JP4398553B2 - Electronic blood pressure monitor - Google Patents

Electronic blood pressure monitor Download PDF

Info

Publication number
JP4398553B2
JP4398553B2 JP37439199A JP37439199A JP4398553B2 JP 4398553 B2 JP4398553 B2 JP 4398553B2 JP 37439199 A JP37439199 A JP 37439199A JP 37439199 A JP37439199 A JP 37439199A JP 4398553 B2 JP4398553 B2 JP 4398553B2
Authority
JP
Japan
Prior art keywords
cuff
pulse wave
blood pressure
pressure
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37439199A
Other languages
Japanese (ja)
Other versions
JP2001187033A (en
Inventor
能行 羽生
孝博 相馬
勝 栗尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRUMO KABUSHIKI KAISHA
Original Assignee
TRUMO KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRUMO KABUSHIKI KAISHA filed Critical TRUMO KABUSHIKI KAISHA
Priority to JP37439199A priority Critical patent/JP4398553B2/en
Publication of JP2001187033A publication Critical patent/JP2001187033A/en
Application granted granted Critical
Publication of JP4398553B2 publication Critical patent/JP4398553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、脈波の振幅変化に基づいて血圧値を決定する電子血圧計における、血圧、特に最高血圧を決定するための脈波の振幅検出手段に特徴を有する電子血圧計に関する。
【0002】
【従来の技術】
従来、脈波の振幅に基づいて血圧値を決定する電子血圧計において、最高血圧の決定に用いる脈波の振幅としては、心臓の収縮開始時点から次の心臓収縮開始時点までの脈波の1周期の最大値(ピ−ク値)から最初の心臓収縮開始時点(ボトム)値との差を用いるか、また、脈波検出手段で処理する周波数帯域がAC(0.5Hz〜数10Hz)の場合には、前記ピ−ク値からAC増幅器の仮想ゼロレベル値または、前記脈波の1周期の最小値との差を用いていた。
【0003】
【発明が解決しようとする課題】
通常、カフの圧力伝達効率はカフ中央部で高く、両端では低くなる傾向を有している。したがって、カフ圧が最高血圧より高い阻血状態においても、カフ下の動脈の圧閉ポイントはカフ中央部のみであり、カフ装着部位より心臓に近い側(カフ上流側)ではカフ下に拍動に伴う血液が出入りしカフ下の動脈が容積変化をし、脈波が発生している。
【0004】
カフ圧が最高血圧より低くなると、カフ上流側からカフの末梢側(カフ下流側)に血流が発生する。最高血圧の決定には、上記カフ上流部の容積変化に重なったカフ下流側への血流の発生によるカフ下容積変化に伴う脈波の変化を検出すべきではあるが、従来の方式で脈波振幅を検出すると、この変化が明瞭な場合と明瞭では無い場合が発生していた。つまり、従来方式の脈波検出方法ではカフ上流部の血管容積変化が支配的となりカフ上流側から下流側へ発生する血流による容積変化を検出できないことがあった。
【0005】
したがって、従来の最高血圧決定は、カフ圧を最高血圧以上に加圧しその後減圧する過程にて検出された最大脈波振幅、または、加圧途中で検出された最大脈波振幅の約0.5倍にあたる振幅におけるカフ圧を最高血圧にする等、単に経験に基づいた測定原理の不明確な方法で行わざるを得なかった。
【0006】
この発明は、以上のような問題点を解決し、精度の高い、信頼性の高い、最高血圧決定方式を備えた電子血圧計を提供することを目的とする。
【0007】
【課題を解決するための手段】
この目的を達成させる為に、この発明の電子血圧計は、次の構成よりなる。
【0008】
(1)生体の一部に巻くカフと、前記カフ内の圧力を加減圧することによってカフ圧を調整するカフ圧調整手段と、前記カフ内の圧力及び脈波を検出する圧力センサと前記圧力センサからの出力データを演算処理して血圧測定をする演算処理手段を備える電子血圧計において、前記演算処理手段は、心臓収縮の開始に伴う脈波の立ち上がりポイント検出手段と、立ち上がりポイントからの計時手段と、前記計時手段に対応した脈波波高値を脈波振幅として検出する脈波振幅検出手段と、血圧決定手段とから構成され、前記血圧決定手段は、前記立ち上がりポイントからの計時手段に規定値を与え、前記計時手段に対応した前記脈波振幅検出手段の検出した脈波振幅の変化に基づき最高血圧値を決定することを特徴とする電子血圧計。
【0009】
(2)前記血圧決定手段は、前記立ち上がりポイントからの計時手段に与える規定値として、80ミリ秒から120ミリ秒までの任意の値を選択することを特徴とする上記(1)に記載の電子血圧計。
【0010】
(3)前記血圧決定手段は、前記立ち上がりポイントからの計時手段に与える規定値として、検出した脈波に基づき任意の値を選択することを特徴とする上記(1)に記載の電子血圧計。
【0012】
この様な構成の電子血圧計では、心臓収縮の開始に伴う立ち上がりポイントよりある時間遅れたポイントの脈波の大きさをとらえて、その変化によりカフ上流側から下流側への血流の発生現象を検出している。
つまり、この最高血圧決定方法は次の現象に基づき案出したものである。
カフサイズと装着部位の太さとの関係、カフの巻き方、また、動脈弾性、血液粘度等により、心臓の収縮によりカフの上流側に血流が進入してからカフの中央部を抜けてカフ下流側に至るには、ある時間を要する。
【0013】
従来の様に脈波のピ−クからボトムまでの大きさ、または、ピ−クから最小値までの、大きさを振幅として検出すると、カフ圧が最高血圧より高い場合には、カフの上流部に進入してきた血流による変化が支配的となり、上記、カフ下流側への血流の容積変化を正確に検出できなかった。
したがって、最高血圧の決定にあたっては、カフ上流部の血管容積変化に起因した脈波変化よりある時間遅れた時相の振幅の変化を捕らえれば、カフ上流側から下流側への血流の発生ポイントを感度良く検出することが可能となり、精度が高く、信頼性の高い最高血圧決定方法が実現できる。
【0014】
【発明の実施の形態】
以下引き続き、本発明に基づく電子血圧計の要旨をさらに明確にするため、図面を利用して実施の形態を説明する。
【0015】
<本実施の形態の血圧計の構成例>
図1は、この発明に掛かる電子血圧計のエア−系と測定回路の具体的な1実施例を示すブロック図である。
カフ1はチュ−ブ2を介して加圧ポンプ3、定速減圧弁4、急速減圧弁5、圧力センサ6に接続されている。
圧力センサ6の出力は増幅器7で増幅され、A/D変換器8でアナログ値からデジタル値に変換される。このデジタル値はMPU(演算処理手段)9に入力される。
【0016】
さらに、MPU9(演算処理手段)ではこのデジタル入力から心臓収縮の開始に伴う立ち上がりポイントに一致するボトムポイントの検出を行い、このボトムポイントからある規定時間(約80から約120ミリ秒)遅れたポイントの波高値からボトムポイントの値を引いた差を振幅として測定し、そのときのカフ圧力値と一対にして記憶部10に記憶する。
【0017】
最高血圧以上のカフ圧より最高血圧以下のカフ圧に減圧されるまで、または最高血圧より低いカフ圧力より最高血圧より高いカフ圧力まで加圧されるまで振幅の測定と記憶を行う。記憶された振幅値を時系列に並べて、それぞれ前後の振幅の変化を計算し、振幅の変化があるレベル以上になった脈波のカフ圧力値を最高血圧値と決定する機能を有している。
【0018】
図2は、実施例電子血圧計の具体的な処理動作を示すフロ−チャ−トである。
測定部位にカフ1を装着し、開始スイッチ11を押すと、圧力がゼロセット(STEP1)され、急速減圧弁5が閉じ、加圧ポンプ3が作動し(STEP2)、その後、徐々にカフ1内が加圧される。カフ1内は、最高血圧以上の加圧設定値まで加圧され、カフ装着部位の血管は圧迫され、閉塞する。カフ圧が、加圧設定値を越えたことが検知されると(STEP3)、加圧ポンプ3が止まり定速減圧弁4により減圧が開始する(STEP4)。
【0019】
減圧が始まると、MPU(演算処理手段)9が取り込んだ信号から脈波のボトムポイントの検出(STEP5)およびボトムポイントから規定時間(約80〜約120ミリ秒)経過したポイントの波高値を検出し、ボトムポイントのとの差を計算し振幅とする(STEP6)。この振幅値とカフ圧値(ボトムポイントの値)とを一対にして時系列に記憶する。
【0020】
脈が検出されるごとに、一拍前の脈波との振幅の変化(Δh)を計算し、Δhが閾値(ΔSYS)を越えて大きくなった場合(STEP7)に、その時点のカフ圧力値を最高血圧値(Psys)として記憶する(STEP8)。Δhが閾値(ΔSYS)を越えなかった場合、STEP5に戻る。
【0021】
最高血圧を検出した後は、引き続き、最低血圧の検出を行う。最低血圧が検出されると、急速減圧弁5は開き、カフ圧が大気圧まで排気され、表示器12に最高血圧値と最低血圧値が表示され、測定が終了する。
【0022】
図3は、前述の図1に示した血圧計により、得られた波形の1例である。図3は圧センサによって検出された時系列波形を示しており、収縮期血圧以上に加圧された後、徐々に減圧されながら、血圧が検出される際のカフの内圧変化を示している。
【0023】
図4は、図3に示された収縮期血圧付近の各点A,B,Cにおける圧力波形を、ハイパスフィルタにかけ、交流成分だけを抽出して得られた脈波波形である。
【0024】
図4より、収縮期血圧付近のA、B、C点において、脈波の最大ピーク点までの波高値P1、P2、P3はほぼ一定に増加していることがわかる。一方で、脈波の立ち上がり点より100ミリ秒(msec.)経過後の波高値を観察すると、A点の波高値P’1に比べ、B点の波高値P’2は顕著な増加を示している。このように、脈波の立ち上がりから、一定時間経過の波高値を求め脈波振幅とすることで、収縮期血圧を決定することが可能である。
【0025】
また、本実施例では、脈波のボトムポイントからの規定時間を80〜120ミリ秒程度の固定の値(図4では100ミリ秒の規定時間)とし、規定時間経過後の波高値を検出する方法を示したが、本発明における規定時間の決定法は、前述の実施例のみに限定されない。例えば、血圧の計測前に、30mmHg程度に加圧しておき、脈波を検出して、脈波の立ち上がりからピークの時間を算出し、その値を元に、脈波の規定時間を決定する、あるいは脈拍数によって時間を変更するなど、固定の規定時間を用いない方法が考えられるが、これらは、本発明の範疇である。
【0026】
【発明の効果】
この発明では以上のように、脈波の心臓収縮の開始に伴う立ち上がりポイント(ボトムポイント)からある規定時間遅れた波高値とボトムポイントの差を脈波振幅として、この脈波振幅の変化を用いて最高血圧を決定することとしたので、カフ上流側からカフ下流側への血流の発生を的確に検出でき、原理的にも明確であり、個体差による誤差の生ずる畏れが無い、精度の良い、信頼性の高い電子血圧計の実現が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例の電子血圧計を示すブロック図である。
【図2】本発明の一実施例の電子血圧計の処理動作を示すフロ−チャ−トである。
【図3】本発明の一実施例の電子血圧計で得られた波形の1例である
【図4】図3に示された各点A,B,Cにおける圧力波形の本発明の原理を説明する拡大波形である。
【符号の説明】
1 カフ
2 チュ−ブ
3 加圧ポンプ
4 定速減圧弁
5 急速減圧弁
6 圧力センサ
7 増幅器
8 A/D変換器
9 MPU(演算処理手段)
10 記憶部
13 電池
14 表示部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic sphygmomanometer characterized by a pulse wave amplitude detecting means for determining blood pressure, particularly a maximal blood pressure, in an electronic sphygmomanometer that determines a blood pressure value based on a change in amplitude of a pulse wave.
[0002]
[Prior art]
Conventionally, in an electronic sphygmomanometer that determines a blood pressure value based on the amplitude of a pulse wave, the amplitude of the pulse wave used to determine the maximum blood pressure is 1 of the pulse wave from the heart contraction start time to the next heart contraction start time. Use the difference between the maximum value (peak value) of the cycle and the first cardiac contraction start time (bottom) value, or the frequency band processed by the pulse wave detection means is AC (0.5 Hz to several tens Hz) In some cases, the difference between the peak value and the virtual zero level value of the AC amplifier or the minimum value of one period of the pulse wave is used.
[0003]
[Problems to be solved by the invention]
Normally, the pressure transmission efficiency of the cuff tends to be high at the cuff center and low at both ends. Therefore, even in the ischemic state where the cuff pressure is higher than the maximum blood pressure, the cuffing point of the artery under the cuff is only at the cuff center, and it pulsates below the cuff on the side closer to the heart (cuff upstream) than the cuff attachment site. Accompanied blood enters and leaves, the arteries under the cuff change in volume, and pulse waves are generated.
[0004]
When the cuff pressure becomes lower than the maximum blood pressure, blood flow is generated from the cuff upstream side to the cuff distal side (cuff downstream side). In determining the systolic blood pressure, the change in the pulse wave accompanying the change in volume under the cuff due to the generation of blood flow downstream of the cuff that overlaps the volume change in the upstream part of the cuff should be detected. When the wave amplitude is detected, there are cases where this change is clear and not clear. That is, in the conventional pulse wave detection method, the change in blood vessel volume in the upstream portion of the cuff is dominant, and the change in volume due to the blood flow generated from the upstream side to the downstream side of the cuff may not be detected.
[0005]
Therefore, in the conventional determination of the maximum blood pressure, the maximum pulse wave amplitude detected in the process of increasing the cuff pressure to the maximum blood pressure and then decreasing or about 0.5% of the maximum pulse wave amplitude detected during the pressurization. For example, the cuff pressure at the doubled amplitude is set to the highest blood pressure, and the measurement principle based on experience is inevitably unclear.
[0006]
An object of the present invention is to provide an electronic sphygmomanometer that solves the above-described problems and has a highly accurate and reliable maximum blood pressure determination method.
[0007]
[Means for Solving the Problems]
In order to achieve this object, the electronic sphygmomanometer of the present invention has the following configuration.
[0008]
(1) A cuff wound around a part of a living body, a cuff pressure adjusting means for adjusting the cuff pressure by increasing and decreasing the pressure in the cuff, a pressure sensor for detecting the pressure and pulse wave in the cuff, and the pressure In an electronic sphygmomanometer including an arithmetic processing unit that performs arithmetic processing on output data from the sensor to measure blood pressure, the arithmetic processing unit includes a pulse wave rising point detecting unit accompanying the start of cardiac contraction, and a time measurement from the rising point. Means, a pulse wave amplitude detecting means for detecting a pulse wave peak value corresponding to the time measuring means as a pulse wave amplitude, and a blood pressure determining means , wherein the blood pressure determining means is defined as a time measuring means from the rising point. An electronic sphygmomanometer , wherein a maximum blood pressure value is determined based on a change in pulse wave amplitude detected by the pulse wave amplitude detection unit corresponding to the time measuring unit .
[0009]
(2) The electronic device according to (1), wherein the blood pressure determining unit selects an arbitrary value from 80 milliseconds to 120 milliseconds as a specified value to be given to the time measuring unit from the rising point. Sphygmomanometer.
[0010]
(3) The electronic blood pressure monitor according to (1), wherein the blood pressure determining unit selects an arbitrary value based on the detected pulse wave as a specified value to be given to the time measuring unit from the rising point.
[0012]
The electronic sphygmomanometer with such a configuration captures the magnitude of the pulse wave at a point delayed by a certain time from the rising point associated with the start of cardiac contraction, and the change causes the blood flow phenomenon from upstream to downstream of the cuff. Is detected.
That is, this systolic blood pressure determination method has been devised based on the following phenomenon.
Due to the relationship between the cuff size and the thickness of the wearing part, how the cuff is wound, arterial elasticity, blood viscosity, etc., blood flow enters the upstream side of the cuff due to heart contraction, then passes through the center of the cuff and goes downstream It takes some time to get to the side.
[0013]
If the magnitude of the pulse wave from the peak to the bottom or the magnitude from the peak to the minimum value is detected as an amplitude as in the past, if the cuff pressure is higher than the maximum blood pressure, the upstream of the cuff The change due to the blood flow that entered the area became dominant, and the above-described volume change of the blood flow downstream of the cuff could not be detected accurately.
Therefore, in determining the systolic blood pressure, if the change in the amplitude of the time phase delayed by a certain time from the change in the pulse wave due to the change in the vascular volume in the upstream part of the cuff is captured, the generation of blood flow from the upstream side to the downstream side of the cuff The point can be detected with high sensitivity, and a highly accurate and reliable method for determining the maximum blood pressure can be realized.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, in order to further clarify the gist of the electronic sphygmomanometer according to the present invention, embodiments will be described with reference to the drawings.
[0015]
<Configuration example of blood pressure monitor of the present embodiment>
FIG. 1 is a block diagram showing a specific embodiment of an air system and a measurement circuit of an electronic sphygmomanometer according to the present invention.
The cuff 1 is connected to a pressurizing pump 3, a constant speed pressure reducing valve 4, a rapid pressure reducing valve 5, and a pressure sensor 6 through a tube 2.
The output of the pressure sensor 6 is amplified by an amplifier 7 and converted from an analog value to a digital value by an A / D converter 8. This digital value is input to an MPU (arithmetic processing means) 9.
[0016]
Further, MPU9 (arithmetic processing means) detects a bottom point that coincides with the rising point accompanying the start of cardiac contraction from this digital input, and is a point that is delayed for a specified time (about 80 to about 120 milliseconds) from this bottom point. The difference obtained by subtracting the bottom point value from the crest value is measured as the amplitude, and stored in the storage unit 10 as a pair with the cuff pressure value at that time.
[0017]
The amplitude is measured and stored until the cuff pressure is reduced from the cuff pressure higher than the maximum blood pressure to the cuff pressure lower than the maximum blood pressure, or until the cuff pressure lower than the maximum blood pressure is increased to the cuff pressure higher than the maximum blood pressure. The stored amplitude values are arranged in time series, the amplitude change before and after each is calculated, and the cuff pressure value of the pulse wave in which the amplitude change exceeds a certain level is determined as the maximum blood pressure value .
[0018]
FIG. 2 is a flowchart showing a specific processing operation of the electronic blood pressure monitor according to the embodiment.
When the cuff 1 is attached to the measurement site and the start switch 11 is pressed, the pressure is set to zero (STEP 1), the quick pressure reducing valve 5 is closed, the pressurizing pump 3 is operated (STEP 2), and then gradually inside the cuff 1 Is pressurized. The inside of the cuff 1 is pressurized to a pressurization set value equal to or higher than the maximum blood pressure, and the blood vessel at the cuff wearing site is compressed and occluded. When it is detected that the cuff pressure exceeds the pressurization set value (STEP 3), the pressurization pump 3 stops and pressure reduction is started by the constant speed pressure reducing valve 4 (STEP 4).
[0019]
When decompression starts, the pulse wave bottom point detection (STEP 5) from the signal taken in by the MPU (arithmetic processing means) 9 and the peak value at the point after the specified time (about 80 to about 120 milliseconds) has been detected from the bottom point Then, the difference from the bottom point is calculated and set as the amplitude (STEP 6). The amplitude value and the cuff pressure value (bottom point value) are paired and stored in time series.
[0020]
Whenever a pulse is detected, a change in amplitude (Δh) with the pulse wave one beat before is calculated, and when Δh becomes larger than the threshold value (ΔSYS) (STEP 7), the cuff pressure value at that time Is stored as a systolic blood pressure value (Psys) (STEP 8). If Δh does not exceed the threshold value (ΔSYS), the process returns to STEP5.
[0021]
After detecting the systolic blood pressure, the diastolic blood pressure is continuously detected. When the minimum blood pressure is detected, the rapid pressure reducing valve 5 is opened, the cuff pressure is exhausted to the atmospheric pressure, the maximum blood pressure value and the minimum blood pressure value are displayed on the display 12, and the measurement ends.
[0022]
FIG. 3 is an example of a waveform obtained by the blood pressure monitor shown in FIG. FIG. 3 shows a time-series waveform detected by the pressure sensor, and shows a change in the internal pressure of the cuff when the blood pressure is detected while the pressure is gradually reduced after being pressurized above the systolic blood pressure.
[0023]
FIG. 4 is a pulse waveform obtained by applying a high-pass filter to the pressure waveforms at points A, B, and C near the systolic blood pressure shown in FIG. 3 and extracting only the AC component.
[0024]
As can be seen from FIG. 4, the peak values P1, P2, and P3 up to the maximum peak point of the pulse wave increase almost uniformly at points A, B, and C near the systolic blood pressure. On the other hand, when observing the crest value after 100 milliseconds (msec.) From the rising point of the pulse wave, the crest value P′2 at point B shows a marked increase compared to the crest value P′1 at point A. ing. Thus, the systolic blood pressure can be determined by obtaining the peak value after a certain time from the rise of the pulse wave and using it as the pulse wave amplitude.
[0025]
In the present embodiment, the specified time from the bottom point of the pulse wave is set to a fixed value of about 80 to 120 milliseconds (the specified time of 100 milliseconds in FIG. 4), and the peak value after the lapse of the specified time is detected. Although the method is shown, the method for determining the specified time in the present invention is not limited to the above-described embodiment. For example, before measuring blood pressure, pressurize to about 30 mmHg, detect the pulse wave, calculate the peak time from the rise of the pulse wave, and determine the prescribed time of the pulse wave based on the value, Alternatively, a method that does not use a fixed specified time, such as changing the time depending on the pulse rate, can be considered, but these are within the scope of the present invention.
[0026]
【The invention's effect】
As described above, according to the present invention, the difference between the peak value delayed from the rising point (bottom point) at the start of the heart contraction of the pulse wave and the bottom point is defined as the pulse wave amplitude, and the change in the pulse wave amplitude is used. Therefore, it is possible to accurately detect blood flow from the cuff upstream side to the cuff downstream side, it is clear in principle, and there is no possibility of errors due to individual differences. A good and reliable electronic sphygmomanometer can be realized.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an electronic blood pressure monitor according to an embodiment of the present invention.
FIG. 2 is a flowchart showing the processing operation of the electronic blood pressure monitor according to the embodiment of the present invention.
3 is an example of a waveform obtained by the electronic sphygmomanometer of one embodiment of the present invention. FIG. 4 shows the principle of the present invention of the pressure waveform at points A, B, and C shown in FIG. It is an enlarged waveform to explain.
[Explanation of symbols]
1 Cuff 2 Tube 3 Pressurizing pump 4 Constant speed reducing valve 5 Rapid reducing valve 6 Pressure sensor 7 Amplifier 8 A / D converter 9 MPU (arithmetic processing means)
10 storage unit 13 battery 14 display unit

Claims (3)

生体の一部に巻くカフと、前記カフ内の圧力を加減圧することによってカフ圧を調整するカフ圧調整手段と、前記カフ内の圧力及び脈波を検出する圧力センサと前記圧力センサからの出力データを演算処理して血圧測定をする演算処理手段を備える電子血圧計において、前記演算処理手段は、心臓収縮の開始に伴う脈波の立ち上がりポイント検出手段と、立ち上がりポイントからの計時手段と、前記計時手段に対応した脈波波高値を脈波振幅として検出する脈波振幅検出手段と、血圧決定手段とから構成され、前記血圧決定手段は、前記立ち上がりポイントからの計時手段に規定値を与え、前記計時手段に対応した前記脈波振幅検出手段の検出した脈波振幅の変化に基づき最高血圧値を決定することを特徴とする電子血圧計。A cuff wound around a part of the living body, cuff pressure adjusting means for adjusting the cuff pressure by increasing and decreasing the pressure in the cuff, a pressure sensor for detecting the pressure and pulse wave in the cuff, and the pressure sensor In an electronic sphygmomanometer including an arithmetic processing unit that performs arithmetic processing on output data to measure blood pressure, the arithmetic processing unit includes a pulse wave rising point detecting unit accompanying the start of cardiac contraction, a time measuring unit from the rising point, It comprises pulse wave amplitude detecting means for detecting a pulse wave peak value corresponding to the time measuring means as pulse wave amplitude, and blood pressure determining means, and the blood pressure determining means gives a prescribed value to the time measuring means from the rising point. An electronic sphygmomanometer , wherein a systolic blood pressure value is determined based on a change in pulse wave amplitude detected by the pulse wave amplitude detecting means corresponding to the time measuring means . 前記血圧決定手段は、前記立ち上がりポイントからの計時手段に与える規定値として、80ミリ秒から120ミリ秒までの任意の値を選択することを特徴とする請求項1に記載の電子血圧計。2. The electronic sphygmomanometer according to claim 1, wherein the blood pressure determining unit selects an arbitrary value from 80 milliseconds to 120 milliseconds as a specified value to be given to the time measuring unit from the rising point. 前記血圧決定手段は、前記立ち上がりポイントからの計時手段に与える規定値として、検出した脈波に基づき任意の値を選択することを特徴とする請求項1に記載の電子血圧計。2. The electronic sphygmomanometer according to claim 1, wherein the blood pressure determining unit selects an arbitrary value based on the detected pulse wave as a specified value to be given to the time measuring unit from the rising point.
JP37439199A 1999-12-28 1999-12-28 Electronic blood pressure monitor Expired - Fee Related JP4398553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37439199A JP4398553B2 (en) 1999-12-28 1999-12-28 Electronic blood pressure monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37439199A JP4398553B2 (en) 1999-12-28 1999-12-28 Electronic blood pressure monitor

Publications (2)

Publication Number Publication Date
JP2001187033A JP2001187033A (en) 2001-07-10
JP4398553B2 true JP4398553B2 (en) 2010-01-13

Family

ID=18503773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37439199A Expired - Fee Related JP4398553B2 (en) 1999-12-28 1999-12-28 Electronic blood pressure monitor

Country Status (1)

Country Link
JP (1) JP4398553B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873998B2 (en) * 2006-05-29 2012-02-08 テルモ株式会社 Vascular elasticity measurement device
US11298031B2 (en) 2016-03-29 2022-04-12 Nec Corporation Sphygmomanometer, blood pressure measurement method, and blood pressure measurement program

Also Published As

Publication number Publication date
JP2001187033A (en) 2001-07-10

Similar Documents

Publication Publication Date Title
US7361148B2 (en) Cuff volumetric pulse wave obtaining apparatus, cuff volumetric pulse wave analyzing apparatus, pressure pulse wave obtaining apparatus, and pressure pulse wave analyzing apparatus
JP3587837B2 (en) Arterial stiffness evaluation device
US6120459A (en) Method and device for arterial blood pressure measurement
US6443905B1 (en) Method and arrangement for blood pressure measurement
JP3590613B2 (en) Amplitude increase index calculation device and arteriosclerosis test device
JP2002209859A (en) Automatic blood pressure measuring instrument
JPH05288869A (en) Multifunctional watch
JP3621395B2 (en) Blood pressure measurement device with waveform analysis function
US20090012411A1 (en) Method and apparatus for obtaining electronic oscillotory pressure signals from an inflatable blood pressure cuff
US20120029366A1 (en) Blood pressure detection apparatus and blood pressure detection method
US7097621B2 (en) Filter for use with pulse-wave sensor and pulse wave analyzing apparatus
EP1356767A2 (en) Augmentation-index measuring apparatus
JP6855027B2 (en) Endothelial function tester for arterial blood vessels
KR100827816B1 (en) Device and Method for Measuring Blood Pressure
US6746405B2 (en) Blood pressure measuring apparatus with pulse wave detecting function
JP4398553B2 (en) Electronic blood pressure monitor
CN212261359U (en) Ultrasonic wave double entry sphygmomanometer
JP2002136489A (en) Blood pressure measuring instrument and pulse wave propagation velocity information measuring instrument
JP3717990B2 (en) Electronic blood pressure monitor
JP3057933B2 (en) Electronic sphygmomanometer
JPS6216096B2 (en)
JP2745467B2 (en) Electronic sphygmomanometer
JP2001309894A (en) Equipment for measuring peripheral venous pressure and its method
Avbelj Morphological changes of pressure pulses in oscillometric non-invasive blood pressure measurements
JP2605145B2 (en) Electronic sphygmomanometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4398553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees