JP3552173B2 - Manufacturing method of lightweight aggregate using sewage sludge incineration ash - Google Patents

Manufacturing method of lightweight aggregate using sewage sludge incineration ash Download PDF

Info

Publication number
JP3552173B2
JP3552173B2 JP5399195A JP5399195A JP3552173B2 JP 3552173 B2 JP3552173 B2 JP 3552173B2 JP 5399195 A JP5399195 A JP 5399195A JP 5399195 A JP5399195 A JP 5399195A JP 3552173 B2 JP3552173 B2 JP 3552173B2
Authority
JP
Japan
Prior art keywords
incineration ash
sewage sludge
sludge incineration
lightweight aggregate
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5399195A
Other languages
Japanese (ja)
Other versions
JPH08253353A (en
Inventor
明徳 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP5399195A priority Critical patent/JP3552173B2/en
Publication of JPH08253353A publication Critical patent/JPH08253353A/en
Application granted granted Critical
Publication of JP3552173B2 publication Critical patent/JP3552173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • C04B18/105Gaseous combustion products or dusts collected from waste incineration, e.g. sludge resulting from the purification of gaseous combustion products of waste incineration
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【0001】
【産業上の利用分野】
本発明は、下水汚泥焼却灰を用いた軽量骨材の製造方法に関するものである。
【0002】
【従来の技術】
従来、下水汚泥焼却灰は、脱水しコンポスト化し有機質土壌改良材として利用するか、埋立処分するか、又は脱水ケーキを焼却後埋立処分するのが一般的であった。
下水処理によって発生する汚泥量は、下水道の普及に伴って増加し、その主たる処分先である埋め立て適地の減少等により埋め立て処分はますます困難となりつつあり、その処分量の低減のための減量、減容の必要性が要求されている。
【0003】
又、減量、減容に止まらず汚泥の有効利用のため資源化技術の確立が望まれている。
一方、汚泥や焼却灰とセメントとの混合物では強度面で難点があるため、大量処理に適すと思われる土木、建設の分野においては、一般的な用途に不向きであり、実用に供し得ない。
【0004】
又、焼成工程を伴った下水汚泥焼却灰の有効利用として一般に焼成レンガ及び溶融スラグ等がある。
更に、例えば、特公昭61ー14100号公報に記載されるように、下水汚泥焼却灰に対して、有機質廃液を、その乾燥固形分が4〜12重量%になるように添加し、含水率を調整して造粒した後、1000℃〜1200℃で焼成した下水汚泥焼却灰を用いた軽量骨材の製造方法が提案されている。
【0005】
又、特開昭64ー37448号公報には、下水汚泥焼却灰に廃棄ガラス粉を混入して造粒し、この造粒された粒体を900〜1200℃の温度範囲で焼成後冷却する軽量骨材の成形方法が提案されている。
【0006】
【発明が解決しようとする課題】
処で、上述したような焼成レンガ及び溶融スラグ等においては、焼成レンガは焼成温度を1000±5℃と厳密に管理しなければならず、又、下水汚泥焼却灰の化学成分により、収縮、ひび割れ等の不良品を作り易いという不具合があった。
【0007】
又、溶融スラグは、焼成温度が1300〜1400℃と高温で、かつ、瞬時の滞留時間で溶融を行うため、高度な溶融設備を要する。
更に、特公昭61ー14100号公報及び特開昭64ー37448号公報に記載された発明によれば、造粒工程を含むため一定の粒度に対する歩留まりを考慮しなければならない。
【0008】
又、特公昭61ー14100号公報に記載された発明によれば、焼成温度が1000〜1200℃と高く、ガラス化による造粒物同士の融着を考慮しなければならない。
特に、ガラス化による融着は、1000℃以上から起き、ガラス化された焼成物は所望の粒度に破砕しずらく、かつ、それ自身の圧搾強度が弱いため、コンクリートとしての強度も低下するという問題がある。
【0009】
本発明は斯かる従来の問題点を解決するために為されたもので、その目的は、焼成温度を低くすることができる下水汚泥焼却灰を用いた軽量骨材の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
請求項1の発明は、下水汚泥焼却灰を苛性ソーダ溶液で混練り、乾燥した後、焼成し、更にその焼成物を破砕することを特徴とするものである。
【0011】
請求項2の発明は、下水汚泥焼却灰を苛性ソーダ溶液で混練り、乾燥した後、900〜1000℃で焼成することを特徴とするものである。
請求項3の発明は、焼却物を破砕し、分級し、調整することを特徴とするものである。
請求項4の発明は、下水汚泥焼却灰を苛性ソーダ溶液で混練り、乾燥した後、900〜1000℃で20〜30分焼成することを特徴とするものである。

【0012】
【作用】
請求項1乃至4の発明において、下水汚泥焼却灰とは、主として表1に掲げた一般的な化学組成を有する高分子系焼却灰及び無機系焼却灰をいう。
下水汚泥焼却灰は、高炉スラグ、フライアッシュ、天然ポゾラン等の混和材、或いは骨材と比較した場合、セメントとの関わり合いで、大きく異なるところはその形状が微細でポーラス状で混練りに多量の水を必要とし、化学成分においては下水汚泥焼却灰中の燐酸の存在がセメントの強度発現にマイナスに影響しているものと考えられる。
【0013】
表1は、下水汚泥焼却灰及びセメントと関わり合いのあるフライアッシュ、ポゾラン、長石の化学組成の一例の表である。
下水汚泥焼却灰は、通常その焼結に1300℃以上の高温と長時間の焼成を必要とし、乾燥、焼成による収縮、歪が大きく、所望の形状に仕上げるのは困難である。
【0014】
請求項1乃至4の発明では、下水汚泥焼却灰を苛性ソーダ溶液で混棟りし、耐熱板上にのし餅状に形成し、24時間自然乾燥後、乾燥器で95℃,2時間乾燥する。この乾燥に従って収縮し、多数のひび割れが発生するが、そのままの状態で炉内で焼成する。これにより、収縮、ひび割れは増大する。そして、断片状に焼結した片を炉外に取り出し自然冷却する。
【0015】
通常、この不定型焼結材は、煉瓦色でその周辺部はより濃色である。この不定型焼結材を破砕、分級、調整し、硬質の軽量骨材とする。この軽量骨材は、原灰と異なり非常に緻密でポーラスでなくなり、その可溶性リンの溶出量が41.7mg/kgとなり、原灰の可溶性リンの溶出量79.2mg/kgと比較すれば分かるように、原灰に比べて燐酸の溶出が減少していることから、焼結によって燐酸が封じ込められたか、溶出しづらい多価イオンの正塩に変化したものと考えられる。よって、この軽量骨材は、天然或いは人工の軽量骨材と同様に取り扱い得る。
【0016】
次に、請求項1乃至4の発明における苛性ソーダの作用について説明する。
一般的に、アルカリ全属塩は、ケイ酸塩ガラス等の低融点物質として知られており、そのメカニズムはガラス中のSi−0−Si結合をアル力リ金属が切断し、切れ目にアルカリ金属イオンが入り込むため、融点、焼結点を低くするためと考えられる。
【0017】
請求項1乃至4の発明は、上記の効果を下水汚泥焼却灰に対して利用したものである。
この場合、具体的に苛性ソーダ、苛性カリ、炭酸ソーダ等が使用され、類似した焼成物を得るが、この中で最も焼結時間が短く、かつ、安価である苛性ソーダを請求項1乃至4の発明では使用した。
【0018】
次に、請求項1乃至4の発明における乾燥、焼結の作用について説明する。
下水汚泥焼却灰と苛性ソーダ溶液と混練りすることにより、ナトリウムが下水汚泥焼却灰中に入り込み、焼成時に焼結に必要な温度に下げ、表面の形状を凝縮し易くなる。下水汚泥焼却灰は、乾燥による水分の蒸発に従って収縮し、内部の遊離状態にある溶液の部分を外部に、特に上面に多く放出する。そして、乾燥が進むに従い亀裂が発生し増大する。外部に溶出した溶液の部分からも蒸発して乾燥する。
【0019】
従って、この部分の組成は内部と異なる。何故ならば、焼成の過程においてもこの蒸発収縮が進み、分断され、不定型の独立した内部と外周部、特に上部に呈色の異なる焼結物を生成したためである。この物は煉瓦に似た多孔質の焼結体で、形状は不定型であるが、硬質は安定している。破砕、分級、調整により通常の軽量骨材と同様に使用し得る。
【0020】
請求項1乃至4の発明に係る軽量骨材は、通常の軽量骨材と同様の操作、器具によってモルタル、コンクリートの軽量骨材として使用し得る。AE剤、減水剤等の混和剤の使用についても同様である。
又、請求項1乃至4の発明に係る軽量骨材を使用したコンクリートの表面を研磨、切断、破砕等の手段により骨材を露出させることによって、不定型で濃淡のある煉瓦色模様の景観用コンクリートとすることができる。
【表1】

Figure 0003552173
【0021】
【実施例】
実施例1
下水汚泥焼却灰(表1に示す高分子系焼却灰)100を、苛性ソーダ3〜20を水50〜100に溶かした溶液(いずれも重量比)で混棟りし、ステンレスバットに、のし餅状に成形し室内で24時間乾燥させ、その後乾燥器内て95℃、2時間乾燥した。上面の色の濃い多数のひび割れのある乾燥物を得た。
【0022】
これを電気炉に入れ、900℃で20〜30分間焼成した。より一層の収縮、亀裂が進み、周辺部特に上部の色の濃い煉瓦色になり、熱により割れてここに独立した多数の不定型の焼成物を得た。
この場合、最も良好な焼成物が得られたのは、下水汚泥焼却灰(表1に示す高分子系焼却灰)100に対して苛性ソーダ10を水100に溶かした混合比であり、同一温度で焼成した場合、これより苛性ソーダが少ないと未焼結で粉っぽい焼成物になり易い傾向にあり、逆に多いとガラス化され易くなる傾向にある。
【0023】
この焼成物を破砕、分級し粒度を表2及び図1の如く調整して軽量骨材とした。
この場合、コンクリートの強度発現を考慮した場合、骨材は粗い粒度から細かい粒度まで適当に混ざっているように調整しなければならない。
この軽量骨材の絶乾比重、吸水率、単位容積重量、実績率、浮粒率は表3の通りである。
【0024】
表4の配合で作成した4×4×16cmの供試体の28日材令の試験結果は、表5の通りである。
この結果は、主たるコンクリートの用途と考えられるインターロッキングブロックの規格(圧縮強度330Kg/cm、曲げ強度50Kg/cm)を満足するものである。
【表2】
Figure 0003552173
【表3】
Figure 0003552173
【表4】
Figure 0003552173
【表5】
Figure 0003552173
実施例2
下水汚泥焼却灰(表1に示す高分子系焼却灰)100を、苛性ソーダ3〜20を水50〜100に溶かした溶液(いずれも重量比)で混棟りし、ステンレスバットに、のし餅状に成形し室内て24時間乾燥させ、その後乾燥器内て95℃、2時間乾燥した。上面の色の濃い多数のひび割れのある乾燥物を得た。
【0025】
これを電気炉に入れ、1000℃で20〜30分間焼成した。より一層の収縮、亀裂が進み、周辺部特に上部の色の濃い煉瓦色になり、熱により割れてここに独立した多数の不定型の焼成物を得た。
この場合、最も良好な焼成物が得られたのは、下水汚泥焼却灰(表1に示す高分子系焼却灰)100に対して苛性ソーダ10を水100に溶かした混合比であり、同一温度で焼成した場合、これより苛性ソーダが少ないと未焼結で粉っぽい焼成物になり易い傾向にあり、逆に多いとガラス化され易くなる傾向にある。
【0026】
この焼成物を破砕、分級し粒度を表2及び図1の如く調整して軽量骨材とした。
この骨材の絶乾比重、吸水率、単位容積重量、実績率、浮粒率は表3の通りである。
表4の配合で作成した4×4×16cmの供試体の28日材令の試験結果は、表6の通りである。
【0027】
この結果は、主たるコンクリートの用途と考えられるインターロッキングブロックの規格(圧縮強度330Kg/cm、曲げ強度50Kg/cm)を満足するものである。
【表6】
Figure 0003552173
【0028】
【発明の効果】
以上のように、請求項1乃至4の発明に係る下水汚泥焼却灰を用いた軽量骨材の製造方法によれば、原灰に、ごく一般的安価な苛性ソーダを少量加えることにより焼成に必要な温度を低く(900〜1000℃)、時間を短く(20〜30分)し、その焼成物を破砕、分級、調整し骨材とするため、造形の難しさ、化学成分による彰讐や、乾燥による収縮、亀裂、歪み等通常の窯業製品に不可欠な操作、配鷺を必要としない。
【0029】
又、焼成温度が低いため融点の問題が無く、装置、用具についても一般的な物品の使用が可能である。
請求項1乃至4の発明では、下水汚泥焼却灰を安価な少量の添加物、簡便な用具、操作と少ない熱量によって大量消費の見込まれる建設資材として有効利用の方法を提供するものであり、その過程においては新たな処理、処分を必要とする様な副生成物を一切生成しない。
【0030】
更に、請求項1乃至4の発明は、従来の方法と比較して次のような優位点を有する。
▲1▼従来の方法によれば、造粒工程を含むため一定の粒度に対する歩留まりを考慮しなければならないが、請求項1乃至4の発明では破砕工程であるため色々な粒度にほば100%調整可能である。
【0031】
▲2▼従来の方法は、焼成温度が1000〜1200℃と高くガラス化による造粒物同士の融着を考慮しなければならないが、請求項1乃至4の発明では900〜1000℃と焼成温度が低いため、ガラス化はほとんど起きず、仮に部分的にガラス化が起こっても後で破砕工程を含むため融着による問題はない。
【図面の簡単な説明】
【図1】実施例におけるふるい分析曲線である。[0001]
[Industrial applications]
The present invention relates to a method for producing lightweight aggregate using sewage sludge incineration ash.
[0002]
[Prior art]
Conventionally, sewage sludge incineration ash has generally been dewatered and composted and used as an organic soil conditioner, landfilled, or landfilled after incineration of a dehydrated cake.
The amount of sludge generated by sewage treatment increases with the spread of sewerage, and landfill disposal is becoming increasingly difficult due to a decrease in suitable landfills, which are the main disposal sites. The need for volume reduction is required.
[0003]
Further, it is desired to establish a resource recycling technique for effective use of sludge, not limited to weight reduction and volume reduction.
On the other hand, a mixture of sludge or incinerated ash and cement has a drawback in strength, and is not suitable for general use in the field of civil engineering and construction which is considered to be suitable for mass treatment, and cannot be put to practical use.
[0004]
In addition, there are generally fired bricks and molten slag as effective use of sewage sludge incineration ash accompanied by a firing step.
Further, for example, as described in JP-B-61-14100, an organic waste liquid is added to sewage sludge incineration ash so that its dry solid content is 4 to 12% by weight, and the water content is reduced. A method for producing a lightweight aggregate using sewage sludge incineration ash that has been adjusted and granulated and then fired at 1000 ° C to 1200 ° C has been proposed.
[0005]
Japanese Patent Application Laid-Open No. 64-37448 discloses a light weight in which waste glass powder is mixed with incinerated sewage sludge and granulated, and the granulated granules are fired in a temperature range of 900 to 1200 ° C. and then cooled. Aggregate molding methods have been proposed.
[0006]
[Problems to be solved by the invention]
Meanwhile, in the above-described fired bricks and molten slag, the fired bricks must be strictly controlled at a firing temperature of 1000 ± 5 ° C. In addition, due to the chemical composition of sewage sludge incineration ash, shrinkage and cracking are caused. There is a problem that a defective product is easily produced.
[0007]
Further, the molten slag is melted at a high firing temperature of 1300 to 1400 ° C. and with an instantaneous residence time, and therefore requires advanced melting equipment.
Furthermore, according to the inventions described in JP-B-61-14100 and JP-A-64-37448, the yield for a certain particle size must be taken into account because the process involves a granulation step.
[0008]
Further, according to the invention described in Japanese Patent Publication No. 61-14100, the firing temperature is as high as 1000 to 1200 ° C., and the fusion of the granules by vitrification must be considered.
In particular, the fusion by vitrification occurs from 1000 ° C. or higher, and the vitrified fired material is hard to be crushed to a desired particle size, and because its own squeezing strength is weak, the strength as concrete is also reduced. There's a problem.
[0009]
The present invention has been made in order to solve such a conventional problem, and an object of the present invention is to provide a method for manufacturing a lightweight aggregate using sewage sludge incineration ash that can lower the firing temperature. is there.
[0010]
[Means for Solving the Problems]
The invention according to claim 1 is characterized in that sewage sludge incineration ash is kneaded with a caustic soda solution, dried, fired, and the fired product is further crushed.
[0011]
The invention of claim 2 is characterized in that sewage sludge incineration ash is kneaded with a caustic soda solution, dried and then fired at 900 to 1000 ° C.
The invention of claim 3 is characterized in that the incinerated material is crushed, classified, and adjusted.
The invention of claim 4 is characterized in that sewage sludge incineration ash is kneaded with a caustic soda solution, dried, and then calcined at 900 to 1000 ° C. for 20 to 30 minutes .

[0012]
[Action]
In the inventions of claims 1 to 4, the sewage sludge incineration ash mainly refers to polymer incineration ash and inorganic incineration ash having the general chemical compositions listed in Table 1.
Sewage sludge incineration ash, when compared with admixtures such as blast furnace slag, fly ash, natural pozzolans, or aggregates, is significantly different from cement due to its relation to cement. It is thought that the presence of phosphoric acid in the sewage sludge incineration ash negatively affects the strength development of cement in terms of chemical components.
[0013]
Table 1 is an example of a chemical composition of fly ash, pozzolan, and feldspar related to sewage sludge incineration ash and cement.
Sewage sludge incineration ash usually requires a high temperature of 1300 ° C. or more and sintering for a long time for its sintering, and has large shrinkage and distortion due to drying and sintering, making it difficult to finish it into a desired shape.
[0014]
In the inventions of claims 1 to 4, sewage sludge incineration ash is mixed with a caustic soda solution, formed into a rice cake shape on a heat-resistant plate, air-dried for 24 hours, and then dried in a dryer at 95 ° C. for 2 hours. Although it shrinks in accordance with this drying and generates many cracks, it is fired in a furnace as it is. Thereby, shrinkage and cracking increase. Then, the piece sintered in a piece shape is taken out of the furnace and naturally cooled.
[0015]
Normally, this irregular shaped sintered material has a brick color and its periphery is darker. This irregular shaped sintered material is crushed, classified and adjusted to obtain a hard lightweight aggregate. This lightweight aggregate is very dense and no longer porous, unlike the raw ash, and the soluble phosphorus elution amount is 41.7 mg / kg, which can be understood by comparing with the soluble ash elution amount of the raw ash of 79.2 mg / kg. As described above, since the dissolution of phosphoric acid is smaller than that of the raw ash, it is considered that the phosphoric acid was encapsulated by sintering or changed to a normal salt of a polyvalent ion which is difficult to dissolve. Therefore, this lightweight aggregate can be handled in the same manner as a natural or artificial lightweight aggregate.
[0016]
Next, the function of the caustic soda in the first to fourth aspects of the invention will be described.
In general, all alkali salts are known as low-melting substances such as silicate glass, and the mechanism is that the alkali metal breaks the Si-0-Si bond in the glass and the alkali metal This is considered to be due to lowering of the melting point and the sintering point because ions enter.
[0017]
The inventions of claims 1 to 4 utilize the above effects for sewage sludge incineration ash.
In this case, caustic soda, caustic potash, sodium carbonate and the like are specifically used, and similar fired products are obtained. Among them, caustic soda which has the shortest sintering time and is inexpensive is used in the inventions of claims 1 to 4. used.
[0018]
Next, the effects of drying and sintering in the first to fourth aspects of the present invention will be described.
By kneading the sewage sludge incineration ash with the caustic soda solution, sodium enters the sewage sludge incineration ash, lowers the temperature required for sintering during sintering, and easily condenses the surface shape. The sewage sludge incineration ash shrinks in accordance with the evaporation of water due to drying, and releases a large amount of the free solution inside to the outside, particularly to the upper surface. As the drying proceeds, cracks are generated and increase. The part of the solution eluted to the outside is also evaporated and dried.
[0019]
Therefore, the composition of this part is different from that of the inside. This is because even during the firing process, the evaporative shrinkage progresses and is divided, thereby producing an amorphous independent sintered body having different colors at the inner and outer peripheral parts, particularly at the upper part. This is a porous sintered body similar to a brick, and its shape is irregular, but its hardness is stable. It can be used in the same manner as ordinary lightweight aggregates by crushing, classification and adjustment.
[0020]
The lightweight aggregate according to the inventions of claims 1 to 4 can be used as a lightweight aggregate of mortar and concrete by the same operation and equipment as ordinary lightweight aggregate. The same applies to the use of admixtures such as AE agents and water reducing agents.
In addition, the surface of concrete using the lightweight aggregate according to any one of claims 1 to 4 is polished, cut, crushed, or the like to expose the aggregate, so that it can be used for landscapes having an irregular, shaded brick color pattern. It can be concrete.
[Table 1]
Figure 0003552173
[0021]
【Example】
Example 1
Sewage sludge incineration ash (polymeric incineration ash shown in Table 1) 100 is mixed with a solution of caustic soda 3 to 20 dissolved in water 50 to 100 (all in weight ratio), and the mixture is put in a stainless steel vat and a rice cake form. It was molded and dried in a room for 24 hours, and then dried in a dryer at 95 ° C. for 2 hours. A large number of cracked dried products having a dark upper surface were obtained.
[0022]
This was placed in an electric furnace and fired at 900 ° C. for 20 to 30 minutes. Further shrinkage and cracking progressed, and the surrounding area, especially the upper part, became dark brick color, which was broken by heat to obtain a large number of independent amorphous fired products.
In this case, the best baked product was obtained at a mixing ratio of caustic soda 10 dissolved in water 100 to sewage sludge incineration ash (polymer incineration ash shown in Table 1) 100 at the same temperature. When calcined, if the amount of caustic soda is less than this, it tends to be unsintered and powdery calcined product, and if it is too large, it tends to be vitrified easily.
[0023]
This fired product was crushed and classified, and the particle size was adjusted as shown in Table 2 and FIG. 1 to obtain a lightweight aggregate.
In this case, in consideration of the strength development of the concrete, it is necessary to adjust the aggregate so that the aggregate is appropriately mixed from a coarse particle size to a fine particle size.
Table 3 shows the absolute dry weight, water absorption, unit volume weight, actual rate, and floating particle rate of this lightweight aggregate.
[0024]
Table 5 shows the test results of a 28-day old material of a 4 × 4 × 16 cm specimen prepared with the composition shown in Table 4.
The result is to satisfy the standard (compressive strength 330 kg / cm 2, the flexural strength 50 Kg / cm 2) of the interlocking block considered the primary concrete applications.
[Table 2]
Figure 0003552173
[Table 3]
Figure 0003552173
[Table 4]
Figure 0003552173
[Table 5]
Figure 0003552173
Example 2
Sewage sludge incineration ash (polymeric incineration ash shown in Table 1) 100 is mixed with a solution of caustic soda 3 to 20 dissolved in water 50 to 100 (all in weight ratio), and the mixture is put in a stainless steel vat and a rice cake form. It was molded and dried in a room for 24 hours, and then dried in a dryer at 95 ° C. for 2 hours. A large number of cracked dried products having a dark upper surface were obtained.
[0025]
This was placed in an electric furnace and fired at 1000 ° C. for 20 to 30 minutes. Further shrinkage and cracking progressed, and the surrounding area, especially the upper part, became dark brick color, which was broken by heat to obtain a large number of independent amorphous fired products.
In this case, the best baked product was obtained at a mixing ratio of caustic soda 10 dissolved in water 100 to sewage sludge incineration ash (polymer incineration ash shown in Table 1) 100 at the same temperature. When calcined, if the amount of caustic soda is less than this, it tends to be unsintered and powdery calcined product, and if it is too large, it tends to be vitrified easily.
[0026]
This fired product was crushed and classified, and the particle size was adjusted as shown in Table 2 and FIG. 1 to obtain a lightweight aggregate.
Table 3 shows the absolute dry specific gravity, water absorption, unit volume weight, actual rate, and floating particle rate of this aggregate.
Table 6 shows the test results of a 28-day old material of a 4 × 4 × 16 cm specimen prepared with the composition shown in Table 4.
[0027]
The result is to satisfy the standard (compressive strength 330 kg / cm 2, the flexural strength 50 Kg / cm 2) of the interlocking block considered the primary concrete applications.
[Table 6]
Figure 0003552173
[0028]
【The invention's effect】
As described above, according to the method for producing a lightweight aggregate using sewage sludge incineration ash according to the first to fourth aspects of the present invention, it is necessary to add a very small amount of inexpensive caustic soda to the raw ash for sintering. To lower the temperature (900 to 1000 ° C) and shorten the time (20 to 30 minutes), crush, classify and adjust the fired material to aggregate, making it difficult to shape, vengeance by chemical components, and drying Shrinkage, cracks, distortions, etc., which are indispensable operations for ordinary ceramic products, do not require brooding.
[0029]
Further, since the firing temperature is low, there is no problem of the melting point, and general articles can be used for equipment and tools.
The inventions of claims 1 to 4 provide a method of effectively utilizing sewage sludge incineration ash as a construction material which is expected to consume a large amount by using a small amount of inexpensive additives, simple tools, and a small amount of heat. The process does not produce any by-products that require new treatment and disposal.
[0030]
Further, the inventions of claims 1 to 4 have the following advantages as compared with the conventional method.
{Circle around (1)} According to the conventional method, the yield for a certain particle size must be taken into account because of the inclusion of the granulation process. Adjustable.
[0031]
{Circle around (2)} In the conventional method, the firing temperature is as high as 1000 to 1200 ° C., and the fusion of the granules due to vitrification must be considered. , The vitrification hardly occurs, and even if partial vitrification occurs, there is no problem due to fusion since a crushing step is included later.
[Brief description of the drawings]
FIG. 1 is a sieve analysis curve in an example.

Claims (4)

下水汚泥焼却灰を苛性ソーダ溶液で混練り、乾燥した後、焼成し、更にその焼成物を破砕することを特徴とする下水汚泥焼却灰を用いた軽量骨材の製造方法。A method for producing lightweight aggregates using sewage sludge incineration ash, comprising kneading sewage sludge incineration ash with a caustic soda solution, drying, firing, and further crushing the fired material. 下水汚泥焼却灰を苛性ソーダ溶液で混練り、乾燥した後、900〜1000℃で焼成することを特徴とする請求項1記載の下水汚泥焼却灰を用いた軽量骨材の製造方法。The method for producing lightweight aggregates using sewage sludge incineration ash according to claim 1, wherein the sewage sludge incineration ash is kneaded with a caustic soda solution, dried, and then fired at 900 to 1000 ° C. 焼成物を破砕し、分級し、調整することを特徴とする請求項1記載の下水汚泥焼却灰を用いた軽量骨材の製造方法。The method for producing lightweight aggregate using sewage sludge incineration ash according to claim 1, wherein the fired material is crushed, classified, and adjusted. 下水汚泥焼却灰を苛性ソーダ溶液で混練り、乾燥した後、900〜1000℃で20〜30分焼成することを特徴とする請求項1記載の下水汚泥焼却灰を用いた軽量骨材の製造方法。The method for producing lightweight aggregate using sewage sludge incineration ash according to claim 1, wherein the sewage sludge incineration ash is kneaded with a caustic soda solution, dried, and fired at 900 to 1000 ° C for 20 to 30 minutes .
JP5399195A 1995-03-14 1995-03-14 Manufacturing method of lightweight aggregate using sewage sludge incineration ash Expired - Fee Related JP3552173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5399195A JP3552173B2 (en) 1995-03-14 1995-03-14 Manufacturing method of lightweight aggregate using sewage sludge incineration ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5399195A JP3552173B2 (en) 1995-03-14 1995-03-14 Manufacturing method of lightweight aggregate using sewage sludge incineration ash

Publications (2)

Publication Number Publication Date
JPH08253353A JPH08253353A (en) 1996-10-01
JP3552173B2 true JP3552173B2 (en) 2004-08-11

Family

ID=12958094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5399195A Expired - Fee Related JP3552173B2 (en) 1995-03-14 1995-03-14 Manufacturing method of lightweight aggregate using sewage sludge incineration ash

Country Status (1)

Country Link
JP (1) JP3552173B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3771689B2 (en) * 1997-09-26 2006-04-26 三機工業株式会社 Method for producing sewage sludge incinerated ash solidified product
JP4758962B2 (en) * 2007-08-07 2011-08-31 住友大阪セメント株式会社 Method for producing porous powder
JP6633927B2 (en) * 2016-02-01 2020-01-22 太平洋セメント株式会社 Earthmoving material and method of manufacturing the same
JP6656964B2 (en) * 2016-03-17 2020-03-04 太平洋セメント株式会社 Granular earthwork material and method for producing the same

Also Published As

Publication number Publication date
JPH08253353A (en) 1996-10-01

Similar Documents

Publication Publication Date Title
JP3038679B2 (en) Porcelain tile
JP2002003248A (en) Method of manufacturing artificial aggregate by using municipal refuse incinerator ash
CN111747696B (en) Geopolymer concrete based on household garbage incineration slag and red mud and preparation method thereof
KR100562169B1 (en) Manufacturing method of lightweight aggregate using ash from municipal and industrial solid waste incinerators
JPH02283678A (en) Production of ceramic product such as artificial light-weight aggregate from industrial waste
JP2001163647A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method
JP2000302498A (en) Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby
JP3552173B2 (en) Manufacturing method of lightweight aggregate using sewage sludge incineration ash
JP2007223841A (en) Method for producing artificial aggregate using waste slag as main raw material
KR20000072111A (en) Composition for lightweight aggregate and method for manufacturing the same
JP2001253740A (en) Artificial aggregate and its production process
JPH06227853A (en) Body composition for ceramic
JP2603599B2 (en) Artificial lightweight aggregate and manufacturing method thereof
KR20020044899A (en) Composition for lightweight aggregate and method for manufacturing the same
KR100392933B1 (en) Composition for lightweight aggregate
JPH1029841A (en) Production of artificial aggregate
JPH08301641A (en) Production of artificial lightweight aggregate
JP4070024B2 (en) Non-dust solidifying material and method for producing the same
JP3055899B1 (en) Artificial aggregate and method for producing the same
JP2003160368A (en) Concrete product
JP2003238221A (en) Method of producing artificial aggregate
KR960011327B1 (en) Process for the preparation of magnetic tail using paper sludge ashes
JPH07144958A (en) Production of pottery having continuous pore by utilizing waste
JPH1059765A (en) Production of ceramic raw material and manufacture of ceramic tile by effectively utilizing molten slag of waste incineration ash
KR970005876B1 (en) Process for the preparation of cement using sludge

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees