JP3551334B2 - Pulse wave detector - Google Patents

Pulse wave detector Download PDF

Info

Publication number
JP3551334B2
JP3551334B2 JP17886295A JP17886295A JP3551334B2 JP 3551334 B2 JP3551334 B2 JP 3551334B2 JP 17886295 A JP17886295 A JP 17886295A JP 17886295 A JP17886295 A JP 17886295A JP 3551334 B2 JP3551334 B2 JP 3551334B2
Authority
JP
Japan
Prior art keywords
point
pulse wave
reference point
determination
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17886295A
Other languages
Japanese (ja)
Other versions
JPH0889487A (en
Inventor
由夫 酒井
潤 根木
朴 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kohden Corp
Original Assignee
Nihon Kohden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kohden Corp filed Critical Nihon Kohden Corp
Priority to JP17886295A priority Critical patent/JP3551334B2/en
Publication of JPH0889487A publication Critical patent/JPH0889487A/en
Application granted granted Critical
Publication of JP3551334B2 publication Critical patent/JP3551334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7239Details of waveform analysis using differentiation including higher order derivatives

Description

【0001】
【発明の属する技術分野】
本発明は、血圧計、血流計、パルスオキシメーター及び脈波伝播速度計等に利用され、脈波を測定する際の波形立ち上がり点を検出する脈波波形検出装置に関する。
【0002】
【従来の技術】
従来、血圧計では、その血圧測定法としてコロトコフ音認識法、オシロメトリック法が知られている。コロトコフ音認識法による血圧測定では、雑音による影響や、コロトコフ音の抜けが発生し易いとともに、拡張期圧以下でもコロトコフ音が消えないことがある。この血圧測定の精度低下を避けることが出来るオシロメトリック法による血圧測定では、動脈の拍動に起因する脈波をカフ内の振動として捉え、この振動に基づいて収縮期圧と拡張期圧を測定している。
【0003】
このオシロメトリック法による血圧測定では、脈波の波高値の変化から収縮期圧と拡張期圧を測定しているため、その波形ピーク点と立ち上がり点の測定が行われる。この場合、波形ピーク点を検出し、さらに、立ち上がり点を脈波波形の傾きの変化などを捉えて検出し、波高値を検出している。
【0004】
【発明が解決しようとする課題】
脈波の波形ピーク点は明確に出現するため容易かつ確実に検出できる。一方、脈波の立ち上がり点は、波形の傾きが変化する点であり、検出が難しい。特にカフ圧の減圧時の過渡的な圧力の揺れやドリフト、ノイズ等がある場合、そのような圧力変化脈波波形に加えて演算してしまうので、立ち上がり点特定の精度が劣化する。そのため収縮期圧と拡張期圧の血圧測定の精度が劣化するという欠点がある。
【0005】
本発明は、このような従来の技術における欠点を解決するものであり、脈波を測定して立ち上がり点の検出を行う際に、その脈波の立ち上がり点が正確に検出でき、例えば、血圧計で血圧測定を行う際の収縮期圧と拡張期圧の測定精度が向上する脈波波形検出装置の提供を目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明では、脈波の立ち上がり点を検出する脈波波形検出装置において、生体の脈波を検出する脈波検出手段と、前記脈波検出手段からの脈波信号を微分する微分手段と、前記微分手段からの微分波形の下向ゼロクロス点を検出する第1検出手段と、前記微分波形の最大点を前記下向きゼロクロス点から逆上って検出する第2検出手段と、前記第2検出手段が検出した最大点に対応する前記脈波信号の傾き最大点から逆上った所定の点を脈波の立ち上がり点として検出する第検出手段と、を備え、該第3検出手段は、前記脈波信号の傾き最大点を始点として設定し、該始点の直前の前記脈波信号上の点を基準点として設定し、該基準点の直前の前記脈波信号上の点を判定点として設定し、始点と、基準点に対して所定の関係を有する点とを結んだ直線をスコープとし、判定点がスコープに対して基準点と同じ側にあるか否かを判定し、該判定の結果により判定点が基準点と同じ側にあると判定されたとき基準点及び判定点を一つ逆上らせて新たに基準点及び判定点を設定して、前記判定処理を判定点が基準点と異なる側にあると判定されるまで繰り返し実行し、前記判定の結果により判定点が基準点と異なる側にあると判定されたとき、そのとき設定されていた基準点を脈波立ち上がり点として決定することを特徴とする。
【0007】
請求項2記載の脈波波形検出装置は、前記基準点に対して所定の関係を有する点は、脈波信号の基準点における接線に垂直な直線上で基準点から所定距離だけ離れた点であることを特徴とする。
【0008】
請求項3記載の脈波波形検出装置は、前記基準点に対して所定の関係を有する点は、前記基準点から時間軸上で所定時間逆上った点であることを特徴とする。
【0009】
【作用】
このような構成の請求項1〜3記載の脈波波形検出装置では、脈波信号を微分した微分波形における下向ゼロクロス点を検出し、この微分波形の最大点を下向きゼロクロス点から逆上って検出する。微分波形の最大点は、脈波信号の傾きが最大の点に対応する。この傾き最大点を始点とし、始点の直前の点を基準点とし、基準点の直前の点を判定点として設定して、始点と、基準点に対して所定の関係を有する点とを結んだ直線をスコープとし、判定点が、スコープに対して基準点と同じ側にあるか否かを判定する。判定点が基準点と同じ側にあると判定されたとき基準点及び判定点を一つ逆上らせて新たに基準点及び判定点を設定して、前記判定処理を判定点が基準点と異なる側にあると判定されるまで繰り返し実行する。その結果、判定点が基準点と異なる側にあると判定されたとき、そのとき設定されていた基準点を脈波立ち上がり点として決定する。
好ましくは、基準点に対して所定の関係を有する点を、脈波信号の基準点における接線に垂直な直線上で基準点から所定距離だけ離れた位置に、または、基準点から時間軸上で所定時間逆上った位置に設定する。
【0010】
したがって、この脈波波形検出装置を適用する、例えば、血圧計で血圧測定を行う際の収縮期圧と拡張期圧の測定精度が向上し、また、血流計では、連続する血流脈波における脈波の波形立ち上がり点が正確に検出されて、その積分した正確な拍出量が測定される。さらに、パルスオキシメーターでは、赤外(IR)光に対する検出信号の交流成分と、赤色(R)光に対する検出信号の交流成分のそれぞれの振幅値が脈波の波形立ち上がり点から正確に測定される。また、脈波伝播速度計では、頸動脈脈波と股動脈脈波の伝播時間が、脈波の波形の立ち上がり点から正確に測定される。
【0011】
【発明の実施の形態】
次に、本発明の脈波波形検出装置の実施例を図面を参照して詳細に説明する。 図1は本発明の脈波波形検出装置が適用される血圧計の構成例を示すブロック図である。図1において、この血圧計は、被測定者の上腕や指に取り付けるカフ1と、このカフ1での空気圧力と血圧脈波を示す信号を出力する圧力センサ2と、カフ1を制御信号C1の指示値まで加圧するためのポンプ3とが設けられている。さらに、カフ1の加圧後に制御信号C2の指示値で暫時、排気してカフ1を減圧するための電磁弁4と、圧力センサ2からの直流の圧力信号S1を図示しないローパスフィルタ(LPF)などで取り出し、かつ、高域の雑音成分を除去して増幅する直流増幅器6とが設けられている。
【0012】
さらに、直流増幅器6からの圧力信号(S1)をデジタル信号に変換するA/D変換器7と、圧力センサ2からの血圧脈波信号(S2)を直流増幅器6内の図示しないバンドパスフィルタ(BPF)又はハイパスフィルタ(HPF)等を通じて取り出し、その血圧脈波信号(S2)を増幅する交流増幅器8とが設けられている。また、交流増幅器8からの血圧脈波信号(S2)をデジタル信号に変換するA/D変換器9と、ポンプ3からの空気の送出を制御するためのポンプ制御器11と、電磁弁4での排気を制御するための駆動を行う電磁弁駆動器12とが設けられている。
【0013】
さらに、この血圧計には、A/D変換器7,9からの圧力信号(S1)及び血圧脈波信号(S2)を取り込んで脈波の波形ピーク点と立ち上がり点の検出を行うとともに、さらに、ポンプ制御器11を通じてポンプ3を制御し、また、電磁弁駆動器12を通じてカフ1内の圧縮空気を排気して減圧する制御を行う制御器13を有している。さらに、脈波の波形ピーク点と立ち上がり点の検出スタートを指示し、また、各種の操作を行うためのキーパネル14と、処理内容や処理波形などを画面表示する液晶ディスプレイ(LCD)15とが設けられている。
【0014】
制御器13は、A/D変換器7,9からの圧力信号(S1)及び血圧脈波信号(S2)を取り込み、ポンプ制御器11及び電磁弁駆動器12への制御信号を送出するためのI/Oポート13aと、CPU13bと、ワーキング用のRAM13cと、この装置の制御プログラムを格納したROM3dとで構成されている。
【0015】
次に、この実施例の動作について説明する。
図2はカフ1の圧力状態、血圧脈波信号(S2)及び脈波の立ち上がり点マーク波形を示す図であり、図3は、図1に示す血圧計の全体動作(血圧測定)の処理手順を示すフローチャートである。図1から図3において、図1中の制御器13によってポンプ3が、予めキーパネル14から設定された値に制御されて図2(a)に示すようにカフ1が加圧され、かつ、制御器13によって電磁弁4が制御されて図2(a)に示すようにカフ1が時間経過とともに減圧される。この減圧の状態を示す圧力信号(S1)を圧力センサ2、直流増幅器6及びA/D変換器7を通じて制御器13内のCPU13bがI/Oポート13aを介して取り込む。同時に血圧脈波信号(S2)を交流増幅器8及びA/D変換器9を通じて制御器13のCPU13bがI/Oポート13aを介して取り込む。
【0016】
CPU13bは図4(a)、(b)に示すように、カフ1の減圧の一段階ごとに、圧力センサ2からの血圧脈波信号(S2)(図4(a))の平滑化微分を行い、その微分波形(図4(b))の下向きゼロクロス点mを検出する(ステップ(図3中、Sで示す)11,12)。さらに、図4(b)に示す最大点Pを下向きゼロクロス点mから逆上って検出し、その最大点Pが、脈波以外の雑音成分が除去されているか否かを調べるため、予め設定したスレッショルドレベル(しきい値)以上か否かを判断する(ステップ13,14)。
【0017】
スレッショルドレベル未満の場合(ステップ14:No)はステップ11に戻りこれまでの処理を繰り返す。スレッショルドレベル以上の場合(ステップ14:Yes)は微分前の元の波形である図2(b)に示す血圧脈波信号S2から脈波の最高値点(ピークポイント)を探し、脈波最高点を決定する(ステップ15,16)。この後、ステップ13で検出された最大点Pから脈波立ち上がり点を探し、この脈波立ち上がり点を決定する(ステップ17)。次に、この脈波立ち上がり点とステップ16で求めた脈波最高点とから脈波波高を決定する(ステップ18)。次にカフ1の圧力が減圧していく全段階で得られた血圧脈波信号(S2)の波高値が予め設定した終了条件を満たしているか否かを判断する(ステップ19)。終了条件としては、本実施例では最大波高値の50%〜70%以下の脈波波高値が1〜4拍検出される場合を設定する。ここで満たされていない場合(ステップ19:No)、さらに、カフ1の減圧を行って(ステップ20)ステップ11に戻り、これまでの処理を繰り返す。すなわち、カフ1の全段階での減圧での血圧脈波信号(S2)の脈波波高を決定する。
【0018】
ステップ19で上記終了条件が満たされたと判断した場合(ステップ19:Yes)、制御器13が電磁弁駆動器12を通じて電磁弁4を全開する。これまでのデータが制御器13のRAM13cに記憶されており、この後、制御器13で計算して収縮期圧と拡張期圧との血圧値を決定する(ステップ21)。
【0019】
このように、カフ1の減圧の一段階ごとに検出した血圧脈波信号(S2)を微分処理し、次に脈波最高値点を検出して、さらに、波形の立ち上がり点検出を行っている。次に、この脈波立ち上がり点の決定方法(図3中のステップ17)について詳細に説明する。
【0020】
図5は、脈波立ち上がり点を垂線で決定する処理手順のフローチャート(サブルーチン)であり、図6は、垂線による脈波立ち上がり点決定の処理状態を示す模式図である。図5及び図6において、図3中のステップ16によって、制御器13の処理で脈波最高値点を決定した後に、図6(a)に示す検出一回目で、図4(b)に示した最大点(波形差分ピークポイント)Pに対応する血圧脈波信号(S2)の点を始点にして脈波立ち上がり点の検出を開始し、その始点の直前の点を基準点A(i)に設定する(ステップ30,31)。血圧脈波信号(S2)の基準点A(i)における接線から垂直にグラフ上距離εをとり、始点と距離εの先端を結んだ線をスコープとし、基準点の直前の判定点A(i−1)がスコープの内側(スコープに対して基準点A(i)と同じ側)に入っているか否かを見るとともに、この判断を行う(ステップ32,33,34)。心臓の収縮拡張運動には個人差はあるが、左心室収縮期間等から立ち上がり点を特定する適切な距離εを多くの被検者データの統計的処理から得ることができる。
【0021】
ステップ34で判定点A(i−1)がスコープの内側に入っている場合(Yes)図6(b)に示すように基準点を一つ進めて基準点A(i−1)とし(ステップ35)、ステップ32の処理を繰り返す。すなわち、基準点における接線から垂直に距離εをとる処理手順から繰り返す(ステップ32)。この繰り返しの後にステップ34で判定点がスコープの外側に出た図6(c)に示す場合(No)、この基準点を立ち上がり点として決定する(ステップ36)。
【0022】
図7は、脈波立ち上がり点を時間軸で決定する処理手順のフローチャート(サブルーチン)であり、図8は、時間軸による脈波立ち上がり点の決定の処理状態の模式図である。図7及び図8において、図3中のステップ16によって制御器13の処理で脈波最高値点を決定した後に、図(a)に示す検出一回目で、図4(b)に示した最大点(波形微分最高値点)Pに対応する血圧脈波信号(S2)の時間軸点を始点にして脈波立ち上がり点(時間軸点)の検出を開始し、始点の直前の時間軸を基準点A(i)に設定する(ステップ40,41)。基準点A(i)から時間軸の反対方向にグラフ上所定時間tをとり、始点と所定時間tの経過点を結んだ線をスコープとし、基準点A(i)の直前の判定点A(i−1)がスコープの内側(スコープに対して基準点A(i)と同じ側)に入っているか否かを見るとともに、この判断を行う(ステップ42,43,44)。
【0023】
ステップ44で判定点A(i−1)がスコープの内側に入っている場合(Yes)(b)に示すように基準点時間軸の反対方向に一つ進めて基準点をA(i−1)とし(ステップ45)、ステップ42の処理を繰り返す。すなわち、基準点から時間軸の反対方向に所定時間tをとる処理手順から繰り返す。この繰り返しの後にステップ44で判定点がスコープの外側に出た図(c)に示す場合(No)、この基準点を脈波立ち上がり点として決定する(ステップ46)。
【0024】
このようにして脈波の波形立ち上がり点を正確に検出し、血圧計における収縮期圧と拡張期圧の血圧値が正確に判明することになる。脈波の波形立ち上がり点の検出は、他の医療計測機器でも必要とされており、例えば、血流計、パルスオキシメーター及び脈波伝播速度計でも当該脈波波形検出装置は適用可能である。
【0025】
以下、この脈波波形検出装置が適用される他の実施例について説明する。
まず、血流計では、図9に示すように連続する血流脈波における脈波波形の立ち上がり点から、次の血流脈波における脈波波形の立ち上がり点までの波形間uを積分して、血液の拍出量を検出する。したがって、前述の血圧計と同様に波形立ち上がり点が正確に検出され、この脈波波形の立ち上がり点間の波形を積分することによって、確実な拍出量が測定できることになる。
【0026】
次に、パルスオキシメーターでは、図10(a)に示すように、赤外(IR)光に対する検出信号の交流成分AC1と、図10(b)に示す赤色(R)光に対する検出信号の交流成分AC2のそれぞれの振幅値を測定する。この振幅値を測定する場合、前述の血圧計と同様にして脈波の波形立ち上がり点が正確に検出されることによって、交流成分AC1,AC2が確実に測定できるようになる。
【0027】
また、脈波伝播速度計では、図11に示すように頸動脈脈波と股動脈脈波の伝播時間Tが検出される。この場合も、前述の血圧計と同様にして脈波の波形の立ち上がり点が正確に検出されることによって、確実に伝播時間Tが測定できるようになる。
【0028】
【発明の効果】
以上の説明から明らかなように、請求項1〜3記載の脈波波形検出装置によれば、脈波信号を微分した微分波形における下向ゼロクロス点を検出し、この微分波形の最大点を下向きゼロクロス点から逆上って検出し、この傾き最大点を始点とする。始点の直前の点を基準点とし、この基準点の直前の点を判定点として設定し、始点と、基準点に対して所定の関係を有する点とを結んだ直線をスコープとする。判定点が、スコープに対して基準点と同じ側にあるか否かを判定し、同じ側にあると判定したとき基準点及び判定点を一つ逆上らせて新たに基準点及び判定点を設定する。この処理を繰り返し実行し、判定点が基 準点と異なる側にあると判定されたとき、そのとき設定されていた基準点を脈波立ち上がり点として決定する。このため、脈波に外乱などによる変動が重畳した場合であってもその脈波の波形立ち上がり点がより正確に検出される。したがって、脈波の波形を用いて各種の計測を行う装置での脈波立ち上がり点の正確な検出値が得られるという効果を有する。
【図面の簡単な説明】
【図1】本発明の脈波波形検出装置が適用される血圧計の構成例を示すブロック図である。
【図2】実施例にあってカフの圧力状態と血圧脈波及び脈波の立ち上がり点を示す図である。
【図3】図1に示す血圧計の全体動作の処理手順を示すフローチャートである。
【図4】実施例の動作にあって血圧脈波信号と、その微分波形を示す図である。
【図5】実施例の動作にあって脈波立ち上がり点を垂線で決定する処理手順のフローチャート(サブルーチン)である。
【図6】図5に示す垂線による脈波立ち上がり点決定の処理状態を示す模式図である。
【図7】実施例の動作にあって脈波立ち上がり点を時間軸で決定する処理手順のフローチャート(サブルーチン)である。
【図8】図7に示す時間軸による脈波立ち上がり点決定の処理状態の模式図である。
【図9】実施例にあって血流計での脈波波形の処理を説明するための図である。
【図10】実施例にあってパルスオキシメーターにおける脈波波形の処理を説明するための図である。
【図11】実施例にあって脈波伝播速度計における脈波波形の処理を説明するための図である。
【符号の説明】
1 カフ
2 圧力センサ
3 ポンプ
4 電磁弁
6 直流増幅器
8 交流増幅器
11 ポンプ制御器
12 電磁弁駆動器
13 制御器
14 キーパネル
15 液晶ディスプレイ(LCD)
S1 圧力信号
S2 血圧脈波信号
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pulse wave waveform detection device that is used in a sphygmomanometer, a blood flow meter, a pulse oximeter, a pulse wave velocity meter, and the like, and detects a waveform rising point when measuring a pulse wave.
[0002]
[Prior art]
Conventionally, in a blood pressure monitor, a Korotkoff sound recognition method and an oscillometric method are known as blood pressure measurement methods. In the blood pressure measurement by the Korotkoff sound recognition method, the influence of noise and the dropout of the Korotkoff sound are likely to occur, and the Korotkoff sound may not disappear even at the diastolic pressure or lower. In the blood pressure measurement by the oscillometric method that can avoid the decrease in accuracy of this blood pressure measurement, the pulse wave caused by the pulsation of the artery is captured as vibration in the cuff, and the systolic pressure and diastolic pressure are measured based on this vibration are doing.
[0003]
In the blood pressure measurement by the oscillometric method, since the systolic pressure and the diastolic pressure are measured from the change in the pulse wave peak value, the waveform peak point and the rising point are measured. In this case, it detects the waveform peak point, further, a rising point detecting capture and slope of the change in the pulse waveform, and detects the peak value.
[0004]
[Problems to be solved by the invention]
Since the waveform peak point of the pulse wave clearly appears, it can be detected easily and reliably. On the other hand, the rising point of the pulse wave is a point at which the slope of the waveform changes, and is difficult to detect. In particular, when there is a transient pressure fluctuation, drift, noise, or the like when the cuff pressure is reduced, such a pressure change is calculated in addition to the pulse wave waveform, so that the accuracy of specifying the rising point is deteriorated. Therefore, there is a disadvantage that the accuracy of the blood pressure measurement of the systolic pressure and the diastolic pressure is deteriorated.
[0005]
The present invention is to solve such a drawback in the prior art, when the pulse wave is measured to detect the rising point , the rising point of the pulse wave can be accurately detected, for example, a sphygmomanometer It is an object of the present invention to provide a pulse wave waveform detection device that improves the measurement accuracy of the systolic pressure and the diastolic pressure when measuring the blood pressure in the apparatus.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, in a pulse wave waveform detecting device that detects a rising point of a pulse wave, a pulse wave detecting unit that detects a pulse wave of a living body, detecting a differentiating means for differentiating the pulse wave signal, a first detection means for detecting a downward-out zero-cross point of the differential waveform from the differentiating means, amok the maximum point of the differential waveform from the downward zero-cross point Second detection means, and third detection means for detecting, as a rising point of the pulse wave, a predetermined point which is reversed from the maximum point of the pulse wave signal corresponding to the maximum point detected by the second detection means, The third detecting means sets a maximum slope point of the pulse wave signal as a starting point, sets a point on the pulse wave signal immediately before the starting point as a reference point, and sets the point immediately before the reference point. A point on the pulse wave signal is set as a judgment point, A straight line connecting a point having a predetermined relationship to a point is defined as a scope, and it is determined whether or not the determination point is on the same side as the reference point with respect to the scope. When it is determined that the reference point and the determination point are on the same side as above, a new reference point and a determination point are set by inverting one reference point and the determination point, and the determination processing assumes that the determination point is on a side different from the reference point. It is repeatedly executed until it is determined, and when it is determined that the determination point is on a side different from the reference point according to the result of the determination, the reference point set at that time is determined as a pulse wave rising point. .
[0007]
The pulse wave waveform detecting device according to claim 2, wherein the point having a predetermined relationship with the reference point is a point separated by a predetermined distance from the reference point on a straight line perpendicular to a tangent at the reference point of the pulse wave signal. There is a feature.
[0008]
According to a third aspect of the present invention, in the pulse wave waveform detecting device, the point having a predetermined relationship with respect to the reference point is a point which is reversed from the reference point on the time axis for a predetermined time.
[0009]
[Action]
In such a pulse waveform detecting device of claim 1, wherein the configuration, the pulse wave signal to detect the downward-out zero-cross point in differentiating the differential waveform, amok the maximum point of the differential waveform from the downward zero-cross point Is detected. The maximum point of the differential waveform corresponds to the point where the slope of the pulse wave signal is the maximum. The maximum point of this inclination was set as the starting point, the point immediately before the starting point was set as the reference point, and the point immediately before the reference point was set as the judgment point, and the starting point and a point having a predetermined relationship with the reference point were connected. The straight line is used as a scope, and it is determined whether or not the determination point is on the same side as the reference point with respect to the scope. When it is determined that the determination point is on the same side as the reference point, the reference point and the determination point are reversed by one to set a new reference point and a determination point, and the determination processing is performed when the determination point is determined to be the reference point. Repeat until it is determined to be on the different side. As a result, when it is determined that the determination point is on the side different from the reference point, the reference point set at that time is determined as the pulse wave rising point.
Preferably, a point having a predetermined relationship to the reference point, at a position separated by a predetermined distance from the reference point on a straight line perpendicular to a tangent to the reference point of the pulse wave signal, or on the time axis from the reference point It is set at a position where it goes up for a predetermined time.
[0010]
Therefore, when this pulse wave waveform detection device is applied, for example, the measurement accuracy of the systolic pressure and the diastolic pressure when measuring the blood pressure with a sphygmomanometer is improved. , The rising point of the pulse wave is accurately detected, and the integrated and accurate output is measured. Furthermore, in the pulse oximeter, the amplitude values of the AC component of the detection signal for the infrared (IR) light and the AC component of the detection signal for the red (R) light are accurately measured from the rising point of the pulse wave. . In the pulse wave velocity meter, the propagation time of the carotid pulse wave and the hip pulse wave is accurately measured from the rising point of the pulse wave.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the pulse waveform detector according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration example of a sphygmomanometer to which the pulse wave waveform detection device of the present invention is applied. In FIG. 1, the sphygmomanometer includes a cuff 1 attached to an upper arm or a finger of a subject, a pressure sensor 2 for outputting a signal indicating an air pressure and a blood pressure pulse wave in the cuff 1, and a control signal C1 And a pump 3 for increasing the pressure to the indicated value. Further, after the cuff 1 is pressurized, the solenoid valve 4 for evacuation and depressurization of the cuff 1 is temporarily provided with the instruction value of the control signal C2, and a low-pass filter (LPF) (not shown) which supplies a DC pressure signal S1 from the pressure sensor 2 And a DC amplifier 6 that removes and amplifies high-frequency noise components.
[0012]
Further, an A / D converter 7 for converting the pressure signal (S1) from the DC amplifier 6 into a digital signal, and a band-pass filter (not shown) in the DC amplifier 6 for converting the blood pressure pulse wave signal (S2) from the pressure sensor 2 BPF) or an AC amplifier 8 which takes out through a high-pass filter (HPF) and amplifies the blood pressure pulse wave signal (S2). An A / D converter 9 for converting the blood pressure pulse wave signal (S2) from the AC amplifier 8 into a digital signal, a pump controller 11 for controlling the delivery of air from the pump 3, and an electromagnetic valve 4. And an electromagnetic valve driver 12 for driving the exhaust gas to be controlled.
[0013]
Further, the sphygmomanometer captures the pressure signal (S1) and the blood pressure pulse wave signal (S2) from the A / D converters 7 and 9 to detect the peak point and the rising point of the pulse wave, and furthermore, And a controller 13 for controlling the pump 3 through the pump controller 11 and controlling the pressure of the cuff 1 by exhausting the compressed air in the cuff 1 through the solenoid valve driver 12. Further, a key panel 14 for instructing start of detection of a pulse wave peak point and a rising point and performing various operations, and a liquid crystal display (LCD) 15 for displaying processing contents and processing waveforms on a screen are provided. Is provided.
[0014]
The controller 13 takes in the pressure signal (S1) and the blood pressure pulse wave signal (S2) from the A / D converters 7 and 9, and sends out control signals to the pump controller 11 and the solenoid valve driver 12. It comprises an I / O port 13a, a CPU 13b, a working RAM 13c, and a ROM 3d storing a control program for this device.
[0015]
Next, the operation of this embodiment will be described.
FIG. 2 is a diagram showing the pressure state of the cuff 1, the blood pressure pulse wave signal (S2), and the rising point mark waveform of the pulse wave. FIG. 3 is a processing procedure of the overall operation (blood pressure measurement) of the blood pressure monitor shown in FIG. It is a flowchart which shows. 1 to 3, the pump 3 is controlled by the controller 13 in FIG. 1 to a value set in advance from the key panel 14 so that the cuff 1 is pressurized as shown in FIG. The controller 13 controls the solenoid valve 4 to reduce the pressure of the cuff 1 over time as shown in FIG. The CPU 13b in the controller 13 receives the pressure signal (S1) indicating the reduced pressure state through the pressure sensor 2, the DC amplifier 6, and the A / D converter 7 via the I / O port 13a. At the same time, the CPU 13b of the controller 13 takes in the blood pressure pulse wave signal (S2) through the AC amplifier 8 and the A / D converter 9 via the I / O port 13a.
[0016]
As shown in FIGS. 4A and 4B, the CPU 13b calculates the smoothed differential of the blood pressure pulse wave signal (S2) (FIG. 4A ) from the pressure sensor 2 at each stage of depressurization of the cuff 1 . Then, a downward zero-cross point m of the differentiated waveform (FIG. 4B) is detected (steps (indicated by S in FIG. 3) 11, 12). Further, the maximum point P shown in FIG. 4B is detected backward from the downward zero-cross point m, and the maximum point P is set in advance to check whether noise components other than the pulse wave have been removed. It is determined whether or not the threshold level (threshold) is equal to or more than the threshold level (steps 13 and 14).
[0017]
If it is less than the threshold level (Step 14: No), the process returns to Step 11 and repeats the processing up to this point. If it is equal to or higher than the threshold level (Step 14: Yes), the highest point (peak point) of the pulse wave is searched for from the blood pressure pulse wave signal S2 shown in FIG. Is determined (steps 15 and 16). Thereafter, a pulse wave rising point is searched for from the maximum point P detected in step 13, and this pulse wave rising point is determined (step 17). Next, the pulse wave height is determined from the pulse wave rising point and the pulse wave highest point obtained in step 16 (step 18). Next, it is determined whether or not the peak value of the blood pressure pulse wave signal (S2) obtained at all stages of the pressure reduction of the cuff 1 satisfies the preset end condition ( step 19 ). As the end condition, in the present embodiment, a case where pulse wave peak values of 50% to 70% or less of the maximum wave peak value are detected for 1 to 4 beats is set. If the condition is not satisfied here (Step 19: No), the pressure of the cuff 1 is further reduced (Step 20), the process returns to Step 11 , and the processing up to this point is repeated. That is, the pulse wave height of the blood pressure pulse wave signal (S2) at the reduced pressure in all stages of the cuff 1 is determined.
[0018]
If it is determined in step 19 that the termination condition is satisfied (step 19: Yes), the controller 13 fully opens the solenoid valve 4 through the solenoid valve driver 12. The data so far is stored in the RAM 13c of the controller 13, and thereafter, the controller 13 calculates and determines the blood pressure values of the systolic pressure and the diastolic pressure (step 21).
[0019]
In this manner, the blood pressure pulse wave signal (S2) detected at each stage of the depressurization of the cuff 1 is differentiated, the highest pulse wave point is detected, and the rising point of the waveform is further detected. . Next, a method of determining the pulse wave rising point (step 17 in FIG. 3) will be described in detail.
[0020]
FIG. 5 is a flowchart (subroutine) of a processing procedure for determining a pulse wave rising point by a perpendicular, and FIG. 6 is a schematic diagram showing a processing state of determining a pulse wave rising point by a perpendicular. 5 and 6, after the pulse wave maximum value point is determined by the processing of the controller 13 in step 16 in FIG. 3, the first detection shown in FIG. The detection of the pulse wave rising point is started with the point of the blood pressure pulse wave signal (S2) corresponding to the maximum point (waveform difference peak point) P as the start point, and the point immediately before the start point is set as the reference point A (i). It is set (steps 30 and 31). The distance ε on the graph is taken vertically from the tangent to the reference point A (i) of the blood pressure pulse wave signal (S2) , and the line connecting the start point and the tip of the distance ε is used as a scope, and the judgment point A (i) immediately before the reference point is taken. It is determined whether or not -1) is inside the scope (on the same side as the reference point A (i) with respect to the scope), and this determination is made (steps 32, 33, 34). Although there is an individual difference in the systolic dilation of the heart, an appropriate distance ε for specifying a rising point from the left ventricular contraction period or the like can be obtained from statistical processing of a large amount of subject data.
[0021]
If the determination point A (i-1) is inside the scope in step 34 (Yes) , the reference point is advanced by one, as shown in FIG. 6B, to become the reference point A (i-1) ( Step 35), the processing of step 32 is repeated. That is, the process is repeated from the processing procedure of taking the distance ε vertically from the tangent at the reference point (step 32). After the repetition , when the judgment point comes out of the scope in step 34 as shown in FIG. 6C (No), this reference point is determined as the rising point (step 36).
[0022]
FIG. 7 is a flowchart (subroutine) of a processing procedure for determining a pulse wave rising point on the time axis, and FIG. 8 is a schematic diagram of a processing state of determining a pulse wave rising point on the time axis. 7 and 8, after determining the pulse wave highest point in the processing of the controller 13 in step 16 in FIG. 3, the detection first time shown in FIG. 8 (a), shown in FIG. 4 (b) Starting from the time axis point of the blood pressure pulse wave signal (S2) corresponding to the maximum point (waveform differential maximum value point) P , detection of a pulse wave rising point (time axis point) is started, and the time axis immediately before the start point is determined. A reference point A (i) is set (steps 40 and 41). A predetermined time t is taken on the graph from the reference point A (i) in the direction opposite to the time axis, and a line connecting the start point and the point at which the predetermined time t has elapsed is used as a scope, and the determination point A immediately before the reference point A (i) is used. Whether or not (i-1) is inside the scope (on the same side as the reference point A (i) with respect to the scope) is checked, and this determination is made (steps 42, 43, 44).
[0023]
If decision point at step 44 A (i-1) is inside the scope (Yes), the reference point A to promote one reference point in the opposite direction of the time axis as shown in FIG. 8 (b) (I-1) (step 45), and the process of step 42 is repeated. That is, the processing procedure is repeated from the processing of taking the predetermined time t in the direction opposite to the time axis from the reference point. After the repetition, at step 44 , as shown in FIG. 8 (c) in which the determination point comes out of the scope (No), this reference point is determined as the pulse wave rising point (step 46).
[0024]
Thus, the rising point of the pulse wave waveform is accurately detected, and the blood pressure values of the systolic pressure and the diastolic pressure in the sphygmomanometer are accurately determined. The detection of the pulse rising point of the pulse wave is also required by other medical measurement devices. For example, the pulse wave waveform detection device can be applied to a blood flow meter, a pulse oximeter, and a pulse wave velocity meter.
[0025]
Hereinafter, another embodiment to which the pulse waveform detection device is applied will be described.
First, in the blood flow meter, as shown in FIG. 9, the waveform interval u from the rising point of the pulse wave waveform in the continuous blood flow pulse wave to the rising point of the pulse wave waveform in the next blood flow pulse wave is integrated. , To detect blood output. Therefore, the rising point of the waveform is accurately detected in the same manner as in the above-described blood pressure monitor, and by integrating the waveform between the rising points of the pulse wave waveform, it is possible to reliably measure the stroke volume.
[0026]
Next, in the pulse oximeter, as shown in FIG. 10A, an AC component AC1 of a detection signal for infrared (IR) light and an AC component of a detection signal for red (R) light shown in FIG. The amplitude value of each of the components AC2 is measured. When this amplitude value is measured, the AC components AC1 and AC2 can be reliably measured by accurately detecting the rising point of the pulse wave in the same manner as in the above-described sphygmomanometer.
[0027]
The pulse wave velocity meter detects the propagation time T of the carotid pulse wave and the hip pulse wave as shown in FIG. Also in this case, the rising time of the pulse wave waveform is accurately detected in the same manner as in the above-described blood pressure monitor, so that the propagation time T can be measured reliably.
[0028]
【The invention's effect】
As apparent from the above description, according to the pulse waveform detecting device of claim 1, wherein the pulse wave signal to detect the downward-out zero-cross point in differentiating the differentiated waveform, the maximum point of the differential waveform It is detected ascending upward from the downward zero-cross point, and the maximum point of this inclination is set as the starting point. A point immediately before the start point is set as a reference point, a point immediately before the reference point is set as a determination point, and a straight line connecting the start point and a point having a predetermined relationship with the reference point is set as a scope. It is determined whether the judgment point is on the same side as the reference point with respect to the scope. Set. This processing is repeatedly executed, the decision point is when it is determined that the side different from the criteria points, determines a reference point that has been set at that time as a pulse wave rising point. For this reason, even when the fluctuation due to disturbance or the like is superimposed on the pulse wave, the waveform rising point of the pulse wave is detected more accurately. Therefore, there is an effect that an accurate detection value of a pulse wave rising point can be obtained in a device that performs various measurements using the waveform of the pulse wave.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration example of a sphygmomanometer to which a pulse waveform detection device of the present invention is applied.
FIG. 2 is a diagram showing a pressure state of a cuff, a blood pressure pulse wave, and a rising point of the pulse wave in the embodiment.
FIG. 3 is a flowchart showing a processing procedure of an overall operation of the sphygmomanometer shown in FIG. 1;
FIG. 4 is a diagram showing a blood pressure pulse wave signal and its differential waveform in the operation of the embodiment.
FIG. 5 is a flowchart (subroutine) of a processing procedure for determining a pulse wave rising point by a perpendicular line in the operation of the embodiment.
FIG. 6 is a schematic diagram showing a process state of determining a pulse wave rising point based on a perpendicular shown in FIG. 5;
FIG. 7 is a flowchart (subroutine) of a processing procedure for determining a pulse wave rising point on a time axis in the operation of the embodiment.
8 is a schematic diagram of a processing state of determining a pulse wave rising point on the time axis shown in FIG. 7;
FIG. 9 is a diagram for explaining processing of a pulse wave waveform in the blood flow meter according to the embodiment.
FIG. 10 is a view for explaining processing of a pulse wave waveform in the pulse oximeter in the embodiment.
FIG. 11 is a diagram for explaining processing of a pulse wave waveform in the pulse wave velocity meter in the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cuff 2 Pressure sensor 3 Pump 4 Solenoid valve 6 DC amplifier 8 AC amplifier 11 Pump controller 12 Solenoid valve driver 13 Controller 14 Key panel 15 Liquid crystal display (LCD)
S1 Pressure signal S2 Blood pressure pulse wave signal

Claims (3)

脈波の立ち上がり点を検出する脈波波形検出装置において、
生体の脈波を検出する脈波検出手段と、
前記脈波検出手段からの脈波信号を微分する微分手段と、
前記微分手段からの微分波形の下向ゼロクロス点を検出する第1検出手段と、
前記微分波形の最大点を前記下向きゼロクロス点から逆上って検出する第2検出手段と、
前記第2検出手段が検出した最大点に対応する前記脈波信号の傾き最大点から逆上った所定の点を脈波の立ち上がり点として検出する第検出手段と、
を備え、該第3検出手段は、
前記脈波信号の傾き最大点を始点として設定し、
該始点の直前の前記脈波信号上の点を基準点として設定し、
該基準点の直前の前記脈波信号上の点を判定点として設定し、
始点と、基準点に対して所定の関係を有する点とを結んだ直線をスコープとし、判定点
がスコープに対して基準点と同じ側にあるか否かを判定し、
該判定の結果により判定点が基準点と同じ側にあると判定されたとき基準点及び判定点を一つ逆上らせて新たに基準点及び判定点を設定して、前記判定処理を判定点が基準点と異なる側にあると判定されるまで繰り返し実行し、
前記判定の結果により判定点が基準点と異なる側にあると判定されたとき、そのとき設定されていた基準点を脈波立ち上がり点として決定することを特徴とする脈波波形検出装置。
In the pulse wave waveform detection device that detects the rising point of the pulse wave,
Pulse wave detection means for detecting a pulse wave of a living body,
Differentiating means for differentiating the pulse wave signal from the pulse wave detecting means,
First detecting means for detecting a downward-out zero-cross point of the differential waveform from the differentiating means,
Second detection means for detecting the maximum point of the differential waveform upward from the downward zero-cross point,
A third detecting means for detecting a predetermined point at which the second detection means is up opposite from the slope maximum point of the pulse wave signal corresponding to the maximum point is detected as a rising point of the pulse wave,
And the third detecting means comprises:
The slope maximum point of the pulse wave signal is set as a starting point,
A point on the pulse wave signal immediately before the start point is set as a reference point,
A point on the pulse wave signal immediately before the reference point is set as a determination point,
A straight line connecting the start point and a point having a predetermined relationship to the reference point is defined as a scope, and the determination point is
Is on the same side of the scope as the reference point,
When it is determined that the determination point is on the same side as the reference point based on the result of the determination, the reference point and the determination point are reversed by one to newly set the reference point and the determination point, and the determination processing is determined. Repeat until the point is determined to be on the side different from the reference point,
A pulse wave waveform detection device, wherein, when it is determined from the result of the determination that the determination point is on a side different from the reference point, the reference point set at that time is determined as a pulse wave rising point .
前記基準点に対して所定の関係を有する点は、脈波信号の基準点における接線に垂直な直線上で基準点から所定距離だけ離れた点であることを特徴とする請求項1記載の脈波波形検出装置。 The pulse according to claim 1, wherein the point having a predetermined relationship with the reference point is a point separated by a predetermined distance from the reference point on a straight line perpendicular to a tangent at the reference point of the pulse wave signal. Wave waveform detector. 前記基準点に対して所定の関係を有する点は、前記基準点から時間軸上で所定時間逆上った点であることを特徴とする請求項1記載の脈波波形検出装置。 2. The pulse wave waveform detecting device according to claim 1 , wherein the point having a predetermined relationship with the reference point is a point that is reversed from the reference point on the time axis for a predetermined time .
JP17886295A 1994-07-26 1995-07-14 Pulse wave detector Expired - Fee Related JP3551334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17886295A JP3551334B2 (en) 1994-07-26 1995-07-14 Pulse wave detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-173026 1994-07-26
JP17302694 1994-07-26
JP17886295A JP3551334B2 (en) 1994-07-26 1995-07-14 Pulse wave detector

Publications (2)

Publication Number Publication Date
JPH0889487A JPH0889487A (en) 1996-04-09
JP3551334B2 true JP3551334B2 (en) 2004-08-04

Family

ID=26495156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17886295A Expired - Fee Related JP3551334B2 (en) 1994-07-26 1995-07-14 Pulse wave detector

Country Status (1)

Country Link
JP (1) JP3551334B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3336291B2 (en) * 1999-05-21 2002-10-21 巴工業株式会社 Decanter centrifuge
US20090259116A1 (en) * 2007-11-14 2009-10-15 Yoram Wasserman Method and Apparatus for Processing a Pulsatile Biometric Signal
JP5483044B2 (en) * 2008-03-27 2014-05-07 アイシン精機株式会社 Object detection device, vehicle opening / closing control system using the object detection device, and envelope rising detection method
JP2010216925A (en) * 2009-03-16 2010-09-30 Yokogawa Electric Corp Data recording device
JP6689101B2 (en) * 2016-03-01 2020-04-28 テルモ株式会社 Sphygmomanometer

Also Published As

Publication number Publication date
JPH0889487A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
US5584299A (en) Heart pulse wave detecting device using iterative base point detection
US7361148B2 (en) Cuff volumetric pulse wave obtaining apparatus, cuff volumetric pulse wave analyzing apparatus, pressure pulse wave obtaining apparatus, and pressure pulse wave analyzing apparatus
US6659958B2 (en) Augmentation-index measuring apparatus
JP3590613B2 (en) Amplitude increase index calculation device and arteriosclerosis test device
EP0456844A1 (en) Non-invasive automatic blood pressure measuring apparatus
KR101264018B1 (en) Arterial wall hardness evaluation system
JP3621395B2 (en) Blood pressure measurement device with waveform analysis function
US5522395A (en) Electronic sphygmomanometer and method of controlling operation of same
JP3649703B2 (en) Blood pressure measurement device with amplitude increase index measurement function
EP1356767A2 (en) Augmentation-index measuring apparatus
US7097621B2 (en) Filter for use with pulse-wave sensor and pulse wave analyzing apparatus
JP3538404B2 (en) Waveform feature point determination device, and pulse wave propagation velocity information measurement device using the waveform feature point determination device
JP3551334B2 (en) Pulse wave detector
US6746405B2 (en) Blood pressure measuring apparatus with pulse wave detecting function
JP2001145606A (en) Filter for pulse wave sensor
US5193548A (en) Electronic blood pressure meter
JP2798677B2 (en) Blood pressure monitoring device
US20040260184A1 (en) Vital-information measuring device
JP2000287945A (en) Sphygmomanometer
JP3738296B2 (en) Automatic blood pressure measuring device with provisional blood pressure value display function
JP3445662B2 (en) Blood pressure monitoring device
JP4398553B2 (en) Electronic blood pressure monitor
JP2004073722A (en) Cuff pulse wave detector and pulse wave propagation velocity information measuring device
EP0585460B1 (en) Electronic sphygmomanometer and method of controlling performance thereof
JP2605145B2 (en) Electronic sphygmomanometer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees