JPS6216096B2 - - Google Patents

Info

Publication number
JPS6216096B2
JPS6216096B2 JP57030502A JP3050282A JPS6216096B2 JP S6216096 B2 JPS6216096 B2 JP S6216096B2 JP 57030502 A JP57030502 A JP 57030502A JP 3050282 A JP3050282 A JP 3050282A JP S6216096 B2 JPS6216096 B2 JP S6216096B2
Authority
JP
Japan
Prior art keywords
cuff
blood pressure
amplifier
pressure
arterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57030502A
Other languages
Japanese (ja)
Other versions
JPS58149731A (en
Inventor
Osamu Tochikubo
Yoshihiro Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UAIN KK
Original Assignee
UAIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UAIN KK filed Critical UAIN KK
Priority to JP57030502A priority Critical patent/JPS58149731A/en
Publication of JPS58149731A publication Critical patent/JPS58149731A/en
Publication of JPS6216096B2 publication Critical patent/JPS6216096B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【発明の詳細な説明】 本願は非観血式の血圧測定装置に関し、更に詳
しくは、カフ内動脈波の差分を算出し、そのピー
ク値を検出して最高血圧および最低血圧を測定す
る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present application relates to a non-invasive blood pressure measuring device, and more specifically, to a device that calculates the difference between intra-cuff arterial waves and detects the peak value to measure systolic blood pressure and diastolic blood pressure. .

血圧の測定は、一般に、観血式と非観血式との
二種類に分けられる。
Blood pressure measurement is generally divided into two types: invasive and non-invasive.

観血式とは、血管を切開あるいは針を血管に刺
して血圧とその変動を直接圧力計に導き測定する
ものである。具体的には、液体を満たしたカテー
テル(中空管)あるいはセンサを測定部位にまで
挿入し、血圧およびその変動を体外に置かれた圧
力トランスジユーサまで導き、該トランスジユー
サの出力信号を増幅、記録表示する。
The open method involves cutting a blood vessel or inserting a needle into the blood vessel and measuring blood pressure and its fluctuations directly to a pressure gauge. Specifically, a catheter (hollow tube) or sensor filled with liquid is inserted into the measurement site, and blood pressure and its fluctuations are guided to a pressure transducer placed outside the body, and the output signal of the transducer is transmitted. Amplify, record and display.

しかしながら、この方式による血圧測定は針等
を直接血管に刺すわけであるから、患者に負担を
与え、血圧を容易に測定するというわけにはいか
ない。
However, blood pressure measurement using this method involves directly inserting a needle or the like into a blood vessel, which places a burden on the patient and does not allow easy measurement of blood pressure.

そこで現在では、特別の場合を除き、非観血式
つまり体外から間接的に血圧を測定する方法が広
く行われている。
Therefore, except in special cases, a non-invasive method, that is, a method of measuring blood pressure indirectly from outside the body, is now widely used.

現在、この間接法として最も一般的なものは、
聴診法と呼ばれる方法で、次の手順に従つて行な
われる。
Currently, the most common indirect method is
This is a method called auscultation, and is performed according to the following steps:

まず、上腕部にカフ(圧迫帯)を巻き、該カフ
の内圧を加圧ポンプで上昇させた後、徐々に圧力
を減じながら、撓骨動脈上に聴診器を置いて聴診
し、カフ内圧が最高血圧値に一致すると心拍に同
期して発生するコロトコフ音を聴きとり、またカ
フ内圧が最低血圧値と一致するとコロトコフ音が
消滅することを確認して、最高血圧と最低血圧と
を測定する。
First, a cuff (compression band) is wrapped around the upper arm, and the internal pressure of the cuff is increased using a pressure pump.Then, while gradually decreasing the pressure, a stethoscope is placed over the radial artery to auscultate, and the internal pressure of the cuff is increased. The systolic blood pressure and diastolic blood pressure are measured by listening to the Korotkoff sounds that occur in synchronization with the heartbeat when the cuff internal pressure matches the diastolic blood pressure value, and by confirming that the Korotkoff sounds disappear when the cuff internal pressure matches the diastolic blood pressure value.

また、現在電気血圧計として使用されているも
のも、上記聴診法の原理を応用したもので、マイ
クロフオンでコロトコフ音を集音し判別確認後、
メータ等によつて表示する。
In addition, the electric blood pressure monitors currently used apply the principle of the auscultation method described above, and after collecting Korotkoff sounds with a microphone and confirming their discrimination,
Indicate by meter etc.

しかしながら、この血圧計で特に難かしいの
は、通常人間が行なう、最高、最低血圧値の判定
基準となるコロトコフ音の確認判定を機械が行な
わなければならないことである。最高、最低血圧
値の決定には、コロトコフ音の発見あるいは消滅
を確認判定する必要があるが、その音量は非常に
微弱であるため、カフ圧制御時、腕を動かしたと
きに発生するマイクロホンと皮膚の摩擦雑音の影
響を受け易く、血圧の測定を困難にしている。
However, what is particularly difficult about this sphygmomanometer is that the machine must perform the confirmation and determination of Korotkoff sounds, which are the criteria for determining maximum and diastolic blood pressure values, which is normally performed by humans. In order to determine the maximum and diastolic blood pressure values, it is necessary to confirm and judge whether the Korotkoff sounds have been detected or disappeared, but since the volume is very weak, it is difficult to detect the presence or disappearance of Korotkoff sounds. It is susceptible to skin friction noise, making blood pressure measurement difficult.

本発明は、従来の血圧計のかかる欠陥を消却す
るために開発されたもので、これまでとは全く異
なる原理、すなわちカフ内動脈波の差分を算出
し、そのピーク値を検出して最高血圧および最低
血圧を測定する方法を考案したものである。
The present invention was developed to eliminate such defects in conventional blood pressure monitors, and uses a completely different principle from the previous ones, that is, it calculates the difference between arterial waves within the cuff, detects its peak value, and measures the systolic blood pressure. and devised a method for measuring diastolic blood pressure.

以下、本発明を図示実施例に基づいて詳説す
る。
Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

図面第1図は、本発明に係る血圧計の一実施例
を示す構成図である。図示において、センサ4
(例えば圧力トランスジユーサ)は、カフ1から
中空管3を介し外部に引き出してある。ポンプ2
は該カフに流体を供給し加圧する。センサの出力
は、カフ内圧成分についてはDC増幅器5で増幅
し、カフ内動脈波成分はAC増幅器7で増幅す
る。AC増幅器の出力はそのまま、またDC増幅器
の出力はA/Dコンバータ6を介し演算処理回路
8(実施例ではマイクロコンピユータを使用)に
送られる。また、図示実施例では、マイクロコン
ピユータの周辺に、タイマ10、メモリ9を設け
てある。これらの機能、作用については後述す
る。
FIG. 1 is a configuration diagram showing an embodiment of a blood pressure monitor according to the present invention. In the illustration, sensor 4
A pressure transducer (for example, a pressure transducer) is drawn out from the cuff 1 through a hollow tube 3. pump 2
supplies fluid to and pressurizes the cuff. In the output of the sensor, the cuff internal pressure component is amplified by the DC amplifier 5, and the intracuff arterial wave component is amplified by the AC amplifier 7. The output of the AC amplifier is sent as is, and the output of the DC amplifier is sent to an arithmetic processing circuit 8 (a microcomputer is used in the embodiment) via an A/D converter 6. Further, in the illustrated embodiment, a timer 10 and a memory 9 are provided around the microcomputer. These functions and actions will be described later.

なお、図示実施例では、カフを巻装する個所
を、従来の聴診法のごとく上腕部に限定されるこ
とのないよう(例えば指にカフを巻装することの
できるよう)、センサを中空管3でカフの外部に
引き出し、該中空管、カフおよび該カフとポンプ
とを結ぶ中空管12に、血液と同じ比重の液体で
満たし、センサを心臓と同じ高さに取り付けるこ
とのできるように構成してある。ただし、本発明
ではセンサをカフに内臓し、従来と同じく該カフ
を上腕部に巻装して測定するものであつても何ら
支障はない。
In the illustrated embodiment, the sensor is made hollow so that the cuff is not limited to the upper arm as in conventional auscultation methods (for example, the cuff can be wrapped around a finger). The tube 3 is pulled out of the cuff, and the hollow tube 12 connecting the hollow tube, the cuff, and the cuff to the pump is filled with a liquid having the same specific gravity as blood, and the sensor can be installed at the same height as the heart. It is structured as follows. However, in the present invention, there is no problem even if the sensor is built into the cuff and the measurement is carried out by wrapping the cuff around the upper arm as in the conventional case.

いまポンプで流体をカフに供給し加圧した後
徐々に圧力を減じる(第2図イ参照)。なお、こ
のカフ内圧波形は正確には第2図ロのカフ内動脈
波形が重じようしたものであるが、簡単のため図
示の如く直線で示してある。
Now, the pump is used to supply fluid to the cuff, pressurize it, and then gradually reduce the pressure (see Figure 2 A). Although this cuff internal pressure waveform is exactly the same as the cuff internal artery waveform shown in FIG. 2B, it is shown as a straight line for the sake of simplicity.

次に、カフの圧力が徐々に減少すると、カフ内
動脈波形は順次増大し、あるピーク値(このとき
のカフの内圧が平均血圧(BPav)に対応)を境
に漸次減少する。次いで、このカフ内動脈波形の
差分をとると第2図ハのごとくなる。図中正のピ
ーク値が最高血圧(BPnax)に対応し、負のピー
ク値が最低血圧(BPnio)に対応する。
Next, as the cuff pressure gradually decreases, the intra-cuff arterial waveform increases sequentially and gradually decreases after reaching a certain peak value (the internal pressure of the cuff at this time corresponds to the average blood pressure (BP av )). Next, when the difference between the intra-cuff artery waveforms is taken, the result is as shown in FIG. 2C. In the figure, positive peak values correspond to systolic blood pressure (BP nax ), and negative peak values correspond to diastolic blood pressure (BP nio ).

マイクロコンピユータは動脈波が正しく検出さ
れているかを認識し、波形エネルギの差分計算を
行ない、差のピーク2点を血圧値と認識し、その
ピーク点の圧力値をメモリ9することとし、その
他のコントロールを制御するプログラムを備えて
いる。なお、タイマ10は測定間隔時間を設定す
るためのものである。
The microcomputer recognizes whether the arterial wave is detected correctly, calculates the difference in waveform energy, recognizes the two peak points of the difference as the blood pressure value, stores the pressure value at the peak point in memory 9, and performs other calculations. It has a program that controls the controls. Note that the timer 10 is for setting the measurement interval time.

以下本発明に依る血圧測定の原理を従来のコロ
トコフ音に依る測定と対比して説明する。
The principle of blood pressure measurement according to the present invention will be explained below in comparison with measurement using conventional Korotkoff sounds.

第3図イは、ポンプ2でカフ1内の血管11を
押しつぶした状態を示すもので、血流(三角波)
は管壁(図中斜線を施してある部分)に衝突し、
その衝撃波がカフ内の流体および中空管3を介し
センサ4に伝達する。このときのカフ内動脈波形
は小さくかつその変化も小さいから動脈波の差分
出力もほとんど現われない。
Figure 3A shows the state in which the blood vessel 11 in the cuff 1 is crushed by the pump 2, and the blood flow (triangular wave)
collides with the pipe wall (shaded area in the figure),
The shock wave is transmitted to the sensor 4 via the fluid within the cuff and the hollow tube 3. At this time, the intra-cuff arterial waveform is small and its change is small, so almost no difference output of the arterial wave appears.

第3図ロは、ポンプの加圧を停止し、印加圧力
の減少に伴ない、押しつぶされた血管がだんだん
膨らんで血流が流れ出したときの状態を示す。こ
のとき従来の聴診法ではコロトコフ音が確認され
る。即ち血管の膨張変化は極大となつて血流が噴
出し、カフの末梢側の静止した動脈血と衝突し、
第3図ロの斜線で示す血管壁が振動するから、こ
れを被うカフ全体が振動し、第3図イにおける衝
撃波とは明瞭に区別できる動脈波が発生する。即
ち第2図ロの点がこれに対応し、これを動脈波
の差分値を表わす第2図ハでみると、正のピーク
値に該当する。
FIG. 3B shows the state when the pressurization of the pump is stopped and as the applied pressure decreases, the crushed blood vessel gradually expands and blood begins to flow. At this time, Korotkoff sounds are confirmed using conventional auscultation methods. In other words, the expansion change of the blood vessel reaches a maximum, and blood flows out, colliding with the stationary arterial blood on the distal side of the cuff.
Since the blood vessel wall shown by diagonal lines in FIG. 3B vibrates, the entire cuff that covers it vibrates, generating an arterial wave that can be clearly distinguished from the shock wave in FIG. 3B. That is, point P in FIG. 2B corresponds to this, and when viewed in FIG. 2C, which represents the difference value of the arterial wave, it corresponds to a positive peak value.

第4図に、本発明装置による最高血圧(SBP)
の実測値を従来の間接法(RIVA−ROCCI法)と
比較して示す。標本数は30、単位はmmHgであ
る。図から両者の実測値がよく一致するのがわか
る。
Figure 4 shows the systolic blood pressure (SBP) measured by the device of the present invention.
The actual measured values are compared with the conventional indirect method (RIVA-ROCCI method). The number of samples is 30, and the unit is mmHg. It can be seen from the figure that the actual measured values of the two coincide well.

差分のピーク値が最低血圧値に対応する根拠は
実測に依るものである。第5図に本発明装置によ
る最低血圧(DBP)の実測値を従来の間接法
(RIVA−ROCCI法)と比較して示す。標本数は
30、単位はmmHgである。図からわかるように、
本願装置による最低血圧の測定値は従来法による
数値とよく一致している。
The reason why the peak value of the difference corresponds to the diastolic blood pressure value is based on actual measurements. FIG. 5 shows actual measured values of diastolic blood pressure (DBP) using the device of the present invention in comparison with the conventional indirect method (RIVA-ROCCI method). The number of samples is
30, the unit is mmHg. As you can see from the figure,
The measured values of diastolic blood pressure using the device of the present invention are in good agreement with the values obtained using the conventional method.

以上、本発明に係る血圧測定装置につき、その
構成および測定原理につき詳説したが、その構成
から次のような特有の効果が奏する。
The configuration and measurement principles of the blood pressure measuring device according to the present invention have been described in detail above, and the configuration provides the following unique effects.

すなわち、従来のコロトコフ音を検出して血圧
を測定する場合と違つて、本発明はセンサで容易
に検出できるカフ内圧と動脈波とを観測すればよ
いから、測定条件は緩和され、従つて測定は容易
で、且つ雑音に影響されることは少ないから測定
精度が高い。
That is, unlike the conventional method of measuring blood pressure by detecting Korotkoff sounds, the present invention requires only observation of the cuff internal pressure and arterial wave, which can be easily detected with a sensor, so the measurement conditions are relaxed, and therefore the measurement It is easy to use and is less affected by noise, so the measurement accuracy is high.

しかも、コンピユータを利用してデータ処理を
行なつているから、長時間にわたる血圧の測定、
監視が可能となる。例えば、睡眠中に、タイマと
ポンプの制御に依り断続的な血圧測定が可能とな
る等、従来のものに比しその用途の拡大は著るし
い。
Moreover, since data is processed using a computer, blood pressure measurements over long periods of time,
Monitoring becomes possible. For example, it has become possible to measure blood pressure intermittently during sleep by controlling a timer and pump, and its uses have expanded significantly compared to conventional ones.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図
は測定回路の構成図、第2図は観測された血圧波
形のモデル化した説明図、第3図は本発明に依る
血圧測定の原理を説明する図、第4図および第5
図は本発明装置と従来法との測定値を比較したグ
ラフである。 〔主要部分の符号の説明〕、カフ……1、ポン
プ……2、中空管……3、センサ……4、DC増
幅器……5、A/Dコンバータ……6、AC増幅
器……7、演算処理回路……8。
The drawings show one embodiment of the present invention, in which Fig. 1 is a configuration diagram of a measurement circuit, Fig. 2 is an explanatory diagram of a model of an observed blood pressure waveform, and Fig. 3 is an illustration of blood pressure measurement according to the present invention. Diagrams explaining the principle, Figures 4 and 5
The figure is a graph comparing the measured values between the device of the present invention and the conventional method. [Explanation of symbols of main parts], Cuff...1, Pump...2, Hollow tube...3, Sensor...4, DC amplifier...5, A/D converter...6, AC amplifier...7 , arithmetic processing circuit...8.

Claims (1)

【特許請求の範囲】[Claims] 1 カフ1と、該カフに流体を供給し加圧するポ
ンプ2と、該カフに若しくは該カフに連通する中
空管3に設けたセンサ4と、該センサの出力信号
のうちカフ内圧成分を増幅するDC増幅器5と、
カフ内動脈波成分を増幅するAC増幅器7と、該
DC増幅器に連設するA/Dコンバータ6と、該
コンバータの出力と前記AC増幅器7の出力とを
入力データとし動脈波の差分を算出しその正およ
び負のピーク値を検出しかつ該ピーク値に対応す
るカフ内圧を検出する演算処理回路8とから成
る、非観血式血圧測定装置。
1 A cuff 1, a pump 2 that supplies fluid to and pressurizes the cuff, a sensor 4 provided to the cuff or a hollow tube 3 communicating with the cuff, and amplifies the cuff internal pressure component of the output signal of the sensor. a DC amplifier 5,
an AC amplifier 7 for amplifying the intra-cuff arterial wave component;
An A/D converter 6 connected to a DC amplifier uses the output of the converter and the output of the AC amplifier 7 as input data, calculates the difference between arterial waves, detects its positive and negative peak values, and calculates the difference between the arterial waves. A non-invasive blood pressure measurement device comprising an arithmetic processing circuit 8 that detects the cuff internal pressure corresponding to the cuff pressure.
JP57030502A 1982-03-01 1982-03-01 Non-observing type hemomanometer apparatus Granted JPS58149731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57030502A JPS58149731A (en) 1982-03-01 1982-03-01 Non-observing type hemomanometer apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57030502A JPS58149731A (en) 1982-03-01 1982-03-01 Non-observing type hemomanometer apparatus

Publications (2)

Publication Number Publication Date
JPS58149731A JPS58149731A (en) 1983-09-06
JPS6216096B2 true JPS6216096B2 (en) 1987-04-10

Family

ID=12305588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57030502A Granted JPS58149731A (en) 1982-03-01 1982-03-01 Non-observing type hemomanometer apparatus

Country Status (1)

Country Link
JP (1) JPS58149731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041443A1 (en) 1998-12-28 2000-07-13 Idemitsu Kosan Co., Ltd. Organic electroluminescence device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106195B2 (en) * 1985-08-12 1995-11-15 オムロン株式会社 Electronic blood pressure monitor
JPH06113B2 (en) * 1985-10-24 1994-01-05 オムロン株式会社 Electronic blood pressure monitor
JPS63246137A (en) * 1988-01-26 1988-10-13 松下電工株式会社 Electronic hemomanometer
JP2576451B2 (en) * 1988-03-15 1997-01-29 オムロン株式会社 Electronic sphygmomanometer
JP2798721B2 (en) * 1989-08-22 1998-09-17 コーリン電子株式会社 Pressure pulse wave detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041443A1 (en) 1998-12-28 2000-07-13 Idemitsu Kosan Co., Ltd. Organic electroluminescence device

Also Published As

Publication number Publication date
JPS58149731A (en) 1983-09-06

Similar Documents

Publication Publication Date Title
US6120459A (en) Method and device for arterial blood pressure measurement
KR101460922B1 (en) Non-invasive blood pressure measuring apparatus and measuring method thereof
US6814705B2 (en) Arteriosclerosis-degree evaluating apparatus
US6443905B1 (en) Method and arrangement for blood pressure measurement
US4677984A (en) Calibrated arterial pressure measurement device
US20040158162A1 (en) Cuff volumetric pulse wave obtaining apparatus, cuff volumetric pulse wave analyzing apparatus, pressure pulse wave obtaining apparatus, and pressure pulse wave analyzing apparatus
WO2002005726A3 (en) Non-invasive measurement of suprasystolic signals
US20060224070A1 (en) System and method for non-invasive cardiovascular assessment from supra-systolic signals obtained with a wideband external pulse transducer in a blood pressure cuff
JP2001504362A (en) Non-destructive blood pressure measurement device without pressurized zone
KR20160129113A (en) System and method of measuring changes in arterial volume of a limb segment
US20030167014A1 (en) Arteriosclerosis inspecting apparatus
JP4289850B2 (en) Automatic indirect non-invasive device and method for determining diastolic blood pressure by calibrating vibration waveforms
JP4764674B2 (en) Blood pressure pulse wave inspection device
CN110840429A (en) Korotkoff sound-based blood pressure measurement method and blood pressure measurement and cardiovascular system evaluation system
JP4668421B2 (en) Method and apparatus for continuous analysis of cardiovascular activity of a subject
JP2022512449A (en) Control unit for deriving a measure of arterial compliance
US20120029366A1 (en) Blood pressure detection apparatus and blood pressure detection method
WO2008156377A1 (en) Method and apparatus for obtaining electronic oscillotory pressure signals from an inflatable blood pressure cuff
KR100827816B1 (en) Device and Method for Measuring Blood Pressure
US5687731A (en) Oscillometric method for determining hemodynamic parameters of the arterial portion of patient's circulatory system and a measuring system for its realization
JPS6216096B2 (en)
CN212261359U (en) Ultrasonic wave double entry sphygmomanometer
JPH10137204A (en) Blood noninvasive sphygmomanometer
EP1878382B1 (en) Device for detecting pain sensation
GB2456947A (en) Non invasive determination of stroke volume based on incident wave suprasystolic blood pressure amplitude