JP3547780B2 - High strength, high modulus polypropylene fiber - Google Patents

High strength, high modulus polypropylene fiber Download PDF

Info

Publication number
JP3547780B2
JP3547780B2 JP34117893A JP34117893A JP3547780B2 JP 3547780 B2 JP3547780 B2 JP 3547780B2 JP 34117893 A JP34117893 A JP 34117893A JP 34117893 A JP34117893 A JP 34117893A JP 3547780 B2 JP3547780 B2 JP 3547780B2
Authority
JP
Japan
Prior art keywords
fiber
micropores
polypropylene
strength
gpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34117893A
Other languages
Japanese (ja)
Other versions
JPH07166415A (en
Inventor
理玄 上西
孝之 平井
純 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP34117893A priority Critical patent/JP3547780B2/en
Publication of JPH07166415A publication Critical patent/JPH07166415A/en
Application granted granted Critical
Publication of JP3547780B2 publication Critical patent/JP3547780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、高強度、高弾性率ポリプロピレン繊維に関する。
【0002】
【従来の技術】
樹脂複合材料、セメント複合材料等の補強用繊維としては、アラミド繊維、高強力ポリエチレン繊維等の有機高分子系補強用繊維、ガラス繊維、炭素繊維、ウィスカー繊維等の無機系補強用繊維がある。このうち有機高分子系補強用繊維は、無機系補強用繊維に比べて、低密度であり、複合材料の軽量化が可能である点において優れている。ポリプロピレン繊維も、ポリエチレン繊維と共に汎用素材として知られ、またポリエチレン繊維に比べ耐熱性に優れていることから、高強度、高弾性率とするならば、有機高分子系補強用繊維として用い得る繊維である。
【0003】
高強度、高弾性率ポリプロピレン繊維については、例えば、ジャーナル アプライド ポリマー サイエンス(Journal Applied Polymer Science)Vol.28、P.179〜189(1983)に、ポリプロピレンを、ノズルから溶融押し出し適切なドラフト比で巻取りながら冷却し高配向結晶性の未延伸糸とし、この未延伸糸を熱延伸してラメラ結晶内の分子鎖の折りたたみを解きほぐし分子鎖が繊維軸方向に伸長された繊維とすることにより、引張り強度0.76GPa(ギガパスカル)及び引張り弾性率17.2GPaのポリプロピレン繊維が得られることが報告されている。
【0004】
しかしながら、ポリプロピレン繊維は、複合材料におけるマトリックスとの接着性が一般に不良であり、接着性を改良する方法として代表的なものとして次の▲1▼〜▲5▼が提案されている。
▲1▼ポリプロピレンに石膏針状結晶繊維を混ぜ、溶融紡糸、延伸し繊維表面に石膏を突き出させる。(特公昭57−8790号公報)
▲2▼マトリックスとして補強用繊維より低融点のポリマーを使用し、マトリックスを補強用繊維に熱融着させる。(特公平4−4148号公報)
▲3▼溶媒を用いて紡糸し、紡糸繊維中の溶媒を蒸発させて繊維表面にボイドを形成し延伸でボイドを引き延ばして縦長状の溝をつくる。(特開昭60−174646号公報)
▲4▼補強用繊維をエポキシ基或いはカルボン酸基含有ポリオレフィンで表面処理する。(特開昭60−174646号公報)
▲5▼補強用繊維表面をプラズマ処理或いはコロナ放電処理して繊維表面に凹凸をつくる。(特開昭57−177032号、特開昭60−146078号、特公昭
53−794号、特公昭58−5314号各公報)
【0005】
【発明が解決しようとする課題】
しかるに、これらの方法では、次のような問題点がある。即ち、▲1▼では熱延伸時に糸切れを起こし易い、▲2▼では接着力が不十分で良好な機械特性が得られにくい、▲3▼では残存溶媒により良好な機械特性が得られにくい、▲4▼ではマトリックスが限定される、▲5▼では強度低下により十分な機械強度が得られにくい。
本発明の目的は、かかる問題点を解決し、ポリプロピレンの溶融紡糸、熱延伸により、複合材料におけるマトリックスとの接着性に優れた高強度、高弾性率ポリプロピレン繊維を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、繊維表面に平均孔径0.05〜2μm、開孔率20〜90%の多数の微孔が存在する中空部のない中実繊維であって、5〜11%の破断伸度、0.5〜0.8GPaの引張り強度及び5〜6GPaの引張り弾性率を有する繊維直径1〜500μmの高強度、高弾性率ポリプロピレン繊維、にある。
【0007】
本発明のポリプロピレン繊維は、その繊維表面に多数の微孔が存在し、形成されている微孔の平均孔径は、0.05〜2μmである。孔径が0.05μm未満では、マトリックスとの接着性が不十分であり、2μmを超えると、繊維の強度低下を生じる。また、微孔は、繊維表面において開孔して存在し、開孔した微孔のアンカー効果によりマトリックスと本発明のポリプロピレン繊維とは、強固に接着する。かかる接着性を確保するためには、繊維表面での微孔の開孔率、即ち繊維単位表面積に対する微孔部分の占める総表面積の割合は、20〜90%、好ましくは25〜80%である必要がある。開孔率が20%未満では、マトリックスとの接着性が不十分であり、90%を超えると、繊維の強度維持が不十分となる。
【0008】
微孔の形態は、特に限定はないが、繊維軸方向に伸びた楕円形またはスリット状であることがマトリックスとの接着性の点で好ましい。
【0009】
本発明のポリプロピレン繊維においては、微孔は、また繊維内部に存在してもよく、微孔の分布は、繊維の機械的強度を確保する上から、繊維が中空部のない中実繊維である場合は、微孔が、繊維表面から0.2〜5μm、好ましくは0.2〜2μmの深さで、かつ繊維断面における中心部の微孔の存在しない非多孔質部と微孔の存在する多孔質部の比が、図1で示すように繊維半径rに対する非多孔質部半径rの比で60〜99.92%の範囲の表層領域に分布して存在することにより繊維の機械的強度が確保される。
【0011】
本発明のポリプロピレン繊維は、5%以上、11%以下の破断伸度、0.5GPa以上、0.8GPa以下の引張り強度、及び5GPa以上、6GPa以下の引張り弾性率を有し、補強用繊維として有用でかつ有効な機械的特性を有する。
【0012】
本発明のポリプロピレン繊維の形態は、補強用繊維として適用するのに有効な直径として1〜500μm、好ましくは3〜400μmの範囲の中空部のない中実繊維とする以外は、特に限定はなく、また断面形状も円形のみならず円形以外の形状であってもよい。
【0013】
本発明のポリプロピレン繊維を製造する方法を以下説明する。
ポリプロピレン繊維を製造するに用いるアイソタクティクポリプロピレンは、そのメルトフローインデックス(MI値)が0.05〜30の範囲にある必要がある。MI値が0.05未満であると、溶融粘度が高すぎて繊維を得る際に安定して紡糸することが困難であり、30を超えると、溶融粘度が低く冷却不足を生じ、安定な紡糸が困難である。なお、MI値は、JIS K7210に準じ温度190℃でのノズル通過量(単位g/10min、荷重2.169Kg)をもって表す。
【0014】
また、アイソタクティクポリプロピレンは、タクティシティが96%以上であることが好ましい。ここでタクティシティとは、側鎖メチル基の配列の度合いを示す物理量であり、n−ヘプタン不溶分についてマクロモリキュール(Macromolecules)Vol.6,P.925(1973)及び同Vol.8、P.687(1975)の記載の方法に準じて測定した値である。
【0015】
アイソタクティクとは、この側鎖メチル基が同一方向に配列したものであり、タクティシティが高いほどポリマーの結晶性は高くなる。タクティシティが96%よりも小さいポリマーを用いた場合、延伸後の繊維の表面には微孔が形成されない。タクティシティ96%以上は、結晶化度では50%以上に対応する。ポリマー ハンドブック(Polymer Handbook)ウイリィ、ニューヨーク、1975、P.V−23による結晶部密度0.936g/cm、非晶部密度0.850g/cmを用いると、結晶化度50%以上は、平均密度0.890g/cmに対応する。本発明でのポリプロピレンの密度とは、この平均密度を示し、0.890g/cm以上であることが必要である。
【0016】
本発明においては、かかる特定のポリプロピレンを中実繊維製造用のノズルを用いて溶融紡糸し、高配向結晶性の未延伸繊維を用意する。
【0017】
本発明のポリプロピレン繊維を安定に得るためには、紡糸温度は、ポリマーの融点より30〜80℃高い温度に設定することが望ましい。この温度範囲より低温で紡糸した場合は、ポリマーの溶融が不完全となりメルトフラクチャーが起こり易く、延伸工程での安定性が低下し、またこの温度範囲より高温で紡糸した場合は、延伸での微孔の形成が困難である。
【0018】
ノズルより吐出されたポリマーは、紡糸ドラフト比200〜2000で引き取り、未延伸繊維とされる。引き取りの際、紡糸ドラフト比が200未満では、高配向の未延伸繊維が得られず、延伸しても微孔の形成は困難であり、紡糸ドラフト比が2000を超えると、300%以上の総延伸量を得ることが可能な未延伸繊維が得られない。
【0019】
得られた未延伸繊維は、ラメラ結晶の結晶面が繊維軸に垂直であり、ラメラ結晶が高度に配向積層した構造の繊維となる。このラメラ構造の配向積層構造をより完全なものとするためには、未延伸繊維を120〜160℃、好ましくは140〜155℃で3分以上のアニール処理ともいわれる熱処理を施すことが有効な手段である。
【0020】
本発明においては、前述のように用意された未延伸繊維を次のいずれかの方法で延伸することができる。
(イ)冷延伸を行い、引き続き熱延伸を行う。
(ロ)冷延伸を行うことなく、熱延伸のみを行う。
【0021】
(イ)の方法における冷延伸では、結晶構造を破壊しミクロクレーズを発生させる。結晶ラメラ中の分子鎖の熱振動による結晶緩和を起こさせることなく、ミクロクレーズを発生させるためには、冷延伸における温度は、40℃以下とすることが望ましい。冷延伸は、延伸量で1〜100%に延伸することが好ましい。かかる冷延伸を行った後、熱延伸を行う。熱延伸は、120〜160℃で行うことが望ましく、熱延伸における温度が120℃未満では、孔径が0.05μm未満となり、かつ開孔率が20%未満となり、目的とする微孔が形成されず、160℃を超えると、繊維が透明化し、望ましい微孔の形成が困難となる。熱延伸は、1段のみで行っても2段以上の多段で行ってもよいが、総ての段でそれぞれ変形速度が1分あたり30%を超える、好ましくは35%を超えるように設定する。変形速度が1分あたり30%以下では、繊維表面から5μmを超える深い領域まで開孔し繊維の強度低下が生ずる。
【0022】
(ロ)の方法においては、熱延伸は、(イ)の方法におけると同様、熱延伸温度120〜160℃で行うことが望ましく、2段以上の多段で行うが、各段でそれぞれ変形速度が1分あたり30%を超えるように設定し、好ましくは、1段目は、変形速度が1分あたり30%を超え、2段目以降は、変形速度が1分あたり35%を超えるよう設定する。なお、本発明における熱延伸時の変形速度とは、延伸区間における延伸量(%)を繊維が延伸区間を通過する時間で除して求めた値である。
【0023】
本発明においては、総延伸量は、冷延伸を行う場合を含め、300%以上、好ましくは500%以上とすることが微孔の形成上必要である。しかしながら、総延伸量の増大に伴い破断伸度が低下することから、破断伸度を5%以上となすためには、総延伸量の上限は、約1000%である。
【0024】
熱延伸された繊維は、ほぼ形態の安定性が確保されたものであり、必ずしも多数の微孔の存在構造の固定を目的とする熱セットを必要とはしないが、必要に応じて、熱延伸温度と同じ温度領域で、応力緊張下で定長若しくは収縮させつつ熱セットを行う。
【0025】
【実施例】
以下、本発明を実施例により具体的に説明する。
【0026】
(実施例1)
タクティシティ98.8%、MI値8のアイソタクティクポリプロピレンを、プランジャー型押出機に装着した孔径5mmの紡糸ノズルより紡糸温度230℃で吐出し、100cmのエアーギャップ下、25℃の空気中で、紡糸ドラフト比200で巻取り未延伸繊維を得た。この未延伸繊維を145℃の加熱空気中で8時間熱処理した。次いで室温で初期長さに対して40%冷延伸した後、140℃に加熱した5個の加熱ボックス中で各段の熱延伸時の変形速度を1分あたり50%とし、5段の延伸で総延伸量300%に延伸した。
【0027】
引き続き150℃に加熱した加熱ボックス中で定長で1分間熱セットし、延伸繊維を得た。得られた繊維は、直径が41μmで、繊維表面に水銀圧入法での測定による最小孔径0.5μm、最大孔径0.7μm、平均孔径0.6μmの微孔が、開孔率40%で存在し、繊維断面での電子顕微鏡観察によると繊維表面から1.5μmの層まで微孔が分布しており、非多孔質部半径r/繊維半径rは0.93であった。また、この繊維は、破断伸度が10%、引張り強度が0.7GPa、引張り弾性率が6GPaであった。
【0028】
(実施例2)
実施例1で得た未延伸繊維を室温で初期長さに対して40%冷延伸した後、140℃に加熱した11個の加熱ボックス中で各段の熱延伸時の変形速度を1分あたり32%とし、11段の延伸で総延伸量300%に延伸して、延伸繊維を得た。得られた繊維は、直径が45μmで、繊維表面に水銀圧入法での測定による平均孔径0.4μmの微孔が、開孔率40%で存在し、繊維断面での電子顕微鏡観察によると繊維断面全体に微孔が分布しており、繊維断面積に対する微孔総断面積の比は40%であった。また、この繊維は、破断伸度が10%、引張り強度が0.8GPa、引張り弾性率が6GPaであった。
【0029】
(実施例3)
実施例1において、未延伸繊維を、熱処理後に、冷延伸しない以外は、実施例1と同様にして延伸繊維を得た。得られた繊維は、直径が45μmで、繊維表面に水銀圧入法での測定による最小孔径0.2μm、最大孔径1μm、平均孔径0.6μmの微孔が、開孔率40%で存在し、繊維断面での電子顕微鏡観察によると繊維表面から1.5μmの層まで微孔が分布しており、r/rは0.93であった。また、この繊維は、破断伸度が11%、引張り強度が0.8GPa、引張り弾性率が6GPaであった。
【0032】
実施例4
実施例1で得た未延伸繊維を室温で初期長さに対して100%冷延伸した後、140℃に加熱した11個の加熱ボックス中で各段の熱延伸時の変形速度を1分あたり60%とし、11段の延伸で総延伸量300%に延伸して、延伸繊維を得た。得られた繊維は、直径が30μmで、繊維表面に水銀圧入法での測定による平均孔径0.06μmの微孔が、開孔率45%で存在し、繊維断面での電子顕微鏡観察によると繊維断面全体に微孔が分布しており、繊維断面積に対する微孔総断面積の比は50%であった。また、この繊維は、破断伸度が10%、引張り強度が0.8GPa、引張り弾性率が6GPaであった。
【0033】
(比較例1)
実施例1で得た未延伸繊維を室温で初期長さに対して100%冷延伸した後、140℃に加熱した11個の加熱ボックス中で各段の熱延伸時の変形速度を1分あたり5%とし、11段の延伸で総延伸量500%に延伸する以外は、実施例1と同様にして、延伸繊維を得た。得られた繊維は、直径が40μmで、繊維表面に水銀圧入法での測定による最小孔径0.01μm、最大孔径0.03μm、平均孔径0.02μmの微細孔が、開孔率85%で存在し、繊維断面での電子顕微鏡観察によると繊維断面全体に微細孔が分布し、繊維断面積に対する微細孔総面積の比が95%であった。また、この繊維は、破断伸度が10%、引張り強度が0.0058GPa、引張り弾性率が0.058GPaであった。
【0034】
【発明の効果】
本発明のポリプロピレン繊維は、繊維表面に開孔した多数の微孔が存在し、本来の低比重に加え多孔質であることから、軽量でありながら、高強度、高弾性率を有する繊維であり、樹脂複合材料、セメント複合材料等の複合材料の樹脂、セメント等の広範囲のマトリックスとの接着性に優れた補強用繊維として極めて有用なるものであり、また高い破断伸度を有することから複合材料への瞬間的衝撃に対しても繊維の損傷が少なく、補強用繊維としての機能維持性が高いものである。
【図面の簡単な説明】
【図1】本発明のポリプロピレン繊維の例の拡大模式断面図である。
【符号の説明】
1 微孔
2 非多孔質部
非多孔質部半径
繊維半径
[0001]
[Industrial applications]
The present invention relates to high strength, high modulus polypropylene fibers .
[0002]
[Prior art]
Examples of reinforcing fibers such as resin composite materials and cement composite materials include organic polymer reinforcing fibers such as aramid fibers and high-strength polyethylene fibers, and inorganic reinforcing fibers such as glass fibers, carbon fibers, and whisker fibers. Among them, the organic polymer-based reinforcing fibers are excellent in that they have a lower density than the inorganic reinforcing fibers and can reduce the weight of the composite material. Polypropylene fiber is also known as a general-purpose material together with polyethylene fiber, and has higher heat resistance than polyethylene fiber, so if it has high strength and high elastic modulus, it can be used as an organic polymer-based reinforcing fiber. is there.
[0003]
For high-strength, high-modulus polypropylene fibers, see, for example, Journal Applied Polymer Science Vol. 28, p. 179 to 189 (1983), polypropylene was melted and extruded from a nozzle and cooled while being wound at an appropriate draft ratio to form a highly oriented crystalline undrawn yarn. The undrawn yarn was thermally drawn and molecular chains in the lamella crystal. It has been reported that a polypropylene fiber having a tensile strength of 0.76 GPa (gigapascal) and a tensile modulus of elasticity of 17.2 GPa can be obtained by unfolding the fiber and unfolding the fiber so that the molecular chain is elongated in the fiber axis direction.
[0004]
However, polypropylene fibers generally have poor adhesion to a matrix in a composite material, and the following (1) to (5) have been proposed as typical methods for improving the adhesion.
{Circle around (1)} Gypsum needle-like crystal fiber is mixed with polypropylene, melt-spun, drawn, and gypsum is projected on the fiber surface. (Japanese Patent Publication No. 57-8790)
(2) A polymer having a lower melting point than the reinforcing fibers is used as the matrix, and the matrix is thermally fused to the reinforcing fibers. (Japanese Patent Publication No. 4-4148)
{Circle around (3)} Spinning using a solvent, evaporating the solvent in the spun fiber to form a void on the fiber surface, and stretching the void by stretching to form a vertically elongated groove. (JP-A-60-174646)
{Circle over (4)} The surface of the reinforcing fiber is treated with a polyolefin containing an epoxy group or a carboxylic acid group. (JP-A-60-174646)
{Circle around (5)} The surface of the reinforcing fiber is subjected to plasma treatment or corona discharge treatment to form irregularities on the fiber surface. (JP-A-57-177032, JP-A-60-146078, JP-B-53-794, JP-B-58-5314)
[0005]
[Problems to be solved by the invention]
However, these methods have the following problems. That is, in (1), thread breakage easily occurs during thermal drawing, in (2), it is difficult to obtain good mechanical properties due to insufficient adhesion, and in (3), it is difficult to obtain good mechanical properties due to the residual solvent. In the case of (4), the matrix is limited, and in the case of (5), sufficient mechanical strength is hardly obtained due to a decrease in strength.
An object of the present invention is to provide a high-strength, high-modulus polypropylene fiber excellent in adhesion to a matrix in a composite material by melt spinning and hot drawing of polypropylene by solving such problems.
[0006]
[Means for Solving the Problems]
The present invention is a solid fiber without a hollow portion having a large number of micropores having an average pore size of 0.05 to 2 μm and a porosity of 20 to 90% on the fiber surface, and has a breaking elongation of 5 to 11%, A high-strength, high-modulus polypropylene fiber having a fiber diameter of 1 to 500 µm and a tensile strength of 0.5 to 0.8 GPa and a tensile modulus of 5 to 6 GPa .
[0007]
The polypropylene fiber of the present invention has a large number of micropores on the fiber surface, and the average pore diameter of the formed micropores is 0.05 to 2 μm. If the pore size is less than 0.05 μm, the adhesion to the matrix is insufficient, and if it exceeds 2 μm, the fiber strength is reduced. In addition, the micropores are present on the fiber surface by being opened, and the matrix and the polypropylene fiber of the present invention are firmly adhered to each other by the anchor effect of the opened micropores. In order to secure such adhesiveness, the open ratio of the micropores on the fiber surface, that is, the ratio of the total surface area occupied by the micropores to the fiber unit surface area is 20 to 90%, preferably 25 to 80%. There is a need. If the porosity is less than 20%, the adhesion to the matrix is insufficient, and if it exceeds 90%, the strength maintenance of the fiber becomes insufficient.
[0008]
The shape of the micropores is not particularly limited, but is preferably an elliptical shape or a slit shape extending in the fiber axis direction from the viewpoint of adhesion to the matrix.
[0009]
In the polypropylene fiber of the present invention, the micropores may also be present inside the fiber, and the distribution of the micropores is a solid fiber having no hollow portion from the viewpoint of securing the mechanical strength of the fiber. In this case, the micropores have a depth of 0.2 to 5 μm, preferably 0.2 to 2 μm from the fiber surface , and a nonporous portion and micropores in the center of the fiber cross section where no micropores are present. the ratio of the porous portion, of the fibers by existing distributed in a surface layer region ranging from 60 to 99.92% by the ratio of the non-porous portion radius r 1 with respect to the fiber radius r 2 as shown in Figure 1 machine The target strength is secured.
[0011]
The polypropylene fiber of the present invention has a breaking elongation of 5% or more and 11% or less, a tensile strength of 0.5 GPa or more and 0.8 GPa or less , and a tensile modulus of 5 GPa or more and 6 GPa or less. Has useful and effective mechanical properties.
[0012]
The form of the polypropylene fiber of the present invention is not particularly limited, except that it is a solid fiber having no hollow portion in a range of 1 to 500 μm, preferably 3 to 400 μm as an effective diameter for application as a reinforcing fiber, Further, the cross-sectional shape may be not only circular but also other than circular.
[0013]
The method for producing the polypropylene fiber of the present invention will be described below.
Isotactic polypropylene used to produce polypropylene fibers must have a melt flow index (MI value) in the range of 0.05 to 30. If the MI value is less than 0.05, the melt viscosity is too high and it is difficult to spin stably when obtaining fibers. If the MI value is more than 30, the melt viscosity is low and insufficient cooling occurs, resulting in stable spinning. Is difficult. The MI value is represented by a nozzle passing amount (unit: g / 10 min, load: 2.169 kg) at a temperature of 190 ° C. according to JIS K7210.
[0014]
Further, the isotactic polypropylene preferably has a tacticity of 96% or more. Here, the tacticity is a physical quantity indicating the degree of the arrangement of the side chain methyl group, and the macromolecules (Macromolecules) Vol. 6, p. 925 (1973) and Vol. 8, p. 687 (1975).
[0015]
Isotactic refers to an arrangement in which the side-chain methyl groups are arranged in the same direction. The higher the tacticity, the higher the crystallinity of the polymer. When a polymer having a tacticity of less than 96% is used, fine pores are not formed on the surface of the drawn fiber. Tacticity of 96% or more corresponds to crystallinity of 50% or more. Polymer Handbook, Willy, New York, 1975; Crystalline portion density 0.936 g / cm 3 according to V-23, the use of amorphous portions density 0.850 g / cm 3, a crystallinity of 50% or more, corresponds to the mean density 0.890 g / cm 3. The density of the polypropylene in the present invention indicates the average density, and it is necessary that the density is 0.890 g / cm 3 or more.
[0016]
In the present invention, the specific polypropylene is melt-spun using a nozzle for producing a solid fiber to prepare a highly oriented crystalline undrawn fiber.
[0017]
In order to stably obtain the polypropylene fiber of the present invention, the spinning temperature is desirably set to a temperature 30 to 80 ° C. higher than the melting point of the polymer. When spinning is performed at a temperature lower than this temperature range, the melting of the polymer is incomplete and melt fracture is likely to occur, and the stability in the drawing process is reduced. It is difficult to form holes.
[0018]
The polymer discharged from the nozzle is taken at a spinning draft ratio of 200 to 2,000 and is made into an undrawn fiber. At the time of drawing, if the spinning draft ratio is less than 200, highly oriented undrawn fibers cannot be obtained, and it is difficult to form micropores even when drawn. If the spinning draft ratio exceeds 2,000, the total draft exceeds 300%. Unstretched fibers capable of obtaining the amount of stretching cannot be obtained.
[0019]
The obtained undrawn fiber has a structure in which the crystal plane of the lamella crystal is perpendicular to the fiber axis and the lamella crystal is highly oriented and laminated. In order to make the oriented laminar structure of the lamella structure more complete, it is effective to subject the undrawn fiber to a heat treatment called an annealing treatment at 120 to 160 ° C., preferably 140 to 155 ° C. for 3 minutes or more. It is.
[0020]
In the present invention, the undrawn fiber prepared as described above can be drawn by any of the following methods.
(A) Cold stretching is performed, followed by hot stretching.
(B) Only hot stretching is performed without performing cold stretching.
[0021]
In the cold stretching in the method (a), the crystal structure is broken and microcraze is generated. In order to generate microcraze without causing crystal relaxation due to thermal vibration of the molecular chains in the crystal lamella, the temperature in the cold stretching is desirably 40 ° C. or lower. The cold stretching is preferably performed so that the stretching amount is 1 to 100%. After performing such cold stretching, hot stretching is performed. The hot stretching is preferably performed at 120 to 160 ° C. When the temperature in the hot stretching is lower than 120 ° C., the pore diameter becomes less than 0.05 μm, and the porosity becomes less than 20%, so that the desired micropores are formed. On the other hand, when the temperature exceeds 160 ° C., the fiber becomes transparent, and it becomes difficult to form desirable micropores. The heat stretching may be performed in only one step or in two or more steps, but the deformation speed is set to be more than 30% per minute, preferably more than 35% per minute in all the steps. . If the deformation rate is 30% or less per minute, holes are opened from the fiber surface to a deep region exceeding 5 μm, and the fiber strength is reduced.
[0022]
In the method (b), the thermal stretching is preferably performed at a thermal stretching temperature of 120 to 160 ° C., similarly to the method (a), and is performed in two or more stages. It is set so as to exceed 30% per minute, preferably, the first stage is set so that the deformation speed exceeds 30% per minute, and the second and subsequent stages are set so that the deformation speed exceeds 35% per minute. . In addition, the deformation rate at the time of the hot drawing in the present invention is a value obtained by dividing the drawing amount (%) in the drawing section by the time during which the fiber passes through the drawing section.
[0023]
In the present invention, the total amount of stretching is required to be 300% or more, preferably 500% or more, including the case where cold stretching is performed, in order to form micropores. However, since the elongation at break decreases with an increase in the total elongation, the upper limit of the total elongation is about 1000% in order to attain elongation at break of 5% or more.
[0024]
The heat-drawn fiber is a fiber whose stability in shape is almost secured and does not necessarily require a heat set for fixing a structure having a large number of micropores. In the same temperature range as the temperature, heat setting is performed while the length is fixed or contracted under stress.
[0025]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples.
[0026]
(Example 1)
An isotactic polypropylene having a tacticity of 98.8% and an MI value of 8 is discharged at a spinning temperature of 230 ° C. from a spinning nozzle having a hole diameter of 5 mm attached to a plunger type extruder, and in a 25 ° C. air under a 100 cm air gap. Thus, an undrawn fiber wound at a spinning draft ratio of 200 was obtained. This undrawn fiber was heat-treated in heated air at 145 ° C. for 8 hours. Next, after performing 40% cold stretching with respect to the initial length at room temperature, the deformation rate in each stage of the hot stretching was set to 50% per minute in five heating boxes heated to 140 ° C. The film was stretched to a total stretching amount of 300%.
[0027]
Subsequently, it was heat-set at a constant length for 1 minute in a heating box heated to 150 ° C. to obtain a drawn fiber. The obtained fiber has a diameter of 41 μm, and micropores having a minimum pore diameter of 0.5 μm, a maximum pore diameter of 0.7 μm, and an average pore diameter of 0.6 μm as measured by a mercury intrusion method are present on the fiber surface at an opening ratio of 40%. According to the electron microscopic observation of the fiber cross section, micropores were distributed from the fiber surface to the 1.5 μm layer, and the ratio of non-porous portion radius r 1 / fiber radius r 2 was 0.93. The fiber had a breaking elongation of 10%, a tensile strength of 0.7 GPa, and a tensile modulus of 6 GPa.
[0028]
(Example 2)
The undrawn fiber obtained in Example 1 was cold drawn at room temperature by 40% with respect to the initial length, and then the deformation rate at the time of hot drawing of each stage in 11 heating boxes heated to 140 ° C. per minute It was set to 32%, and it was drawn to a total drawing amount of 300% in 11 steps of drawing to obtain a drawn fiber. The obtained fiber had a diameter of 45 μm, and micropores having an average pore diameter of 0.4 μm as measured by a mercury intrusion method were present on the fiber surface at an opening ratio of 40%. Micropores were distributed throughout the cross section, and the ratio of the total micropore cross sectional area to the fiber cross sectional area was 40%. Further, this fiber had a breaking elongation of 10%, a tensile strength of 0.8 GPa, and a tensile modulus of 6 GPa.
[0029]
(Example 3)
In Example 1, a drawn fiber was obtained in the same manner as in Example 1, except that the undrawn fiber was not cold drawn after the heat treatment. The obtained fiber has a diameter of 45 μm, and micropores having a minimum pore diameter of 0.2 μm, a maximum pore diameter of 1 μm, and an average pore diameter of 0.6 μm as measured by a mercury intrusion method are present on the fiber surface at an opening ratio of 40%, According to electron microscopic observation on the fiber cross section, micropores were distributed from the fiber surface to the 1.5 μm layer, and r 1 / r 2 was 0.93. In addition, this fiber had an elongation at break of 11%, a tensile strength of 0.8 GPa, and a tensile modulus of elasticity of 6 GPa.
[0032]
( Example 4 )
After the undrawn fiber obtained in Example 1 was cold drawn at room temperature by 100% with respect to the initial length, the deformation rate at the time of heat drawing of each stage in 11 heating boxes heated to 140 ° C. per minute It was set to 60%, and it was drawn to 11% of the total amount of drawing by 300% to obtain a drawn fiber. The obtained fiber had a diameter of 30 μm, and micropores having an average pore diameter of 0.06 μm as measured by a mercury intrusion method were present on the fiber surface at an opening ratio of 45%. Micropores were distributed throughout the cross-section, and the ratio of the total cross-sectional area of the micropores to the cross-sectional area of the fibers was 50%. Further, this fiber had a breaking elongation of 10%, a tensile strength of 0.8 GPa, and a tensile modulus of 6 GPa.
[0033]
(Comparative Example 1)
After the undrawn fiber obtained in Example 1 was cold drawn at room temperature by 100% with respect to the initial length, the deformation rate at the time of heat drawing of each stage in 11 heating boxes heated to 140 ° C. per minute A drawn fiber was obtained in the same manner as in Example 1 except that the drawing was performed at 5% and the total drawing amount was 500% in 11 steps. The obtained fiber has a diameter of 40 μm, and micropores having a minimum pore diameter of 0.01 μm, a maximum pore diameter of 0.03 μm, and an average pore diameter of 0.02 μm as measured by a mercury intrusion method are present on the fiber surface at an opening ratio of 85%. According to electron microscopic observation of the fiber cross section, micropores were distributed over the entire fiber cross section, and the ratio of the total micropore area to the fiber cross sectional area was 95%. The fiber had a breaking elongation of 10%, a tensile strength of 0.0058 GPa, and a tensile modulus of 0.058 GPa.
[0034]
【The invention's effect】
The polypropylene fiber of the present invention is a fiber having a high strength and a high elasticity while being lightweight, because it has a large number of micropores opened on the fiber surface and is porous in addition to the original low specific gravity. It is extremely useful as a reinforcing fiber having excellent adhesion to a wide range of matrices such as resin, cement, and other composite materials such as resin composite materials and cement composite materials. The fiber is less damaged even by an instantaneous impact on the fiber, and has a high function-maintaining property as a reinforcing fiber.
[Brief description of the drawings]
FIG. 1 is an enlarged schematic cross-sectional view of an example of a polypropylene fiber of the present invention.
[Explanation of symbols]
1 Micropore 2 Non-porous part r 1 Non-porous part radius r 2 Fiber radius

Claims (1)

繊維表面に平均孔径0.05〜2μm、開孔率20〜90%の多数の微孔が存在する中空部のない中実繊維であって、5〜11%の破断伸度、0.5〜0.8GPaの引張り強度及び5〜6GPaの引張り弾性率を有する繊維直径1〜500μmの高強度、高弾性率ポリプロピレン繊維。It is a solid fiber without a hollow portion having a large number of micropores having an average pore diameter of 0.05 to 2 μm and a porosity of 20 to 90% on the fiber surface, and has a breaking elongation of 5 to 11% and a A high-strength, high-modulus polypropylene fiber having a fiber diameter of 1 to 500 µm and a tensile strength of 0.8 GPa and a tensile modulus of 5 to 6 GPa .
JP34117893A 1993-12-13 1993-12-13 High strength, high modulus polypropylene fiber Expired - Fee Related JP3547780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34117893A JP3547780B2 (en) 1993-12-13 1993-12-13 High strength, high modulus polypropylene fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34117893A JP3547780B2 (en) 1993-12-13 1993-12-13 High strength, high modulus polypropylene fiber

Publications (2)

Publication Number Publication Date
JPH07166415A JPH07166415A (en) 1995-06-27
JP3547780B2 true JP3547780B2 (en) 2004-07-28

Family

ID=18343960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34117893A Expired - Fee Related JP3547780B2 (en) 1993-12-13 1993-12-13 High strength, high modulus polypropylene fiber

Country Status (1)

Country Link
JP (1) JP3547780B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374987B (en) 2006-02-06 2014-03-26 三井化学株式会社 Spun-bonded nonwoven fabric
JP5682393B2 (en) * 2010-03-30 2015-03-11 東レ株式会社 Gas-liquid hollow fiber heat exchanger

Also Published As

Publication number Publication date
JPH07166415A (en) 1995-06-27

Similar Documents

Publication Publication Date Title
US5149517A (en) High strength, melt spun carbon fibers and method for producing same
JP5607827B2 (en) High-strength polypropylene fiber and method for producing the same
JP2008540850A (en) Method for producing polyphenylene sulfide filament yarn
US5156831A (en) Method for producing high strength, melt spun carbon fibers
JP3547780B2 (en) High strength, high modulus polypropylene fiber
JP4337539B2 (en) Polyester fiber production method and spinneret for melt spinning
KR20170037392A (en) Poly(ethyleneterephthalate) Yarn, Method for Manufacturing The Same, and Tire Cord Manufactured Using The Same
JPH07243120A (en) High-strength, high-modulus polypropylene fiber and its production
KR20080069933A (en) Preparation of pvdf(polyvinylidene fluoride) hollow fiber membrane by melt spinning and stretching process
JPH06246140A (en) Production of heterogeneous hollow yarn membrane
JP5661027B2 (en) Manufacturing method of core-sheath fiber
JP5758847B2 (en) High strength and high modulus polypropylene fiber and method for producing the same
KR20050099493A (en) Spinning method
KR101858242B1 (en) Gel spinning apparatus for ultra-high Molecular Weight Polyethylene, and manufacturing method of the ultra-high Molecular Weight Polyethylene using the same
JPH1161561A (en) Biodegradable highly oriented undrawn yarn, and its production
JPH07243118A (en) Polyolefin fiber having high strength and elastic modulus and its production
JPS5966508A (en) Method for melt spinning
JPH07243119A (en) Polyolefin fiber and its production
JPH01306614A (en) Production of polyetherimide fiber
JPH0450053B2 (en)
US20230322979A1 (en) Polyethylene yarn having improved post-processability, and fabric comprising same
JPH02112404A (en) Cellular polyethylene hollow yarn and production thereof
JPH07310231A (en) Porous and light-weight polyethylene terephthalate fiber
JPH02277811A (en) Hollow polyester fiber having high tenacity and modulus
TWI665347B (en) Vinylidene fluoride resin fiber and sheet structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees