JP3547732B2 - Driving force control device for hybrid vehicle - Google Patents

Driving force control device for hybrid vehicle Download PDF

Info

Publication number
JP3547732B2
JP3547732B2 JP2002072639A JP2002072639A JP3547732B2 JP 3547732 B2 JP3547732 B2 JP 3547732B2 JP 2002072639 A JP2002072639 A JP 2002072639A JP 2002072639 A JP2002072639 A JP 2002072639A JP 3547732 B2 JP3547732 B2 JP 3547732B2
Authority
JP
Japan
Prior art keywords
clutch
lock
torque
regenerative
driving force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002072639A
Other languages
Japanese (ja)
Other versions
JP2003269604A (en
Inventor
豊 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002072639A priority Critical patent/JP3547732B2/en
Priority to DE10310594A priority patent/DE10310594A1/en
Priority to US10/385,728 priority patent/US7100720B2/en
Publication of JP2003269604A publication Critical patent/JP2003269604A/en
Application granted granted Critical
Publication of JP3547732B2 publication Critical patent/JP3547732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/025Clutch slip, i.e. difference between input and output speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • F16H2059/465Detecting slip, e.g. clutch slip ratio
    • F16H2059/467Detecting slip, e.g. clutch slip ratio of torque converter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • F16H2061/145Control of torque converter lock-up clutches using electric control means for controlling slip, e.g. approaching target slip value
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Control Of Fluid Gearings (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンとモータ・ジェネレータを動力源とし、これらと駆動輪との間にロックアップクラッチを備えたトルクコンバータを介して自動変速機が配設されたハイブリッド車両であって、回生時におけるロックアップクラッチの締結度合いを制御するハイブリッド車両の駆動力制御装置に関する。
【0002】
【従来の技術】
従来、エンジンとモータ・ジェネレータとを動力源とし、車両の走行エネルギーの一部を前記モータ・ジェネレータにより電気エネルギーに変換して蓄電装置に蓄えて(いわゆる回生処理を行って)、燃費の向上を図るものがある。この種のハイブリッド車両としては、動力源と駆動輪との間にロックアップクラッチを備えたトルクコンバータを設けて、該ロックアップクラッチにより動力源と駆動輪間の動力の伝達効率を調整するものがある。
【0003】
上述した回生処理を行うにあたり、ロックアップクラッチをモータ・ジェネレータに締結すると、駆動輪の走行エネルギーを直接モータ・ジェネレータに伝達することができる。しかし、駆動源でのトルク変動も駆動輪に直接伝達されてしまうため、騒音や振動等が発生してしまいドライバビリティが悪化してしまう。従って、これらを抑えつつ高い回生効率が得られるようにロックアップクラッチの係合状態を制御することが重要である。
【0004】
そこで、駆動源に対して滑らせるようにロックアップクラッチの油圧を制御して回生処理を行うものが提案されている。例えば、特開2000−170903号公報には、ロックアップクラッチの係合状態を制御する手段を有し、回生効率が最大となるようにロックアップクラッチの係合状態(油圧)をフィードバックして制御するものが開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、ハイブリッド車両には様々な走行状態(例えばブレーキ作動の有無、気筒休止の有無など)が存在し、この走行状態に応じて回生可能な電力量(回生量)は異なっている。したがって、走行状態が切り替わると、回生量が大幅に変動する場合がある。この回生量を得るためのロックアップクラッチの締結度合い(制御油圧)も大きく変動するため、上述のようにフィードバック制御でロックアップクラッチの油圧を制御するのみでは、その大幅な変動に追従させるようにロックアップクラッチの油圧を制御することが困難である。このため、回生効率を十分に高くすることができないという問題があった。
【0006】
本発明は、このような事情に鑑みてなされたもので、走行状態が変化しても高い回生効率が得られるようにロックアップクラッチの油圧を制御することができるハイブリッド車両の駆動力制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、請求項1に記載した発明は、エンジン(例えば、後述する実施の形態におけるエンジン2)とモータ・ジェネレータ(例えば、後述する実施の形態におけるモータ・ジェネレータ3)とを動力源とし、これら動力源と駆動輪(例えば、後述する実施の形態における駆動輪W)との間にロックアップクラッチ(例えば、後述する実施の形態におけるロックアップクラッチ4)を備えたトルクコンバータ(例えば、後述する実施の形態におけるトルクコンバータ5)を介して自動変速機(例えば、後述する実施の形態における自動変速機6)が配設され、車両の動力源の切り替えおよびロックアップクラッチのすべり率を油圧により制御する制御手段(例えば、後述する実施の形態におけるECU13)を備えたハイブリッド車両の駆動力制御装置(例えば、後述する実施の形態におけるハイブリッド車両の駆動力制御装置1)であって、前記制御手段は、車両の走行状態に応じて得られる回生量決定情報により目標回生量を検索し、該目標回生量に見合った回生トルクにフリクショントルク情報により検索されるフリクショントルクを加味して、エンジンとモータ・ジェネレータ端での必要トルクを算出し、この必要トルクを保持可能なベース油圧を算出して、このベース油圧にロックアップクラッチの油圧を制御して、ロックアップクラッチの目標すべり率を得るフィードフォワード制御を行い、目標すべり率と実すべり率との差分に基づいて、ロックアップクラッチの油圧をフィードバック制御することを特徴とするハイブリッド車両の駆動力制御装置である。
【0008】
この発明によれば、車両の走行状態に応じて得られる回生量決定情報により目標回生量が検索されるので、車両の走行状態が変化した場合であっても高い回生効率が得られるように回生量を設定することができる。そして、車両の走行状態に応じて検索した前記回生トルクに、走行状態の変化などにより動力源で発生する前記フリクショントルクを加味して必要トルクを求めるため、騒音や振動を抑えてドライバビリティを良好に維持しつつ必要な回生量が得られるトルクを求めることができる。
【0009】
ついで、この必要トルクを得るためのベース油圧を算出して、このベース油圧にロックアップクラッチの油圧を制御して、ロックアップクラッチの目標すべり率を得るフィードフォワード制御するため、走行状態に応じて適切な係合状態となるようにロックアップクラッチを制御することができる。また、走行状態が変動してもそれに応じて適切なベース油圧を得ることができる。このベース油圧でロックアップクラッチの目標すべり率をフィードフォワード制御するため、走行状態が変動してもその変動にベース油圧を追従させて目標すべり率を制御することができる。
【0010】
加えて、目標すべり率と実すべり率との差分に基づいて、ロックアップクラッチの油圧をフィードバック制御することにより、回生効率をさらに高めるように制御することができる。したがって、走行状態が変化しても高い回生効率が得られるようにロックアップクラッチの油圧を制御することができる。
【0011】
ここで、回生量決定情報としては、バッテリ残容量(SOC)、自動変速機のギヤポジション(GP)、エアコン作動の有無、エンジン回転数、ブレーキ作動状況などがある。また、フリクショントルク情報としては、気筒休止の有無、燃料遮断(フューエルカット)の有無、エンジン回転数、エアコン作動の有無(エアコンの負荷条件)、エンジン冷却水の温度などがある。特に、前記フリクショントルク情報は、減速時のフューエルカット、気筒休止、エアコンの負荷条件を含むことが好ましい。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態におけるハイブリッド車両の駆動力制御装置を図面と共に説明する。図1は本発明の実施の形態におけるハイブリッド車両の駆動力制御装置1を示す概略構成図である。
【0013】
同図に示したように、動力源であるエンジン2とモータ・ジェネレータ3とが直列に接続されている。これらの動力源と車輪W,Wの間にはロックアップクラッチ4を備えたトルクコンバータ5を介して自動変速機6が配設され、該自動変速機6は前記動力源に接続されている。また、自動変速機6と車輪W、Wの間にはデファレンシャルギア8が介装されている。トルクコンバータ5の入力側にはモータ・ジェネレータ3の回転軸が接続され、トルクコンバータ5の出力側には自動変速機6の入力軸10が接続されている。また、前記ロックアップクラッチ4の係合状態を制御するための制御油圧を供給可能なオイルポンプ12と、ECU13とが設けられている。
【0014】
トルクコンバータ5は、流体を介してトルクの伝達を行うものである。前記トルクコンバータ5は、モータ・ジェネレータ3の回転軸9に連結されたフロントカバー5aと、これに一体に設けられたポンプインペラ5bと、フロントカバー5aとポンプインペラ5bとの間でポンプインペラ5bに対向配置されたタービンランナ5cと、ポンプインペラ5bとタービンランナ5cとの間に配置されたステータ5dとを備えて構成されている。
【0015】
さらに、タービンランナ5cとフロントカバー5aとの間には、フロントカバー5aの内面に対向配置され、フロントカバー5aに係合可能なロックアップクラッチ4が備えられている。そして、フロントカバー5aおよびポンプインペラ5bにより形成される容器内に作動油が封入されている。
【0016】
ロックアップクラッチ4はフロントカバー5aに対して係合状態の制御が可能にされており、ロックアップクラッチ4の係合が解除された状態(すなわち、非係合状態)でポンプインペラ5bがフロントカバー5aと一体に回転すると作動油の螺旋流が発生し、この作動油の螺旋流がタービンランナ5cに作用して回転駆動力を発生させ、作動油を介してトルクコンバータ5の出力軸5eにトルクが伝達される。
また、ロックアップクラッチ4が直結状態にされると、フロントカバー5aからタービンランナ5cへと、作動油を介さず直接に出力軸5eに回転駆動力が伝達される。
【0017】
なお、ロックアップクラッチ4の係合度合いは、ロックアップクラッチ4の作動油圧を制御することにより可変にされており、ロックアップクラッチ4を介してフロントカバー5aからタービンランナ5cへと伝達される回転駆動力は任意に変更可能とされている。なお、ロックアップクラッチ4の作動油圧は、オイルポンプ12との間に設けられた油圧回路(図示せず)により制御可能にされている。
【0018】
変速機6は、その入力軸10と出力軸7との間に設けられ変速比を変更可能なギヤトレーン(図示せず)と、該ギヤトレーンの動力伝達ギヤを変更するためのクラッチ(図示せず)を作動させるための油圧回路(図示せず)を備えて構成されている。この変速機6の変速動作は、ECU13が、例えば運転者から入力されるシフト操作や車両の運転状態に応じて、前記油圧回路を制御し前記クラッチを駆動することにより実行される。また、オイルポンプ12は、蓄電装置(図示せず)からの電力供給により駆動される。
【0019】
また、ECU13には、図1に示したように、各種センサ21〜28が接続され、これらのセンサ21〜28により取得した情報に基づいて、車両の動力源の切り替えやロックアップクラッチ4の係合度合いを制御できるようにしている。本実施の形態においては、エンジン2の状態(気筒休止の有無、フューエルカットの有無)を検出するエンジン状態検出センサ21と、アクセルペダルの踏み込み量検出センサ22と、ブレーキの作動検出センサ23と、回生電力が充電されるバッテリの残容量(SOC)検出センサ24と、エアコン作動検出センサ25と、ロックアップクラッチ4の作動油温度を検出する作動油温度検出センサ26と、自動変速機6のギヤポジション(GP)を検出する変速段検出センサ27と、トルクコンバータすべり率(ETR)を検出するすべり率検出センサ28とを備えている。本実施の形態においては、上述したセンサ21〜28により目標回生量を検索するための回生量決定情報と、フリクショントルクを検索するためのフリクショントルク情報とがECU13に入力される。これについては、詳細を後述する。
【0020】
このように構成されたハイブリッド車両の駆動力制御装置1において回生制動を行う場合について図2を用いて説明する。図2は図1の駆動力制御装置1にて回生制動を行う場合におけるロックアップクラッチ4のメインフローである。
まず、同図のステップS20に示したように、回生処理が行える状態かどうか(回生が許可される状態であるかどうか)を判定し、判定結果が「YES」である場合はステップS30に進み、判定結果が「NO」である場合は一連の処理を終了する。
【0021】
回生が許可された場合には、ステップS30に示したように、車両の走行状態に応じた目標回生量の検索を行う。目標回生量の検索は、詳細を後述する回生量決定情報に基づいて行われる。
【0022】
次に、ステップS40に示したように、前記目標回生量に見合った回生トルクを検索するとともに、動力源であるエンジンでのフリクショントルクを検索して、回生トルクにフリクショントルクを加味して必要トルク(エンジン2とモータ・ジェネレータ3端でのトルク)を算出する。フリクショントルクの検索は、詳細を後述するフリクショントルク情報に基づいて行われる。
【0023】
ついで、ステップS50に示したように、前記必要トルクに基づいてロックアップクラッチ4のベース油圧を算出して、ロックアップクラッチ4の油圧がベース油圧となるようにフィードフォワード制御を行う。
【0024】
それから、ステップS60に示したように、前記目標すべり率(目標ETR)と実すべり率(実ETR)との差分に基づいて、ロックアップクラッチ4の油圧をフィードバック制御することによりロックアップクラッチ4の係合度合いを調整する。
【0025】
上述したメインフローにおける各処理について、図3〜図10を用いてより詳細に説明する。図3は図2のステップS30で示したECU13における目標回生量検索処理のサブフローである。この処理においては、上述したセンサ21〜28からの情報に基づいて、目標回生量を検索するための回生量決定情報をECU13に入力する。すなわち、ステップS31に示したように、回生量決定情報である自動変速機6のギアポジション(GP)や、エンジン2の回転数、ブレーキの作動有無、エアコンの作動有無等をECU13に入力する。ECU13は、各回生量決定情報に応じた回生量のテーブルを保持していて、ステップS32に示したように、これらのテーブルにより目標回生量の読み出しを行う。
【0026】
この一例として、回生量決定情報の一つであるブレーキ作動状態におけるテーブルから目標回生量を読み出す場合について図4に示す。図4(a)は、ブレーキOFF時におけるエンジン回転数とこれに対応した回生量との関係を示すテーブルであり、図4(b)は、ブレーキON時におけるエンジン回転数とこれに対応した回生量との関係を示すテーブルである。これらの関係は、ギヤポジション(GP)ごとに求められており、図4においてラインA〜Dはギヤポジションが2速〜5速にある状態を示している。図4(a)においては、ギヤポジションが4速の場合(ラインC)に、入力されたエンジン回転数から目標回生量を読み出す場合が示されている。これと同様にして、他の回生量決定情報についても、それぞれに対応したテーブルが保持されており、入力された回生量決定情報に応じた目標回生量が検索される。このようにして、走行状態に応じて適切な回生量を決定することができる。
【0027】
次に、回生トルクとフリクショントルクの検索を行う。図5は図2のステップS40で示した回生トルクとフリクショントルクの検索処理を示すサブフローである。この処理においては、上述したセンサ21〜28の情報に基づいて、フリクショントルクを検索するためのフリクショントルク情報をECU13に入力する。すなわち、ステップS41に示したように、フリクショントルク情報であるエンジン回転数、気筒休止の有無、フューエルカットの有無、エアコンの作動有無等をECU13に入力する。ECU13は、各フリクショントルク情報に応じたフリクショントルクのテーブルを保持していて(図6(c)参照)、ステップS42に示したように、これらのテーブルから前記フリクショントルク情報に応じたエンジンフリクショントルクを読み出す。そして、上述のように得られた目標回生量(図6(a)参照)を回生トルクに変換して(図6(b)参照)、ステップS43に示したように、この回生トルクに前記エンジンフリクショントルクを加味して必要トルクを求める(図6(d)参照)。
【0028】
上述した図5の処理について図6を用いて説明する。図6(a)は、ギヤポジションごとのエンジン回転数と回生量との関係を示すテーブルであり、図6(b)は前記回生量を回生トルクに変換したテーブルである。これらの図においてラインA〜Dは、ギヤポジションが2速〜5速にある場合に対応している。本実施の形態においては、ギヤポジションが4速の場合のラインCが回生トルクとして検索される。
【0029】
図6(c)は、フリクショントルク情報の一つである気筒休止の有無に対応した、エンジン回転数とエンジンフリクショントルクとの関係を示すテーブルである。同図において、ラインEは気筒休止を行っている場合であり、ラインFは気筒休止を行っていない場合である。そして、図6(d)は、エンジン回転数と必要トルクとの関係を示すテーブルである。この必要トルクは、図6(b)の回生トルクに図6(c)のフリクショントルクを加味したものである。図6(d)のラインGは、ギヤポジションが4速の場合(図6(b)のラインC)であって、気筒休止を行っていない場合(図6(c)のラインF)について示している。このようにして、騒音や振動を抑えてドライバビリティを良好に維持するとともに、必要な回生量が得られるトルクを求めることができる。なお、同様にして、他のフリクショントルク情報についても、各フリクショントルク情報に対応したテーブルが保持されており、これらのテーブルから走行状態に適合するフリクショントルクを決定することができる。
【0030】
ついで、ロックアップクラッチ4のベース油圧の検索を行う。図7は図2のロックアップクラッチ(L/C)4のベース油圧の検索処理を示すサブフローである。同図のステップS51は図8で示されるように、前記必要トルク(エンジン2とモータ・ジェネレータ3端でのトルク)がαとして定まる。このαから、ロックアップクラッチ4のベース油圧を求める際、ロックアップクラッチ4の係合度合い(ギヤポジションや車速により変化するスリップ率)による変化を考慮して、補正項Hとして補正する。この補正を行うことにより、ロックアップクラッチ4の目標トルク容量はα’となる。
【0031】
そして、ステップS52に示すように、前記目標トルク容量α’に応じたベース油圧を図8から検索する。図8は目標トルク容量とベース油圧との関係を示すテーブルである。このテーブルにおいて、ラインI〜Kは作動油の温度が60度、70度、80度の場合に対応している。同図には、作動油の温度が60度のラインIにおいて、前記目標トルク容量α’からベース油圧βを算出する場合を示している。こうして算出されたベース油圧に基づいてロックアップクラッチ4の油圧をフィードフォワード制御するのである。
【0032】
このようにしたため、走行状態に応じて適切な係合状態となるようにロックアップクラッチ4を制御することができる。また、走行状態が変動してもそれに応じたベース油圧が得られ、このベース油圧でロックアップクラッチ4を制御するため、走行状態が変動しても高い回生効率が得られるようにロックアップクラッチ4の油圧を制御することができる。
【0033】
そして、以下に示すように、ロックアップクラッチ4の油圧をフィードバック制御する。図9は図2のステップS60で示したロックアップクラッチ4のフィードバック制御処理を示すサブフローである。そして、図10は、図9の処理内容を示すブロック図である。本実施の形態においては、前記フィードバック制御を、トルクコンバータすべり率(ETR)により行う。このすべり率は、以下の式(1)のように定義される。
【0034】
式(1):ETR=Ns/Ne
【0035】
ここで、Nsは入力軸10の回転数であり、Neはエンジン2の回転軸9の回転数である。前記すべり制御を行うにあたり、目標すべり率を算出しておき、実際のすべり率との差分をとる。そして、図9のステップS61に示したように、目標すべり率と実際のすべり率との差分を求めて、PI(比例、積分)制御を行う。すなわち、ステップS61に示したように、目標すべり率と実すべり率の差分にPIゲインを乗じた値をフィードバック項とする。そして、ステップS62に示したように、ロックアップクラッチ4のベース油圧とフィードバック項との和を、ロックアップクラッチ4の油圧指令値とする。これにより、さらに高い回生効率が得られるようにロックアップクラッチ4の制御の精度を高めることができる。なお、フィードバック制御処理を行う前に、ロックアップクラッチ4の油圧はフィードフォワード制御されているため、フィードバック制御での制御は比較的微調整で済む。このため、従来と異なり、走行状態が変動した場合であっても、その変動に追従して適切な制御を行うことができる。なお、実施の形態においては、PI制御を用いたがこれに限らず、必要に応じてP(比例)制御やPID(比例、積分、微分)制御に変更してもよい。
【0036】
以上説明したように、本実施の形態におけるハイブリッド車両の駆動力制御装置においては、走行状態が変化しても高い回生効率が得られるようにロックアップクラッチの油圧を制御することができる。なお、本発明の内容は、実施の形態に限られるものではなく、例えば自動変速機はAT(有段変速機)であってもCVT(無段変速機)であってもよい。
【0037】
【発明の効果】
請求項1、請求項2に記載した発明によれば、車両の走行状態が変化した場合であっても高い回生効率が得られるように回生量を設定することができる。また、騒音や振動を抑えてドライバビリティを良好に維持しつつ必要な回生量が得られるトルクを求めることができる。そして、走行状態に応じて適切な係合状態となるようにロックアップクラッチを制御することができ、ロックアップクラッチを走行状態の変動に十分追従させることができる。加えて、フィードバック制御することにより、さらに制御の精度を高めることができる。したがって、走行状態が変化しても高い回生効率が得られるようにロックアップクラッチの油圧を制御することができる。
【図面の簡単な説明】
【図1】図1は本発明の実施の形態におけるハイブリッド車両の駆動力制御装置を示す構成図である。
【図2】図1の駆動力制御装置において回生制動を行う場合のロックアップクラッチの制御を示すメインフローである。
【図3】図2の目標回生量検索処理を示すサブフローである。
【図4】図3の処理工程で用いるテーブルである。
【図5】図2の回生時におけるフリクショントルク検索処理を示すサブフローを示す工程図である。
【図6】図4の処理工程で用いるテーブルである。
【図7】図2のロックアップクラッチに与えるベース油圧の検索処理を示すサブフローである。
【図8】図7の処理工程で用いるテーブルである。
【図9】図2のロックアップクラッチすべりフィードバック制御処理を示すサブフローである。
【図10】図9の制御処理を示すブロック図である。
【符号の説明】
1 ハイブリッド車両の駆動力制御装置
2 エンジン
3 モータ・ジェネレータ
4 ロックアップクラッチ(L/Cクラッチ)
5 トルクコンバータ
6 変速機
7 出力軸
12 オイルポンプ
13 ECU
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hybrid vehicle in which an automatic transmission is arranged via a torque converter having a lock-up clutch between an engine and a motor / generator as power sources and a drive wheel between the engine and a motor / generator. The present invention relates to a driving force control device for a hybrid vehicle that controls a degree of engagement of a lock-up clutch.
[0002]
[Prior art]
Conventionally, an engine and a motor / generator are used as power sources, and a part of the running energy of a vehicle is converted into electric energy by the motor / generator and stored in a power storage device (so-called regenerative processing is performed) to improve fuel efficiency. There is something to plan. As a hybrid vehicle of this type, a hybrid vehicle in which a torque converter having a lock-up clutch is provided between a power source and a drive wheel, and the transmission efficiency of power between the power source and the drive wheel is adjusted by the lock-up clutch. is there.
[0003]
In performing the above-described regenerative processing, when the lock-up clutch is engaged with the motor generator, the traveling energy of the drive wheels can be directly transmitted to the motor generator. However, since torque fluctuations at the drive source are also transmitted directly to the drive wheels, noise, vibration, etc. are generated and drivability deteriorates. Therefore, it is important to control the engagement state of the lock-up clutch so as to obtain high regenerative efficiency while suppressing these.
[0004]
Therefore, there has been proposed an apparatus that performs a regenerative process by controlling the hydraulic pressure of a lock-up clutch so as to slide the drive source. For example, Japanese Patent Application Laid-Open No. 2000-170903 has means for controlling the engagement state of a lock-up clutch, and controls the engagement state (oil pressure) of the lock-up clutch by feedback so that the regeneration efficiency is maximized. Are disclosed.
[0005]
[Problems to be solved by the invention]
However, the hybrid vehicle has various running states (for example, whether or not the brake is operated, whether or not the cylinder is deactivated, etc.), and the amount of power that can be regenerated (the amount of regenerated power) differs depending on the running state. Therefore, when the running state is switched, the regeneration amount may fluctuate significantly. Since the degree of engagement (control oil pressure) of the lock-up clutch for obtaining this regenerative amount also fluctuates greatly, control of the oil pressure of the lock-up clutch by feedback control as described above can cause the large fluctuation to follow. It is difficult to control the hydraulic pressure of the lock-up clutch. For this reason, there has been a problem that the regeneration efficiency cannot be sufficiently increased.
[0006]
The present invention has been made in view of such circumstances, and a driving force control device for a hybrid vehicle that can control the hydraulic pressure of a lock-up clutch so that high regenerative efficiency can be obtained even when the running state changes. The purpose is to provide.
[0007]
[Means for Solving the Problems]
In order to solve the above problem, the invention described in claim 1 includes an engine (for example, an engine 2 in an embodiment described later) and a motor generator (for example, a motor generator 3 in an embodiment described later). A torque converter having a lock-up clutch (for example, a lock-up clutch 4 in an embodiment to be described later) between the power source and a drive wheel (for example, a drive wheel W in an embodiment to be described later) as a power source. For example, an automatic transmission (for example, an automatic transmission 6 in an embodiment described later) is provided via a torque converter 5 in an embodiment described later, and switching of a power source of a vehicle and a slip rate of a lock-up clutch are performed. Equipped with a control unit (for example, an ECU 13 in an embodiment described later) for controlling hydraulic pressure by hydraulic pressure. A driving force control device for a lid vehicle (for example, a driving force control device for a hybrid vehicle in an embodiment to be described later), wherein the control means performs target regeneration based on regeneration amount determination information obtained according to a traveling state of the vehicle. The required torque at the engine and the motor / generator end is calculated by retrieving the amount, adding the regenerative torque corresponding to the target regenerative amount to the friction torque searched by the friction torque information , and holding the required torque. Calculate the base oil pressure, control the oil pressure of the lock-up clutch to this base oil pressure, perform feedforward control to obtain the target slip rate of the lock-up clutch, and, based on the difference between the target slip rate and the actual slip rate, Driving force control device for hybrid vehicle, characterized in that feedback control of hydraulic pressure of lock-up clutch is performed. It is.
[0008]
According to the present invention, the target regeneration amount is searched by the regeneration amount determination information obtained according to the traveling state of the vehicle, so that even if the traveling state of the vehicle changes, high regeneration efficiency can be obtained. The quantity can be set. Then, since the required torque is obtained by adding the friction torque generated by the power source due to a change in the running state to the regenerative torque searched according to the running state of the vehicle, noise and vibration are suppressed to improve drivability. It is possible to obtain a torque that can obtain a required regenerative amount while maintaining the torque.
[0009]
Then, a base oil pressure for obtaining the necessary torque is calculated, and the base oil pressure is used to control the oil pressure of the lock-up clutch, so that feed-forward control for obtaining the target slip ratio of the lock-up clutch is performed. The lock-up clutch can be controlled so as to be in an appropriate engagement state. Further, even if the traveling state changes, an appropriate base hydraulic pressure can be obtained in accordance with the fluctuation. Since the target slip ratio of the lock-up clutch is subjected to feedforward control using the base hydraulic pressure, the target slip ratio can be controlled by making the base hydraulic pressure follow the fluctuation even when the running state changes.
[0010]
In addition, by performing feedback control of the hydraulic pressure of the lock-up clutch based on the difference between the target slip rate and the actual slip rate, it is possible to perform control to further increase the regenerative efficiency. Therefore, it is possible to control the oil pressure of the lock-up clutch so that high regenerative efficiency can be obtained even when the running state changes.
[0011]
Here, the regenerative amount determination information includes the remaining battery charge (SOC), the gear position (GP) of the automatic transmission, the presence or absence of the operation of the air conditioner, the engine speed, the brake operation status, and the like. Further, the friction torque information includes the presence / absence of cylinder deactivation, presence / absence of fuel cutoff (fuel cut), engine speed, presence / absence of operation of an air conditioner (load condition of the air conditioner), temperature of engine cooling water, and the like. In particular, it is preferable that the friction torque information includes a fuel cut during deceleration, a cylinder stop, and a load condition of the air conditioner.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a driving force control device for a hybrid vehicle according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a driving force control device 1 for a hybrid vehicle according to an embodiment of the present invention.
[0013]
As shown in the figure, an engine 2 as a power source and a motor generator 3 are connected in series. An automatic transmission 6 is arranged between these power sources and the wheels W, W via a torque converter 5 having a lock-up clutch 4, and the automatic transmission 6 is connected to the power source. Further, a differential gear 8 is interposed between the automatic transmission 6 and the wheels W, W. The input side of the torque converter 5 is connected to the rotating shaft of the motor generator 3, and the output side of the torque converter 5 is connected to the input shaft 10 of the automatic transmission 6. Further, an oil pump 12 capable of supplying a control oil pressure for controlling the engagement state of the lock-up clutch 4 and an ECU 13 are provided.
[0014]
The torque converter 5 transmits torque via a fluid. The torque converter 5 includes a front cover 5a connected to the rotating shaft 9 of the motor / generator 3, a pump impeller 5b provided integrally therewith, and a pump impeller 5b between the front cover 5a and the pump impeller 5b. It is configured to include a turbine runner 5c that is arranged to face, and a stator 5d that is arranged between the pump impeller 5b and the turbine runner 5c.
[0015]
Further, a lock-up clutch 4 is provided between the turbine runner 5c and the front cover 5a so as to face the inner surface of the front cover 5a and can be engaged with the front cover 5a. The working oil is sealed in a container formed by the front cover 5a and the pump impeller 5b.
[0016]
The lock-up clutch 4 can be controlled to be engaged with the front cover 5a, and when the lock-up clutch 4 is disengaged (that is, disengaged), the pump impeller 5b is turned on by the front cover 5a. When rotated integrally with the shaft 5a, a helical flow of hydraulic oil is generated, and the helical flow of hydraulic oil acts on the turbine runner 5c to generate a rotational driving force, and a torque is applied to the output shaft 5e of the torque converter 5 via the hydraulic oil. Is transmitted.
When the lock-up clutch 4 is directly engaged, the rotational driving force is directly transmitted from the front cover 5a to the turbine runner 5c to the output shaft 5e without using the hydraulic oil.
[0017]
The degree of engagement of the lock-up clutch 4 is made variable by controlling the operating oil pressure of the lock-up clutch 4, and the rotation transmitted from the front cover 5 a to the turbine runner 5 c via the lock-up clutch 4. The driving force can be arbitrarily changed. The hydraulic pressure of the lockup clutch 4 can be controlled by a hydraulic circuit (not shown) provided between the lockup clutch 4 and the oil pump 12.
[0018]
The transmission 6 has a gear train (not shown) provided between the input shaft 10 and the output shaft 7 and capable of changing a speed ratio, and a clutch (not shown) for changing a power transmission gear of the gear train. Is provided with a hydraulic circuit (not shown) for operating the. The shift operation of the transmission 6 is executed by the ECU 13 controlling the hydraulic circuit and driving the clutch in accordance with, for example, a shift operation input from a driver or an operating state of the vehicle. The oil pump 12 is driven by power supply from a power storage device (not shown).
[0019]
As shown in FIG. 1, various sensors 21 to 28 are connected to the ECU 13, and based on information acquired by these sensors 21 to 28, switching of the power source of the vehicle and engagement of the lock-up clutch 4 are performed. The degree of matching can be controlled. In the present embodiment, an engine state detection sensor 21 for detecting a state of the engine 2 (presence or absence of cylinder deactivation, presence / absence of fuel cut), an accelerator pedal depression amount detection sensor 22, a brake operation detection sensor 23, A battery remaining capacity (SOC) detection sensor 24 to which regenerative power is charged, an air conditioner operation detection sensor 25, a hydraulic oil temperature detection sensor 26 that detects the hydraulic oil temperature of the lock-up clutch 4, and a gear of the automatic transmission 6. A shift stage detection sensor 27 for detecting a position (GP) and a slip ratio detection sensor 28 for detecting a torque converter slip ratio (ETR) are provided. In the present embodiment, the regenerative amount determination information for searching for the target regenerative amount by the sensors 21 to 28 and the friction torque information for searching for the friction torque are input to the ECU 13. This will be described later in detail.
[0020]
A case where regenerative braking is performed in the driving force control device 1 for a hybrid vehicle configured as described above will be described with reference to FIG. FIG. 2 is a main flow of the lock-up clutch 4 when regenerative braking is performed by the driving force control device 1 of FIG.
First, as shown in step S20 of the figure, it is determined whether or not the regeneration process can be performed (whether or not the regeneration is permitted). If the determination is "YES", the flow proceeds to step S30. If the determination result is "NO", the series of processing ends.
[0021]
If regeneration is permitted, a search for a target regeneration amount according to the running state of the vehicle is performed as shown in step S30. The search for the target regenerative amount is performed based on regenerative amount determination information, which will be described later in detail.
[0022]
Next, as shown in step S40, the regenerative torque corresponding to the target regenerative amount is searched, and the friction torque in the engine as the power source is searched, and the required torque is calculated by adding the friction torque to the regenerative torque. (The torque at the engine 2 and the motor / generator 3 end) is calculated. The search for the friction torque is performed based on the friction torque information described in detail later.
[0023]
Next, as shown in step S50, the base hydraulic pressure of the lock-up clutch 4 is calculated based on the required torque, and feedforward control is performed so that the hydraulic pressure of the lock-up clutch 4 becomes the base hydraulic pressure.
[0024]
Then, as shown in step S60, the hydraulic pressure of the lock-up clutch 4 is feedback-controlled based on the difference between the target slip rate (target ETR) and the actual slip rate (actual ETR), so that the lock-up clutch 4 Adjust the degree of engagement.
[0025]
Each process in the above-described main flow will be described in more detail with reference to FIGS. FIG. 3 is a sub-flow chart of the target regeneration amount search process in the ECU 13 shown in step S30 of FIG. In this process, regenerative amount determination information for searching for a target regenerative amount is input to the ECU 13 based on the information from the sensors 21 to 28 described above. That is, as shown in step S31, the ECU 13 inputs the regenerative amount determination information such as the gear position (GP) of the automatic transmission 6, the number of revolutions of the engine 2, the operation of the brake, and the operation of the air conditioner. The ECU 13 holds tables of regeneration amounts corresponding to the respective regeneration amount determination information, and reads out the target regeneration amounts from these tables as shown in step S32.
[0026]
As an example of this, FIG. 4 shows a case where the target regeneration amount is read from the table in the brake operating state, which is one of the regeneration amount determination information. FIG. 4A is a table showing the relationship between the engine speed when the brake is off and the corresponding regeneration amount, and FIG. 4B is a table showing the engine speed and the corresponding regeneration when the brake is on. It is a table which shows the relationship with quantity. These relationships are obtained for each gear position (GP), and lines A to D in FIG. 4 show a state where the gear positions are in the second to fifth speeds. FIG. 4A shows a case where the target regeneration amount is read from the input engine speed when the gear position is the fourth speed (line C). Similarly, tables corresponding to the other regeneration amount determination information are held, and a target regeneration amount corresponding to the input regeneration amount determination information is searched. In this way, an appropriate regeneration amount can be determined according to the traveling state.
[0027]
Next, the regenerative torque and the friction torque are searched. FIG. 5 is a sub-flow chart showing the regenerative torque and friction torque search processing shown in step S40 of FIG. In this process, friction torque information for searching for friction torque is input to the ECU 13 based on the information of the sensors 21 to 28 described above. That is, as shown in step S41, the ECU 13 inputs the engine speed, the presence or absence of cylinder deactivation, the presence or absence of fuel cut, the presence or absence of operation of the air conditioner, and the like, which are friction torque information. The ECU 13 holds a table of friction torque corresponding to each piece of friction torque information (see FIG. 6C). As shown in step S42, the ECU 13 reads the engine friction torque corresponding to the friction torque information from these tables. Read out. Then, the target regenerative amount (see FIG. 6A) obtained as described above is converted into a regenerative torque (see FIG. 6B), and the regenerative torque is applied to the engine as shown in step S43. The required torque is determined in consideration of the friction torque (see FIG. 6D).
[0028]
The processing of FIG. 5 described above will be described with reference to FIG. FIG. 6A is a table showing the relationship between the engine speed and the regenerative amount for each gear position, and FIG. 6B is a table in which the regenerative amount is converted into regenerative torque. In these figures, lines A to D correspond to the case where the gear position is in the second to fifth gears. In the present embodiment, the line C when the gear position is the fourth speed is searched as the regenerative torque.
[0029]
FIG. 6C is a table showing the relationship between the engine speed and the engine friction torque corresponding to the presence or absence of cylinder deactivation, which is one of the friction torque information. In the figure, a line E indicates a case where cylinder deactivation is performed, and a line F indicates a case where cylinder deactivation is not performed. FIG. 6D is a table showing the relationship between the engine speed and the required torque. The required torque is obtained by adding the friction torque of FIG. 6C to the regenerative torque of FIG. A line G in FIG. 6D shows a case where the gear position is in the fourth speed (line C in FIG. 6B) and a case where the cylinder is not deactivated (line F in FIG. 6C). ing. In this way, noise and vibration can be suppressed to maintain good drivability, and a torque that can provide a required amount of regeneration can be obtained. Similarly, for other pieces of friction torque information, tables corresponding to the respective pieces of friction torque information are held, and a friction torque suitable for a running state can be determined from these tables.
[0030]
Next, the base hydraulic pressure of the lock-up clutch 4 is searched. FIG. 7 is a sub-flow chart showing a search process of the base oil pressure of the lock-up clutch (L / C) 4 of FIG. In step S51 in FIG. 8, the required torque (the torque at the end of the engine 2 and the motor / generator 3) is determined as α, as shown in FIG. When obtaining the base oil pressure of the lock-up clutch 4 from this α, the correction is made as the correction term H in consideration of the change due to the degree of engagement of the lock-up clutch 4 (slip ratio that changes depending on the gear position and the vehicle speed). By performing this correction, the target torque capacity of the lock-up clutch 4 becomes α ′.
[0031]
Then, as shown in step S52, a base oil pressure corresponding to the target torque capacity α 'is searched from FIG. FIG. 8 is a table showing the relationship between the target torque capacity and the base oil pressure. In this table, lines I to K correspond to the cases where the temperature of the hydraulic oil is 60 degrees, 70 degrees, and 80 degrees. FIG. 7 shows a case where the base oil pressure β is calculated from the target torque capacity α ′ in the line I where the temperature of the hydraulic oil is 60 degrees. The hydraulic pressure of the lock-up clutch 4 is subjected to feedforward control based on the calculated base hydraulic pressure.
[0032]
Thus, the lock-up clutch 4 can be controlled so as to be in an appropriate engagement state according to the traveling state. Further, even if the running state changes, a base oil pressure corresponding thereto is obtained, and the lock-up clutch 4 is controlled by this base oil pressure. Hydraulic pressure can be controlled.
[0033]
Then, as described below, the hydraulic pressure of the lock-up clutch 4 is feedback-controlled. FIG. 9 is a sub-flow chart showing the feedback control processing of the lock-up clutch 4 shown in step S60 of FIG. FIG. 10 is a block diagram showing the processing contents of FIG. In the present embodiment, the feedback control is performed based on a torque converter slip ratio (ETR). This slip ratio is defined as in the following equation (1).
[0034]
Formula (1): ETR = Ns / Ne
[0035]
Here, Ns is the rotation speed of the input shaft 10, and Ne is the rotation speed of the rotation shaft 9 of the engine 2. In performing the slip control, a target slip rate is calculated, and a difference from an actual slip rate is obtained. Then, as shown in step S61 of FIG. 9, a difference between the target slip ratio and the actual slip ratio is obtained, and PI (proportional or integral) control is performed. That is, as shown in step S61, a value obtained by multiplying the difference between the target slip rate and the actual slip rate by the PI gain is used as the feedback term. Then, as shown in step S62, the sum of the base oil pressure of the lock-up clutch 4 and the feedback term is set as the oil pressure command value of the lock-up clutch 4. Thereby, the control accuracy of the lock-up clutch 4 can be increased so that higher regenerative efficiency can be obtained. Before the feedback control process is performed, the hydraulic pressure of the lock-up clutch 4 is subjected to feedforward control, so that the control in the feedback control requires relatively fine adjustment. Therefore, unlike the related art, even when the running state changes, appropriate control can be performed following the change. In the embodiment, the PI control is used. However, the present invention is not limited to this. The control may be changed to P (proportional) control or PID (proportional, integral, differential) control as needed.
[0036]
As described above, in the driving force control device for a hybrid vehicle according to the present embodiment, the hydraulic pressure of the lock-up clutch can be controlled so that high regenerative efficiency can be obtained even when the running state changes. Note that the content of the present invention is not limited to the embodiment. For example, the automatic transmission may be an AT (stepped transmission) or a CVT (stepless transmission).
[0037]
【The invention's effect】
According to the first and second aspects of the present invention, the regenerative amount can be set so that high regenerative efficiency can be obtained even when the running state of the vehicle changes. Further, it is possible to obtain a torque that can obtain a required regeneration amount while suppressing noise and vibration and maintaining good drivability. Then, the lock-up clutch can be controlled so as to be in an appropriate engagement state according to the running state, and the lock-up clutch can sufficiently follow the change in the running state. In addition, by performing feedback control, control accuracy can be further increased. Therefore, it is possible to control the oil pressure of the lock-up clutch so that high regenerative efficiency can be obtained even when the running state changes.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a driving force control device for a hybrid vehicle according to an embodiment of the present invention.
FIG. 2 is a main flowchart showing control of a lock-up clutch when performing regenerative braking in the driving force control device of FIG. 1;
FIG. 3 is a sub-flow chart showing a target regeneration amount search process of FIG. 2;
FIG. 4 is a table used in the processing steps of FIG. 3;
FIG. 5 is a process diagram showing a sub-flow showing a friction torque search process during regeneration in FIG. 2;
FIG. 6 is a table used in the processing steps of FIG. 4;
FIG. 7 is a sub-flow chart showing a search process of a base oil pressure applied to the lock-up clutch of FIG. 2;
FIG. 8 is a table used in the processing steps of FIG. 7;
FIG. 9 is a sub-flow chart showing a lock-up clutch slip feedback control process of FIG. 2;
FIG. 10 is a block diagram illustrating a control process of FIG. 9;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Driving force control device of hybrid vehicle 2 Engine 3 Motor / generator 4 Lock-up clutch (L / C clutch)
5 Torque converter 6 Transmission 7 Output shaft 12 Oil pump 13 ECU

Claims (2)

エンジンとモータ・ジェネレータとを動力源とし、これら動力源と駆動輪との間にロックアップクラッチを備えたトルクコンバータを介して自動変速機が配設され、車両の動力源の切り替えおよびロックアップクラッチのすべり率を油圧により制御する制御手段を備えたハイブリッド車両の駆動力制御装置であって、
前記制御手段は、
車両の走行状態に応じて得られる回生量決定情報により目標回生量を検索し、
該目標回生量に見合った回生トルクにフリクショントルク情報により検索されるフリクショントルクを加味して、エンジンとモータ・ジェネレータ端での必要トルクを算出し、
この必要トルクを保持可能なベース油圧を算出し、このベース油圧にロックアップクラッチの油圧を制御して、ロックアップクラッチの目標すべり率を得るフィードフォワード制御を行い、
目標すべり率と実すべり率との差分に基づいて、ロックアップクラッチの油圧をフィードバック制御することを特徴とするハイブリッド車両の駆動力制御装置。
An automatic transmission is provided between the power source and the drive wheels via a torque converter having a lock-up clutch, which uses an engine and a motor / generator as power sources. A driving force control device for a hybrid vehicle including a control unit for controlling a slip ratio by hydraulic pressure,
The control means,
Search for the target regeneration amount by the regeneration amount determination information obtained according to the traveling state of the vehicle,
In consideration of the friction torque searched by the friction torque information to the regenerative torque corresponding to the target regenerative amount , the necessary torque at the engine and the motor / generator end is calculated,
Calculate a base oil pressure capable of holding the required torque, control the oil pressure of the lock-up clutch to this base oil pressure, and perform feedforward control to obtain a target slip ratio of the lock-up clutch,
A driving force control device for a hybrid vehicle, wherein feedback control of a hydraulic pressure of a lock-up clutch is performed based on a difference between a target slip ratio and an actual slip ratio.
前記フリクショントルク情報は、減速時のフューエルカット、気筒休止、エアコンの負荷条件を含むことを特徴とする請求項1に記載のハイブリッド車両の駆動力制御装置。The driving force control device for a hybrid vehicle according to claim 1, wherein the friction torque information includes a fuel cut during deceleration, a cylinder deactivation, and a load condition of an air conditioner.
JP2002072639A 2002-03-15 2002-03-15 Driving force control device for hybrid vehicle Expired - Fee Related JP3547732B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002072639A JP3547732B2 (en) 2002-03-15 2002-03-15 Driving force control device for hybrid vehicle
DE10310594A DE10310594A1 (en) 2002-03-15 2003-03-11 Drive power control device for a hybrid vehicle
US10/385,728 US7100720B2 (en) 2002-03-15 2003-03-12 Driving power control devices for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002072639A JP3547732B2 (en) 2002-03-15 2002-03-15 Driving force control device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2003269604A JP2003269604A (en) 2003-09-25
JP3547732B2 true JP3547732B2 (en) 2004-07-28

Family

ID=28035180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002072639A Expired - Fee Related JP3547732B2 (en) 2002-03-15 2002-03-15 Driving force control device for hybrid vehicle

Country Status (3)

Country Link
US (1) US7100720B2 (en)
JP (1) JP3547732B2 (en)
DE (1) DE10310594A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9278685B2 (en) * 2012-12-10 2016-03-08 Ford Global Technologies, Llc Method and system for adapting operation of a hybrid vehicle transmission torque converter lockup clutch

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6945905B2 (en) * 2003-10-22 2005-09-20 General Motors Corporation CVT hybrid powertrain fueling and engine stop-start control method
JP3701662B2 (en) * 2004-02-18 2005-10-05 本田技研工業株式会社 Automatic transmission control device for hybrid vehicle
DE102004009030B4 (en) * 2004-02-23 2020-07-23 Renk Aktiengesellschaft Drive for a tracked vehicle
JP2006081324A (en) * 2004-09-10 2006-03-23 Toyota Motor Corp Hybrid car and its control method
DE102004061034A1 (en) * 2004-12-18 2006-06-22 Daimlerchrysler Ag Method for monitoring a transmission oil pump
DE102005035824A1 (en) * 2005-07-30 2007-02-01 Renk Ag Hybrid drive for a motor vehicle
JP4462170B2 (en) * 2005-11-07 2010-05-12 日産自動車株式会社 Engine start control device for hybrid vehicle
KR100708596B1 (en) 2006-01-06 2007-04-18 한국파워트레인 주식회사 Oil pressure control method of torque converter for hybrid electric vehicle
DE102006018058A1 (en) * 2006-04-19 2007-11-08 Zf Friedrichshafen Ag Method for operating a parallel hybrid drive train of a vehicle with multiple drive units
DE102006034935B4 (en) * 2006-07-28 2016-10-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Drive train and associated operating method
KR100756722B1 (en) 2006-08-09 2007-09-07 현대자동차주식회사 Hybrid power train for a vehicle
KR100774666B1 (en) * 2006-10-18 2007-11-08 현대자동차주식회사 Hybrid power train structure
KR100992769B1 (en) * 2007-10-17 2010-11-05 기아자동차주식회사 Control method for fuel consumption improvement of hybrid electric vehicles
US8430789B2 (en) * 2009-01-08 2013-04-30 Aisin Aw Co., Ltd. Vehicle control device
CN102625886B (en) * 2009-05-19 2014-05-14 丰田自动车株式会社 Control device for vehicular power transmission system
JP4896184B2 (en) * 2009-06-09 2012-03-14 本田技研工業株式会社 Control device for lock-up clutch
KR101081338B1 (en) 2009-06-22 2011-11-08 주식회사 케피코 Apparatus and method for preventing shudder by Cylinder De-Activation and Damper Clutch
EP2634054B1 (en) * 2010-10-27 2021-01-27 Nissan Motor Co., Ltd Electric vehicle control apparatus
JP5673815B2 (en) * 2011-06-01 2015-02-18 トヨタ自動車株式会社 Control device for vehicle drive device
US8517892B2 (en) * 2011-08-08 2013-08-27 Bae Systems Controls Inc. Method and apparatus for controlling hybrid electric vehicles
DE112011105679T5 (en) * 2011-09-28 2014-07-17 Toyota Jidosha Kabushiki Kaisha Control device for vehicle drive device
CN104011438B (en) * 2012-01-11 2016-06-29 本田技研工业株式会社 The control device of lock-up clutch
WO2014027401A1 (en) * 2012-08-14 2014-02-20 三菱電機株式会社 Train-information management device and device control method
US9416743B2 (en) * 2012-10-03 2016-08-16 GM Global Technology Operations LLC Cylinder activation/deactivation sequence control systems and methods
US9719439B2 (en) 2012-08-24 2017-08-01 GM Global Technology Operations LLC System and method for controlling spark timing when cylinders of an engine are deactivated to reduce noise and vibration
US9249747B2 (en) * 2012-09-10 2016-02-02 GM Global Technology Operations LLC Air mass determination for cylinder activation and deactivation control systems
US9376973B2 (en) 2012-09-10 2016-06-28 GM Global Technology Operations LLC Volumetric efficiency determination systems and methods
US9650978B2 (en) 2013-01-07 2017-05-16 GM Global Technology Operations LLC System and method for randomly adjusting a firing frequency of an engine to reduce vibration when cylinders of the engine are deactivated
US9638121B2 (en) * 2012-08-24 2017-05-02 GM Global Technology Operations LLC System and method for deactivating a cylinder of an engine and reactivating the cylinder based on an estimated trapped air mass
US9249749B2 (en) 2012-10-15 2016-02-02 GM Global Technology Operations LLC System and method for controlling a firing pattern of an engine to reduce vibration when cylinders of the engine are deactivated
US9458778B2 (en) 2012-08-24 2016-10-04 GM Global Technology Operations LLC Cylinder activation and deactivation control systems and methods
US9140622B2 (en) 2012-09-10 2015-09-22 GM Global Technology Operations LLC System and method for controlling a firing sequence of an engine to reduce vibration when cylinders of the engine are deactivated
US9534550B2 (en) 2012-09-10 2017-01-03 GM Global Technology Operations LLC Air per cylinder determination systems and methods
US9239024B2 (en) 2012-09-10 2016-01-19 GM Global Technology Operations LLC Recursive firing pattern algorithm for variable cylinder deactivation in transient operation
US9222427B2 (en) 2012-09-10 2015-12-29 GM Global Technology Operations LLC Intake port pressure prediction for cylinder activation and deactivation control systems
US9249748B2 (en) 2012-10-03 2016-02-02 GM Global Technology Operations LLC System and method for controlling a firing sequence of an engine to reduce vibration when cylinders of the engine are deactivated
US9458779B2 (en) 2013-01-07 2016-10-04 GM Global Technology Operations LLC Intake runner temperature determination systems and methods
US9726139B2 (en) 2012-09-10 2017-08-08 GM Global Technology Operations LLC System and method for controlling a firing sequence of an engine to reduce vibration when cylinders of the engine are deactivated
US9382853B2 (en) 2013-01-22 2016-07-05 GM Global Technology Operations LLC Cylinder control systems and methods for discouraging resonant frequency operation
US9458780B2 (en) 2012-09-10 2016-10-04 GM Global Technology Operations LLC Systems and methods for controlling cylinder deactivation periods and patterns
US10227939B2 (en) 2012-08-24 2019-03-12 GM Global Technology Operations LLC Cylinder deactivation pattern matching
US8979708B2 (en) * 2013-01-07 2015-03-17 GM Global Technology Operations LLC Torque converter clutch slip control systems and methods based on active cylinder count
JP5578336B2 (en) * 2012-12-11 2014-08-27 三菱自動車工業株式会社 Control device for hybrid vehicle
US9494092B2 (en) 2013-03-13 2016-11-15 GM Global Technology Operations LLC System and method for predicting parameters associated with airflow through an engine
US9145128B2 (en) 2013-10-15 2015-09-29 Ford Global Technologies, Llc Coordinating regenative braking with torque converter clutch operation
US9441550B2 (en) 2014-06-10 2016-09-13 GM Global Technology Operations LLC Cylinder firing fraction determination and control systems and methods
US9341128B2 (en) 2014-06-12 2016-05-17 GM Global Technology Operations LLC Fuel consumption based cylinder activation and deactivation control systems and methods
DE102014211552A1 (en) * 2014-06-17 2015-12-31 Continental Automotive Gmbh Control of a coupling device for optimizing a recuperation of an electric motor
US9556811B2 (en) 2014-06-20 2017-01-31 GM Global Technology Operations LLC Firing pattern management for improved transient vibration in variable cylinder deactivation mode
US9599047B2 (en) 2014-11-20 2017-03-21 GM Global Technology Operations LLC Combination cylinder state and transmission gear control systems and methods
US10337441B2 (en) 2015-06-09 2019-07-02 GM Global Technology Operations LLC Air per cylinder determination systems and methods
JP6531627B2 (en) * 2015-11-12 2019-06-19 トヨタ自動車株式会社 Lock-up clutch control device
JP2018062886A (en) * 2016-10-12 2018-04-19 いすゞ自動車株式会社 Fuel-saving control device and fuel-saving control method
JP6787023B2 (en) * 2016-10-12 2020-11-18 いすゞ自動車株式会社 Fuel economy control device and fuel economy control method
US10336316B2 (en) 2016-11-03 2019-07-02 Ford Global Technologies, Llc Control system for a clutch during a regenerative braking event
US10393258B2 (en) 2017-01-17 2019-08-27 Ford Global Technologies, Llc Hybrid vehicle clutch control system
WO2019037869A1 (en) * 2017-08-25 2019-02-28 Volvo Construction Equipment Ab A drive system and a method for controlling a drive system of a working machine
US10377369B2 (en) * 2017-12-12 2019-08-13 Ford Global Technologies, Llc Methods and system for predicting driveline disconnect clutch torque
KR102507232B1 (en) * 2017-12-21 2023-03-07 현대자동차주식회사 Controlled method of damper pulley clutch for vehicles
BE1025861B9 (en) * 2017-12-29 2019-10-14 Punch Powertrain Nv DRIVER FOR A COUPLING IN A DRIVE LINE AND METHOD FOR DRIVING A COUPLING IN A DRIVE LINE AND A DRIVE LINE CONTAINING THE DRIVING DEVICE
US10746291B2 (en) * 2019-01-17 2020-08-18 Ford Global Technologies, Llc Engine torque and torque converter bypass clutch slip control during vehicle launch

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141273A (en) 1987-11-27 1989-06-02 Mazda Motor Corp Lock-up clutch controller for automatic transmission
JP2807495B2 (en) 1989-07-27 1998-10-08 マツダ株式会社 Fluid coupling slip control device
JPH0596978A (en) 1991-10-09 1993-04-20 Mazda Motor Corp Control device for engine
JPH05133469A (en) 1991-11-11 1993-05-28 Japan Electron Control Syst Co Ltd Controller of automatic transmission for vehicle
JPH05172239A (en) 1991-12-19 1993-07-09 Japan Electron Control Syst Co Ltd Lockup control device for automatic transmission
JPH0687356A (en) 1992-09-09 1994-03-29 Toyota Motor Corp Engine brake force automatic control device
JP3319054B2 (en) 1993-08-04 2002-08-26 三菱自動車工業株式会社 Control device for torque converter clutch
JPH0868459A (en) 1994-08-30 1996-03-12 Mitsubishi Motors Corp Fluid coupling clutch control device
JP3201246B2 (en) 1996-01-26 2001-08-20 日産自動車株式会社 Control device with correction function
JP3505909B2 (en) 1996-04-30 2004-03-15 日産自動車株式会社 Lockup control device for automatic transmission
JP2857666B2 (en) * 1996-06-12 1999-02-17 本田技研工業株式会社 Control device for hybrid vehicle
JP3585207B2 (en) 1997-08-28 2004-11-04 本田技研工業株式会社 Control device for lock-up clutch
JP2000118246A (en) 1998-10-15 2000-04-25 Toyota Motor Corp Control device for driving gear of vehicle
JP3893778B2 (en) 1998-11-09 2007-03-14 トヨタ自動車株式会社 Lock-up clutch control device
JP3858487B2 (en) 1998-12-08 2006-12-13 トヨタ自動車株式会社 Powertrain control device
JP2001090830A (en) 1999-09-24 2001-04-03 Toyota Motor Corp Vehicular braking force control device
JP2001193834A (en) 2000-01-04 2001-07-17 Hitachi Ltd Control device for lockup clutch
JP2002305806A (en) * 2001-03-30 2002-10-18 Aisin Aw Co Ltd Drive control device for hybrid vehicle, drive control method for hybrid vehicle and its program
JP3547734B2 (en) * 2002-03-27 2004-07-28 本田技研工業株式会社 Hybrid vehicle
JP2003278910A (en) * 2002-03-27 2003-10-02 Honda Motor Co Ltd Hybrid vehicle
JP2004224110A (en) * 2003-01-21 2004-08-12 Suzuki Motor Corp Regeneration power generation control device for hybrid vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9278685B2 (en) * 2012-12-10 2016-03-08 Ford Global Technologies, Llc Method and system for adapting operation of a hybrid vehicle transmission torque converter lockup clutch

Also Published As

Publication number Publication date
US20030173125A1 (en) 2003-09-18
US7100720B2 (en) 2006-09-05
DE10310594A1 (en) 2003-10-09
JP2003269604A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
JP3547732B2 (en) Driving force control device for hybrid vehicle
JP3912235B2 (en) Vehicle hydraulic control device
JP4127142B2 (en) Control device for hybrid vehicle
JP3514142B2 (en) Vehicle control device
US6565473B2 (en) Hydraulic pressure control apparatus for automatic transmission of vehicle
EP1628849B1 (en) Control apparatus and control method for drive apparatus of hybrid vehicle
JP3622689B2 (en) Hydraulic oil temperature control device for power transmission
CN104684781B (en) For the control device of vehicle
JP3716659B2 (en) Vehicle travel control device
JP4277856B2 (en) Vehicle and control method thereof
US20180043791A1 (en) Vehicle
JP6098395B2 (en) Control device for hybrid vehicle
JP5906575B2 (en) Control device for continuously variable transmission
JP3826248B2 (en) Control device for hybrid vehicle
JP3648411B2 (en) Electric hydraulic pump control apparatus and method for automatic transmission
JP2000170903A (en) Control device for power train
WO2013005325A1 (en) Vehicle control device and control method
JP3949618B2 (en) Control device for hybrid vehicle
JP4155962B2 (en) Hybrid vehicle
JP2000197209A (en) Controller for hybrid vehicle
JP2005132181A (en) Parallel hybrid vehicle
JP2008189243A (en) Control apparatus and control method for power train, program for implementing the method, and recording medium with the program recorded thereon
JP2020131719A (en) Control device
JP2008162348A (en) Apparatus and method for controlling power train, program for implementing the method, and recording medium with the program recorded
JP3899701B2 (en) Control device for front and rear wheel drive vehicle

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040414

R150 Certificate of patent or registration of utility model

Ref document number: 3547732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees