FIG. 7 is a diagram showing an appearance before filling the thermosetting resin in the power module shown in FIG. 6;
FIG. 8 is a sectional view of an aluminum substrate part in the power module shown in FIGS. 6 and 7.
FIG. 9 is an explanatory view for attaching a power module to a radiation fin.
[Explanation of symbols]
1 power module, 2 aluminum base plate, 3 case, 4 input signal terminal, 5 output electrode terminal, 6 epoxy resin, 7 IGBT chip, 8 IC, 9A insulating plate, 9B insulating plate, 10 adhesive layer, 11 thin foil type Copper pattern, 12 thick foil type copper pattern, 13 aluminum substrate, 14 radiator fin, 15 screw, 16 through hole, 17 screw hole, 18 roller rolling trace, 19 groove, 20, 21 aluminum base plate.

Claims (2)

一方の面上に半導体チップが搭載された略矩形の金属圧延材からなるベース板を底板として上記半導体チップを内包するように構成されたケース内に熱硬化樹脂が充填され、熱硬化された半導体装置において、上記ベース板は、上記金属圧延材の圧延方向が上記ベース板の短辺方向と一致することを特徴とする半導体装置。A thermosetting resin is filled in a case configured to enclose the semiconductor chip with a base plate made of a substantially rectangular metal rolled material having a semiconductor chip mounted on one surface as a bottom plate, and the thermosetting semiconductor In the apparatus, the base plate has a rolling direction of the metal rolled material coincident with a short side direction of the base plate. 一方の面上に半導体チップが搭載された略矩形の金属圧延材からなるベース板を底板として上記半導体チップを内包するように構成されたケース内に熱硬化樹脂が充填され、熱硬化された半導体装置において、上記ベース板は、上記金属圧延材の圧延方向が上記ベース板の対角線と一致することを特徴とする半導体装置。A thermosetting resin is filled in a case configured to enclose the semiconductor chip with a base plate made of a substantially rectangular metal rolled material having a semiconductor chip mounted on one surface as a bottom plate, and the thermosetting semiconductor In the apparatus, the base plate has a rolling direction of the metal rolled material coincident with a diagonal line of the base plate.
JP25058397A 1997-09-16 1997-09-16 Semiconductor device Expired - Lifetime JP3552484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25058397A JP3552484B2 (en) 1997-09-16 1997-09-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25058397A JP3552484B2 (en) 1997-09-16 1997-09-16 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH1197587A JPH1197587A (en) 1999-04-09
JP3552484B2 true JP3552484B2 (en) 2004-08-11

Family

ID=17210056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25058397A Expired - Lifetime JP3552484B2 (en) 1997-09-16 1997-09-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3552484B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120026692A1 (en) 2010-07-28 2012-02-02 Wolverine Tube, Inc. Electronics substrate with enhanced direct bonded metal
US10531594B2 (en) 2010-07-28 2020-01-07 Wieland Microcool, Llc Method of producing a liquid cooled coldplate
US9795057B2 (en) 2010-07-28 2017-10-17 Wolverine Tube, Inc. Method of producing a liquid cooled coldplate
EP2752104B1 (en) * 2011-09-02 2022-05-04 Wieland Microcool, LLC Enhanced clad metal base plate assembly
JP6213578B2 (en) * 2013-12-27 2017-10-18 株式会社Joled Organic EL panel unit and organic EL display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210860A (en) * 1988-06-29 1990-01-16 Fujitsu Ltd Lead frame for semiconductor device
JP3120593B2 (en) * 1992-10-05 2000-12-25 株式会社日立製作所 Head slider support device
JPH09237869A (en) * 1996-02-29 1997-09-09 Hitachi Ltd Resin-encapsulated power module device and manufacture thereof

Also Published As

Publication number Publication date
JPH1197587A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
JP3130239B2 (en) Resin-sealed semiconductor device and method of manufacturing the same
US6853058B2 (en) Process for providing electrical connection between a semiconductor die and a semiconductor die receiving member
US5631497A (en) Film carrier tape and laminated multi-chip semiconductor device incorporating the same
US7049696B2 (en) IC package with electrically conductive heat-radiating mechanism, connection structure and electronic device
TW201436130A (en) Thermally enhanced wiring board with built-in heat sink and build-up circuitry
WO2021215187A1 (en) Electronic device
JP3552484B2 (en) Semiconductor device
US7586194B2 (en) Semiconductor device having exposed heat dissipating metal plate
KR102548231B1 (en) Semiconductor module and semiconductor device used therein
JP2006100759A (en) Circuit device and its manufacturing method
JP3544757B2 (en) Semiconductor device and manufacturing method thereof
US5403651A (en) Insulating substrate for mounting semiconductor devices
JPH0922970A (en) Electronic component
JP2795063B2 (en) Hybrid integrated circuit device
US7019390B2 (en) Silicon nitride insulating substrate for power semiconductor module
US6706624B1 (en) Method for making multichip module substrates by encapsulating electrical conductors
JP3154846B2 (en) Metal-based circuit board and method of manufacturing the same
US20230282566A1 (en) Semiconductor package having negative patterned substrate and method of manufacturing the same
JPH09148484A (en) Semiconductor device, and its manufacture
JPS63292660A (en) Multilayered printed wiring substrate
JPH11186479A (en) Surface mounting parts with heat slinger
US20200312743A1 (en) Semiconductor device
JP3201270B2 (en) Semiconductor device
JP2816496B2 (en) Substrate for mounting electronic components
JP2007043098A (en) Power semiconductor module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term