JP3551687B2 - Composition having excellent thermal conductivity and metal-based printed circuit board - Google Patents

Composition having excellent thermal conductivity and metal-based printed circuit board Download PDF

Info

Publication number
JP3551687B2
JP3551687B2 JP7857297A JP7857297A JP3551687B2 JP 3551687 B2 JP3551687 B2 JP 3551687B2 JP 7857297 A JP7857297 A JP 7857297A JP 7857297 A JP7857297 A JP 7857297A JP 3551687 B2 JP3551687 B2 JP 3551687B2
Authority
JP
Japan
Prior art keywords
polyimide
metal
thermal conductivity
powder
diamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7857297A
Other languages
Japanese (ja)
Other versions
JPH10273592A (en
Inventor
龍男 積山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP7857297A priority Critical patent/JP3551687B2/en
Publication of JPH10273592A publication Critical patent/JPH10273592A/en
Priority to US10/454,730 priority patent/US6797392B2/en
Application granted granted Critical
Publication of JP3551687B2 publication Critical patent/JP3551687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer

Description

【0001】
【発明の属する技術分野】
この発明は、電子工業分野において普及しつつある、金属ベ−スプリント基板などに好適な熱伝導性の優れた電気絶縁性ポリイミド組成物及び熱伝導性に優れた金属ベ−スプリント基板に関する。
【0002】
【従来の技術】
ポリイミド金属ベ−スプリント基板は、主としてプリント配線基板用の基材として使用されている。近年においてプリント配線基板を使用した電子機器が小型化、高密度化されるに伴い、部品・素子の高密度実装が可能なポリイミド金属箔積層板の利用が増大している。更に、高密度実装に伴い、部品・素子に発生する熱の放熱性を高めるために、熱伝導性の優れたポリイミド系金属ベ−スプリント基板の要望が高まっている。この放熱性を高めるために金属層にアルミニウム板などの熱伝導率の高い金属ベ−ス板を使用する試みがなされている。しかしながら二層の金属箔の層間に熱伝導率の低いポリイミド層を絶縁層として使用しているため、ポリイミド層の伝熱抵抗により放熱性は効率の良いものではなかった。
【0003】
一方、ポリイミド層に熱伝導性のよいフィラ−を充填したポリイミド層を使用する検討もなされている。しかしながら、このようなフィラ−を充填したポリイミドは金属箔との接着性が悪いために、ポリイミド層と金属箔層とをエポキシ樹脂などの接着剤を用いて貼り合わせる方法がとれれていた。
このようにして製造された金属ベ−スプリント基板は耐熱性、耐薬品性、電気的特性は使用される接着剤の特性に支配され、ポリイミドの特性が十分に活かされず、特に耐熱性の点で十分なものではなかった。
【0004】
この接着剤を有する従来の金属ベ−スプリント基板の欠点を克服するために、金属箔上にポリイミド溶液またはポリイミド前駆体であるポリアミド酸溶液を直接流延塗布することにより、通常の接着剤層を有しない、絶縁層が全てポリイミド層からなる金属ベ−スプリント基板を得ようとする試みがなされている。
また、ポリイミドフィルムの片面または両面に接着性を有するポリイミド前駆体を積層し、このポリイミド前駆体を金属箔とを重ね合わせ加熱圧着して、同様な絶縁層が全てポリイミド層からなる金属ベ−スプリント基板を得ようとする試みもなされている。
さらに、ポリイミドフィルムの両面に熱可塑性ポリイミドを積層し、このポリイミド前駆体を金属箔と加熱圧着する方法も試みられている。
【0005】
しかしながら、これらの方法では、本発明のようにフィラ−を充填したポリイミド層を形成する場合には接着性が認められず、接着剤を使用する方法しか実用的でなかった。
【0006】
【発明が解決しようとする課題】
この発明の目的は、金属ベ−スプリント基板の需要が拡大するに伴い、熱伝導性に優れたポリイミド層を絶縁層とした金属ベ−スプリント基板の要望が高まってきており、この要望に対して、加熱圧着により金属箔との接着性が良好で、熱伝導性の優れた電気絶縁性ポリイミド組成物、及び熱伝導性の優れた金属ベ−スプリント基板を提供することである。
【0007】
【課題を解決するための手段】
この発明者は鋭意検討した結果、特定のポリイミドを使用することによって、熱伝導性が高く、絶縁性に優れた無機フィラ−を充填しても金属箔との接着を加熱圧着によって容易に成しえることを見い出し、本発明を完成した。
【0008】
すなわち、この発明は、非結晶性で熱融着性の芳香族ポリイミドに、熱伝導性の向上に有効な充填材を含有してなる熱伝導性の優れた電気絶縁性ポリイミド組成物に関する。
【0009】
また、この発明は、非結晶性で熱融着性の芳香族ポリイミドに、熱伝導性の向上に有効な充填材を含有してなる熱伝導性の優れた電気絶縁性ポリイミド組成物からなる絶縁膜によって二層の金属箔を接合してなる熱伝導性に優れた金属ベ−スプリント基板に関する。
【0010】
この発明においては前記の非結晶性で熱融着性の芳香族ポリイミドを使用することが必要である。非結晶性とはX線回折スペクトルについてル−ランド法による解析で実質的に結晶性が認められないもの、好適には結晶化度が5%未満、特に3%以下のもの、その中でも特に1%以下のものが好適である。
非結晶性で熱融着性ではないポリイミドを使用すると、熱伝導性の向上に有効な充填材を含有させた電気絶縁性ポリイミド組成物が粉末化し絶縁膜を形成することが困難になる。
【0011】
前記の非結晶性で熱融着性の芳香族ポリイミドに使用することができるテトラカルボン酸二無水物類(酸、酸二無水物、酸エステル)としては、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物類が最も好ましいが、2,2−ビス(3、4−ジカルボキシフェニル)プロパン二無水物、ビス(3,4−ジカルボキシフェニル)エ−テル二無水物、これらの酸、酸エステルが挙げられる。これらの酸の一部をピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物によって置き換えられてもよい。
【0012】
この発明における前記のポリイミドに使用することができる芳香族ジアミンとしては、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、3,3’−ジアミノジフェニルエ−テル、3,3’−ジアミノベンゾフェノン、2,2−ビス(3−アミノフェニル)プロパン、1,4−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ビス(3−アミノフェニル)ジフェニルエ−テル、4,4’−ビス(3−アミノフェニル)ジフェニルメタン、4,4’−ビス(3−アミノフェノキシ)ジフェニルエ−テル、4,4’−ビス(3−アミノフェノキシ)ジフェニルメタン、2,2−ビス〔3−(アミノフェノキシ)フェニル〕プロパンなどの複数のベンゼン環とO、CH、C(CH、O(Bz)O(Bz:ベンゼン)、(Bz)O(Bz)などの基を分子主鎖中に有する柔軟な構造でジアミンがメタ位にある芳香族ジアミンが好適に使用される。
【0013】
この発明におけるポリイミドは、前記の各成分を使用し、好適にはテトラカルボン酸二無水物を過剰の条件下、もしくはジカルボン酸無水物でジアミン末端を封止する条件下で有機溶媒中で反応させてポリアミック酸の溶液(均一な溶液状態が保たれていれば一部がイミド化されていてもよい)とする。ポリイミドのアミン末端を封止するためのジカルボン酸無水物、例えば、無水フタル酸およびその置換体、ヘキサヒドロ無水フタル酸およびその置換体、無水コハク酸およびその置換体などを使用してもよい。
【0014】
この発明における前記のポリイミドを得るためには、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミドなどの有機溶媒中、好適には20〜60℃の反応温度で、ジアミン(アミノ基のモル数として)の使用量が酸無水物の全モル数(テトラ酸二無水物とジカルボン酸無水物の酸無水物基としての総モルとして)に対する比として、好ましくは0.9〜1.0、特に0.98〜1.0、そのなかでも特に0.99〜1.0であり、末端ジアミンを封止するジカルボン酸無水物の使用量がテトラカルボン酸二無水物の酸無水物基モル量に対する比として、好ましくは0.05以下、特に0.0001〜0.02であるような割合の各成分を反応させることが好ましい。
【0015】
前記のジアミンおよびジカルボン酸無水物の使用割合が前記の範囲外であると、得られるポリアミック酸、従ってポリイミドの分子量が小さく、ポリイミド自体の強度および金属箔との剥離強度の低下をもたらす。また、特にジアミン成分過剰の条件では、ポリアミック酸の環化イミド化あるいは溶媒の除去の際に劣化などを生じ、剥離強度の低下をもたらす傾向がある。
この発明において使用される非結晶性で熱融着性のポリイミドとしては、ηinh〔N−メチル−2−ピロリドン中0.5g/dl(30℃)〕が0.5以上、特に0.5〜3であるものが好ましい。
【0016】
特に、この発明における非結晶性で熱融着性の芳香族ポリイミドが、芳香族テトラカルボン酸成分として2,3,3’4’−ビフェニルテトラカルボン酸、酸のエステルまたは酸二無水物と、ジアミンとして主鎖中に少なくとも1つのエ−テル結合を有し且つエ−テル結合を介してフェニル基を少なくとも2つ有する芳香族ジアミンとから重合、イミド化されたポリイミドが好ましい。
【0017】
この発明のポリイミド組成層を構成するもう一方の熱伝導性の向上に有効な充填材としては結晶性シリカ粉末、窒化珪素粉末、窒化アルミニウム粉末、窒化ホウ素、アルミナ粉末、酸化マグネシウム粉末、炭化珪素粉末またはこれらの混合物を代表例として挙げることができる。
【0018】
このポリイミドと充填材との配合比率としては組成物全体100重量%中、ポリイミドが5〜50重量%に対して充填材が50〜95重量%が好ましい。より好ましくはポリイミドが10〜45重量%に対して充填材が55〜90重量%であることが熱伝導性が高く好ましい。
【0019】
この発明のポリイミド絶縁膜に充填される熱伝導性を向上させるのに有効な充填材の充填方法としては、特に限定されないが、具体例としては、予め重合されたポリイミド前駆体であるポリアミド酸の有機溶媒溶液中に充填材の粉末を所定量容器に配合し、ホモミキサ−等の攪拌機により攪拌混合する方法、あるいはポリアミド酸を重合する際に予め重合溶媒中に充填材を分散させておいて、この充填材分散溶媒中でポリアミド酸を重合し、混合する方法などを挙げることができる。
【0020】
この発明におけるポリイミド絶縁膜の厚さは特に限定されないが、通常5〜150μm、好ましくは8〜50μmである。
【0021】
この発明の金属ベ−スプリント基板は、前記の熱伝導性の優れた電気絶縁性ポリイミド組成物からなる絶縁膜によって二層の金属箔を接合してなる。
ここで、二層の金属箔の一層は回路用(導電性)の金属箔、好適には銅箔であり、もう一方の金属箔がベ−ス基板用の金属箔(板といわれるものも含む)、好適には銅箔、アルミニウム箔、ステンレス箔または鉄箔である。
【0022】
この発明に用いられる金属箔の厚さは特に制限はないが、回路用(導電性)金属箔用としては3〜175μmのもの、好ましくは8〜105μmのものが使用され、ベ−ス基板用の金属箔(板)用としては50〜3000μmのものが好適に使用される。また、この金属箔のポリイミドと接着される表面の表面粗さについては特に限定されないが、JIS B O6O1(表面粗さの定義と表示)における、中心線平均粗さ(以下Raと記載する)および十点平均粗さ(以下Rzと記載する)で表示されるところの値が、Raについては0.1μm未満、Rzについては1.00μm未満であるものが特に効果が大きく好ましい。その中でも特にこれらの条件を同時に満足するものが好ましい。
【0023】
また、この発明における金属箔としては、表面に金属単体やその酸化物などの無機物塗膜したり、あるいはアミノシラン、エポキシシランなどのカップリング剤で処理したり、あるいはサンドプラスト処理、ホ−リング処理、コロナ処理、プラズマ処理、エッチング処理などの処理を施したものを使用することも可能である。
【0024】
また、この発明におけるポリイミド絶縁膜の表面にホ−ニング処理、コロナ処理、プラズマ処理、エッチング処理などの処理を施してもよい。
【0025】
この発明の金属ベ−スプリント基板の製造方法としては特に限定はされないが、具体的な例としては、予め充填材を充填したポリイミド前駆体であるポリアミド酸ド−プをフィルム化し、加熱または化学イミド化処理したフィルムを製造し、次にこのポリイミドフィルムを金属箔にサンドイッチ状に挟み込み加熱プレスで加熱圧着する方法や一方の金属箔に充填材を充填したポリイミド前駆体であるポリアミック酸ド−プを塗布し、加熱して乾燥、イミド化した後、もう一方の金属箔を加熱圧着する方法などを挙げることができる。
前記のイミド化は、前述のようにして塗布したポリアミック酸ド−プを150〜250℃に加熱するか、またはイミド化剤を添加して150℃以下、特に15〜50℃の温度で反応させて、イミド環化することが好ましい。
【0026】
塗布する方法としては特に限定はないが、コンマコ−タ−、ナイフコ−タ−、ロ−ルコ−タ−、リバ−スコ−タ−、ダイコ−タ−、グラビアコ−タ−、ワイヤ−バ−等公知の塗布装置を使用することができる。また、加熱方法は熱風、熱窒素、遠赤外線、高周波誘導加熱など公知の方法を挙げることができる。
【0027】
加熱圧着の温度条件としては、本発明に使用されるポリイミド層のガラス転移点以上にすることが好ましい。具体的には250〜350℃の温度範囲が好ましい。これ以下の条件では充分な接着強度が得られないし、この温度より高いと接着時に気泡をかみ込む傾向がある。
【0028】
【実施例】
以下に実施例を挙げて本発明を説明する。
【0029】
実施例1
300ccセパラブルフラスコに重合溶媒であるジメチルアセトアミドを200ml仕込み、このジメチルアセトアミド中に窒化アルミニウムの粉体を102.7g仕込み超音波分散器に15分間かけて窒化アルミニウムを一次粒子に分散処理した後、攪拌翼を取り付けて攪拌を行いながら1,3−ビス(4−アミノフェノキシ)ベンゼン21.929g仕込み、10分間攪拌を行った後、2,3,3’,4’−ビフェニルテトラカルボン酸ジ無水物22.071gを仕込んだ。3時間反応を行い、ポリイミド前駆体であるポリアミド酸(ポリアミック酸)の窒化アルミニウム含有ド−プを得た。このド−プ中の窒化アルミニウムの含量はポリイミド組成物中69.5重量%となる。このポリアミック酸ド−プを40μmのフィルタ−を用いて5kg/cmの加圧下で窒化アルミニウムの凝集物を濾別した。得られたド−プの粘度は900ポイズであった。
【0030】
このド−プを150μmのアルミニウム箔上に35μmの厚さでコ−ティングし、250℃の熱風条件下でイミド化を行った。得られたアルミニウム箔上にコ−ティングされた窒化アルミニウムを含有するポリイミド層(厚さ25μm)は均一にアルミニウム箔上に接着されたものであった。さらに、ポリイミド層がコ−ティングされているにもかかわらず、この積層体はソリの全くないものであった。なお、このポリイミドについて別途測定したX線回折法(広角X線法)によるル−ランド法での結晶化度は0%で、ηinh〔N−メチル−2−ピロリドン中、0.5g/dl(30℃)〕が0.7で、ガラス転移点(Tg、)は250℃であった。
次いでこのアルミニウム箔上にコ−ティングされたポリイミド層上に35μmの電解銅箔(福田金属株式会社製)をホットプレスで320℃の温度条件で圧着した。このようにして得られアルミニウム金属ベ−スプリント基板について、金属箔/ポリイミド界面のピ−ル強度(180°剥離法により、引張り強度試験機を使用して常温で測定)を測定した。結果を表1に示す。
またこの実施例のポリアミド酸ド−プを使用して、厚さ40μmのフィルムを作成し、このフィルムの熱伝導率を京都電子工業株式会社製の迅速熱伝導率計を使用して測定した。結果を表1に示す。
【0031】
実施例2
窒化アルミニウムの仕込み量を66gにした以外は実施例1と同様な操作によりポリイミド組成物中に窒化アルミニウムが60重量%含有する組成となるポリアミック酸ド−プを得た。このド−プの粘度は820ポイズであった。このド−プを使用して実施例1に記載と同様の方法によって金属ベ−スプリント基板を作成した。結果を表1に示す。
【0032】
実施例3
窒化アルミニウムの替わりに窒化珪素を使用した以外は実施例1と同様の操作により、ポリイミド層に窒化珪素を70wt%含有するポリイミド層を有する金属ベ−スプリント基板を作成した。評価結果を表1に示す。
【0033】
実施例4
実施例1で調整したポリアミド酸ド−プを使用して、金属箔として厚さ150μmのステンレス箔(SUS−304)を用い、このステンレス箔上にポリアミド酸ド−プをコ−トし、実施例1と同様の条件によりステンレス箔上にポリイミド層を形成した。これに銅箔を実施例1と同様の条件で圧着し、ステンレスをベ−ス金属としたプリント基板を得た。結果を表1に示す。
【0034】
実施例5
ポリイミドのジアミン成分に4,4−ジアミノジフェニルエ−テルを使用した以外は実施例1と同様の操作により窒化アルミニウムを含有したポリイミド層を有する金属ベ−スプリント基板を作成した。結果を表1に示す。
【0035】
実施例6
実施例1で調整したポリアミド酸ド−プを使用して、金属箔として厚さ500μmの銅箔を用い、この銅箔箔上にポリアミド酸ド−プをコ−トし、実施例1と同様の条件により銅箔箔上にポリイミド層を形成した。これに銅箔を実施例1と同様の条件で圧着し、銅箔をベ−ス金属としたプリント基板を得た。結果を表1に示す。
【0036】
比較例1
ポリイミドの酸無水物として3,3’,4,4’−ビフェニルテトラカルボン酸ジ無水物、ジアミンとしてパラフェニレンジアミンを使用した以外は実施例1と同様にしてポリイミド組成物を調製した。組成物は粉末化し絶縁膜を形成できなかった。この組成物層を使用した他は同様の操作によって金属ベ−スプリント基板を作成した。この金属ベ−スプリント基板の金属箔/ポリイミド層のピ−ル強度を測定した。結果を表1に示す。
【0037】
比較例2
ポリイミドの酸無水物として3,3’,4,4’−ビフェニルテトラカルボン酸ジ無水物、ジアミンとして4,4’−ジアミノジフェニルエ−テルを使用した他は実施例1と同様にしてポリイミド組成物を調製した。組成物は粉末化し絶縁膜を形成できなかった。この組成物層を使用した他は同様の操作によって金属ベ−スプリント基板を作成した。この金属ベ−スプリント基板の金属箔/ポリイミド層のピ−ル強度を測定した。結果を表1に示す。
【0038】
比較例3
ポリイミドのジアミン成分としてパラフェニレンジアミンを使用した以外は実施例1と同様の操作により金属ベ−スプリント基板を作成し、金属箔/ポリイミド層のピ−ル強度を測定した。結果を表1に示す。
【0039】
比較例4
窒化アルミニウムを添加しない他は実施例1と同様の重合方法により、窒化アルミニウムを含有しないポリアミド酸ド−プを調製し、このド−プを使用して、ガラス板上でキャスティングフィルムを作成した。このフィルムを250℃の温度条件でイミド化してポリイミドフィルムを得た。
このポリイミドフィルムの熱伝導率を実施例1と同様の方法により測定した。結果を表1に示す。
【0040】
実施例7
窒化アルミニウムの仕込み量を変えた以外は実施例1と同様な操作によりポリイミド組成物中に窒化アルミニウムが85重量%含有する組成となるポリアミック酸ド−プを得た。このド−プを使用して実施例1に記載と同様の方法によって金属ベ−スプリント基板を作成した。この金属ベ−スプリント基板の金属箔/ポリイミド界面のピ−ル強度は1.1kg/cmであり前記の各実施例のものより大幅に良好な熱伝導率を示す。
【0041】
【表1】

Figure 0003551687
【0042】
実施例8
実施例1〜7で得られた金属ベ−スプリント基板を折り曲げ加工した。Rを3mm〜5mmに折り曲げても、いずれも回路用の銅箔の破断や絶縁膜層の剥離が認められず、折り曲げ加工を行うことができた。
【0043】
【発明の効果】
この発明によれば、加熱圧着により金属箔との熱融着性が良好で、熱伝導性の優れた電気絶縁性ポリイミド組成物を得ることができる。
【0044】
また、この発明によれば、二層の金属箔がポリイミド層によって強固に接着し、熱伝導性に優れた金属ベ−スプリント基板を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrically insulating polyimide composition having excellent thermal conductivity suitable for a metal-based printed circuit board and the like, and a metal-based printed circuit board having excellent thermal conductivity, which is becoming popular in the field of electronics.
[0002]
[Prior art]
A polyimide metal-based printed circuit board is mainly used as a base material for a printed circuit board. 2. Description of the Related Art In recent years, as electronic devices using printed wiring boards have been reduced in size and density, the use of polyimide metal foil laminates capable of high-density mounting of components and elements has been increasing. Further, with high-density mounting, there is an increasing demand for a polyimide-based metal-based printed circuit board having excellent heat conductivity in order to enhance the heat dissipation of heat generated in components and elements. Attempts have been made to use a metal base plate having a high thermal conductivity, such as an aluminum plate, for the metal layer in order to enhance the heat dissipation. However, since a polyimide layer having low thermal conductivity is used as an insulating layer between the two metal foil layers, heat dissipation is not efficient due to the heat transfer resistance of the polyimide layer.
[0003]
On the other hand, the use of a polyimide layer filled with a filler having good thermal conductivity has been studied. However, polyimide filled with such a filler has poor adhesion to a metal foil, and thus a method of bonding a polyimide layer and a metal foil layer using an adhesive such as an epoxy resin has been adopted.
The heat resistance, chemical resistance, and electrical properties of the metal-based printed circuit board manufactured in this manner are governed by the properties of the adhesive used, and the properties of polyimide are not sufficiently utilized. It was not enough.
[0004]
In order to overcome the drawbacks of the conventional metal-based printed circuit board having this adhesive, a normal adhesive layer is formed by directly casting a polyimide solution or a polyamic acid solution as a polyimide precursor on a metal foil. Attempts have been made to obtain a metal-based printed circuit board that does not have an insulating layer made entirely of a polyimide layer.
A polyimide precursor having adhesive properties is laminated on one or both sides of a polyimide film, and the polyimide precursor is laminated on a metal foil and heated and pressed to form a metal base print in which all the same insulating layers are made of a polyimide layer. Attempts have been made to obtain a substrate.
Furthermore, a method has been attempted in which a thermoplastic polyimide is laminated on both sides of a polyimide film, and the polyimide precursor is heated and pressed with a metal foil.
[0005]
However, in these methods, when a polyimide layer filled with a filler is formed as in the present invention, no adhesive property is recognized, and only a method using an adhesive is practical.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to increase the demand for a metal-based printed circuit board using a polyimide layer having excellent thermal conductivity as an insulating layer as the demand for the metal-based printed circuit board increases. Another object of the present invention is to provide an electrically insulating polyimide composition which has good adhesion to a metal foil by heat compression and has excellent thermal conductivity, and a metal-based printed board having excellent thermal conductivity.
[0007]
[Means for Solving the Problems]
As a result of intensive studies, the inventor of the present invention has found that, by using a specific polyimide, even if an inorganic filler having a high thermal conductivity and an excellent insulating property is filled, bonding with a metal foil can be easily performed by heat compression. And completed the present invention.
[0008]
That is, the present invention relates to an electrically insulating polyimide composition having excellent thermal conductivity, comprising a non-crystalline, heat-fusible aromatic polyimide and a filler effective for improving thermal conductivity.
[0009]
In addition, the present invention provides an insulating material comprising an electrically insulating polyimide composition having excellent thermal conductivity, comprising a non-crystalline, heat-fusible aromatic polyimide and a filler effective for improving thermal conductivity. The present invention relates to a metal-based printed board having excellent thermal conductivity formed by joining two layers of metal foils with a film.
[0010]
In the present invention, it is necessary to use the above-mentioned non-crystalline and heat-fusible aromatic polyimide. Non-crystalline refers to a substance having substantially no crystallinity when analyzed by the Leuland method in an X-ray diffraction spectrum, preferably having a degree of crystallinity of less than 5%, particularly 3% or less, and particularly preferably 1% or less. % Or less is preferred.
When a non-crystalline and non-heat-fusible polyimide is used, the electrically insulating polyimide composition containing a filler effective for improving the thermal conductivity becomes powdery and it becomes difficult to form an insulating film.
[0011]
The tetracarboxylic dianhydrides (acids, acid dianhydrides, acid esters) that can be used for the above-mentioned non-crystalline, heat-fusible aromatic polyimide include 2,3,3 ′, 4 ′ -Biphenyltetracarboxylic dianhydrides are most preferred, but 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, These acids and acid esters are exemplified. Some of these acids are converted by pyromellitic dianhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride. It may be replaced.
[0012]
As the aromatic diamine that can be used for the polyimide in the present invention, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 3,3′-diamino Diphenyl ether, 3,3'-diaminobenzophenone, 2,2-bis (3-aminophenyl) propane, 1,4-bis (3-aminophenoxy) benzene, 4,4'-bis (3-aminophenyl ) Diphenyl ether, 4,4'-bis (3-aminophenyl) diphenylmethane, 4,4'-bis (3-aminophenoxy) diphenyl ether, 4,4'-bis (3-aminophenoxy) diphenylmethane , 2,2-bis plurality of benzene rings and O, such as [3- (aminophenoxy) phenyl] propane, CH 2, C (CH 3 ) 2, O (B ) O (Bz: benzene), diamine and flexible structure is an aromatic diamine in the meta position are preferably used having a group such as in the molecular backbone (Bz) O (Bz).
[0013]
The polyimide in the present invention uses the above-mentioned components, and is preferably reacted in an organic solvent under an excess of tetracarboxylic dianhydride or under the condition of blocking the diamine terminal with dicarboxylic anhydride. To obtain a polyamic acid solution (partially imidized as long as a uniform solution state is maintained). A dicarboxylic anhydride for capping the amine terminal of the polyimide, for example, phthalic anhydride and its substituted product, hexahydrophthalic anhydride and its substituted product, succinic anhydride and its substituted product and the like may be used.
[0014]
In order to obtain the above-mentioned polyimide in the present invention, diamine (molar of amino group) is preferably prepared in an organic solvent such as N-methyl-2-pyrrolidone and N, N-dimethylacetamide at a reaction temperature of preferably 20 to 60 ° C. As a ratio to the total number of moles of the acid anhydride (as the total moles of the tetraacid dianhydride and the dicarboxylic anhydride as the acid anhydride group), preferably from 0.9 to 1.0, In particular, it is 0.98 to 1.0, and especially 0.99 to 1.0, and the amount of the dicarboxylic anhydride used to seal the terminal diamine is the molar amount of the anhydride group of the tetracarboxylic dianhydride. It is preferable to react each component at a ratio of preferably 0.05 or less, particularly 0.0001 to 0.02.
[0015]
When the use ratio of the diamine and dicarboxylic anhydride is out of the above range, the molecular weight of the resulting polyamic acid, that is, the polyimide, is small, and the strength of the polyimide itself and the peel strength from the metal foil are reduced. In particular, under conditions where the diamine component is excessive, degradation or the like occurs during cyclization imidization of the polyamic acid or removal of the solvent, and the peel strength tends to decrease.
As the amorphous, heat-fusible polyimide used in the present invention, ηinh [0.5 g / dl (30 ° C.) in N-methyl-2-pyrrolidone] is 0.5 or more, especially 0.5 to A value of 3 is preferred.
[0016]
In particular, the non-crystalline, heat-fusible aromatic polyimide according to the present invention comprises 2,3,3′4′-biphenyltetracarboxylic acid, an acid ester or an acid dianhydride as an aromatic tetracarboxylic acid component, As the diamine, a polyimide polymerized and imidized from an aromatic diamine having at least one ether bond in the main chain and having at least two phenyl groups via the ether bond is preferable.
[0017]
The other effective filler for improving the thermal conductivity constituting the polyimide composition layer of the present invention is crystalline silica powder, silicon nitride powder, aluminum nitride powder, boron nitride, alumina powder, magnesium oxide powder, silicon carbide powder. Alternatively, a mixture thereof can be mentioned as a typical example.
[0018]
The mixing ratio of the polyimide and the filler is preferably 5 to 50% by weight of the polyimide and 50 to 95% by weight of the filler in 100% by weight of the whole composition. More preferably, the content of the filler is 55 to 90% by weight with respect to 10 to 45% by weight of the polyimide, because of high thermal conductivity.
[0019]
The method for filling the filler effective for improving the thermal conductivity to be filled in the polyimide insulating film of the present invention is not particularly limited, but as a specific example, a polyamic acid which is a prepolymerized polyimide precursor A method for mixing a predetermined amount of filler powder in a container in an organic solvent solution and stirring and mixing with a stirrer such as a homomixer, or dispersing the filler in a polymerization solvent in advance when polymerizing polyamic acid, A method of polymerizing and mixing the polyamic acid in the filler dispersion solvent can be used.
[0020]
The thickness of the polyimide insulating film in the present invention is not particularly limited, but is usually 5 to 150 μm, preferably 8 to 50 μm.
[0021]
The metal-based printed circuit board of the present invention is formed by joining two layers of metal foil by an insulating film made of the above-mentioned electrically insulating polyimide composition having excellent heat conductivity.
Here, one of the two layers of metal foil is a metal foil for a circuit (conductive), preferably a copper foil, and the other metal foil is a metal foil for a base substrate (including what is called a plate). ), Preferably copper foil, aluminum foil, stainless steel foil or iron foil.
[0022]
Although the thickness of the metal foil used in the present invention is not particularly limited, a metal foil having a thickness of 3 to 175 μm, preferably 8 to 105 μm is used for a circuit (conductive) metal foil. A metal foil (plate) having a thickness of 50 to 3000 μm is preferably used. Although the surface roughness of the surface of the metal foil bonded to the polyimide is not particularly limited, the center line average roughness (hereinafter referred to as Ra) and the JIS B O6O1 (definition and indication of surface roughness) and A value represented by a ten-point average roughness (hereinafter referred to as Rz) of less than 0.1 μm for Ra and less than 1.00 μm for Rz is particularly effective and preferable. Among them, those satisfying these conditions at the same time are particularly preferable.
[0023]
The metal foil in the present invention may be coated on the surface with an inorganic coating such as a simple metal or an oxide thereof, or treated with a coupling agent such as aminosilane or epoxysilane, or may be subjected to sandplast treatment or hole treatment. It is also possible to use those subjected to treatments such as corona treatment, plasma treatment and etching treatment.
[0024]
Further, the surface of the polyimide insulating film in the present invention may be subjected to a treatment such as a honing treatment, a corona treatment, a plasma treatment, and an etching treatment.
[0025]
The method for producing the metal-based printed circuit board of the present invention is not particularly limited, but as a specific example, a polyamide acid dope, which is a polyimide precursor previously filled with a filler, is formed into a film and heated or chemically imprinted. Then, the polyimide film is sandwiched between metal foils in a sandwich shape, and then heat-pressed with a heat press or a polyamic acid dope which is a polyimide precursor in which one metal foil is filled with a filler. After applying, heating, drying and imidizing, the other metal foil may be heated and pressed.
The imidization is carried out by heating the polyamic acid dope applied as described above to 150 to 250 ° C or adding an imidizing agent and reacting at a temperature of 150 ° C or lower, particularly 15 to 50 ° C. Then, it is preferable to perform imide cyclization.
[0026]
The coating method is not particularly limited, but may be a comma coater, a knife coater, a roll coater, a reverse coater, a die coater, a gravure coater, a wire coater. For example, a known coating device can be used. In addition, as a heating method, known methods such as hot air, hot nitrogen, far infrared rays, and high-frequency induction heating can be used.
[0027]
The temperature condition of the thermocompression bonding is preferably higher than the glass transition point of the polyimide layer used in the present invention. Specifically, a temperature range of 250 to 350 ° C. is preferable. If the temperature is lower than this, sufficient adhesive strength cannot be obtained, and if the temperature is higher than this, air bubbles tend to be entrapped during bonding.
[0028]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0029]
Example 1
200 ml of dimethylacetamide as a polymerization solvent was charged into a 300 cc separable flask, and 102.7 g of aluminum nitride powder was charged into this dimethylacetamide. The aluminum dispersant was dispersed into primary particles over 15 minutes in an ultrasonic disperser. 21.929 g of 1,3-bis (4-aminophenoxy) benzene was charged while stirring with a stirring blade, and after stirring for 10 minutes, 2,3,3 ′, 4′-biphenyltetracarboxylic acid dianhydride was added. 22.71 g of the product were charged. The reaction was conducted for 3 hours to obtain a dope containing aluminum nitride of polyamic acid (polyamic acid) as a polyimide precursor. The content of aluminum nitride in this dope is 69.5% by weight in the polyimide composition. Aggregates of aluminum nitride were filtered off from the polyamic acid dope under a pressure of 5 kg / cm 2 using a 40 μm filter. The resulting dope had a viscosity of 900 poise.
[0030]
This dope was coated on a 150 μm aluminum foil with a thickness of 35 μm, and imidization was performed under hot air conditions of 250 ° C. The obtained aluminum nitride-containing polyimide layer (thickness: 25 μm) coated on the aluminum foil was uniformly adhered on the aluminum foil. Further, despite the fact that the polyimide layer was coated, this laminate was completely free of warpage. The degree of crystallinity of this polyimide measured by the Leuland method by the X-ray diffraction method (wide-angle X-ray method) was 0%, and ηinh [in N-methyl-2-pyrrolidone, 0.5 g / dl ( 30 ° C.)] and the glass transition point (Tg) was 250 ° C.
Next, a 35 μm electrolytic copper foil (manufactured by Fukuda Metals Co., Ltd.) was pressed on the polyimide layer coated on the aluminum foil at a temperature of 320 ° C. by hot pressing. With respect to the aluminum metal base printed board thus obtained, the peel strength at the interface between the metal foil and the polyimide (measured at room temperature by a 180 ° peeling method using a tensile strength tester) was measured. Table 1 shows the results.
Further, a film having a thickness of 40 μm was prepared using the polyamic acid dope of this example, and the thermal conductivity of this film was measured using a rapid thermal conductivity meter manufactured by Kyoto Electronics Industry Co., Ltd. Table 1 shows the results.
[0031]
Example 2
A polyamic acid dope having a composition containing 60% by weight of aluminum nitride in a polyimide composition was obtained by the same operation as in Example 1 except that the charged amount of aluminum nitride was changed to 66 g. The viscosity of this dope was 820 poise. Using this dope, a metal-based printed circuit board was prepared in the same manner as described in Example 1. Table 1 shows the results.
[0032]
Example 3
A metal-based printed circuit board having a polyimide layer containing a polyimide layer containing 70 wt% of silicon nitride was prepared in the same manner as in Example 1 except that silicon nitride was used instead of aluminum nitride. Table 1 shows the evaluation results.
[0033]
Example 4
Using the polyamic acid dope prepared in Example 1, a 150 μm thick stainless steel foil (SUS-304) was used as the metal foil, and the polyamic acid dope was coated on the stainless steel foil. A polyimide layer was formed on a stainless steel foil under the same conditions as in Example 1. A copper foil was press-bonded thereto under the same conditions as in Example 1 to obtain a printed circuit board using stainless steel as a base metal. Table 1 shows the results.
[0034]
Example 5
A metal-based printed circuit board having a polyimide layer containing aluminum nitride was prepared in the same manner as in Example 1 except that 4,4-diaminodiphenyl ether was used as the diamine component of the polyimide. Table 1 shows the results.
[0035]
Example 6
Using the polyamic acid dope prepared in Example 1, a copper foil having a thickness of 500 μm was used as the metal foil, and the polyamic acid dope was coated on this copper foil foil. A polyimide layer was formed on the copper foil under the conditions described in (1). A copper foil was press-bonded thereto under the same conditions as in Example 1 to obtain a printed circuit board using the copper foil as a base metal. Table 1 shows the results.
[0036]
Comparative Example 1
A polyimide composition was prepared in the same manner as in Example 1, except that 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was used as the acid anhydride of the polyimide and paraphenylenediamine was used as the diamine. The composition was powdered and an insulating film could not be formed. A metal-based printed circuit board was prepared by the same operation except that this composition layer was used. The peel strength of the metal foil / polyimide layer of the metal base printed board was measured. Table 1 shows the results.
[0037]
Comparative Example 2
A polyimide composition was prepared in the same manner as in Example 1 except that 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride was used as the acid anhydride of the polyimide and 4,4'-diaminodiphenyl ether was used as the diamine. Was prepared. The composition was powdered and an insulating film could not be formed. A metal-based printed circuit board was prepared by the same operation except that this composition layer was used. The peel strength of the metal foil / polyimide layer of the metal base printed board was measured. Table 1 shows the results.
[0038]
Comparative Example 3
A metal-based printed circuit board was prepared in the same manner as in Example 1 except that paraphenylenediamine was used as the diamine component of the polyimide, and the peel strength of the metal foil / polyimide layer was measured. Table 1 shows the results.
[0039]
Comparative Example 4
A polyamic acid dope containing no aluminum nitride was prepared by the same polymerization method as in Example 1 except that no aluminum nitride was added, and a cast film was formed on a glass plate using this dope. This film was imidized at a temperature of 250 ° C. to obtain a polyimide film.
The thermal conductivity of this polyimide film was measured by the same method as in Example 1. Table 1 shows the results.
[0040]
Example 7
A polyamic acid dope having a composition containing 85% by weight of aluminum nitride in the polyimide composition was obtained by the same operation as in Example 1 except that the charged amount of aluminum nitride was changed. Using this dope, a metal-based printed circuit board was prepared in the same manner as described in Example 1. The peel strength of the metal foil / polyimide interface of this metal-based printed circuit board was 1.1 kg / cm, which is much better than that of each of the above embodiments.
[0041]
[Table 1]
Figure 0003551687
[0042]
Example 8
The metal-based printed circuit boards obtained in Examples 1 to 7 were bent. Even when R was bent to 3 mm to 5 mm, no breakage of the copper foil for the circuit or peeling of the insulating film layer was observed, and the bending process could be performed.
[0043]
【The invention's effect】
According to the present invention, it is possible to obtain an electrically insulating polyimide composition having good heat-sealing property with a metal foil and excellent heat conductivity by thermocompression bonding.
[0044]
Further, according to the present invention, a two-layer metal foil is firmly adhered by the polyimide layer, and a metal-based printed board excellent in heat conductivity can be obtained.

Claims (6)

芳香族テトラカルボン酸成分として2,3,3',4'−ビフェニルテトラカルボン酸、酸のエステルまたは酸二無水物と、ジアミンとして複数のベンゼン環と分子主鎖中にO、CH、C(CH、O(Bz)O、(Bz)O(Bz)(ここで、Bzはベンゼン環を示す。)のいずれかの基を有する柔軟な構造でジアミンがメタ位にある芳香族ジアミンとから重合、イミド化された非結晶性で熱融着性の芳香族ポリイミドに、結晶性シリカ粉末、窒化珪素粉末、窒化アルミニウム粉末、窒化ホウ素、アルミナ粉末、酸化マグネシウム粉末、炭化珪素粉末またはこれらの混合物のいずれかである熱伝導性の向上に有効な充填材をポリイミドと充填材との配合比率としてポリイミドが10〜45重量%に対して充填材が55〜90重量%含有してなる熱伝導性の優れた電気絶縁性ポリイミド組成物。2,3,3 ′, 4′-biphenyltetracarboxylic acid, an acid ester or an acid dianhydride as an aromatic tetracarboxylic acid component, a plurality of benzene rings as a diamine and O, CH 2 , C (CH 3 ) 2 , O (Bz) O, (Bz) O (Bz) (where Bz represents a benzene ring), a flexible structure having a diamine at the meta position with a flexible structure Polymerized from diamine, imidized amorphous and heat-fusible aromatic polyimide, crystalline silica powder, silicon nitride powder, aluminum nitride powder, boron nitride, alumina powder, magnesium oxide powder, silicon carbide powder or filler thermal conductivity effective filler in improving the either the polyimide is 10 to 45% by weight mixing ratio of the polyimide and the filler of the mixture 55 to 90 wt% Thermal conductivity excellent electrical insulating polyimide composition comprising a. 前記ジアミンが分子主鎖中に少なくとも1つのエ−テル結合およびエ−テル結合を介したフェニル基を少なくとも2つ有する芳香族ジアミンである請求項1に記載の電気絶縁性ポリイミド組成物。The electrically insulating polyimide composition according to claim 1, wherein the diamine is an aromatic diamine having at least one ether bond and at least two phenyl groups via the ether bond in a molecular main chain. 芳香族テトラカルボン酸成分として2,3,3',4'−ビフェニルテトラカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、ビス(3,4−ジカルボキシフェニル)エーテル、それらの酸のエステルまたは酸二無水物と、ジアミンとして複数のベンゼン環と分子主鎖中にO、CH、C(CH、O(Bz)O、(Bz)O(Bz)(ここで、Bzはベンゼン環を示す。)のいずれかの基を有する柔軟な構造でジアミンがメタ位にある芳香族ジアミンとから重合、イミド化された非結晶性で熱融着性の芳香族ポリイミドに、結晶性シリカ粉末、窒化珪素粉末、窒化アルミニウム粉末、窒化ホウ素、アルミナ粉末、酸化マグネシウム粉末、炭化珪素粉末またはこれらの混合物のいずれかである熱伝導性の向上に有効な充填材を含有してなる熱伝導性の優れた電気絶縁性ポリイミド組成物からなる絶縁膜によって二層の金属箔を接合してなる熱伝導性に優れた金属ベ−スプリント基板。2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) ether as an aromatic tetracarboxylic acid component, O, CH 2 , C (CH 3 ) 2 , O (Bz) O, (Bz) O (Bz) ( Here, Bz represents a benzene ring.) A non-crystalline, heat-fusible aromatic polymer obtained by polymerizing and imidizing a diamine with an aromatic diamine at the meta position in a flexible structure having any of the following groups: Polyimide is useful for improving thermal conductivity, which is one of crystalline silica powder, silicon nitride powder, aluminum nitride powder, boron nitride, alumina powder, magnesium oxide powder, silicon carbide powder or a mixture thereof. Do contains a filler made of a thermally conductive excellent electrical insulating polyimide composition comprising the insulating film metal having excellent thermal conductivity formed by joining a metal foil bilayer by base - Sprint substrate. 二層の金属箔の一層が回路用の銅箔であり、もう一方の層がベ−ス基板用のアルミニウム箔、ステンレス箔、銅箔または鉄箔で構成された請求項3に記載の熱伝導性に優れた金属ベ−スプリント基板。4. The heat conduction according to claim 3, wherein one of the two metal foils is a copper foil for a circuit, and the other is made of an aluminum foil, a stainless steel foil, a copper foil or an iron foil for a base substrate. Metal-based printed circuit board with excellent performance. 可とう性があって折り曲げ可能である請求項3乃至4に記載の熱伝導性に優れた金属ベ−スプリント基板。5. The metal-based printed circuit board having excellent thermal conductivity according to claim 3, which is flexible and can be bent. 回路用の銅箔がエッティング加工して配線とされ、さらにその上に半導体が搭載されている請求項3乃至5に記載の熱伝導性に優れた金属ベ−スプリント基板。6. The metal-based printed board having excellent thermal conductivity according to claim 3, wherein a copper foil for a circuit is subjected to an etching process to form a wiring, and a semiconductor is mounted thereon.
JP7857297A 1995-08-01 1997-03-28 Composition having excellent thermal conductivity and metal-based printed circuit board Expired - Lifetime JP3551687B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7857297A JP3551687B2 (en) 1997-03-28 1997-03-28 Composition having excellent thermal conductivity and metal-based printed circuit board
US10/454,730 US6797392B2 (en) 1995-08-01 2003-06-03 Polyimide/metal composite sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7857297A JP3551687B2 (en) 1997-03-28 1997-03-28 Composition having excellent thermal conductivity and metal-based printed circuit board

Publications (2)

Publication Number Publication Date
JPH10273592A JPH10273592A (en) 1998-10-13
JP3551687B2 true JP3551687B2 (en) 2004-08-11

Family

ID=13665624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7857297A Expired - Lifetime JP3551687B2 (en) 1995-08-01 1997-03-28 Composition having excellent thermal conductivity and metal-based printed circuit board

Country Status (1)

Country Link
JP (1) JP3551687B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005043524A1 (en) * 2003-11-03 2005-05-12 Koninklijke Philips Electronics N.V. Rewritable optical data storage medium and use of such a medium
JP5297740B2 (en) * 2007-09-28 2013-09-25 新日鉄住金化学株式会社 Laminate for heat conductive flexible substrate
US9000882B2 (en) 2011-05-19 2015-04-07 Black & Decker Inc. Electronic switching module for a power tool
JP5959983B2 (en) * 2012-08-06 2016-08-02 グンゼ株式会社 Insulating thermal conductive filler dispersion composition
US10608501B2 (en) 2017-05-24 2020-03-31 Black & Decker Inc. Variable-speed input unit having segmented pads for a power tool
JP6423494B1 (en) * 2017-07-13 2018-11-14 Apc株式会社 Manufacturing method of laminate
CN110343419B (en) * 2019-07-25 2022-02-11 深圳市至臻精密股份有限公司 High-thermal-conductivity insulating polyimide ink and preparation method thereof

Also Published As

Publication number Publication date
JPH10273592A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
US8124223B2 (en) Aramid filled polyimides having advantageous thermal expansion properties, and methods relating thereto
JP4528093B2 (en) Multilayer substrate having at least two dissimilar polyamide layers and a conductive layer and useful for electronics-type applications, and compositions related thereto
JP4540964B2 (en) Low temperature polyimide adhesive composition
JP3950560B2 (en) Adhesive for electronic parts and adhesive tape for electronic parts
TWI454375B (en) Laminates for flexible substrates and wireless conductive polyimide films
KR20070013303A (en) Polyimide resin, multilayer film, multilayer film with metal layer, and semiconductor device
JP4008249B2 (en) Insulating resin composition, insulating resin sheet and printed wiring board
KR100262417B1 (en) Film adhesive and production thereof
JP3267154B2 (en) LAMINATE AND ITS MANUFACTURING METHOD
JP3551687B2 (en) Composition having excellent thermal conductivity and metal-based printed circuit board
JP3635384B2 (en) Heat resistant bonding sheet
JPH10212460A (en) Adhesive tape for electronic part
WO2005027597A1 (en) Substrate for flexible printed wiring board and method for manufacturing same
JPH11157026A (en) Laminate and manufacture thereof
JP2729063B2 (en) Method of manufacturing flexible metal foil laminate
JP4763964B2 (en) Method for producing polyimide metal laminate
JP3361569B2 (en) Planar heating element and method of manufacturing the same
JP4175060B2 (en) Bonding sheets and laminates
JPH05331445A (en) Production of film adhesive
JPH10120785A (en) Polyimide resin composition and film adhesive and its production
JP3270378B2 (en) Metal / resin composite, method for producing the same, and substrate for flexible circuit wiring board
JPH066359B2 (en) Printed circuit board
JP2001212904A (en) Adhesive applied conductor-polyimide laminated sheet
KR101099397B1 (en) A laminate for ultrasonic bonding and ultrasonic bonding method using thereof
JP2009061783A (en) Polyimide metal laminated plate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term