JP3551124B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3551124B2
JP3551124B2 JP2000117701A JP2000117701A JP3551124B2 JP 3551124 B2 JP3551124 B2 JP 3551124B2 JP 2000117701 A JP2000117701 A JP 2000117701A JP 2000117701 A JP2000117701 A JP 2000117701A JP 3551124 B2 JP3551124 B2 JP 3551124B2
Authority
JP
Japan
Prior art keywords
air
ventilation
temperature
heat exchange
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000117701A
Other languages
Japanese (ja)
Other versions
JP2001304645A (en
Inventor
良二 井上
智徳 牛尾
肇 江角
光彦 山本
勝己 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2000117701A priority Critical patent/JP3551124B2/en
Publication of JP2001304645A publication Critical patent/JP2001304645A/en
Application granted granted Critical
Publication of JP3551124B2 publication Critical patent/JP3551124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0006Control or safety arrangements for ventilation using low temperature external supply air to assist cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Description

【0001】
【発明の属する技術分野】
本発明は、室内の空気調和を行う空気調和機と、室内からの排気と室外からの給気との間で熱交換させつつ換気する熱交換換気機とを備えた空気調和装置に関するものである。
【0002】
【従来の技術】
従来から、空気調和のエネルギを低減するとともに、快適な空気調和を行うために、給気ファンによって室外から室内へ導入される給気と、排気ファンによって室内から室外へ排出される排気との間で熱交換を行わせ、温度差を低減した給気を室内に導くようにした熱交換換気機が用いられている。
このような熱交換換気機において、熱交換換気を行う熱交換換気モードと、このような熱交換を伴わずに換気する普通換気モードとを選択できるものも提供されている。
【0003】
【発明が解決しようとする課題】
ところで、例えば事務所ビル等では、室内にいる人の数の増減に応じて、室内空気の汚れ度合いは大きく異なる。
これに対して、換気風量は例えば壁面に設置された操作部によって、中風量に固定されている場合が多い。
このため、多人数が室内にいる場合には、室内の空気が汚れるという問題がある。また、朝早い時間帯で小人数或いは全然人がいない場合においては、過剰な換気を行うことは、省エネ上、好ましくない。
【0004】
本発明は上記課題に鑑みてなされたものであり、本発明の目的は快適な空気環境を維持しつつ省エネに貢献できる空気調和装置を提供することである。
【0005】
【課題を解決するための手段及び発明の効果】
上記目的を達成するため、本発明は、室外からの空気を給気として室内に導入する給気手段と、室内の空気を排気として室外に排出する排気手段と、給気と排気の間で熱交換させつつ換気する熱交換換気および熱交換させないで換気する普通換気を切り換える風路切換手段と、給気手段、排気手段および風路切換手段の動作を制御する制御手段とを含む熱交換換気機と、温度制御を行う空気調和機とを備える空気調和装置において、
室外の空気の温度を検出する外気温検出手段と、室内の空気の温度を検出する室温検出手段と、室内の炭酸ガスの濃度を検出するガス濃度検出手段とをさらに備え、
上記制御手段は、外気温検出手段および室温検出手段によりそれぞれ検出された室外の空気の温度および室内の空気の温度、並びに空気調和機の設定温度に基づいて、風路切換手段を駆動して熱交換換気と普通換気とを切り換えるとともに、
熱交換換気に切り換えられたときに、ガス濃度検出手段により検出された室内の炭酸ガス濃度に応じて給気手段および排気手段の風量を調整し、
普通換気に切り換えられたときに、ガス濃度検出手段により検出された室内の炭酸ガス濃度とは無関係に排気手段および給気手段による換気風量を最大風量に設定することを特徴とするものである。
【0006】
本構成では、室外の空気を熱交換させずに室内に採り入れたほうが、空気調和機の負荷を低減できると判断したときには、普通換気を実施する一方、室外の空気を熱交換させて室内に採り入れたほうが、空気調和機の負荷を低減できると判断したときには、熱交換換気を実施する。
例えば、冷房シーズンの朝等で、室温よりも外気温が低くて、しかも、空気調和機の設定温度が室温よりも低い場合には、普通換気が実施される。そして、空気調和機の運転によって室温が外気温よりも下がった場合には、設定温度が外気温よりも高いことを条件として、熱交換換気に切り換えられる。この状態で、炭酸ガスの濃度に応じて、例えば風量を複数段階に切り換えることにより、室内空気の汚れに応じた風量で換気を実施し、室内の空気環境を快適に維持しつつ省エネを図ることができる。
【0007】
上記制御手段は、普通換気に切り換えられたときに、排気手段および給気手段による換気風量を最大風量に設定するので好ましい。外気をそのまま採り入れる(すなわち普通換気する)ことが、空調負荷の軽減に寄与できると判断した場合には、炭酸ガス濃度とは無関係に最大風量で換気する。普通換気に切り換えられる前の炭酸ガス濃度が仮に高めであったとしても、最大風量で換気すれば、炭酸ガス濃度を確実に低くすることができる。
【0008】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を添付図面を参照しつつ説明する。
図1は本発明の一実施の形態の空気調和装置の内部構成を簡略化して示す断面図である。図1を参照して、この空気調和装置Aは、室1の換気を熱交換換気機2によって行うとともに、室内機3および室外機4を有する空気調和機5により、室1内の温度および湿度を調整するようにしたものである。
【0009】
室1内の空気は、天井6に設けたパネル7に形成された排気口7aからダクト8を介して熱交換換気機2内に導かれ、内部の熱交換器9を介して排気手段としての排気ファン10からダクト11を経て、ベントキャップ12から室外に排出される。
一方、室外からの外気は、ベントキャップ13からダクト14を介して熱交換換気機2内に導かれ、熱交換器9を介して給気手段としての給気ファン15からダクト16を経て、さらに天井6に設けたパネル17に形成された給気口17aから室1内に給気される。
【0010】
空気調和機5の室内機3は、室外機4との間で冷媒が循環される熱交換器18を備えている。循環ファン19によってパネル20の吸込口21から熱交換器18の一方側の空間に還気されてきた室内の空気は、この熱交換器18で加熱または冷却された後に、パネル20に形成した吹出口22から室1内に吹き出される。吸込口21からの吸込空気の温度はサーミスタなどで構成した室温センサ41により検出される。
【0011】
室1内の適所には、室内機3の電装箱23に接続されて、空気調和機5および熱交換換気機2の動作を制御するためのリモコンユニット24が設置されている。
室内機2の電装箱24と熱交換換気機2の電装箱25との間はモニタ回線26を介して接続されている。熱交換換気機2では、モニタ回線26からのモニタ情報に基づいて、その動作が制御される。また、室内機3の電装箱23と室外機4の電装箱27とは回線28を介して接続されており、室外機4の動作を制御するための信号や、室外機4に設けられて外気温を検出するサーミスタ等の外気温センサ42の出力に対応した信号の授受が行われる。
【0012】
29は熱交換換気機2を動作させるためのリモコンユニットであり、空気調和機5を動作させないときでも、熱交換換気機2を単独で運転させることができるようになっている。
次いで、図2を参照して、熱交換換気機2は、給気Sと排気Eを熱交換器9で交差させ、給気Sと排気Eとの間で熱交換させる熱交換換気と、排気Eに熱交換器3を迂回させて上記の熱交換を回避する普通換気とを択一的に切り換えるようにしている。
【0013】
熱交換換気装置2のハウジング2a内には、熱交換器9で互いに交差する給気経路30および第1の排気経路31が形成されており、これら給気経路30および第1の排気経路31には、給気ファン15および排気ファン10がそれぞれ配置されている。15aおよび10aは、給気ファン15および排気ファン10をそれぞれ駆動するファンモータである。また、ハウジング2a内には、第1の排気経路31の側路として熱交換器9を迂回するバイパス経路Bが設けられており、このバイパス経路Bを含む第2の排気経路32が設けられている。
【0014】
33は上記バイパス経路Bを開閉することにより、第1および第2の排気経路31,32に択一的に切り換える風路切換手段としてのダンパであり、このダンパ33の位置設定によって、上記の熱交換換気と普通換気とが切り換えられる。34はダンパ33を駆動するモータである。35はダンパ33が第1又第2のどちらの排気経路31,32に切り換えているかを判別するために、ダンパ33の位置を検出するダンパ位置検出センサである。また、給気経路30および第1の排気経路31のそれぞれには、室外空気および室内空気の温度をそれぞれ検出するサーミスタ等の外気温センサ43および室温センサ44が配置されている。
【0015】
一方、ハウジング2a内の所定部に配置された電装箱25内に、熱交換換気機2の動作を制御する、マイクロコンピュータ等からなる制御部36が内装されている。図3に示すブロック図を参照して、制御部36には、外気温センサ43、室温センサ44、リモコンユニット29、室内機3[実際には電装箱23内の制御部(図示せず)]、ダンパ位置検出センサ35および炭酸ガスセンサ36がそれぞれ接続されており、外気温センサ43および室温センサ44からの温度検出信号、リモコンユニット29からの操作信号、室内機3からの温調モード信号(例えば冷房モード、暖房モード、送風モード)、ダンパ位置検出センサ35からのダンパ位置検出信号、および炭酸ガスセンサ36からの炭酸ガス濃度検出信号がそれぞれ入力されるようになっている。
【0016】
炭酸ガスセンサは図4に示すように、室1内の所定位置に配置されており、室1内の炭酸ガス濃度を検出する。
再び図3を参照して、制御部36には、給気ファン15および排気ファン10をそれぞれ駆動するための給気ファン駆動回路37および排気ファン駆動回路38、並びにダンパ駆動用のモータ34を駆動するためのダンパ駆動回路39が接続されており、制御部36から各駆動回路37,38,39へ制御信号が出力されるようになっている。
【0017】
各ファン駆動回路37,38は、各ファン15,10の風量を、最大風量HH、大風量H、中風量Mおよび小風量Sの複数段階に切り換えるためのタップ(図示せず)を有している。
次いで、図5に示すフローチャートに基づいて制御の流れについて説明する。電源が投入されると、室内機3からの信号に基づいて、冷房モードか否かが判断される(ステップS1)。
【0018】
まず、冷房中について説明する。室温よりも外気温および設定温度Tsが低い場合には、普通換気にて冷たい外気をそのまま採り入れることが、冷房効率を向上させることにつながるので、最大風量HHにて換気を実施する(ステップS2,S3,S8。図6でのエリア1に相当)。また、室温<外気温<Tsである場合にも、同様に最大風量HHでの普通換気を実施する(ステップS2,S4,S8。図6でのエリア2に相当)。
【0019】
一方、Ts>室温>外気温である場合には、給気される外気を排気で温めて室内に採り入れる熱交換換気を実施する(ステップS2,S3,S9。図6でのエリア3に相当)。また、室温および設定温度Tsよりも外気温が高い場合についても、同様に熱交換換気を実施する(ステップS2,S4,S9。図6でのエリア4に相当)。
他方、冷房中でない場合、すなわち、暖房中や或いは温調モードでない場合について説明する。室温よりも外気温および設定温度Tsが高い場合には、普通換気にて暖かい外気をそのまま採り入れることが、暖房効率を向上させることにつながるので、最大風量HHにて換気を実施する(ステップS5,S6,S8。図7でのエリア1に相当)。また、室温>外気温>Tsである場合にも、同様に最大風量HHでの普通換気を実施する(ステップS5,S7,S8。図7でのエリア2に相当)。
【0020】
一方、外気温>室温>Tsである場合には、給気される外気を排気で冷やして室内に採り入れる熱交換換気を実施する(ステップS5,S6,S9。図7でのエリア3に相当)。また、室温および設定温度Tsよりも外気温が低い場合についても、同様に熱交換換気を実施する(ステップS5,S7,S9。図7でのエリア4に相当)。
そして、上記の熱交換換気の実施に際して、ステップS10にて炭酸ガスの濃度のレベルを判定し、炭酸ガス濃度のレベルに応じて、給気ファン15および排気ファン10を最大風量HH、大風量H、中風量Mおよび低風量Lで運転し、炭酸ガス濃度が非常に低い場合はファン10,15の運転を停止して、換気を止める。
【0021】
本実施の形態では、空気調和機5の負荷の軽減を勘案して原則的には熱交換換気を実施し、その実施に際して、炭酸ガス濃度に応じて必要最小限の風量に設定し、省エネを図る。ただし、普通換気のほうが空気調和機5の負荷の軽減になるか否かの判定を常に行っており、そう判断した場合には、普通換気に切り換えるととにも換気風量を最大風量HHに設定する。このようにして、空気調和機5の負荷を大幅に軽減することができる。
【0022】
なお、本発明は上記実施の形態に限定されるものではなく、本発明の範囲で種々の変更を施すことができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の空気調和装置の内部構成を簡略化して示す断面図である。
【図2】熱交換換気機の内部構成を示す模式的平面図である。
【図3】空気調和装置の電気的概略構成を示すブロック図である。
【図4】空気調和装置およびガスセンサのレイアウトを示す室の模式的平面図である。
【図5】熱交換換気機の制御動作を示すフローチャートである。
【図6】冷房時において、室温、外気温および設定温度と、換気モードとの関係を示す図である。
【図7】暖房時において、室温、外気温および設定温度と、換気モードとの関係を示す図である。
【符号の説明】
1 室
2 熱交換換気機
5 空気調和機
10 排気ファン(排気手段)
15 給気ファン(給気手段)
33 ダンパ(風路切換手段)
36 ガスセンサ(ガス濃度検出手段)
43 外気温センサ(外気温検出手段)
44 室温センサ(室温検出手段)
Ts 設定温度
E 排気
S 給気
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioner that includes an air conditioner that performs indoor air conditioning, and a heat exchange ventilator that performs ventilation while exchanging heat between indoor exhaust and outdoor air supply. .
[0002]
[Prior art]
Conventionally, in order to reduce air-conditioning energy and perform comfortable air-conditioning, between the air supply introduced from the outdoor to the room by the air supply fan and the exhaust air discharged from the room to the outdoor by the exhaust fan. A heat exchange ventilator is used in which a heat exchange is performed at a temperature, and supply air having a reduced temperature difference is introduced into a room.
In such a heat exchange ventilator, there is provided a heat exchange ventilator in which a heat exchange ventilation mode for performing heat exchange ventilation and a normal ventilation mode for performing ventilation without such heat exchange can be selected.
[0003]
[Problems to be solved by the invention]
By the way, in an office building or the like, for example, the degree of contamination of indoor air varies greatly depending on the increase or decrease in the number of people in the room.
On the other hand, the ventilation air volume is often fixed to a medium air volume by, for example, an operation unit installed on a wall surface.
For this reason, when a large number of people are indoors, there is a problem that the indoor air becomes dirty. In addition, when there is no small number of people or no people in the early morning hours, excessive ventilation is not preferable in terms of energy saving.
[0004]
The present invention has been made in view of the above problems, and an object of the present invention is to provide an air conditioner that can contribute to energy saving while maintaining a comfortable air environment.
[0005]
Means for Solving the Problems and Effects of the Invention
In order to achieve the above object, the present invention provides an air supply means for introducing air from outside into a room as air supply, an exhaust means for discharging indoor air to the outside as exhaust air, and a heat supply between the air supply and the exhaust air. A heat exchange ventilator including air passage switching means for switching between heat exchange ventilation for ventilating while exchanging and ordinary ventilation for ventilating without heat exchange, and control means for controlling operations of air supply means, exhaust means and air path switching means. And an air conditioner including an air conditioner that performs temperature control,
Outside air temperature detecting means for detecting the temperature of outdoor air, room temperature detecting means for detecting the temperature of indoor air, and gas concentration detecting means for detecting the concentration of indoor carbon dioxide gas,
The control means drives the air path switching means based on the temperature of the outdoor air and the temperature of the indoor air detected by the outside air temperature detecting means and the room temperature detecting means, and the set temperature of the air conditioner. While switching between exchange ventilation and normal ventilation,
When switched to heat exchange ventilation, adjust the air volume of the air supply means and the exhaust means according to the indoor carbon dioxide concentration detected by the gas concentration detection means ,
When the mode is switched to the normal ventilation, the ventilation air volume by the exhaust device and the air supply device is set to the maximum air volume irrespective of the indoor carbon dioxide gas concentration detected by the gas concentration detection device .
[0006]
In this configuration, when it is determined that taking the outdoor air into the room without exchanging heat can reduce the load on the air conditioner, ordinary ventilation is performed, while heat is exchanged between the outdoor air and taken into the room. If it is determined that the load on the air conditioner can be reduced, heat exchange ventilation is performed.
For example, when the outside air temperature is lower than room temperature and the set temperature of the air conditioner is lower than room temperature, for example, in the morning of the cooling season, normal ventilation is performed. When the room temperature falls below the outside air temperature due to the operation of the air conditioner, the air conditioner is switched to the heat exchange ventilation on condition that the set temperature is higher than the outside air temperature. In this state, ventilation is performed at a flow rate corresponding to the contamination of the indoor air, for example, by switching the flow rate in a plurality of steps according to the concentration of the carbon dioxide gas, thereby conserving energy while maintaining a comfortable indoor air environment. Can be.
[0007]
The control means, when switched to the ordinary ventilation, since the ventilation power of the exhaust means and the air supply means is set to the maximum air volume preferable. If it is determined that taking in outside air as it is (that is, normal ventilation) can contribute to reduction of the air conditioning load, the ventilation is performed at the maximum air flow regardless of the carbon dioxide concentration. Even if the carbon dioxide concentration before switching to ordinary ventilation is high, if the ventilation is performed at the maximum air volume, the carbon dioxide concentration can be reliably reduced.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a simplified cross-sectional view showing an internal configuration of an air conditioner according to an embodiment of the present invention. Referring to FIG. 1, in this air conditioner A, a room 1 is ventilated by a heat exchange ventilator 2, and an air conditioner 5 having an indoor unit 3 and an outdoor unit 4 is used to control the temperature and humidity in the room 1. Is adjusted.
[0009]
The air in the chamber 1 is led into the heat exchange ventilator 2 through a duct 8 from an exhaust port 7 a formed in a panel 7 provided on a ceiling 6, and is exhausted through an internal heat exchanger 9 as exhaust means. The air is discharged from the exhaust fan 10 to the outside of the room from the vent cap 12 through the duct 11.
On the other hand, the outside air from the outside is guided from the vent cap 13 into the heat exchange ventilator 2 via the duct 14, and from the air supply fan 15 as an air supply means via the heat exchanger 9 via the duct 16, and furthermore. Air is supplied into the room 1 from an air supply port 17 a formed in a panel 17 provided on the ceiling 6.
[0010]
The indoor unit 3 of the air conditioner 5 includes a heat exchanger 18 in which a refrigerant is circulated between the indoor unit 3 and the outdoor unit 4. The indoor air returned to the space on one side of the heat exchanger 18 from the suction port 21 of the panel 20 by the circulation fan 19 is heated or cooled by the heat exchanger 18 and then blown out of the panel 20. The air is blown out from the outlet 22 into the chamber 1. The temperature of the suction air from the suction port 21 is detected by a room temperature sensor 41 composed of a thermistor or the like.
[0011]
A remote control unit 24 connected to the electrical box 23 of the indoor unit 3 and controlling operations of the air conditioner 5 and the heat exchange ventilator 2 is installed at an appropriate place in the room 1.
An electrical box 24 of the indoor unit 2 and an electrical box 25 of the heat exchange ventilator 2 are connected via a monitor line 26. The operation of the heat exchange ventilator 2 is controlled based on the monitor information from the monitor line 26. Further, the electrical box 23 of the indoor unit 3 and the electrical box 27 of the outdoor unit 4 are connected via a line 28, and a signal for controlling the operation of the outdoor unit 4 and an external unit provided in the outdoor unit 4 are provided. A signal corresponding to the output of the outside temperature sensor 42 such as a thermistor for detecting the temperature is transmitted and received.
[0012]
Reference numeral 29 denotes a remote control unit for operating the heat exchange ventilator 2, which can operate the heat exchange ventilator 2 independently even when the air conditioner 5 is not operated.
Next, referring to FIG. 2, heat exchange ventilator 2 includes a heat exchange ventilator that causes supply air S and exhaust E to intersect at heat exchanger 9 to exchange heat between supply air S and exhaust E, and exhaust air. The heat exchanger 3 is bypassed by E, and the above-mentioned ordinary ventilation for avoiding heat exchange is selectively switched.
[0013]
In the housing 2a of the heat exchange ventilator 2, an air supply path 30 and a first exhaust path 31 that intersect each other in the heat exchanger 9 are formed, and the air supply path 30 and the first exhaust path 31 The air supply fan 15 and the exhaust fan 10 are arranged respectively. 15a and 10a are fan motors for driving the air supply fan 15 and the exhaust fan 10, respectively. In the housing 2a, a bypass path B bypassing the heat exchanger 9 is provided as a side path of the first exhaust path 31. A second exhaust path 32 including the bypass path B is provided. I have.
[0014]
Reference numeral 33 denotes a damper as air path switching means for selectively switching between the first exhaust path 31 and the second exhaust path 32 by opening and closing the bypass path B. Exchange ventilation and normal ventilation are switched. 34 is a motor for driving the damper 33. Reference numeral 35 denotes a damper position detection sensor that detects the position of the damper 33 in order to determine which of the first and second exhaust paths 31 and 32 is switched. Further, in each of the air supply path 30 and the first exhaust path 31, an outside air temperature sensor 43 and a room temperature sensor 44 such as a thermistor for detecting the temperatures of the outdoor air and the indoor air, respectively, are arranged.
[0015]
On the other hand, a control unit 36, such as a microcomputer, for controlling the operation of the heat exchange ventilator 2 is provided inside an electrical box 25 arranged at a predetermined portion in the housing 2a. Referring to the block diagram shown in FIG. 3, the control unit 36 includes an outside air temperature sensor 43, a room temperature sensor 44, a remote control unit 29, and the indoor unit 3 [actually, a control unit (not shown) in the electrical box 23]. , A damper position detection sensor 35 and a carbon dioxide sensor 36 are connected to each other, and a temperature detection signal from the outside air temperature sensor 43 and the room temperature sensor 44, an operation signal from the remote control unit 29, and a temperature control mode signal from the indoor unit 3 (for example, (A cooling mode, a heating mode, a blowing mode), a damper position detection signal from the damper position detection sensor 35, and a carbon dioxide concentration detection signal from the carbon dioxide sensor 36 are input.
[0016]
As shown in FIG. 4, the carbon dioxide sensor is arranged at a predetermined position in the chamber 1 and detects the concentration of carbon dioxide in the chamber 1.
Referring to FIG. 3 again, the control unit 36 drives an air supply fan drive circuit 37 and an exhaust fan drive circuit 38 for driving the air supply fan 15 and the exhaust fan 10, respectively, and a motor 34 for driving the damper. And a control signal is output from the control unit 36 to each of the drive circuits 37, 38, and 39.
[0017]
Each fan drive circuit 37, 38 has a tap (not shown) for switching the air flow of each fan 15, 10 to a plurality of stages of a maximum air flow HH, a large air flow H, a medium air flow M, and a small air flow S. I have.
Next, the flow of control will be described based on the flowchart shown in FIG. When the power is turned on, it is determined whether or not the air conditioner is in the cooling mode based on a signal from the indoor unit 3 (step S1).
[0018]
First, during cooling will be described. When the outside air temperature and the set temperature Ts are lower than the room temperature, taking in the cold outside air by ordinary ventilation as it is leads to improving the cooling efficiency, so that the ventilation is performed at the maximum air volume HH (step S2). S3, S8, corresponding to area 1 in FIG. 6). Also, when room temperature <outside air temperature <Ts, the normal ventilation at the maximum air volume HH is similarly performed (steps S2, S4, S8, corresponding to area 2 in FIG. 6).
[0019]
On the other hand, if Ts> room temperature> outside air temperature, heat exchange ventilation is performed in which the supplied outside air is warmed by exhaust air and taken into the room (steps S2, S3, S9, corresponding to area 3 in FIG. 6). . Also, when the outside air temperature is higher than the room temperature and the set temperature Ts, the heat exchange ventilation is similarly performed (steps S2, S4, S9, corresponding to area 4 in FIG. 6).
On the other hand, a case in which cooling is not being performed, that is, a case in which heating is not being performed or the temperature control mode is not being described will be described. When the outside air temperature and the set temperature Ts are higher than the room temperature, taking in warm outside air by ordinary ventilation as it is leads to improvement of heating efficiency, so that ventilation is performed at the maximum air volume HH (step S5). S6, S8, corresponding to area 1 in FIG. 7). Also, when the room temperature> the outside air temperature> Ts, the normal ventilation with the maximum air volume HH is similarly performed (steps S5, S7, S8, corresponding to the area 2 in FIG. 7).
[0020]
On the other hand, if outside air temperature> room temperature> Ts, heat exchange ventilation is performed in which the supplied outside air is cooled by exhaust air and taken into the room (steps S5, S6, and S9; corresponding to area 3 in FIG. 7). . Also, when the outside air temperature is lower than the room temperature and the set temperature Ts, the heat exchange ventilation is similarly performed (steps S5, S7, S9, corresponding to area 4 in FIG. 7).
At the time of performing the above heat exchange ventilation, the level of the concentration of carbon dioxide is determined in step S10, and the supply fan 15 and the exhaust fan 10 are set to the maximum air volume HH and the large air volume H in accordance with the level of the carbon dioxide gas concentration. When the operation is performed with the medium air volume M and the low air volume L, and the carbon dioxide gas concentration is extremely low, the operation of the fans 10 and 15 is stopped to stop ventilation.
[0021]
In the present embodiment, in principle, heat exchange ventilation is performed in consideration of reduction of the load on the air conditioner 5, and at the time of execution, the necessary minimum air volume is set according to the concentration of carbon dioxide gas to save energy. Aim. However, it is always determined whether or not the normal ventilation reduces the load on the air conditioner 5, and if so, it is switched to the normal ventilation and the ventilation air volume is set to the maximum air volume HH. I do. Thus, the load on the air conditioner 5 can be significantly reduced.
[0022]
Note that the present invention is not limited to the above embodiment, and various changes can be made within the scope of the present invention.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a simplified internal configuration of an air conditioner according to an embodiment of the present invention.
FIG. 2 is a schematic plan view showing an internal configuration of the heat exchange ventilator.
FIG. 3 is a block diagram showing an electrical schematic configuration of the air conditioner.
FIG. 4 is a schematic plan view of a chamber showing a layout of an air conditioner and a gas sensor.
FIG. 5 is a flowchart showing a control operation of the heat exchange ventilator.
FIG. 6 is a diagram illustrating a relationship between a room temperature, an outside air temperature, a set temperature, and a ventilation mode during cooling.
FIG. 7 is a diagram illustrating a relationship between a room temperature, an outside air temperature, a set temperature, and a ventilation mode during heating.
[Explanation of symbols]
1 room 2 heat exchange ventilator 5 air conditioner 10 exhaust fan (exhaust means)
15 Air supply fan (air supply means)
33 damper (airway switching means)
36 Gas sensor (gas concentration detecting means)
43 Outside temperature sensor (outside temperature detection means)
44 Room temperature sensor (room temperature detection means)
Ts Set temperature E Exhaust S Air supply

Claims (1)

室外からの空気を給気として室内に導入する給気手段(15)と、室内の空気を排気として室外に排出する排気手段(10)と、給気(S) と排気(E) の間で熱交換させつつ換気する熱交換換気および熱交換させないで換気する普通換気を切り換える風路切換手段(33)と、給気手段(15)、排気手段(10)および風路切換手段(33)の動作を制御する制御手段(15)とを含む熱交換換気機(2) と、
温度制御を行う空気調和機(5) とを備える空気調和装置において、
室外の空気の温度を検出する外気温検出手段(43)と、
室内の空気の温度を検出する室温検出手段(44)と、
室内の炭酸ガスの濃度を検出するガス濃度検出手段(36)とをさらに備え、
上記制御手段は、外気温検出手段(43)および室温検出手段(44)によりそれぞれ検出された室外の空気の温度および室内の空気の温度、並びに空気調和機(5) の設定温度(Ts)に基づいて、風路切換手段(33)を駆動して熱交換換気と普通換気とを切り換えるとともに、
熱交換換気に切り換えられたときに、ガス濃度検出手段(36)により検出された室内の炭酸ガス濃度に応じて給気手段(15)および排気手段(10)の風量を調整し、
普通換気に切り換えられたときに、ガス濃度検出手段 (36) により検出された室内の炭酸ガス濃度とは無関係に排気手段 (10) および給気手段 (15) による換気風量を最大風量に設定することを特徴とする空気調和装置。
An air supply means (15) for introducing air from outside into the room as air supply, an exhaust means (10) for discharging indoor air to the outside as exhaust air, and an air supply (S) and an exhaust (E). Air path switching means (33) for switching between heat exchange ventilation for ventilation while performing heat exchange and ordinary ventilation for ventilation without heat exchange, and air supply means (15), exhaust means (10) and air path switching means (33) A heat exchange ventilator (2) including control means (15) for controlling operation,
An air conditioner including an air conditioner (5) that performs temperature control,
Outside air temperature detection means (43) for detecting the temperature of outdoor air,
Room temperature detecting means (44) for detecting the temperature of indoor air,
Gas concentration detection means (36) for detecting the concentration of carbon dioxide in the room,
The control means controls the temperature of the outdoor air and the temperature of the indoor air detected by the outside air temperature detecting means (43) and the room temperature detecting means (44), respectively, and the set temperature (Ts) of the air conditioner (5). On the basis, while driving the air path switching means (33) to switch between heat exchange ventilation and normal ventilation,
When switched to heat exchange ventilation, adjust the air volume of the air supply means (15) and the exhaust means (10) according to the concentration of carbon dioxide in the room detected by the gas concentration detection means (36) ,
When switching to normal ventilation, the ventilation air volume by the exhaust device (10) and the air supply device (15) is set to the maximum air volume regardless of the indoor carbon dioxide concentration detected by the gas concentration detection device (36). An air conditioner characterized by the above-mentioned.
JP2000117701A 2000-04-19 2000-04-19 Air conditioner Expired - Fee Related JP3551124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000117701A JP3551124B2 (en) 2000-04-19 2000-04-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000117701A JP3551124B2 (en) 2000-04-19 2000-04-19 Air conditioner

Publications (2)

Publication Number Publication Date
JP2001304645A JP2001304645A (en) 2001-10-31
JP3551124B2 true JP3551124B2 (en) 2004-08-04

Family

ID=18628975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000117701A Expired - Fee Related JP3551124B2 (en) 2000-04-19 2000-04-19 Air conditioner

Country Status (1)

Country Link
JP (1) JP3551124B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095532A (en) * 2012-11-12 2014-05-22 Mitsubishi Electric Corp Ventilation device for air conditioning
CN104884870A (en) * 2013-01-10 2015-09-02 大金工业株式会社 Air conditioning system
JP2018001680A (en) * 2016-07-06 2018-01-11 住友ゴム工業株式会社 Rubber kneading device and rubber kneading method
WO2019058519A1 (en) * 2017-09-22 2019-03-28 三菱電機株式会社 Ventilation device

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100386703B1 (en) * 2000-08-28 2003-06-02 프라임휴텍 주식회사 Control method of thermal comfort and carbon dioxide density for fresh air conditioning system
JP2005226904A (en) 2004-02-12 2005-08-25 Sanyo Electric Co Ltd Air conditioner
CN100432561C (en) * 2004-07-08 2008-11-12 乐金电子(天津)电器有限公司 Air volume control method of ventilation system
CN100516689C (en) * 2004-07-08 2009-07-22 乐金电子(天津)电器有限公司 Control method of ventilation system air volume
JP4502859B2 (en) * 2004-11-16 2010-07-14 三洋電機株式会社 Air conditioner
JP2006162159A (en) 2004-12-08 2006-06-22 Sanyo Electric Co Ltd Air conditioner
KR100740711B1 (en) 2004-12-14 2007-07-18 재단법인서울대학교산학협력재단 Control methods for architectural heating and cooling system integrated with ventilation and air cleaning system in residential buildings
KR100669442B1 (en) 2005-02-16 2007-01-15 중앙티앤에스(주) A harmful gas density control system of room
JPWO2010116824A1 (en) * 2009-03-30 2012-10-18 三菱電機株式会社 Heat exchange ventilator
JP5517729B2 (en) * 2010-04-27 2014-06-11 三菱電機株式会社 Heat exchange ventilator
KR101242618B1 (en) * 2011-01-03 2013-03-19 한일전기엠엠씨 주식회사 Ventilation System Control Method
JP2012189265A (en) * 2011-03-10 2012-10-04 Mitsubishi Electric Corp Heat exchange ventilation device
JP5572599B2 (en) * 2011-07-20 2014-08-13 日立アプライアンス株式会社 refrigerator
JP5460673B2 (en) * 2011-10-24 2014-04-02 三菱電機株式会社 Ventilation device and ventilation system
JP2014066400A (en) * 2012-09-25 2014-04-17 Panasonic Corp Heat exchanger
JP6253459B2 (en) * 2014-03-12 2017-12-27 三菱電機株式会社 Ventilator for air conditioning
JP6431387B2 (en) * 2015-01-21 2018-11-28 積水化学工業株式会社 Ventilation air conditioning system and building
CN106288186A (en) * 2016-08-15 2017-01-04 吴鹏 Campus energy-saving control method for central air conditioner and system
WO2018063102A1 (en) * 2016-09-27 2018-04-05 Chitipalungsri Somsak Automatic ventilation control system
JP6928862B2 (en) * 2017-01-30 2021-09-01 パナソニックIpマネジメント株式会社 building
WO2019035194A1 (en) 2017-08-17 2019-02-21 三菱電機株式会社 Heat exchanging ventilation device
CN108019880B (en) * 2017-10-20 2021-05-18 广西苏中达科智能工程有限公司 Fresh air volume control method and system
CN110131849B (en) * 2018-02-09 2021-06-29 青岛海尔空调器有限总公司 Control method and device for air conditioning system and control method and device for air conditioner
JP7097962B2 (en) * 2018-06-27 2022-07-08 三菱電機株式会社 Air conditioning control system
CN109883018B (en) * 2019-03-06 2021-04-06 广东美的暖通设备有限公司 Air volume control method and device for air conditioning system
JP2021089103A (en) * 2019-12-04 2021-06-10 ダイキン工業株式会社 Air conditioning system
CN111928412B (en) * 2020-07-16 2023-03-28 青岛海尔空调电子有限公司 Air conditioner assembly and combined control method thereof
CN111928413B (en) * 2020-07-16 2023-03-28 青岛海尔空调电子有限公司 Air conditioner assembly and combined control method and control device thereof
JP7212281B2 (en) * 2020-09-30 2023-01-25 ダイキン工業株式会社 air conditioning ventilation system
CN112344536A (en) * 2020-11-06 2021-02-09 Tcl空调器(中山)有限公司 Air conditioner, control method and device thereof, and computer-readable storage medium
CN112393332A (en) * 2020-11-30 2021-02-23 珠海格力电器股份有限公司 Window type air conditioner and control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095532A (en) * 2012-11-12 2014-05-22 Mitsubishi Electric Corp Ventilation device for air conditioning
CN104884870A (en) * 2013-01-10 2015-09-02 大金工业株式会社 Air conditioning system
JP2018001680A (en) * 2016-07-06 2018-01-11 住友ゴム工業株式会社 Rubber kneading device and rubber kneading method
WO2019058519A1 (en) * 2017-09-22 2019-03-28 三菱電機株式会社 Ventilation device

Also Published As

Publication number Publication date
JP2001304645A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
JP3551124B2 (en) Air conditioner
WO2010116824A1 (en) Heat-exchange ventilation device
JP4579810B2 (en) Air conditioning control system
JPH11287502A (en) Air conditioner
JP2838941B2 (en) Duct air conditioner
JPH09159208A (en) Air conditioning ventilation device
JP2000121132A (en) Air conditioner
JPH10232040A (en) Air-conditioning system device
JP2002071184A (en) Ventilating air conditioning method and system thereof
JPH06123473A (en) Air conditioner
JP6861824B2 (en) Heat exchange ventilator
JPH08210690A (en) Ventilating and air-conditioning device
JP2004003866A (en) Ventilation air conditioning system
JP2002188843A (en) Outdoor air treating unit
JPH09178241A (en) Operation controller for ventilator
JP4053834B2 (en) Air conditioner
JPH04208348A (en) Air-conditioner
JPH10141730A (en) Heat-exchange ventilation device
JP2003161500A (en) Indoor air conditioning system
JP3425295B2 (en) Air conditioning system equipment
KR20180035291A (en) Air conditioning system
JP2000074445A (en) Heat exchanging ventilation system
KR101243227B1 (en) Ventilation System and control Method of the same of
JPH05296548A (en) Air conditioner
JPH0718570B2 (en) Air purification ventilation air conditioner and control system of the device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

R151 Written notification of patent or utility model registration

Ref document number: 3551124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees