JP3550222B2 - Mass spectrometer - Google Patents
Mass spectrometer Download PDFInfo
- Publication number
- JP3550222B2 JP3550222B2 JP20497295A JP20497295A JP3550222B2 JP 3550222 B2 JP3550222 B2 JP 3550222B2 JP 20497295 A JP20497295 A JP 20497295A JP 20497295 A JP20497295 A JP 20497295A JP 3550222 B2 JP3550222 B2 JP 3550222B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- mass spectrometer
- ionization
- unit
- needle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、気体中の不純物濃度の測定装置に関し、特に高感度ガス分析装置に適用して有効な技術に関するものである。
【0002】
【従来の技術】
近年、半導体製造工程に用いられる高純度ガスの分析おいては、大気圧イオン化質量分析装置(Atmospheric Pressure Ionization Mass Spectrometer:APIMS)という高感度ガス分析装置が用いられている。
【0003】
そして、従来用いられている大気圧イオン化質量分析装置は、応用物理、第56巻、第11号、第1446〜1472頁(1987)で紹介されている。本装置の構成図を図5に示す。本装置は、大気圧に解放されたイオン化部1、約50Paの差動排気部2、約10−4Paの質量分析部3で構成され、イオン化部1にはガス流入口4、ガス流出口5、イオン化を行うための放電針6があり、測定対象ガス7はガス流入口4より供給され、ガス流出口5より排出される。また、イオン化部1と差動排気部2の間は、細穴8、差動排気部2と質量分析部3の間は細穴9を介して仕切られ、差動排気部2の真空ポンプ10および質量分析部3の真空ポンプ11によりそれぞれの圧力が維持できるようになっている。質量分析部3には質量分離部12、検出部13があり、大気圧のイオン化部1でイオン化されたイオンが差動排気部2を通って、高真空の質量分析部3で測定対象ガス7を分析できるようになっている。本装置は、イオン化部が大気圧であるため試料ガスの直接導入が可能であり、半導体製造工程の高純度ガスラインの分析に用いられている。
【0004】
【発明が解決しようとする問題点】
しかしながら、半導体製造工程で用いられるガスの中には大気に放出すると危険なガスもあるのでイオン化部から排出されるガスを排気ダクトで排気する場合があり、従来の大気圧イオン化質量分析装置では、イオン化部の圧力が変動してイオン分子反応の反応率が変化し、分析精度が低下するという問題点と、放電針の電流導入端子のセラミック材料からの不純物の発生により分析精度が低下するという問題点と、半導体素子の微細化が進んだため、さらなる分析感度の向上が望まれるようになって来たという問題点と、例えば水素ガスのようにガス分子の大きさが小さなガスでは、差動排気部に流入するガス量が増えて、真空ポンプに負担がかかるため、イオン化部と差動排気部の間の細穴を測定対象ガスの種類に対応して交換しなければならないという問題点があった。
【0005】
本発明は、このような従来の技術が有する問題点に鑑みなされたもので、その目的とするところは、イオン化部の圧力を一定に保つことにより、イオン分子反応の反応率を安定化し、分析精度を向上させ、また、放電針の電流導入端子のセラミック材料からの不純物の発生が測定に影響を与えない技術を提供するととともに、測定対象ガスを高圧の状態のままイオン化部に供給することにより、ガスの密度が高い状態で測定できるので、分析感度を下げることなく測定が可能となる技術を提供し、また、分析対象ガスの種類が変わってもイオン化部と差動排気部の間の細穴をガスの種類に対応して交換する必要のない質量分析装置を提供することにある。
【0006】
【問題点を解決するための手段】
この目的のため、本発明はイオン化部の圧力を一定に保つため、および高圧に保つため、イオン化部に圧力制御手段を備えるものである。また、放電針の電流導入端子のセラミック材料からの不純物の発生が測定に影響を与えないように、ガスの流れ方向に対し、ガス流入口、対向電極、放電針の針先、放電針の電流導入端子、ガス流出口の順に構成するものである。また、圧力を一定にしたためにイオン化部を流れるガスの流量が変化してイオン分子反応の反応率が変動する場合もあるので、イオン化部を流れるガスの流量を制御する手段を備えるものである。
【0007】
そして、イオン化部にガス流入口、ガス流出口および、差動排気部への細穴を備え、ガス流入口に第1の流量制御手段、ガス流出口に第2の流量制御手段を備えるものである。
【0008】
【作用】
上記のように構成された質量分析装置において、イオン化部に備えられた圧力制御手段によりイオン化部の圧力は一定に保たれるのでイオン分子反応の反応率を安定化し、分析精度を向上させることが可能となる。また、ガスの流れ方向に対し、ガス流入口、対向電極、放電針の針先、放電針の電流導入端子、ガス流出口の順に構成することにより、ガスの流れに対し、イオン化を起こす対向電極及び、放電針の針先が不純物の発生する放電針の電流導入端子のセラミック材料より上流にあり、不純物の発生がイオン化に影響しないようになっている。また、圧力を一定にしたためにイオン化部を流れるガスの流量が変化してイオン分子反応の反応率が変動する場合もあるので、イオン化部に備えたガスの流量制御手段により、イオン分子反応の反応率を安定化し、分析精度を向上させることが可能となる。更に、測定対象ガスを高圧の状態のままイオン化部に供給することにより、ガスの密度が高い状態で測定できるので、分析感度を下げることなく測定が可能となり、大気圧の状態で測定した場合に比較して分析感度を向上することができる。
【0009】
また、測定対象ガスの種類によっては、水素ガスのようにガス分子の大きさが小さいため、差動排気部に流入するガス量が増えて、真空ポンプに負担がかかるため、イオン化部と差動排気部の間の細穴を測定ガスの種類に対応して交換する必要があったが、イオン化部に備えたガス流入口の第1の流量制御手段、ガス流出口の第2の流量制御手段により、ガス流入口から流入するガス流量とガス流出口から流出するガス流量の差が、細穴を通って差動排気部へ供給されるガス流量を一定に制御でき、測定対象ガスの種類に対応してイオン化部と差動排気部の間の細穴を交換せずに、差動排気部へ流入するガス量を一定にすることを可能としている。
【0010】
【実施例】
本発明の実施例について図面を参照して説明すると、図1において、イオン化部にはガス流入口4、ガス流出口5の他に流量調節バルブ20を備えた第2のガス流出口21と圧力検出器22を備え、イオン化部1の圧力が設定値より高くなった場合にはガス流出口21よりガスを排出して圧力を一定に保つようになっている。また、設定値を大気圧以上の高圧に保つことができるようにガス流出口5には絞り23が入っている。
【0011】
図2の実施例は、図1の実施例の絞り23の代わりにガス流出口5に流量調節器24を備えたもので、イオン化部の圧力を一定に保ちながらイオン化部を流れるガス流量を一定に保つようになっている。
【0012】
図3の実施例はガス流入口4に第1の流量調節器25、ガス流出口に第2の流量調節器26を備えたもので、第1の流量調節器25、第2の流量調節器26を調節することにより細穴8から差動排気部2へ流入するガス流量を制御できるようになっている。またこの方法では、イオン化部1に第2のガス流出口21を備えられないため、イオン化部の圧力を一定に保つために、第1の流量調節器25の上流側に第1の圧力調節器27、第2の流量調節器26の下流側に第2の圧力調節器28を備えている。
【0013】
図4の実施例はガスの流れ方向に対し、ガス流入口4、対向電極29、放電針6の針先、放電針6の電流導入端子30、ガス流出口5の順に構成したもので、放電針の電流導入端子のセラミック材料からの不純物の発生が測定に影響を与えないようになっている。
【0014】
さらに、本実施例では、イオン化部、差動排気部、及び質量分析部を有する質量分析装置についてのみ説明したが、特に図示しないがイオン化部及び質量分析部を有する質量分析装置もある。
【0015】
【発明の効果】
しかして、本発明によれば、分析精度および分析感度を向上させるとともに、分析対象ガスの種類が変わってもイオン化部と差動排気部の間の細穴をガスの種類に対応して交換する必要のない技術が可能となる。
【0016】
【図面の簡単な説明】
【図1】本発明に係る質量分析装置の一例を示した断面的説明図である。
【図2】本発明に係る質量分析装置の他例を示した断面的説明図である。
【図3】本発明に係る質量分析装置の更に他例を示した断面的説明図である。
【図4】本発明に係る質量分析装置の更に他例を示した断面的説明図である。
【図5】本発明に係る質量分析装置の従来の実施例を示した断面的説明図である。
【符号の説明】
1 イオン化部
2 差動排気部
3 質量分析部
4 ガス流入口
5 ガス流出口
6 放電針
7 測定対象ガス
8 細穴
9 細穴
10 真空ポンプ
11 真空ポンプ
12 質量分離部
13 検出部
20 流量調節バルブ
21 第2のガス流出口
22 圧力検出器
23 絞り
24 流量調節器
25 第1の流量調節器
26 第2の流量調節器
27 第1の圧力調節器
28 第2の圧力調節器
29 対向電極
30 電流導入端子[0001]
[Industrial applications]
The present invention relates to an apparatus for measuring the concentration of impurities in a gas, and more particularly to a technique which is effective when applied to a highly sensitive gas analyzer.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in the analysis of high-purity gas used in a semiconductor manufacturing process, a high-sensitivity gas analyzer called an Atmospheric Pressure Ionization Mass Spectrometer (APIMS) has been used.
[0003]
A conventionally used atmospheric pressure ionization mass spectrometer is introduced in Applied Physics, Vol. 56, No. 11, pages 1446-1472 (1987). FIG. 5 shows a configuration diagram of this apparatus. This apparatus is composed of an ionization unit 1 released to the atmospheric pressure, a
[0004]
[Problems to be solved by the invention]
However, some of the gases used in the semiconductor manufacturing process are dangerous if released to the atmosphere, so the gas discharged from the ionization unit may be exhausted by an exhaust duct.In a conventional atmospheric pressure ionization mass spectrometer, Fluctuation in the pressure of the ionization unit changes the reaction rate of the ion-molecule reaction, thereby lowering the analysis accuracy, and also lowering the analysis accuracy due to the generation of impurities from the ceramic material of the current introduction terminal of the discharge needle. In addition, the problem of the need for further improvement in analysis sensitivity due to the advancement of miniaturization of semiconductor elements, and the problem that gas with small gas molecules such as hydrogen gas has Since the amount of gas flowing into the exhaust unit increases and places a burden on the vacuum pump, the narrow hole between the ionization unit and the differential exhaust unit must be replaced according to the type of gas to be measured. A problem that does not point there is.
[0005]
The present invention has been made in view of the above-mentioned problems of the related art, and aims at stabilizing the reaction rate of the ion molecule reaction by keeping the pressure of the ionization section constant, and analyzing the analysis. By improving the accuracy and providing a technology in which the generation of impurities from the ceramic material of the current introduction terminal of the discharge needle does not affect the measurement, and by supplying the gas to be measured to the ionization unit in a high pressure state Since the measurement can be performed in a state where the gas density is high, the technology that enables measurement without lowering the analysis sensitivity is provided. An object of the present invention is to provide a mass spectrometer that does not need to exchange holes according to the type of gas.
[0006]
[Means for solving the problem]
To this end, the present invention comprises a pressure control means in the ionization section in order to keep the pressure in the ionization section constant and to keep it high. In order to prevent the generation of impurities from the ceramic material of the current introduction terminal of the discharge needle from affecting the measurement, the current of the gas inlet, the counter electrode, the tip of the discharge needle, The inlet terminal and the gas outlet are configured in this order. Further, since the flow rate of the gas flowing through the ionization unit may change due to the constant pressure, the reaction rate of the ion molecule reaction may fluctuate. Therefore, a unit for controlling the flow rate of the gas flowing through the ionization unit is provided.
[0007]
The ionization unit includes a gas inlet, a gas outlet, and a fine hole to the differential exhaust unit, and the gas inlet includes a first flow control unit, and the gas outlet includes a second flow control unit. is there.
[0008]
[Action]
In the mass spectrometer configured as described above, the pressure of the ionization unit is kept constant by the pressure control means provided in the ionization unit, so that the reaction rate of the ion molecule reaction can be stabilized and the analysis accuracy can be improved. It becomes possible. Also, the gas flow inlet, the counter electrode, the needle of the discharge needle, the current introduction terminal of the discharge needle, and the gas outlet are arranged in this order in the gas flow direction. Also, the tip of the discharge needle is located upstream of the ceramic material of the current introduction terminal of the discharge needle where impurities are generated, so that the generation of impurities does not affect ionization. In addition, the reaction rate of the ion-molecule reaction may fluctuate due to a change in the flow rate of the gas flowing through the ionization unit due to the constant pressure. The rate can be stabilized, and the analysis accuracy can be improved. Furthermore, by supplying the gas to be measured to the ionization section while maintaining a high pressure, the measurement can be performed in a state where the gas density is high, so that the measurement can be performed without lowering the analysis sensitivity. The analysis sensitivity can be improved in comparison.
[0009]
In addition, depending on the type of gas to be measured, the size of gas molecules such as hydrogen gas is small, so the amount of gas flowing into the differential exhaust unit increases, and a load is placed on the vacuum pump. Although it was necessary to replace the narrow hole between the exhaust units in accordance with the type of the measurement gas, the first flow control means at the gas inlet provided in the ionization unit and the second flow control means at the gas outlet provided Thus, the difference between the gas flow rate flowing from the gas inlet and the gas flow rate flowing out from the gas outlet can control the gas flow rate supplied to the differential exhaust unit through the small hole at a constant level, depending on the type of gas to be measured. Correspondingly, it is possible to make the amount of gas flowing into the differential exhaust unit constant without replacing the small hole between the ionization unit and the differential exhaust unit.
[0010]
【Example】
An embodiment of the present invention will be described with reference to the drawings. In FIG. 1, a
[0011]
In the embodiment of FIG. 2, a
[0012]
In the embodiment shown in FIG. 3, a
[0013]
In the embodiment shown in FIG. 4, the
[0014]
Further, in this embodiment, only the mass spectrometer having the ionization unit, the differential pumping unit, and the mass analysis unit has been described. However, although not particularly shown, there is a mass spectrometer having the ionization unit and the mass analysis unit.
[0015]
【The invention's effect】
Thus, according to the present invention, the analysis accuracy and the analysis sensitivity are improved, and even when the type of the gas to be analyzed is changed, the narrow hole between the ionization unit and the differential exhaust unit is exchanged according to the type of the gas. Unnecessary technology becomes possible.
[0016]
[Brief description of the drawings]
FIG. 1 is a sectional explanatory view showing an example of a mass spectrometer according to the present invention.
FIG. 2 is a sectional explanatory view showing another example of the mass spectrometer according to the present invention.
FIG. 3 is a sectional explanatory view showing still another example of the mass spectrometer according to the present invention.
FIG. 4 is a sectional explanatory view showing still another example of the mass spectrometer according to the present invention.
FIG. 5 is a sectional explanatory view showing a conventional example of a mass spectrometer according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20497295A JP3550222B2 (en) | 1995-07-07 | 1995-07-07 | Mass spectrometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20497295A JP3550222B2 (en) | 1995-07-07 | 1995-07-07 | Mass spectrometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0922679A JPH0922679A (en) | 1997-01-21 |
JP3550222B2 true JP3550222B2 (en) | 2004-08-04 |
Family
ID=16499351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20497295A Expired - Fee Related JP3550222B2 (en) | 1995-07-07 | 1995-07-07 | Mass spectrometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3550222B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4678032B2 (en) * | 2008-01-29 | 2011-04-27 | 株式会社日立製作所 | Ion source and mass spectrometer using the same |
JP4853588B2 (en) * | 2010-11-19 | 2012-01-11 | 株式会社日立製作所 | Ion source |
-
1995
- 1995-07-07 JP JP20497295A patent/JP3550222B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0922679A (en) | 1997-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5485016A (en) | Atmospheric pressure ionization mass spectrometer | |
EP0469437B1 (en) | Method of and apparatus for preparing calibration gas | |
JPH05242858A (en) | Gas analyzing device | |
US10978285B2 (en) | Element analysis device and element analysis method | |
US6355150B1 (en) | Analyzer for measuring H2S and its use for a sulfur oxidation reactor | |
JP3550222B2 (en) | Mass spectrometer | |
EP0122006B1 (en) | System for supplying gas at controlled pressure | |
EP1148337A2 (en) | Method for analyzing impurities in a gas stream | |
US4361810A (en) | Arrangement for monitoring the concentration of potentially explosive substances in gas streams | |
KR100285024B1 (en) | Analysis method and analysis device for gaseous impurities | |
JPH0634616A (en) | Analysis of a trace of impurities | |
US20040111222A1 (en) | Method for measuring the concentration of water in Argon, Hydrogen, Nitrogen and Helium by ionization mobility spectrometry | |
EP3775865A1 (en) | Flame ionisation detector and method for the analysis of an oxygen-containing measuring gas | |
JP2003166965A (en) | Method for analyzing oxygen concentration in gas and oxygen concentration analyzer | |
RU2178929C2 (en) | Spectrometer of non-linearity of drift of ions | |
JP3477606B2 (en) | Method and apparatus for analyzing trace impurities in gas | |
US6107805A (en) | Extended detection zone in an ionization detector | |
KR19980072272A (en) | Residual Gas Analysis Device in Process Chamber for Semiconductor Device Manufacturing | |
JPH0922680A (en) | Device for measuring concentration of impurity in gas | |
US4689574A (en) | Electron impact ion source for trace analysis | |
JP4185728B2 (en) | Method and apparatus for analyzing trace impurities in gas | |
JP4060050B2 (en) | Plasma cone for inductively coupled plasma mass spectrometer and inductively coupled plasma mass spectrometer | |
JP3834363B2 (en) | Method for analyzing trace impurities in gas | |
JP2000036280A (en) | Ionization device | |
JP2000275217A (en) | Forming method and device for calibration curve with mass spectrometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040309 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040420 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040423 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120430 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120430 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140430 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |