JPH0889487A - Pulse waveform detector - Google Patents

Pulse waveform detector

Info

Publication number
JPH0889487A
JPH0889487A JP7178862A JP17886295A JPH0889487A JP H0889487 A JPH0889487 A JP H0889487A JP 7178862 A JP7178862 A JP 7178862A JP 17886295 A JP17886295 A JP 17886295A JP H0889487 A JPH0889487 A JP H0889487A
Authority
JP
Japan
Prior art keywords
point
pulse wave
detecting
waveform
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7178862A
Other languages
Japanese (ja)
Other versions
JP3551334B2 (en
Inventor
Yoshio Sakai
由夫 酒井
Jun Negi
潤 根木
Boku Takeda
朴 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koden Corp
Original Assignee
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koden Corp filed Critical Nippon Koden Corp
Priority to JP17886295A priority Critical patent/JP3551334B2/en
Publication of JPH0889487A publication Critical patent/JPH0889487A/en
Application granted granted Critical
Publication of JP3551334B2 publication Critical patent/JP3551334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7239Details of waveform analysis using differentiation including higher order derivatives

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE: To provide a pulse waveform detector capable of accurately detecting a pulse waveform rising point even if variation by disturbance, etc., overlapped with the pulse wave, by detecting a downward zero crossing point of differential waveform of pulse wave signals and detecting the maximum gradient point of the pulse wave going back from the downward zero crossing point. CONSTITUTION: When this pulse waveform detector is applied to a blood pressure meter, a cuff 1 is pressurized by driving a pump 3 by a controller 13 and an electromagnetic valve 4 is controlled by the controller 13 to reduce pressure in the cuff 1 as time elapses. Blood pressure pulse wave signals S2 from a pressure sensor 2 are smoothdifferentiated by a CPU 13b at every steps of pressure reduction in the cuff 1 and a downward zero crossing point m of the differential wave form is detected. A maximum gradient point P is detected going back from the downward zero crossing point m and is judged to be greater than the threshold value or not. When the judgement is 'yes', the maximum pulse wave point is searched from the signals S2 and the pulse wave rising point is searched from the maximum gradient point, then the pulse wave height is determined by the pulse wave rising point and the maximum pulse wave point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、血圧計、血流計、
パルスオキシメーター及び脈波伝播速度計等に利用さ
れ、脈波を測定する際の波形ピーク点と立ち上がり点を
検出する脈波波形検出装置に関する。
TECHNICAL FIELD The present invention relates to a blood pressure monitor, a blood flow meter,
The present invention relates to a pulse wave waveform detection device that is used in a pulse oximeter, a pulse wave velocity meter, and the like and detects a waveform peak point and a rising point when measuring a pulse wave.

【0002】[0002]

【従来の技術】従来、血圧計では、その血圧測定法とし
てコロトコフ音認識法、オシロメトリック法が知られて
いる。コロトコフ音認識法による血圧測定では、雑音に
よる影響や、コロトコフ音の抜けが発生し易いととも
に、拡張期圧以下でもコロトコフ音が消えないことがあ
る。この血圧測定の精度低下を避けることが出来るオシ
ロメトリック法による血圧測定では、動脈の拍動に起因
する脈波をカフ内の振動として捉え、この振動に基づい
て収縮期圧と拡張期圧を測定している。
2. Description of the Related Art Conventionally, in blood pressure monitors, the Korotkoff sound recognition method and the oscillometric method are known as blood pressure measuring methods. In the blood pressure measurement by the Korotkoff sound recognition method, the Korotkoff sound may not disappear even when the diastolic pressure is not reached, as well as the influence of noise and the dropout of the Korotkoff sound. In the blood pressure measurement by the oscillometric method that can avoid the decrease in the accuracy of this blood pressure measurement, the pulse wave caused by the pulsation of the artery is captured as vibration in the cuff, and systolic pressure and diastolic pressure are measured based on this vibration. are doing.

【0003】このオシロメトリック法による血圧測定で
は、脈波の波高値の変化から収縮期圧と拡張期圧を測定
しているため、その波形ピーク点と立ち上がり点の測定
が行われる。この場合、波高値は波形ピーク点を検出
し、さらに、立ち上がり点を脈波波形の傾きの変化など
を捉えて検出している。
In the blood pressure measurement by the oscillometric method, since the systolic pressure and the diastolic pressure are measured from the change in the pulse wave crest value, the waveform peak point and the rising point thereof are measured. In this case, the peak value of the peak value is detected at the peak point of the waveform, and the rising point is detected by capturing the change in the inclination of the pulse waveform.

【0004】[0004]

【発明が解決しようとする課題】脈波の波形ピーク点は
明確に出現するため容易かつ確実に検出できる。一方、
脈波の立ち上がり点は、波形の傾きが変化する点であ
り、検出が難しい。特にカフ圧の減圧時の過渡的な圧力
の揺れやドリフト、ノイズ等がある場合、そのような圧
力変化にも脈波波形にくわえて演算してしまうので、立
ち上がり点の特定に精度が劣化する。そのため収縮期圧
と拡張期圧の血圧測定の精度が劣化するという欠点があ
る。
Since the peak point of the waveform of the pulse wave clearly appears, it can be easily and surely detected. on the other hand,
The rising point of the pulse wave is a point where the slope of the waveform changes, and is difficult to detect. Especially when there is a transient pressure fluctuation, drift, noise, etc. when depressurizing the cuff pressure, such a pressure change will be added to the pulse wave waveform and calculation will be performed, so the accuracy in identifying the rising point will deteriorate. . Therefore, there is a drawback that the accuracy of blood pressure measurement of systolic pressure and diastolic pressure deteriorates.

【0005】本発明は、このような従来の技術における
欠点を解決するものであり、脈波を測定して波形ピーク
点と立ち上がり点の検出を行う際に、その脈波の立ち上
がり点が正確に検出でき、例えば、血圧計で血圧測定を
行う際の収縮期圧と拡張期圧の測定精度が向上する脈波
波形検出装置の提供を目的とする。
The present invention solves the above drawbacks of the prior art. When measuring the pulse wave to detect the peak point and the rising point of the pulse wave, the rising point of the pulse wave is accurately determined. It is an object of the present invention to provide a pulse wave waveform detection device that can be detected and, for example, improves measurement accuracy of systolic pressure and diastolic pressure when blood pressure is measured by a sphygmomanometer.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、脈波の波形ピーク点ととも
に、立ち上がり点を検出する脈波波形検出装置におい
て、生体の脈波を検出する脈波検出手段と、脈波検出手
段からの脈波信号を微分する微分手段と、微分手段から
の微分波形の下向ゼロクロス点を検出する第1検出手段
と、微分波形の傾き最大点を下向きゼロクロス点から逆
上って検出する第2検出手段と、脈波検出手段が出力す
る脈波信号から脈波最高値点を検出する第3検出手段
と、第2検出手段が検出した傾き最大点から脈波の立ち
上がり点を検出する第4検出手段とを備える構成として
いる。
In order to achieve the above object, the invention according to claim 1 is a pulse wave waveform detecting apparatus for detecting a rising point as well as a waveform peak point of a pulse wave, and detects a pulse wave of a living body. Pulse wave detecting means for detecting, differentiating means for differentiating the pulse wave signal from the pulse wave detecting means, first detecting means for detecting a downward zero cross point of the differential waveform from the differentiating means, and maximum slope point of the differential waveform Second detecting means for detecting upward from the downward zero-cross point, third detecting means for detecting the pulse wave maximum value point from the pulse wave signal output by the pulse wave detecting means, and inclination detected by the second detecting means. A fourth detection means for detecting the rising point of the pulse wave from the maximum point is provided.

【0007】請求項2記載の脈波波形検出装置は、前記
第4検出手段が、第2検出手段によって検出した生体の
脈波の傾き最大点である始点の前を基準点に設定し、か
つ、基準点の接線から垂直に所定距離をとり、この所定
距離の先端と始点とを結んだ線をスコープとし、このス
コープ内に基準点の前の判定点が入っていない場合に、
基準点を一つ進めて前記同様に基準点の接線から垂直に
距離をとり、この距離の先端と始点とを結んだ線をスコ
ープとする処理を行い、この処理の繰り返しの後に前の
判定点がスコープの内側に入った場合に、この基準点を
脈波立ち上がり点として決定する構成としている。
In the pulse wave waveform detecting apparatus according to the present invention, the fourth detecting means sets a reference point before the starting point which is the maximum inclination of the pulse wave of the living body detected by the second detecting means, and , Take a predetermined distance vertically from the tangent line of the reference point, and use the line connecting the tip and start point of this predetermined distance as the scope, and if there is no judgment point before the reference point in this scope,
Advance the reference point by one and take a distance vertically from the tangent line of the reference point, and perform processing with the line connecting the tip of this distance and the start point as the scope, and after repeating this processing, the previous judgment point When is inside the scope, the reference point is determined as the pulse wave rising point.

【0008】請求項3記載の脈波波形検出装置は、前記
第4検出手段が、第2検出手段によって検出した生体の
脈波の傾き最大点の時間軸点である始点の前の時間軸点
を基準点に設定し、この基準点から時間軸上での反対方
向に所定時間をとり、かつ、この時間経過点と始点とを
結んだ線をスコープとし、前記基準点の時間軸点の前の
判定点がスコープの内側に入っているか否かを見て、前
の判定点がスコープの内側に入っている場合、基準点の
時間軸を一つ進めて前記同様に基準点から時間軸の反対
方向に所定時間をとり、かつ、この時間経過点と始点と
を結んだ線をスコープとする処理を繰り返し、この処理
の繰り返しの後に前の判定点がスコープの外側に出た場
合に、この基準点を脈波立ち上がり点として決定する構
成としている。
According to another aspect of the pulse wave waveform detecting apparatus of the present invention, the fourth detecting means has a time axis point before the starting point which is the time axis point of the maximum inclination of the pulse wave of the living body detected by the second detecting means. Is set as a reference point, a predetermined time is taken from this reference point in the opposite direction on the time axis, and the line connecting the time elapsed point and the start point is used as a scope, and the time axis point of the reference point is in front of Check if the judgment point of is inside the scope, and if the previous judgment point is inside the scope, advance the time axis of the reference point by one and move from the reference point to the time axis. It takes a predetermined time in the opposite direction, and repeats the process with the line connecting the time elapsed point and the start point as the scope, and when the previous judgment point goes out of the scope after this process is repeated, The reference point is determined as the pulse wave rising point.

【0009】[0009]

【作用】このような構成の請求項1〜3記載の脈波波形
検出装置では、脈波信号を微分した微分波形における下
向ゼロクロス点を検出し、この微分波形の傾き最大点を
下向きゼロクロス点から逆上って検出する。さらに、脈
波最高値点を検出し、検出した傾き最大点から脈波の立
ち上がり点を検出している。したがって、脈波を測定し
て波形ピーク点と立ち上がり点の検出を行う際に、その
脈波の立ち上がり点が正確に検出される。
In the pulse wave waveform detecting device according to the present invention having the above-mentioned structure, the downward zero-cross point in the differential waveform obtained by differentiating the pulse wave signal is detected, and the maximum slope of the differential waveform is determined as the downward zero-cross point. It goes up from and detects. Furthermore, the pulse wave maximum value point is detected, and the rising point of the pulse wave is detected from the detected maximum slope point. Therefore, when the pulse wave is measured and the waveform peak point and the rising point are detected, the rising point of the pulse wave is accurately detected.

【0010】したがって、この脈波波形検出装置を適用
する、例えば、血圧計で血圧測定を行う際の収縮期圧と
拡張期圧の測定精度が向上し、また、血流計では、連続
する血流脈波における脈波の波形立ち上がり点が正確に
検出されて、その積分した正確な拍出量が測定される。
さらに、パルスオキシメーターでは、赤外(IR)光に
対する検出信号の交流成分と、赤色(R)光に対する検
出信号の交流成分のそれぞれの振幅値が脈波の波形立ち
上がり点から正確に測定される。また、脈波伝播速度計
では、頸動脈脈波と股動脈脈波の伝播時間が、脈波の波
形の立ち上がり点から正確に測定される。
Therefore, the accuracy of measuring the systolic pressure and the diastolic pressure when the blood pressure is measured by the sphygmomanometer is improved by applying this pulse waveform detecting device. Further, in the blood flow meter, continuous blood pressure is measured. The rising point of the waveform of the pulse wave in the flow pulse wave is accurately detected, and the integrated accurate stroke volume is measured.
Further, in the pulse oximeter, the respective amplitude values of the AC component of the detection signal for infrared (IR) light and the AC component of the detection signal for red (R) light are accurately measured from the rising point of the waveform of the pulse wave. . Further, the pulse wave propagation velocity meter accurately measures the propagation times of the carotid pulse wave and the hip artery pulse wave from the rising point of the waveform of the pulse wave.

【0011】[0011]

【発明の実施の形態】次に、本発明の脈波波形検出装置
の実施例を図面を参照して詳細に説明する。図1は本発
明の脈波波形検出装置が適用される血圧計の構成例を示
すブロック図である。図1において、この血圧計は、被
測定者の上腕や指に取り付けるカフ1と、このカフ1で
の空気圧力と血圧脈波を示す信号を出力する圧力センサ
2と、カフ1を制御信号C1の指示値まで加圧するため
のポンプ3とが設けられている。さらに、カフ1の加圧
後に制御信号C2の指示値で暫時、排気してカフ1を減
圧するための電磁弁4と、圧力センサ2からの直流の圧
力信号S1を図示しないローパスフィルタ(LPF)な
どで取り出し、かつ、高域の雑音成分を除去して増幅す
る直流増幅器6とが設けられている。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of a pulse wave waveform detecting apparatus of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration example of a sphygmomanometer to which the pulse wave waveform detection device of the present invention is applied. In FIG. 1, this sphygmomanometer includes a cuff 1 attached to the upper arm or finger of a person to be measured, a pressure sensor 2 for outputting a signal indicating air pressure and a blood pressure pulse wave at the cuff 1, and a control signal C1 for controlling the cuff 1. And a pump 3 for pressurizing to the indicated value. Further, after the cuff 1 is pressurized, the electromagnetic valve 4 for exhausting the pressure for reducing the pressure of the cuff 1 for a while with the indicated value of the control signal C2, and the DC pressure signal S1 from the pressure sensor 2 are supplied to a low-pass filter (LPF) not shown. And a DC amplifier 6 for extracting and amplifying high frequency noise components.

【0012】さらに、直流増幅器6からの圧力信号(S
1)をデジタル信号に変換するA/D変換器7と、圧力
センサ2からの血圧脈波信号(S2)を直流増幅器6内
の図示しないバンドパスフィルタ(BPF)又はハイパ
スフィルタ(HPF)等を通じて取り出し、その血圧脈
波信号(S2)を増幅する交流増幅器8とが設けられて
いる。また、交流増幅器8からの血圧脈波信号(S2)
をデジタル信号に変換するA/D変換器9と、ポンプ3
からの空気の送出を制御するためのポンプ制御器11
と、電磁弁4での排気を制御するための駆動を行う電磁
弁駆動器12とが設けられている。
Further, the pressure signal (S
1) is converted into a digital signal, and the blood pressure pulse wave signal (S2) from the pressure sensor 2 is passed through a band pass filter (BPF) or a high pass filter (HPF) in the DC amplifier 6 which is not shown. An AC amplifier 8 for taking out and amplifying the blood pressure pulse wave signal (S2) is provided. In addition, the blood pressure pulse wave signal (S2) from the AC amplifier 8
A / D converter 9 for converting the signal into a digital signal, and pump 3
Pump controller for controlling the delivery of air from the pump 11
And an electromagnetic valve driver 12 that drives the electromagnetic valve 4 to control exhaust.

【0013】さらに、この血圧計には、A/D変換器
7,9からの圧力信号(S1)及び血圧脈波信号(S
2)を取り込んで脈波の波形ピーク点と立ち上がり点の
検出を行うとともに、さらに、ポンプ制御器11を通じ
てポンプ3を制御し、また、電磁弁駆動器12を通じて
カフ1内の圧縮空気を排気して減圧する制御を行う制御
器13を有している。さらに、脈波の波形ピーク点と立
ち上がり点の検出スタートを指示し、また、各種の操作
を行うためのキーパネル14と、処理内容や処理波形な
どを画面表示する液晶ディスプレイ(LCD)15とが
設けられている。
Further, this blood pressure monitor has a pressure signal (S1) from the A / D converters 7 and 9 and a blood pressure pulse wave signal (S).
2) is taken in to detect the waveform peak point and rising point of the pulse wave, the pump 3 is further controlled through the pump controller 11, and the compressed air in the cuff 1 is exhausted through the solenoid valve driver 12. It has a controller 13 for controlling the pressure to be reduced. Further, a key panel 14 for instructing the start of detection of the pulse peak and rising points of the pulse wave, and for performing various operations, and a liquid crystal display (LCD) 15 for displaying processing contents, processing waveforms, etc. on the screen are provided. It is provided.

【0014】制御器13は、A/D変換器7,9からの
圧力信号(S1)及び血圧脈波信号(S2)を取り込
み、ポンプ制御器11及び電磁弁駆動器12への制御信
号を送出するためのI/0ポート13aと、CPU13
bと、ワーキング用のRAM13cと、この装置の制御
プログラムを格納したROM3dとで構成されている。
The controller 13 takes in the pressure signal (S1) and the blood pressure pulse wave signal (S2) from the A / D converters 7 and 9 and sends the control signals to the pump controller 11 and the solenoid valve driver 12. I / O port 13a for CPU and CPU 13
b, a working RAM 13c, and a ROM 3d storing a control program for this apparatus.

【0015】次に、この実施例の動作について説明す
る。図2はカフ1の圧力状態、血圧脈波信号(S2)及
び脈波の立ち上がり点マーク波形を示す図であり、図3
は、図1に示す血圧計の全体動作(血圧測定)の処理手
順を示すフローチャートである。図1から図3におい
て、図1中の制御器13によってポンプ3が、予めキー
パネル14から設定された値に制御されて図2(a)に
示すようにカフ1が加圧され、かつ、制御器13によっ
て電磁弁4が制御されて図2(a)に示すようにカフ1
が時間経過とともに減圧される。この減圧の状態を示す
圧力信号(S1)を圧力センサ2、直流増幅器6及びA
/D変換器7を通じて制御器13内のCPU13bがI
/Oポート13aを介して取り込む。
Next, the operation of this embodiment will be described. FIG. 2 is a diagram showing the pressure state of the cuff 1, the blood pressure pulse wave signal (S2), and the rising point mark waveform of the pulse wave.
3 is a flowchart showing a processing procedure of the overall operation (blood pressure measurement) of the sphygmomanometer shown in FIG. 1. 1 to 3, the controller 13 in FIG. 1 controls the pump 3 to a value preset by the key panel 14 to pressurize the cuff 1 as shown in FIG. 2 (a), and The solenoid valve 4 is controlled by the controller 13, and as shown in FIG.
Is depressurized over time. The pressure signal (S1) indicating the reduced pressure state is sent to the pressure sensor 2, the DC amplifier 6 and the A
Through the / D converter 7, the CPU 13b in the controller 13
Captured via the / O port 13a.

【0016】同時に血圧脈波信号(S2)交流増幅器8
及びA/D変換器9を通じて制御器13のCPU13b
がI/Oポート13aを介して取り込む(ステップ(図
3中、Sで示す)10)。CPU13bは図4(a)に
示すように、カフ1の減圧の一段階ごとに、圧力センサ
2からの血圧脈波信号(S2)の平滑化微分を行い、そ
の微分波形の下向きゼロクロス点mを検出する(ステッ
プ11,12)。さらに、図4(b)に示す傾き最大点
Pを下向きゼロクロス点mから逆上って検出し、その傾
き最大点Pが、脈波以外の雑音成分が除去されているか
否かを調べるため、予め設定したスレッショルドレベル
(しきい値)以上か否かを判断する(ステップ13,1
4)。
At the same time, the blood pressure pulse wave signal (S2) AC amplifier 8
And the CPU 13b of the controller 13 through the A / D converter 9
Is taken in through the I / O port 13a (step (indicated by S in FIG. 3) 10). As shown in FIG. 4A, the CPU 13b performs smoothing differentiation of the blood pressure pulse wave signal (S2) from the pressure sensor 2 at each step of decompression of the cuff 1, and determines the downward zero cross point m of the differential waveform. It is detected (steps 11 and 12). Further, the maximum slope point P shown in FIG. 4B is detected backward from the downward zero-cross point m, and it is checked whether or not the maximum slope point P has noise components other than the pulse wave removed. It is judged whether or not it is equal to or higher than a preset threshold level (threshold value) (steps 13, 1).
4).

【0017】スレッショルドレベル未満の場合(ステッ
プ14:No)はステップ10に戻りこれまでの処理を
繰り返す。スレッショルドレベル以上の場合(ステップ
14:Yes)は微分前の元の波形である図2(b)に
示す血圧脈波信号S2から脈波の最高値点(ピークポイ
ント)を探し、脈波最高点を決定する(ステップ15,
16)。この後、図4(b)に示すように、傾き最大点
Pを下向きゼロクロス点mから逆上って検出し、その傾
き最大点Pから脈波立ち上がり点を探し、この脈波立ち
上がり点を決定する(ステップ17)。次に、この脈波
立ち上がり点と先に求めた脈波最高点とから脈波波高を
決定する。カフ1の圧力が減圧していく全段階で得られ
た血圧脈波信号(S2)の波高値が予め設定した終了条
件を満たしているか否かを判断する(ステップ18,1
9)。終了条件としては、本実施例では最大波高値の5
0%〜70%以下の脈波波高値が1〜4拍検出される場
合を設定する。ここで満たされていない場合(ステップ
19:No)、さらに、次のカフ1の減圧を行って(ス
テップ20)ステップ10に戻り、これまでの処理を繰
り返す。すなわち、カフ1の全段階での減圧での血圧脈
波信号(S2)の脈波波高を決定する(ステップ1
9)。
If it is less than the threshold level (step 14: No), the process returns to step 10 and the processing up to this point is repeated. If it is higher than the threshold level (step 14: Yes), the highest point (peak point) of the pulse wave is searched for from the blood pressure pulse wave signal S2 shown in FIG. Is determined (step 15,
16). After that, as shown in FIG. 4B, the maximum slope point P is detected backward from the downward zero-cross point m, the pulse wave rising point is searched for from the maximum slope point P, and this pulse wave rising point is determined. (Step 17). Next, the pulse wave height is determined from this pulse wave rising point and the previously obtained pulse wave maximum point. It is determined whether or not the peak value of the blood pressure pulse wave signal (S2) obtained at all stages of the pressure reduction of the cuff 1 satisfies the preset termination condition (steps 18, 1).
9). As the termination condition, in this embodiment, the maximum crest value is 5
The case where a pulse wave peak value of 0% to 70% or less is detected for 1 to 4 beats is set. If not satisfied (step 19: No), the pressure of the next cuff 1 is further reduced (step 20), and the process returns to step 10 to repeat the processing up to this point. That is, the pulse wave height of the blood pressure pulse wave signal (S2) in decompression at all stages of the cuff 1 is determined (step 1
9).

【0018】ステップ19でカフ1を減圧していく全段
階での血圧脈波信号(S2)の脈波波高が決定された場
合(ステップ19:Yes)、制御器13が電磁弁駆動
器12を通じて電磁弁4を全開する。これまでのデータ
が制御器13のRAM13cに記憶されており、この
後、制御器13で計算して収縮期圧と拡張期圧との血圧
値を決定する(ステップ21)。
When the pulse wave height of the blood pressure pulse wave signal (S2) at all stages of decompressing the cuff 1 is determined in step 19 (step 19: Yes), the controller 13 causes the solenoid valve driver 12 to operate. Fully open the solenoid valve 4. The data so far are stored in the RAM 13c of the controller 13, and thereafter, the controller 13 calculates and determines the blood pressure values of the systolic pressure and the diastolic pressure (step 21).

【0019】このように、カフ1の減圧の一段階ごとに
検出した血圧脈波信号(S2)を微分処理し、次に脈波
最高値点を検出して、さらに、波形の立ち上がり点検出
を行っている。次に、この脈波立ち上がり点の決定方法
(図3中のステップ17)について詳細に説明する。
In this way, the blood pressure pulse wave signal (S2) detected at each step of decompression of the cuff 1 is differentiated, the pulse wave maximum value point is then detected, and the rising point of the waveform is detected. Is going. Next, the method of determining the pulse wave rising point (step 17 in FIG. 3) will be described in detail.

【0020】図5は、脈波立ち上がり点を垂線で決定す
る処理手順のフローチャート(サブルーチン)であり、
図6は、垂線による脈波立ち上がり点決定の処理状態を
示す模式図である。図5及び図6において、図3中のス
テップ16によって、制御器13の処理で脈波最高値点
を決定した後に、図6(a)に示す検出一回目で、図4
に示した傾き最大点(波形差分ピークポイント)Pを始
点にして脈波立ち上がり点の検出を行い、その始点の前
を基準点A(i)に設定する(ステップ30,31)。
基準点A(i)の接線から垂直にグラフ上距離εをと
り、始点と距離εの先端を結んだ線をスコープとし、基
準点の前の判定点A(i−1)がスコープの内側(基準
点A(i)とスコープを挟んだ反対側)に入っているか
否かを見るとともに、この判断を行う(ステップ32,
33,34)。心臓の収縮拡張運動には個人差はある
が、左心室収縮期間等から立ち上がり点を特定する適切
な距離εを多くの披検者データの統計的処理から得るこ
とができる。
FIG. 5 is a flow chart (subroutine) of the processing procedure for determining the rising point of the pulse wave by the vertical line.
FIG. 6 is a schematic diagram showing a processing state of determining a pulse wave rising point by a vertical line. 5 and 6, after the pulse wave maximum value point is determined by the process of the controller 13 in step 16 in FIG. 3, the first detection shown in FIG.
The pulse wave rising point is detected with the maximum inclination point (waveform difference peak point) P shown in 1 as the starting point, and the point before the starting point is set as the reference point A (i) (steps 30 and 31).
The distance ε on the graph is taken perpendicularly from the tangent line of the reference point A (i), and the line connecting the start point and the tip of the distance ε is used as the scope, and the determination point A (i-1) before the reference point is inside the scope ( This judgment is made while checking whether or not it is on the opposite side of the reference point A (i) with the scope in between (step 32,
33, 34). Although there are individual differences in the systolic and diastolic movements of the heart, an appropriate distance ε for identifying the rising point from the left ventricular systolic period or the like can be obtained from statistical processing of many presenter data.

【0021】ステップ34で前の判定点A(i−1)が
スコープの内側に入っている場合(Yes)図6(b)
に示すように基準点を一つ進めて基準点A(i−1)と
し(ステップ35)、ステップ32の処理を繰り返す。
すなわち、基準点の接線から垂直に距離εをとる処理手
順から繰り返す(ステップ32)。この繰り返しの後に
ステップ34で前の判定点がスコープの外側に出た図6
(c)に示す場合(No)、この基準点を立ち上がり点
として決定する(ステップ36)。
When the previous decision point A (i-1) is inside the scope in step 34 (Yes), FIG. 6 (b)
As shown in, the reference point is advanced by one to become the reference point A (i-1) (step 35), and the process of step 32 is repeated.
That is, the processing procedure is repeated from the tangent line of the reference point to obtain the distance ε perpendicularly (step 32). After this repetition, in step 34, the previous judgment point is outside the scope.
In the case shown in (c) (No), this reference point is determined as the rising point (step 36).

【0022】図7は、脈波立ち上がり点を時間軸で決定
する処理手順のフローチャート(サブルーチン)であ
り、図8は、時間軸による脈波立ち上がり点の決定の処
理状態の模式図である。図7及び図8において、図3中
のステップ16によって制御器13の処理で脈波最高値
点を決定した後に、図6(a)に示す検出一回目で、図
4に示した傾き最大点(波形微分最高値点)Pの時間軸
点を始点にして脈波立ち上がり点(時間軸点)の検出を
開始し、始点の前の時間軸を基準点A(i)に設定する
(ステップ40,41)。基準点A(i)から時間軸の
反対方向にグラフ上所定時間tをとり、始点と所定時間
tの経過点を結んだ線をスコープとし、基準点(時間軸
点)A(i)の前の判定点A(i−1)がスコープの内
側に入っているか否かを見るとともに、この判断を行う
(ステップ42,43,44)。
FIG. 7 is a flowchart (subroutine) of the processing procedure for determining the pulse wave rising point on the time axis, and FIG. 8 is a schematic diagram of the processing state for determining the pulse wave rising point on the time axis. 7 and 8, after the pulse wave maximum value point is determined by the processing of the controller 13 in step 16 in FIG. 3, the maximum slope point shown in FIG. 4 is detected at the first detection shown in FIG. (Waveform differential maximum value point) The detection of the pulse wave rising point (time axis point) is started with the time axis point of P as the start point, and the time axis before the start point is set to the reference point A (i) (step 40). , 41). Before the reference point (time axis point) A (i), the line connecting the start point and the elapsed point of the predetermined time t is taken as the scope, taking a predetermined time t on the graph from the reference point A (i) in the direction opposite to the time axis. This judgment is made while checking whether or not the judgment point A (i-1) is inside the scope (steps 42, 43, 44).

【0023】ステップ44で前の判定点A(i−1)が
スコープの内側に入っている場合(Yes)図6(b)
に示すように基準点の時間軸を一つ進めて基準点をA
(i−1)とし、ステップ42の処理を繰り返す。すな
わち、基準点から時間軸の反対方向に所定時間tをとる
処理手順から繰り返す(ステップ45)。この繰り返し
の後にステップ44で前の判定点がスコープの外側に出
た図6(c)に示す場合(No)、この基準点を脈波立
ち上がり点として決定する(ステップ46)。
When the previous judgment point A (i-1) is inside the scope in step 44 (Yes), FIG. 6 (b)
As shown in, the time axis of the reference point is advanced by one and the reference point is set to A
(I-1), and the process of step 42 is repeated. That is, the process is repeated from the processing procedure in which the predetermined time t is set in the direction opposite to the time axis from the reference point (step 45). After this repetition, in step 44, when the previous determination point is outside the scope as shown in FIG. 6C (No), this reference point is determined as the pulse wave rising point (step 46).

【0024】このようにして脈波の波形立ち上がり点を
正確に検出し、血圧計における収縮期圧と拡張期圧の血
圧値が正確に判明することになる。脈波の波形立ち上が
り点の検出は、他の医療計測機器でも必要とされてお
り、例えば、血流計、パルスオキシメーター及び脈波伝
播速度計でも当該脈波波形検出装置は適用可能である。
In this way, the rising point of the pulse wave is accurately detected, and the blood pressure values of the systolic pressure and the diastolic pressure in the sphygmomanometer are accurately determined. The detection of the rising point of the waveform of the pulse wave is also required in other medical measuring instruments, and for example, the pulse wave waveform detecting device can be applied to a blood flow meter, a pulse oximeter, and a pulse wave velocity meter.

【0025】以下、この脈波波形検出装置が適用される
他の実施例について説明する。まず、血流計では、図9
に示すように連続する血流脈波における脈波波形の立ち
上がり点から、次の血流脈波における脈波波形の立ち上
がり点までの波形間uを積分して、血液の拍出量を検出
する。したがって、前述の血圧計と同様に波形立ち上が
り点が正確に検出され、この脈波波形の立ち上がり点間
の波形を積分することよって、確実な拍出量が測定でき
ることになる。
Another embodiment to which this pulse wave waveform detecting apparatus is applied will be described below. First, in the blood flow meter, as shown in FIG.
As shown in, the waveform volume u from the rising point of the pulse wave waveform in the continuous blood flow pulse wave to the rising point of the pulse wave waveform in the next blood flow pulse wave is integrated to detect the blood stroke volume. . Therefore, as in the case of the blood pressure monitor described above, the waveform rising point is accurately detected, and by integrating the waveform between the rising points of this pulse wave waveform, the reliable stroke volume can be measured.

【0026】次に、パルスオキシメーターでは、図10
(a)に示すように、赤外(IR)光に対する検出信号
の交流成分AC1と、図10(b)に示す赤色(R)光
に対する検出信号の交流成分AC2のそれぞれの振幅値
を測定する。この振幅値を測定する場合、前述の血圧計
と同様にして脈波の波形立ち上がり点が正確に検出され
ることによって、交流成分AC1,AC2が確実に測定
できるようになる。
Next, in the pulse oximeter, FIG.
As shown in (a), the amplitude values of the AC component AC1 of the detection signal for infrared (IR) light and the AC component AC2 of the detection signal for red (R) light shown in FIG. 10B are measured. . When this amplitude value is measured, the AC wave components AC1 and AC2 can be reliably measured by accurately detecting the waveform rising point of the pulse wave in the same manner as the blood pressure monitor described above.

【0027】また、脈波伝播速度計では、図11に示す
ように頸動脈脈波と股動脈脈波の伝播時間Tが検出され
る。この場合も、前述の血圧計と同様にして脈波の波形
の立ち上がり点が正確に検出されることによって、確実
に伝播時間Tが測定できるようになる。
The pulse wave velocity meter detects the propagation time T of the carotid pulse wave and the hip artery pulse wave as shown in FIG. Also in this case, the propagation time T can be reliably measured by accurately detecting the rising point of the waveform of the pulse wave in the same manner as the blood pressure monitor described above.

【0028】[0028]

【発明の効果】以上の説明から明らかなように、請求項
1〜3記載の脈波波形検出装置によれば、脈波信号を微
分した微分波形の下向きゼロクロス点を検出し、この下
向きゼロクロス点から逆上って脈波の傾き最大点を検出
している。さらに、検出した脈波の傾き最大点からスコ
ープを用いて脈波の立ち上がり点を検出しているため、
脈波に外乱などによる変動が重畳した場合であってもそ
の脈波の波形立ち上がり点がより正確に検出される。し
たがって、脈波の波形を用いて各種の計測を行う装置で
の脈波立ち上がり点の正確な検出値が得られという効果
を有する。
As is apparent from the above description, according to the pulse wave waveform detecting device of claims 1 to 3, the downward zero cross point of the differential waveform obtained by differentiating the pulse wave signal is detected, and the downward zero cross point is detected. The maximum point of the slope of the pulse wave is detected by going up from. Furthermore, since the rising point of the pulse wave is detected using the scope from the maximum point of inclination of the detected pulse wave,
Even when a fluctuation due to a disturbance or the like is superimposed on the pulse wave, the waveform rising point of the pulse wave is detected more accurately. Therefore, there is an effect that an accurate detection value of the pulse wave rising point can be obtained in an apparatus that performs various measurements using the waveform of the pulse wave.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の脈波波形検出装置が適用される血圧計
の構成例を示すブロック図である。
FIG. 1 is a block diagram showing a configuration example of a sphygmomanometer to which a pulse wave waveform detection device of the present invention is applied.

【図2】実施例にあってカフの圧力状態と血圧脈波及び
脈波の立ち上がり点を示す図である。
FIG. 2 is a diagram showing a pressure state of a cuff, a blood pressure pulse wave, and a rising point of the pulse wave in the embodiment.

【図3】図1に示す血圧計の全体動作の処理手順を示す
フローチャートである。
FIG. 3 is a flowchart showing a processing procedure of overall operation of the sphygmomanometer shown in FIG.

【図4】実施例の動作にあって血圧脈波信号と、その微
分波形を示す図である。
FIG. 4 is a diagram showing a blood pressure pulse wave signal and its differential waveform in the operation of the embodiment.

【図5】実施例の動作にあって脈波立ち上がり点を垂線
で決定する処理手順のフローチャート(サブルーチン)
である。
FIG. 5 is a flowchart of a processing procedure (subroutine) for determining a pulse wave rising point with a vertical line in the operation of the embodiment.
Is.

【図6】図5に示す垂線による脈波立ち上がり点決定の
処理状態を示す模式図である。
FIG. 6 is a schematic diagram showing a processing state of determining a pulse wave rising point by the perpendicular line shown in FIG.

【図7】実施例の動作にあって脈波立ち上がり点を時間
軸で決定する処理手順のフローチャート(サブルーチ
ン)である。
FIG. 7 is a flowchart (subroutine) of a processing procedure for determining the pulse wave rising point on the time axis in the operation of the embodiment.

【図8】図7に示す時間軸による脈波立ち上がり点決定
の処理状態の模式図である。
8 is a schematic diagram of a processing state of determining a pulse wave rising point on the time axis shown in FIG. 7. FIG.

【図9】実施例にあって血流計での脈波波形の処理を説
明するための図である。
FIG. 9 is a diagram for explaining processing of a pulse wave waveform in the blood flow meter in the embodiment.

【図10】実施例にあってパルスオキシメーターにおけ
る脈波波形の処理を説明するための図である。
FIG. 10 is a diagram for explaining processing of a pulse wave waveform in a pulse oximeter in the embodiment.

【図11】実施例にあって脈波伝播速度計における脈波
波形の処理を説明するための図である。
FIG. 11 is a diagram for explaining the processing of the pulse wave waveform in the pulse wave velocity meter in the example.

【符号の説明】[Explanation of symbols]

1 カフ 2 圧力センサ 3 ポンプ 4 電磁弁 6 直流増幅器 8 交流増幅器 11 ポンプ制御器 12 電磁弁駆動器 13 制御器 14 キーパネル 15 液晶ディスプレイ(LCD) S1 圧力信号 S2 血圧脈波信号 1 Cuff 2 Pressure sensor 3 Pump 4 Solenoid valve 6 DC amplifier 8 AC amplifier 11 Pump controller 12 Solenoid valve driver 13 Controller 14 Key panel 15 Liquid crystal display (LCD) S1 Pressure signal S2 Blood pressure pulse wave signal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 A61B 5/14 310 7638−2J 7638−2J A61B 5/02 340 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location A61B 5/14 310 7638-2J 7638-2J A61B 5/02 340 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 脈波の波形ピーク点とともに、立ち上が
り点を検出する脈波波形検出装置において、 生体の脈波を検出する脈波検出手段と、 前記脈波検出手段からの脈波信号を微分する微分手段
と、 前記微分手段からの微分波形の下向ゼロクロス点を検出
する第1検出手段と、前記微分波形の傾き最大点を前記
下向きゼロクロス点から逆上って検出する第2検出手段
と、 前記脈波検出手段が出力する脈波信号から脈波最高値点
を検出する第3検出手段と、 前記第2検出手段が検出した傾き最大点から脈波の立ち
上がり点を検出する第4検出手段と、 を備えることを特徴とする脈波波形検出装置。
1. A pulse wave waveform detecting device for detecting a rising point as well as a waveform peak point of a pulse wave, wherein a pulse wave detecting means for detecting a pulse wave of a living body, and a pulse wave signal from the pulse wave detecting means are differentiated. Differentiating means, first detecting means for detecting a downward zero-cross point of the differential waveform from the differentiating means, and second detecting means for detecting a maximum slope point of the differential waveform in a backward upward direction from the downward zero-cross point. A third detecting means for detecting a pulse wave maximum value point from a pulse wave signal output by the pulse wave detecting means, and a fourth detecting means for detecting a rising point of the pulse wave from the maximum inclination point detected by the second detecting means. A means for detecting a pulse wave waveform, comprising:
【請求項2】 前記第4検出手段は、前記第2検出手段
によって検出した生体の脈波の傾き最大点である始点の
前を基準点に設定し、かつ、基準点の接線から垂直に所
定距離をとり、この所定距離の先端と始点とを結んだ線
をスコープとし、このスコープ内に基準点の前の判定点
が内側に入っている場合に、基準点を一つ進めて前記同
様に基準点の接線から垂直に所定距離をとり、この距離
の先端と始点とを結んだ線をスコープとする処理を行
い、この処理の繰り返しの後に前の判定点がスコープの
外側に出た場合に、この基準点を脈波立ち上がり点とし
て決定することを特徴とする請求項1記載の脈波波形検
出装置。
2. The fourth detecting means sets a reference point in front of a starting point which is the maximum inclination of the pulse wave of the living body detected by the second detecting means and which is perpendicular to a tangent line of the reference point. Take a distance and use the line connecting the tip and the starting point of this predetermined distance as the scope, and if the judgment point before the reference point is inside this scope, advance the reference point by one and do the same as above. If a predetermined distance is taken perpendicularly from the tangent line of the reference point and the line connecting the start point and the start point of this distance is used as the scope process, and if the previous judgment point is outside the scope after repeating this process The pulse wave waveform detecting apparatus according to claim 1, wherein the reference point is determined as a pulse wave rising point.
【請求項3】 前記第4検出手段は、前記第2検出手段
によって検出した生体の脈波の傾き最大点の時間軸点で
ある始点の前の時間軸点を基準点に設定し、かつ、この
基準点から時間軸上での反対方向に所定時間をとり、か
つ、この時間経過点と始点とを結んだ線をスコープと
し、前記基準点の時間軸点の前の判定点がスコープの内
側に入っているか否かを見て、前の判定点がスコープの
内側に入っている場合、基準点の時間軸を一つ進めて前
記同様に基準点から時間軸の反対方向に所定時間をと
り、かつ、この時間経過点と始点とを結んだ線をスコー
プとする処理を繰り返し、この処理の繰り返しの後に前
の判定点がスコープの外側に出た場合、この基準点を脈
波立ち上がり点として決定することを特徴とする請求項
1記載の脈波波形検出装置。
3. The fourth detecting means sets, as a reference point, a time axis point before a start point which is a time axis point of the maximum inclination of the pulse wave of the living body detected by the second detecting means, and A predetermined time is taken in the opposite direction on the time axis from this reference point, and the line connecting the time elapsed point and the start point is used as the scope, and the determination point before the time axis point of the reference point is inside the scope. If the previous judgment point is inside the scope by checking whether it is inside or not, advance the time axis of the reference point by one and take a predetermined time from the reference point in the opposite direction of the time axis as described above. , And, repeat the process that uses the line connecting the time lapse point and the start point as the scope, and if the previous determination point appears outside the scope after repeating this process, use this reference point as the pulse wave rising point. The pulse wave waveform detection device according to claim 1, wherein the pulse wave waveform detection device is determined. Place
JP17886295A 1994-07-26 1995-07-14 Pulse wave detector Expired - Fee Related JP3551334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17886295A JP3551334B2 (en) 1994-07-26 1995-07-14 Pulse wave detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-173026 1994-07-26
JP17302694 1994-07-26
JP17886295A JP3551334B2 (en) 1994-07-26 1995-07-14 Pulse wave detector

Publications (2)

Publication Number Publication Date
JPH0889487A true JPH0889487A (en) 1996-04-09
JP3551334B2 JP3551334B2 (en) 2004-08-04

Family

ID=26495156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17886295A Expired - Fee Related JP3551334B2 (en) 1994-07-26 1995-07-14 Pulse wave detector

Country Status (1)

Country Link
JP (1) JP3551334B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6478163B1 (en) * 1999-05-21 2002-11-12 Tomoe Engineering Co., Ltd. Decanter type centrifugal separator
JP2009236775A (en) * 2008-03-27 2009-10-15 Aisin Seiki Co Ltd Object detector, vehicle opening/closing control system using the object detector, and method for detecting rising edge of envelope curve
JP2010216925A (en) * 2009-03-16 2010-09-30 Yokogawa Electric Corp Data recording device
JP2011502716A (en) * 2007-11-14 2011-01-27 コンメッド コーポレイション Pulsating biometric signal processing method and apparatus
JP2017153690A (en) * 2016-03-01 2017-09-07 テルモ株式会社 Sphygmomanometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6478163B1 (en) * 1999-05-21 2002-11-12 Tomoe Engineering Co., Ltd. Decanter type centrifugal separator
JP2011502716A (en) * 2007-11-14 2011-01-27 コンメッド コーポレイション Pulsating biometric signal processing method and apparatus
JP2009236775A (en) * 2008-03-27 2009-10-15 Aisin Seiki Co Ltd Object detector, vehicle opening/closing control system using the object detector, and method for detecting rising edge of envelope curve
JP2010216925A (en) * 2009-03-16 2010-09-30 Yokogawa Electric Corp Data recording device
JP2017153690A (en) * 2016-03-01 2017-09-07 テルモ株式会社 Sphygmomanometer

Also Published As

Publication number Publication date
JP3551334B2 (en) 2004-08-04

Similar Documents

Publication Publication Date Title
US5584299A (en) Heart pulse wave detecting device using iterative base point detection
US7361148B2 (en) Cuff volumetric pulse wave obtaining apparatus, cuff volumetric pulse wave analyzing apparatus, pressure pulse wave obtaining apparatus, and pressure pulse wave analyzing apparatus
US6659958B2 (en) Augmentation-index measuring apparatus
US6719704B2 (en) Vascular endothelial cell function evaluating apparatus
US6712768B2 (en) Augmentation-index determining apparatus and arteriosclerosis inspecting apparatus
WO1994022363A1 (en) Electronic blood pressure measuring instrument
JP2002272688A (en) Ankle-brachial blood pressure index measuring apparatus
US6786872B2 (en) Augmentation-index measuring apparatus
US5522395A (en) Electronic sphygmomanometer and method of controlling operation of same
US6827687B2 (en) Blood-pressure measuring apparatus having waveform analyzing function
US6793628B2 (en) Blood-pressure measuring apparatus having augmentation-index determining function
US7097621B2 (en) Filter for use with pulse-wave sensor and pulse wave analyzing apparatus
US6923770B2 (en) Pulse-wave-characteristic-point determining apparatus, and pulse-wave-propagation-velocity-related-information obtaining apparatus employing the pulse-wave-characteristic-point determining apparatus
JPH0889487A (en) Pulse waveform detector
US6746405B2 (en) Blood pressure measuring apparatus with pulse wave detecting function
US5193548A (en) Electronic blood pressure meter
JP2001145606A (en) Filter for pulse wave sensor
JP5616253B2 (en) Pulse wave analyzer
JPH0245033A (en) Blood pressure monitoring device
EP0585460B1 (en) Electronic sphygmomanometer and method of controlling performance thereof
JP3445662B2 (en) Blood pressure monitoring device
JP2001187033A (en) Electronic hemodynamometer
JPH0311221B2 (en)
JP2003290158A (en) Blood pressure determining device
JPS5975036A (en) Blood pressure measuring apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees