JP3552333B2 - X-ray diffraction analysis method - Google Patents

X-ray diffraction analysis method Download PDF

Info

Publication number
JP3552333B2
JP3552333B2 JP10352895A JP10352895A JP3552333B2 JP 3552333 B2 JP3552333 B2 JP 3552333B2 JP 10352895 A JP10352895 A JP 10352895A JP 10352895 A JP10352895 A JP 10352895A JP 3552333 B2 JP3552333 B2 JP 3552333B2
Authority
JP
Japan
Prior art keywords
data
ray
sample
angle
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10352895A
Other languages
Japanese (ja)
Other versions
JPH08297105A (en
Inventor
忠幸 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP10352895A priority Critical patent/JP3552333B2/en
Publication of JPH08297105A publication Critical patent/JPH08297105A/en
Application granted granted Critical
Publication of JP3552333B2 publication Critical patent/JP3552333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【産業上の利用分野】
本発明はX線回折分析方法に関し、とくに粉末X線回折装置における測定データの収集方法に関する。
【0002】
【従来の技術】
粉末X線回折装置では粉末状の試料を固めて板状にした試料や多結晶体の試料をゴニオメータの中心(いわゆるθ軸)に置き、回折X線を検出するシンチレーション検出器などの検出器を試料の回りで回転するように(いわゆる2θ軸に)配置する。X線管から試料に照射された特性X線は試料の回りに回折X線として反射されるので、ゴニオメータを用いて検出器を試料の回りを回転させながらX線強度を測定することによって回折パターンを測定し、その後の定性・定量分析のためのデータとする。実際の測定に当たって、検出器(2θ軸)の走査範囲はキーボードなどから入力することによって決められるが、従来は必要な回折ピークのデータが得られるように、ゴニオメータが走査可能な走査範囲の全体を覆うように広めに設定していた。また走査範囲を広くせず、必要な角度範囲のみを指定して部分的に回折パターンを得ることも行われていたが、従来は必要なピークのデータを得るために走査角度範囲を指定するようにしていたので、X線管の種類を変更したときに試料の同じ反射面からのピークが違った角度範囲に現れるから、いちいち角度範囲を設定しなおさなければならなかった。
【0003】
【発明が解決しようとする課題】
検出器の走査範囲を広めに設定しておけば必要なデータの測定漏れが起こらず確実ではあるが、特に検出されるピークが少ない場合にはピークのない角度範囲も無駄に走査することになり時間がかかっていた。本発明の目的は回折ピークのない部分は走査を省略し必要な部分だけを走査することによって、測定時間を短縮することを目的とする。またX線管の種類を変更したときの対応を容易にし、さらには回折データを収集した後に行われる定性分析や定量分析にあたって余分な手間のかからないX線回折分析方法を提供することが目的である。
【0004】
【課題を解決するための手段】
本発明は上記課題を解決するために、X線管からの特性X線を試料に照射し、X線検出器をその試料の回りでゴニオメータを用いて走査することによって、前記試料から放射される回折X線を測定するX線回折分析方法において、前記特性X線の波長と前記試料の測定すべき一つまたは複数の格子面の面間隔とを入力することによって、この格子面によって回折された回折X線が現れる角度付近のみを前記X線検出器が走査するように走査範囲を決定し、これによって得られた各部分ごとの測定データと、それ以外の角度範囲でこの測定されたデータの間を結んだ仮想データと、を横軸を回折角度とするデータとして合成し、その後の定性分析または定量分析に用いるデータとする。
【0005】
【作用】
測定試料の測定すべき格子面間隔dとX線管の特性X線の波長λから計算式
λ=2dsinθ (1)
を使って、回折X線の現れる回折角度θを計算できるので、その回折ピークの付近だけ検出器を走査して回折X線強度を測定する。あらかじめ入力してある一つまたは複数の格子面間隔dについて全て測定したのち検出器角度(2θ)を座標としてデータを並べることによって必要な回折ピークの全てそろったデータが得られるのでその後の定性・定量分析のデータとして使うことができる。必要な回折ピーク以外の角度範囲については実際の走査を行わないのでトータルの測定時間を短くすることができる。
【0006】
【実施例】
図1は本発明の一実施例を示すフローチャートであり、図2は本発明の方法を実現する装置の機能ブロック図である。図2に示した1〜7の各手段はX線回折装置を制御するコンピュータのソフトウェアで実現することができるが、それに限定されるものではない。
【0007】
測定に先立ち波長入力手段1によりX線管の特性X線波長λを入力し(ST1)、d値入力手段2によりその試料の分析に必要な格子面の面間隔dを入力する(ST2)。d値の入力は、その試料の結晶構造の特徴あるいは分析の目的に応じて一つの場合もあるし複数個の場合もある。λとdの入力は測定の時点でキーボードなどから直接入力してもよいし、あらかじめ測定条件として測定条件記憶手段7記憶しておき、測定時に記憶されている条件の中から適当なものを選択するようにしてもよい。走査範囲計算手段3は入力されたλおよびdに基づいて(1)式を用いて回折ピークの現れる検出器角度(2θ)を計算し、その前後の範囲を検出器が走査するように走査範囲を計算する(ST3)。その範囲は通常計算上のピーク角度±1度程度で十分であるが、試料の種類などによってはもう少し広めの±3度くらいが適当な場合もあるし、もっと狭い範囲で十分な場合もある。さらにその走査範囲はすべてのピークに対して一律ではなく、回折角度に応じて、例えば小さい回折角度では狭く大きい回折角度では広めに設定するようにしてもよい。走査範囲以外の例えば走査速度・積分時間などの測定条件についても、その場で入力するか、測定条件記憶手段に記憶された条件を読み出して設定する。
【0008】
次に測定手段4によって、設定した走査範囲を実際に走査しながらX線強度を測定し(ST4)、それぞれの範囲のデータを一時的に記憶装置に記憶する(ST5)。このときの記憶は必ずしもハードディスクなどに保存するような永続的な記憶でなくとも、コンピュータのRAM上などの一時的な媒体に記憶するだけでもよい。設定した全ての走査範囲の測定が終わると(ST6)、今まで測定した全ての走査範囲のデータを横軸を角度2θとし縦軸をX線強度として仮想的に一次元的に並べ、あたかも一回の走査でその全てのデータを得たかのようにデータ合成手段5によって合成し(ST7)、データ保存手段6によってハードディスクなどの永続的な記憶装置に保存する(ST8)。このとき実際には測定していない範囲のデータはゼロとして記憶しておくか、または測定していない範囲の左右にある測定したデータの端と端の値を直線で結ぶようなデータとして記憶してもよい。
【0009】
このようにして得られたデータの一例を図3に示す。横軸は検出器角度の2θであり、縦軸はX線強度を表している。図でa、b、cで表している角度範囲は入力されたλとdから計算された領域であり、検出器を走査しながらX線強度を計測した結果それぞれの回折ピークが得られている。それ以外の角度範囲はX線の計測は行わず、ゴニオメータを早送りした部分であり、そのデータは全てゼロにするか、図で点線で表しているように測定されたデータの間を直線で結んで仮のデータとする。図のSは仮想的な走査(測定)の開始点であり、Eは仮想的な走査の終了点である。この図の例ではSからaまでの間のデータは、aの左端のデータと同じ値にしてあり、cからEまでの間のデータは、cの右端のデータと同じ値にしてある。このように仮想的な走査の開始点と終了点を設定してSからEまでのデータを記憶装置に保存しておくことによって、のちに行う定性や定量分析の時にデータの解釈や表示の見やすさを向上することができる。
【0010】
【発明の効果】
本発明の方法は試料の成分がある程度わかっているときに特に有効である。そのようなときにその成分の濃度を定量分析するときには、いくつかの必要なピークのみを測定すれば目的を達成できるので、それ以外の2θ範囲は測定する必要がなく、大幅に測定時間を短縮することができる。
【0011】
また測定の2θ範囲そのものを測定条件として入力するのではなく、格子面間隔dとX線波長λを入力するようにしたので、X線管の種類を変えた場合にもX線波長λの値だけを修正すれば目的の回折ピークを測定できるので対応が簡単であるというすぐれた効果を奏する。
【0012】
さらにピーク付近のみで得られたデータを回折角度を横軸として合成して保存するので、その後に行われる定性分析や定量分析のときにデータを再合成するなどの手間がかからず迅速なデータ処理を行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示すフローチャートである。
【図2】本発明の方法を実現する装置の機能ブロック図である。
【図3】本発明の方法で得られた回折データの一例である。
【符号の説明】
1…波長入力手段 2…d値入力手段
3…走査範囲計算手段 4…測定手段
5…データ合成手段 6…データ保存手段
7…測定条件記憶手段
[0001]
[Industrial applications]
The present invention relates to an X-ray diffraction analysis method, and particularly to a method for collecting measurement data in a powder X-ray diffraction apparatus.
[0002]
[Prior art]
In a powder X-ray diffractometer, a powdery sample is solidified into a plate or a polycrystalline sample is placed at the center of the goniometer (so-called θ axis), and a detector such as a scintillation detector for detecting diffracted X-rays is used. It is arranged so as to rotate around the sample (so-called 2θ axis). The characteristic X-rays emitted from the X-ray tube to the sample are reflected around the sample as diffracted X-rays. Therefore, the diffraction pattern is obtained by measuring the X-ray intensity while rotating the detector around the sample using a goniometer. Is measured and used as data for subsequent qualitative / quantitative analysis. In the actual measurement, the scanning range of the detector (2θ axis) is determined by inputting from a keyboard or the like, but conventionally, the entire scanning range that can be scanned by the goniometer is obtained so that necessary diffraction peak data can be obtained. It was set wider to cover. In addition, the scan range was not widened and partial diffraction patterns were obtained by specifying only the required angle range.However, conventionally, the scan angle range was specified to obtain the necessary peak data. Therefore, when the type of the X-ray tube is changed, the peak from the same reflection surface of the sample appears in a different angle range. Therefore, the angle range has to be set each time.
[0003]
[Problems to be solved by the invention]
If the scanning range of the detector is set to be wide, measurement omission of necessary data does not occur and it is reliable, but especially when the number of detected peaks is small, the angle range without peaks will be scanned uselessly. It was taking time. An object of the present invention is to reduce the measurement time by omitting scanning of a portion having no diffraction peak and scanning only a necessary portion. It is another object of the present invention to provide an X-ray diffraction analysis method that facilitates handling when the type of X-ray tube is changed and that does not require extra time for qualitative or quantitative analysis performed after collecting diffraction data. .
[0004]
[Means for Solving the Problems]
The present invention solves the above problem by irradiating a sample with characteristic X-rays from an X-ray tube and scanning an X-ray detector around the sample using a goniometer, thereby emitting the sample from the sample. In the X-ray diffraction analysis method for measuring diffracted X-rays, the wavelength of the characteristic X-ray and the plane spacing of one or more lattice planes to be measured of the sample are input, and the diffraction is performed by this lattice plane. The scanning range is determined so that the X-ray detector scans only near the angle where the diffracted X-rays appear, and the measurement data of each part obtained by this and the measurement data of the other angle ranges are obtained. The virtual data connecting between them is combined as data with the horizontal axis as the diffraction angle, and is used as data used for subsequent qualitative analysis or quantitative analysis.
[0005]
[Action]
Calculation formula λ = 2d sin θ from the lattice spacing d of the sample to be measured and the characteristic X-ray wavelength λ of the X-ray tube (1)
Can be used to calculate the diffraction angle θ at which the diffracted X-ray appears. Therefore, the detector is scanned only near the diffraction peak to measure the diffracted X-ray intensity. After all measurements are made for one or a plurality of lattice plane spacings d that have been input in advance, and data are arranged using the detector angle (2θ) as coordinates, all necessary diffraction peaks can be obtained. It can be used as data for quantitative analysis. Since the actual scanning is not performed in the angle range other than the necessary diffraction peak, the total measurement time can be shortened.
[0006]
【Example】
FIG. 1 is a flowchart showing an embodiment of the present invention, and FIG. 2 is a functional block diagram of an apparatus for realizing the method of the present invention. Each of the units 1 to 7 shown in FIG. 2 can be realized by software of a computer that controls the X-ray diffraction apparatus, but is not limited thereto.
[0007]
Prior to the measurement, the characteristic X-ray wavelength λ of the X-ray tube is input by the wavelength input means 1 (ST1), and the spacing d of the lattice plane required for the analysis of the sample is input by the d value input means 2 (ST2). The input of the d value may be one or plural depending on the characteristics of the crystal structure of the sample or the purpose of the analysis. The input of λ and d may be directly input from a keyboard or the like at the time of measurement, or may be stored in advance in the measurement condition storage means 7 as measurement conditions, and an appropriate one may be selected from the conditions stored at the time of measurement. You may make it. The scanning range calculating means 3 calculates the detector angle (2θ) where the diffraction peak appears based on the input λ and d using the equation (1), and scans the range before and after the detector angle so that the detector scans the range before and after the angle. Is calculated (ST3). In general, the calculated peak angle of about ± 1 degree is sufficient. However, depending on the type of sample, a slightly wider range of about ± 3 degrees may be appropriate, and a narrower range may be sufficient. Further, the scanning range is not uniform for all peaks, and may be set to be narrow according to the diffraction angle, for example, narrow at a small diffraction angle and wide at a large diffraction angle. Measurement conditions other than the scanning range, such as the scanning speed and the integration time, may be input on the spot or read out from the measurement condition storage means and set.
[0008]
Next, the X-ray intensity is measured by the measuring means 4 while actually scanning the set scanning range (ST4), and the data of each range is temporarily stored in the storage device (ST5). At this time, the storage is not necessarily a permanent storage such as a hard disk, but may be a temporary storage such as a RAM of a computer. When the measurement of all the set scan ranges is completed (ST6), the data of all the scan ranges measured so far are virtually arranged one-dimensionally with the horizontal axis as the angle 2θ and the vertical axis as the X-ray intensity. The data is synthesized by the data synthesizing means 5 as if all of the data were obtained in each scan (ST7), and stored in a permanent storage device such as a hard disk by the data storage means 6 (ST8). At this time, the data of the range that is not actually measured is stored as zero, or the data that connects the end values of the measured data on the left and right sides of the range that is not measured is connected with a straight line. You may.
[0009]
FIG. 3 shows an example of the data thus obtained. The horizontal axis represents the detector angle 2θ, and the vertical axis represents the X-ray intensity. The angle ranges represented by a, b, and c in the figure are regions calculated from the input λ and d, and the respective diffraction peaks are obtained as a result of measuring the X-ray intensity while scanning the detector. . In the other angle range, the X-ray was not measured and the goniometer was fast-forwarded, and all the data was set to zero or a straight line was connected between the measured data as indicated by the dotted line in the figure. Is temporary data. S in the figure is a virtual scan (measurement) start point, and E is a virtual scan end point. In the example of this figure, the data from S to a has the same value as the data at the left end of a, and the data from c to E has the same value as the data at the right end of c. By setting the start and end points of the virtual scanning and storing the data from S to E in the storage device in this manner, the interpretation and display of the data can be made easier at the time of qualitative or quantitative analysis performed later. Can be improved.
[0010]
【The invention's effect】
The method of the present invention is particularly effective when the components of the sample are known to some extent. In such a case, when performing quantitative analysis of the concentration of the component, the objective can be achieved by measuring only a few necessary peaks, so there is no need to measure the other 2θ range, and the measurement time is greatly reduced. can do.
[0011]
In addition, instead of inputting the 2θ range of the measurement itself as the measurement condition, the lattice spacing d and the X-ray wavelength λ are input. Therefore, even when the type of the X-ray tube is changed, the value of the X-ray wavelength λ is changed. Correcting only the above can provide an excellent effect that the target diffraction peak can be measured, so that the correspondence is simple.
[0012]
Furthermore, since the data obtained only near the peaks are combined and stored using the diffraction angle as the horizontal axis, there is no need to re-synthesize the data during subsequent qualitative analysis or quantitative analysis, and quick data is saved. Processing can be performed.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an embodiment of the present invention.
FIG. 2 is a functional block diagram of an apparatus for implementing the method of the present invention.
FIG. 3 is an example of diffraction data obtained by the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Wavelength input means 2 ... d value input means 3 ... Scan range calculation means 4 ... Measurement means 5 ... Data synthesis means 6 ... Data storage means 7 ... Measurement condition storage means

Claims (1)

X線管からの特性X線を試料に照射し、X線検出器をその試料の回りでゴニオメータを用いて走査することによって、前記試料から放射される回折X線を測定するX線回折分析方法において、前記特性X線の波長と前記試料の測定すべき一つまたは複数の格子面の面間隔とを入力することによって、この格子面によって回折された回折X線が現れる角度前後の所定角度範囲のみを前記X線検出器が走査するように走査範囲を決定し、これによって得られた各部分ごとの測定データと、それ以外の角度範囲でこの測定されたデータの間を結んだ仮想データと、を横軸を回折角度とするデータとして合成し、その後の定性分析または定量分析に用いるデータとすることを特徴とするX線回折分析方法。An X-ray diffraction analysis method for measuring a diffracted X-ray radiated from a sample by irradiating the sample with characteristic X-rays from an X-ray tube and scanning an X-ray detector around the sample using a goniometer. In the above, by inputting the wavelength of the characteristic X-ray and the spacing between one or more lattice planes of the sample to be measured, a predetermined angular range around the angle at which the diffracted X-ray diffracted by this lattice plane appears Only the scanning range is determined so that the X-ray detector scans only the data, and the measurement data obtained for each portion obtained by the scanning range and virtual data connecting the measured data in other angle ranges are obtained. Are synthesized as data having a horizontal axis as a diffraction angle, and used as data for subsequent qualitative or quantitative analysis.
JP10352895A 1995-04-27 1995-04-27 X-ray diffraction analysis method Expired - Fee Related JP3552333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10352895A JP3552333B2 (en) 1995-04-27 1995-04-27 X-ray diffraction analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10352895A JP3552333B2 (en) 1995-04-27 1995-04-27 X-ray diffraction analysis method

Publications (2)

Publication Number Publication Date
JPH08297105A JPH08297105A (en) 1996-11-12
JP3552333B2 true JP3552333B2 (en) 2004-08-11

Family

ID=14356409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10352895A Expired - Fee Related JP3552333B2 (en) 1995-04-27 1995-04-27 X-ray diffraction analysis method

Country Status (1)

Country Link
JP (1) JP3552333B2 (en)

Also Published As

Publication number Publication date
JPH08297105A (en) 1996-11-12

Similar Documents

Publication Publication Date Title
EP1653226A1 (en) Scanning line detector for two-dimensional x-ray diffractometer
GB2083215A (en) Apparatus for x-ray diffraction
GB1594561A (en) Method and apparatus for tomography using radiation
US4788702A (en) Orientation of crystals
JP2005534028A (en) Quantitative phase analysis of textured polycrystalline materials
JPH0260329B2 (en)
JP3552333B2 (en) X-ray diffraction analysis method
KR100936746B1 (en) Characterization of three-dimensional distribution of defects by x-ray topography
JP2003194741A (en) X-ray diffractometer, method of measuring reflected x-ray, and method of drawing up reciprocal lattice space map
JP3655778B2 (en) X-ray analyzer
JP4563701B2 (en) X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method
JP5013525B2 (en) X-ray diffraction measurement method and X-ray diffraction apparatus
Schwarzer et al. Orientation microscopy with fast EBSD
JP3931161B2 (en) Intensity calculation method for diffraction spots in X-ray structural analysis
JPH02266249A (en) Method for measuring x-ray diffraction of crystal plane
US6411676B1 (en) Method for determining parameters of a unit cell of a crystal structure using diffraction
JP2003294659A (en) X-ray analysis apparatus
JP2695165B2 (en) Crystal structure analysis method
US5418829A (en) Method for determining unknown structure of crystal
JP3950074B2 (en) Thickness measuring method and thickness measuring apparatus
JP3664483B2 (en) Pole measurement method
JP3626965B2 (en) X-ray apparatus and X-ray measurement method
JP2639037B2 (en) Data processing method for X-ray diffraction measurement
JPH01219529A (en) Method and device for stress measurement
JP2799147B2 (en) X-ray CT system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees