JP3547732B2 - Driving force control device for hybrid vehicle - Google Patents
Driving force control device for hybrid vehicle Download PDFInfo
- Publication number
- JP3547732B2 JP3547732B2 JP2002072639A JP2002072639A JP3547732B2 JP 3547732 B2 JP3547732 B2 JP 3547732B2 JP 2002072639 A JP2002072639 A JP 2002072639A JP 2002072639 A JP2002072639 A JP 2002072639A JP 3547732 B2 JP3547732 B2 JP 3547732B2
- Authority
- JP
- Japan
- Prior art keywords
- clutch
- lock
- torque
- regenerative
- driving force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000001172 regenerating effect Effects 0.000 claims description 43
- 230000008929 regeneration Effects 0.000 claims description 31
- 238000011069 regeneration method Methods 0.000 claims description 31
- 230000005540 biological transmission Effects 0.000 claims description 19
- 239000003921 oil Substances 0.000 claims description 16
- 239000002199 base oil Substances 0.000 claims description 15
- 230000009849 deactivation Effects 0.000 claims description 7
- 239000000446 fuel Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 description 13
- 238000001514 detection method Methods 0.000 description 8
- 239000010720 hydraulic oil Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 239000000498 cooling water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K6/485—Motor-assist type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/003—Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2009—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/14—Control of torque converter lock-up clutches
- F16H61/143—Control of torque converter lock-up clutches using electric control means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/36—Temperature of vehicle components or parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/441—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/443—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/48—Drive Train control parameters related to transmissions
- B60L2240/486—Operating parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/50—Drive Train control parameters related to clutches
- B60L2240/507—Operating parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/26—Transition between different drive modes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/10—Emission reduction
- B60L2270/14—Emission reduction of noise
- B60L2270/145—Structure borne vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0638—Engine speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/10—Change speed gearings
- B60W2510/1005—Transmission ratio engaged
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/24—Energy storage means
- B60W2510/242—Energy storage means for electrical energy
- B60W2510/244—Charge state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/12—Brake pedal position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/02—Clutches
- B60W2710/025—Clutch slip, i.e. difference between input and output speeds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/36—Inputs being a function of speed
- F16H59/46—Inputs being a function of speed dependent on a comparison between speeds
- F16H2059/465—Detecting slip, e.g. clutch slip ratio
- F16H2059/467—Detecting slip, e.g. clutch slip ratio of torque converter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/14—Control of torque converter lock-up clutches
- F16H61/143—Control of torque converter lock-up clutches using electric control means
- F16H2061/145—Control of torque converter lock-up clutches using electric control means for controlling slip, e.g. approaching target slip value
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Control Of Fluid Gearings (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、エンジンとモータ・ジェネレータを動力源とし、これらと駆動輪との間にロックアップクラッチを備えたトルクコンバータを介して自動変速機が配設されたハイブリッド車両であって、回生時におけるロックアップクラッチの締結度合いを制御するハイブリッド車両の駆動力制御装置に関する。
【0002】
【従来の技術】
従来、エンジンとモータ・ジェネレータとを動力源とし、車両の走行エネルギーの一部を前記モータ・ジェネレータにより電気エネルギーに変換して蓄電装置に蓄えて(いわゆる回生処理を行って)、燃費の向上を図るものがある。この種のハイブリッド車両としては、動力源と駆動輪との間にロックアップクラッチを備えたトルクコンバータを設けて、該ロックアップクラッチにより動力源と駆動輪間の動力の伝達効率を調整するものがある。
【0003】
上述した回生処理を行うにあたり、ロックアップクラッチをモータ・ジェネレータに締結すると、駆動輪の走行エネルギーを直接モータ・ジェネレータに伝達することができる。しかし、駆動源でのトルク変動も駆動輪に直接伝達されてしまうため、騒音や振動等が発生してしまいドライバビリティが悪化してしまう。従って、これらを抑えつつ高い回生効率が得られるようにロックアップクラッチの係合状態を制御することが重要である。
【0004】
そこで、駆動源に対して滑らせるようにロックアップクラッチの油圧を制御して回生処理を行うものが提案されている。例えば、特開2000−170903号公報には、ロックアップクラッチの係合状態を制御する手段を有し、回生効率が最大となるようにロックアップクラッチの係合状態(油圧)をフィードバックして制御するものが開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、ハイブリッド車両には様々な走行状態(例えばブレーキ作動の有無、気筒休止の有無など)が存在し、この走行状態に応じて回生可能な電力量(回生量)は異なっている。したがって、走行状態が切り替わると、回生量が大幅に変動する場合がある。この回生量を得るためのロックアップクラッチの締結度合い(制御油圧)も大きく変動するため、上述のようにフィードバック制御でロックアップクラッチの油圧を制御するのみでは、その大幅な変動に追従させるようにロックアップクラッチの油圧を制御することが困難である。このため、回生効率を十分に高くすることができないという問題があった。
【0006】
本発明は、このような事情に鑑みてなされたもので、走行状態が変化しても高い回生効率が得られるようにロックアップクラッチの油圧を制御することができるハイブリッド車両の駆動力制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、請求項1に記載した発明は、エンジン(例えば、後述する実施の形態におけるエンジン2)とモータ・ジェネレータ(例えば、後述する実施の形態におけるモータ・ジェネレータ3)とを動力源とし、これら動力源と駆動輪(例えば、後述する実施の形態における駆動輪W)との間にロックアップクラッチ(例えば、後述する実施の形態におけるロックアップクラッチ4)を備えたトルクコンバータ(例えば、後述する実施の形態におけるトルクコンバータ5)を介して自動変速機(例えば、後述する実施の形態における自動変速機6)が配設され、車両の動力源の切り替えおよびロックアップクラッチのすべり率を油圧により制御する制御手段(例えば、後述する実施の形態におけるECU13)を備えたハイブリッド車両の駆動力制御装置(例えば、後述する実施の形態におけるハイブリッド車両の駆動力制御装置1)であって、前記制御手段は、車両の走行状態に応じて得られる回生量決定情報により目標回生量を検索し、該目標回生量に見合った回生トルクにフリクショントルク情報により検索されるフリクショントルクを加味して、エンジンとモータ・ジェネレータ端での必要トルクを算出し、この必要トルクを保持可能なベース油圧を算出して、このベース油圧にロックアップクラッチの油圧を制御して、ロックアップクラッチの目標すべり率を得るフィードフォワード制御を行い、目標すべり率と実すべり率との差分に基づいて、ロックアップクラッチの油圧をフィードバック制御することを特徴とするハイブリッド車両の駆動力制御装置である。
【0008】
この発明によれば、車両の走行状態に応じて得られる回生量決定情報により目標回生量が検索されるので、車両の走行状態が変化した場合であっても高い回生効率が得られるように回生量を設定することができる。そして、車両の走行状態に応じて検索した前記回生トルクに、走行状態の変化などにより動力源で発生する前記フリクショントルクを加味して必要トルクを求めるため、騒音や振動を抑えてドライバビリティを良好に維持しつつ必要な回生量が得られるトルクを求めることができる。
【0009】
ついで、この必要トルクを得るためのベース油圧を算出して、このベース油圧にロックアップクラッチの油圧を制御して、ロックアップクラッチの目標すべり率を得るフィードフォワード制御するため、走行状態に応じて適切な係合状態となるようにロックアップクラッチを制御することができる。また、走行状態が変動してもそれに応じて適切なベース油圧を得ることができる。このベース油圧でロックアップクラッチの目標すべり率をフィードフォワード制御するため、走行状態が変動してもその変動にベース油圧を追従させて目標すべり率を制御することができる。
【0010】
加えて、目標すべり率と実すべり率との差分に基づいて、ロックアップクラッチの油圧をフィードバック制御することにより、回生効率をさらに高めるように制御することができる。したがって、走行状態が変化しても高い回生効率が得られるようにロックアップクラッチの油圧を制御することができる。
【0011】
ここで、回生量決定情報としては、バッテリ残容量(SOC)、自動変速機のギヤポジション(GP)、エアコン作動の有無、エンジン回転数、ブレーキ作動状況などがある。また、フリクショントルク情報としては、気筒休止の有無、燃料遮断(フューエルカット)の有無、エンジン回転数、エアコン作動の有無(エアコンの負荷条件)、エンジン冷却水の温度などがある。特に、前記フリクショントルク情報は、減速時のフューエルカット、気筒休止、エアコンの負荷条件を含むことが好ましい。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態におけるハイブリッド車両の駆動力制御装置を図面と共に説明する。図1は本発明の実施の形態におけるハイブリッド車両の駆動力制御装置1を示す概略構成図である。
【0013】
同図に示したように、動力源であるエンジン2とモータ・ジェネレータ3とが直列に接続されている。これらの動力源と車輪W,Wの間にはロックアップクラッチ4を備えたトルクコンバータ5を介して自動変速機6が配設され、該自動変速機6は前記動力源に接続されている。また、自動変速機6と車輪W、Wの間にはデファレンシャルギア8が介装されている。トルクコンバータ5の入力側にはモータ・ジェネレータ3の回転軸が接続され、トルクコンバータ5の出力側には自動変速機6の入力軸10が接続されている。また、前記ロックアップクラッチ4の係合状態を制御するための制御油圧を供給可能なオイルポンプ12と、ECU13とが設けられている。
【0014】
トルクコンバータ5は、流体を介してトルクの伝達を行うものである。前記トルクコンバータ5は、モータ・ジェネレータ3の回転軸9に連結されたフロントカバー5aと、これに一体に設けられたポンプインペラ5bと、フロントカバー5aとポンプインペラ5bとの間でポンプインペラ5bに対向配置されたタービンランナ5cと、ポンプインペラ5bとタービンランナ5cとの間に配置されたステータ5dとを備えて構成されている。
【0015】
さらに、タービンランナ5cとフロントカバー5aとの間には、フロントカバー5aの内面に対向配置され、フロントカバー5aに係合可能なロックアップクラッチ4が備えられている。そして、フロントカバー5aおよびポンプインペラ5bにより形成される容器内に作動油が封入されている。
【0016】
ロックアップクラッチ4はフロントカバー5aに対して係合状態の制御が可能にされており、ロックアップクラッチ4の係合が解除された状態(すなわち、非係合状態)でポンプインペラ5bがフロントカバー5aと一体に回転すると作動油の螺旋流が発生し、この作動油の螺旋流がタービンランナ5cに作用して回転駆動力を発生させ、作動油を介してトルクコンバータ5の出力軸5eにトルクが伝達される。
また、ロックアップクラッチ4が直結状態にされると、フロントカバー5aからタービンランナ5cへと、作動油を介さず直接に出力軸5eに回転駆動力が伝達される。
【0017】
なお、ロックアップクラッチ4の係合度合いは、ロックアップクラッチ4の作動油圧を制御することにより可変にされており、ロックアップクラッチ4を介してフロントカバー5aからタービンランナ5cへと伝達される回転駆動力は任意に変更可能とされている。なお、ロックアップクラッチ4の作動油圧は、オイルポンプ12との間に設けられた油圧回路(図示せず)により制御可能にされている。
【0018】
変速機6は、その入力軸10と出力軸7との間に設けられ変速比を変更可能なギヤトレーン(図示せず)と、該ギヤトレーンの動力伝達ギヤを変更するためのクラッチ(図示せず)を作動させるための油圧回路(図示せず)を備えて構成されている。この変速機6の変速動作は、ECU13が、例えば運転者から入力されるシフト操作や車両の運転状態に応じて、前記油圧回路を制御し前記クラッチを駆動することにより実行される。また、オイルポンプ12は、蓄電装置(図示せず)からの電力供給により駆動される。
【0019】
また、ECU13には、図1に示したように、各種センサ21〜28が接続され、これらのセンサ21〜28により取得した情報に基づいて、車両の動力源の切り替えやロックアップクラッチ4の係合度合いを制御できるようにしている。本実施の形態においては、エンジン2の状態(気筒休止の有無、フューエルカットの有無)を検出するエンジン状態検出センサ21と、アクセルペダルの踏み込み量検出センサ22と、ブレーキの作動検出センサ23と、回生電力が充電されるバッテリの残容量(SOC)検出センサ24と、エアコン作動検出センサ25と、ロックアップクラッチ4の作動油温度を検出する作動油温度検出センサ26と、自動変速機6のギヤポジション(GP)を検出する変速段検出センサ27と、トルクコンバータすべり率(ETR)を検出するすべり率検出センサ28とを備えている。本実施の形態においては、上述したセンサ21〜28により目標回生量を検索するための回生量決定情報と、フリクショントルクを検索するためのフリクショントルク情報とがECU13に入力される。これについては、詳細を後述する。
【0020】
このように構成されたハイブリッド車両の駆動力制御装置1において回生制動を行う場合について図2を用いて説明する。図2は図1の駆動力制御装置1にて回生制動を行う場合におけるロックアップクラッチ4のメインフローである。
まず、同図のステップS20に示したように、回生処理が行える状態かどうか(回生が許可される状態であるかどうか)を判定し、判定結果が「YES」である場合はステップS30に進み、判定結果が「NO」である場合は一連の処理を終了する。
【0021】
回生が許可された場合には、ステップS30に示したように、車両の走行状態に応じた目標回生量の検索を行う。目標回生量の検索は、詳細を後述する回生量決定情報に基づいて行われる。
【0022】
次に、ステップS40に示したように、前記目標回生量に見合った回生トルクを検索するとともに、動力源であるエンジンでのフリクショントルクを検索して、回生トルクにフリクショントルクを加味して必要トルク(エンジン2とモータ・ジェネレータ3端でのトルク)を算出する。フリクショントルクの検索は、詳細を後述するフリクショントルク情報に基づいて行われる。
【0023】
ついで、ステップS50に示したように、前記必要トルクに基づいてロックアップクラッチ4のベース油圧を算出して、ロックアップクラッチ4の油圧がベース油圧となるようにフィードフォワード制御を行う。
【0024】
それから、ステップS60に示したように、前記目標すべり率(目標ETR)と実すべり率(実ETR)との差分に基づいて、ロックアップクラッチ4の油圧をフィードバック制御することによりロックアップクラッチ4の係合度合いを調整する。
【0025】
上述したメインフローにおける各処理について、図3〜図10を用いてより詳細に説明する。図3は図2のステップS30で示したECU13における目標回生量検索処理のサブフローである。この処理においては、上述したセンサ21〜28からの情報に基づいて、目標回生量を検索するための回生量決定情報をECU13に入力する。すなわち、ステップS31に示したように、回生量決定情報である自動変速機6のギアポジション(GP)や、エンジン2の回転数、ブレーキの作動有無、エアコンの作動有無等をECU13に入力する。ECU13は、各回生量決定情報に応じた回生量のテーブルを保持していて、ステップS32に示したように、これらのテーブルにより目標回生量の読み出しを行う。
【0026】
この一例として、回生量決定情報の一つであるブレーキ作動状態におけるテーブルから目標回生量を読み出す場合について図4に示す。図4(a)は、ブレーキOFF時におけるエンジン回転数とこれに対応した回生量との関係を示すテーブルであり、図4(b)は、ブレーキON時におけるエンジン回転数とこれに対応した回生量との関係を示すテーブルである。これらの関係は、ギヤポジション(GP)ごとに求められており、図4においてラインA〜Dはギヤポジションが2速〜5速にある状態を示している。図4(a)においては、ギヤポジションが4速の場合(ラインC)に、入力されたエンジン回転数から目標回生量を読み出す場合が示されている。これと同様にして、他の回生量決定情報についても、それぞれに対応したテーブルが保持されており、入力された回生量決定情報に応じた目標回生量が検索される。このようにして、走行状態に応じて適切な回生量を決定することができる。
【0027】
次に、回生トルクとフリクショントルクの検索を行う。図5は図2のステップS40で示した回生トルクとフリクショントルクの検索処理を示すサブフローである。この処理においては、上述したセンサ21〜28の情報に基づいて、フリクショントルクを検索するためのフリクショントルク情報をECU13に入力する。すなわち、ステップS41に示したように、フリクショントルク情報であるエンジン回転数、気筒休止の有無、フューエルカットの有無、エアコンの作動有無等をECU13に入力する。ECU13は、各フリクショントルク情報に応じたフリクショントルクのテーブルを保持していて(図6(c)参照)、ステップS42に示したように、これらのテーブルから前記フリクショントルク情報に応じたエンジンフリクショントルクを読み出す。そして、上述のように得られた目標回生量(図6(a)参照)を回生トルクに変換して(図6(b)参照)、ステップS43に示したように、この回生トルクに前記エンジンフリクショントルクを加味して必要トルクを求める(図6(d)参照)。
【0028】
上述した図5の処理について図6を用いて説明する。図6(a)は、ギヤポジションごとのエンジン回転数と回生量との関係を示すテーブルであり、図6(b)は前記回生量を回生トルクに変換したテーブルである。これらの図においてラインA〜Dは、ギヤポジションが2速〜5速にある場合に対応している。本実施の形態においては、ギヤポジションが4速の場合のラインCが回生トルクとして検索される。
【0029】
図6(c)は、フリクショントルク情報の一つである気筒休止の有無に対応した、エンジン回転数とエンジンフリクショントルクとの関係を示すテーブルである。同図において、ラインEは気筒休止を行っている場合であり、ラインFは気筒休止を行っていない場合である。そして、図6(d)は、エンジン回転数と必要トルクとの関係を示すテーブルである。この必要トルクは、図6(b)の回生トルクに図6(c)のフリクショントルクを加味したものである。図6(d)のラインGは、ギヤポジションが4速の場合(図6(b)のラインC)であって、気筒休止を行っていない場合(図6(c)のラインF)について示している。このようにして、騒音や振動を抑えてドライバビリティを良好に維持するとともに、必要な回生量が得られるトルクを求めることができる。なお、同様にして、他のフリクショントルク情報についても、各フリクショントルク情報に対応したテーブルが保持されており、これらのテーブルから走行状態に適合するフリクショントルクを決定することができる。
【0030】
ついで、ロックアップクラッチ4のベース油圧の検索を行う。図7は図2のロックアップクラッチ(L/C)4のベース油圧の検索処理を示すサブフローである。同図のステップS51は図8で示されるように、前記必要トルク(エンジン2とモータ・ジェネレータ3端でのトルク)がαとして定まる。このαから、ロックアップクラッチ4のベース油圧を求める際、ロックアップクラッチ4の係合度合い(ギヤポジションや車速により変化するスリップ率)による変化を考慮して、補正項Hとして補正する。この補正を行うことにより、ロックアップクラッチ4の目標トルク容量はα’となる。
【0031】
そして、ステップS52に示すように、前記目標トルク容量α’に応じたベース油圧を図8から検索する。図8は目標トルク容量とベース油圧との関係を示すテーブルである。このテーブルにおいて、ラインI〜Kは作動油の温度が60度、70度、80度の場合に対応している。同図には、作動油の温度が60度のラインIにおいて、前記目標トルク容量α’からベース油圧βを算出する場合を示している。こうして算出されたベース油圧に基づいてロックアップクラッチ4の油圧をフィードフォワード制御するのである。
【0032】
このようにしたため、走行状態に応じて適切な係合状態となるようにロックアップクラッチ4を制御することができる。また、走行状態が変動してもそれに応じたベース油圧が得られ、このベース油圧でロックアップクラッチ4を制御するため、走行状態が変動しても高い回生効率が得られるようにロックアップクラッチ4の油圧を制御することができる。
【0033】
そして、以下に示すように、ロックアップクラッチ4の油圧をフィードバック制御する。図9は図2のステップS60で示したロックアップクラッチ4のフィードバック制御処理を示すサブフローである。そして、図10は、図9の処理内容を示すブロック図である。本実施の形態においては、前記フィードバック制御を、トルクコンバータすべり率(ETR)により行う。このすべり率は、以下の式(1)のように定義される。
【0034】
式(1):ETR=Ns/Ne
【0035】
ここで、Nsは入力軸10の回転数であり、Neはエンジン2の回転軸9の回転数である。前記すべり制御を行うにあたり、目標すべり率を算出しておき、実際のすべり率との差分をとる。そして、図9のステップS61に示したように、目標すべり率と実際のすべり率との差分を求めて、PI(比例、積分)制御を行う。すなわち、ステップS61に示したように、目標すべり率と実すべり率の差分にPIゲインを乗じた値をフィードバック項とする。そして、ステップS62に示したように、ロックアップクラッチ4のベース油圧とフィードバック項との和を、ロックアップクラッチ4の油圧指令値とする。これにより、さらに高い回生効率が得られるようにロックアップクラッチ4の制御の精度を高めることができる。なお、フィードバック制御処理を行う前に、ロックアップクラッチ4の油圧はフィードフォワード制御されているため、フィードバック制御での制御は比較的微調整で済む。このため、従来と異なり、走行状態が変動した場合であっても、その変動に追従して適切な制御を行うことができる。なお、実施の形態においては、PI制御を用いたがこれに限らず、必要に応じてP(比例)制御やPID(比例、積分、微分)制御に変更してもよい。
【0036】
以上説明したように、本実施の形態におけるハイブリッド車両の駆動力制御装置においては、走行状態が変化しても高い回生効率が得られるようにロックアップクラッチの油圧を制御することができる。なお、本発明の内容は、実施の形態に限られるものではなく、例えば自動変速機はAT(有段変速機)であってもCVT(無段変速機)であってもよい。
【0037】
【発明の効果】
請求項1、請求項2に記載した発明によれば、車両の走行状態が変化した場合であっても高い回生効率が得られるように回生量を設定することができる。また、騒音や振動を抑えてドライバビリティを良好に維持しつつ必要な回生量が得られるトルクを求めることができる。そして、走行状態に応じて適切な係合状態となるようにロックアップクラッチを制御することができ、ロックアップクラッチを走行状態の変動に十分追従させることができる。加えて、フィードバック制御することにより、さらに制御の精度を高めることができる。したがって、走行状態が変化しても高い回生効率が得られるようにロックアップクラッチの油圧を制御することができる。
【図面の簡単な説明】
【図1】図1は本発明の実施の形態におけるハイブリッド車両の駆動力制御装置を示す構成図である。
【図2】図1の駆動力制御装置において回生制動を行う場合のロックアップクラッチの制御を示すメインフローである。
【図3】図2の目標回生量検索処理を示すサブフローである。
【図4】図3の処理工程で用いるテーブルである。
【図5】図2の回生時におけるフリクショントルク検索処理を示すサブフローを示す工程図である。
【図6】図4の処理工程で用いるテーブルである。
【図7】図2のロックアップクラッチに与えるベース油圧の検索処理を示すサブフローである。
【図8】図7の処理工程で用いるテーブルである。
【図9】図2のロックアップクラッチすべりフィードバック制御処理を示すサブフローである。
【図10】図9の制御処理を示すブロック図である。
【符号の説明】
1 ハイブリッド車両の駆動力制御装置
2 エンジン
3 モータ・ジェネレータ
4 ロックアップクラッチ(L/Cクラッチ)
5 トルクコンバータ
6 変速機
7 出力軸
12 オイルポンプ
13 ECU[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hybrid vehicle in which an automatic transmission is arranged via a torque converter having a lock-up clutch between an engine and a motor / generator as power sources and a drive wheel between the engine and a motor / generator. The present invention relates to a driving force control device for a hybrid vehicle that controls a degree of engagement of a lock-up clutch.
[0002]
[Prior art]
Conventionally, an engine and a motor / generator are used as power sources, and a part of the running energy of a vehicle is converted into electric energy by the motor / generator and stored in a power storage device (so-called regenerative processing is performed) to improve fuel efficiency. There is something to plan. As a hybrid vehicle of this type, a hybrid vehicle in which a torque converter having a lock-up clutch is provided between a power source and a drive wheel, and the transmission efficiency of power between the power source and the drive wheel is adjusted by the lock-up clutch. is there.
[0003]
In performing the above-described regenerative processing, when the lock-up clutch is engaged with the motor generator, the traveling energy of the drive wheels can be directly transmitted to the motor generator. However, since torque fluctuations at the drive source are also transmitted directly to the drive wheels, noise, vibration, etc. are generated and drivability deteriorates. Therefore, it is important to control the engagement state of the lock-up clutch so as to obtain high regenerative efficiency while suppressing these.
[0004]
Therefore, there has been proposed an apparatus that performs a regenerative process by controlling the hydraulic pressure of a lock-up clutch so as to slide the drive source. For example, Japanese Patent Application Laid-Open No. 2000-170903 has means for controlling the engagement state of a lock-up clutch, and controls the engagement state (oil pressure) of the lock-up clutch by feedback so that the regeneration efficiency is maximized. Are disclosed.
[0005]
[Problems to be solved by the invention]
However, the hybrid vehicle has various running states (for example, whether or not the brake is operated, whether or not the cylinder is deactivated, etc.), and the amount of power that can be regenerated (the amount of regenerated power) differs depending on the running state. Therefore, when the running state is switched, the regeneration amount may fluctuate significantly. Since the degree of engagement (control oil pressure) of the lock-up clutch for obtaining this regenerative amount also fluctuates greatly, control of the oil pressure of the lock-up clutch by feedback control as described above can cause the large fluctuation to follow. It is difficult to control the hydraulic pressure of the lock-up clutch. For this reason, there has been a problem that the regeneration efficiency cannot be sufficiently increased.
[0006]
The present invention has been made in view of such circumstances, and a driving force control device for a hybrid vehicle that can control the hydraulic pressure of a lock-up clutch so that high regenerative efficiency can be obtained even when the running state changes. The purpose is to provide.
[0007]
[Means for Solving the Problems]
In order to solve the above problem, the invention described in claim 1 includes an engine (for example, an
[0008]
According to the present invention, the target regeneration amount is searched by the regeneration amount determination information obtained according to the traveling state of the vehicle, so that even if the traveling state of the vehicle changes, high regeneration efficiency can be obtained. The quantity can be set. Then, since the required torque is obtained by adding the friction torque generated by the power source due to a change in the running state to the regenerative torque searched according to the running state of the vehicle, noise and vibration are suppressed to improve drivability. It is possible to obtain a torque that can obtain a required regenerative amount while maintaining the torque.
[0009]
Then, a base oil pressure for obtaining the necessary torque is calculated, and the base oil pressure is used to control the oil pressure of the lock-up clutch, so that feed-forward control for obtaining the target slip ratio of the lock-up clutch is performed. The lock-up clutch can be controlled so as to be in an appropriate engagement state. Further, even if the traveling state changes, an appropriate base hydraulic pressure can be obtained in accordance with the fluctuation. Since the target slip ratio of the lock-up clutch is subjected to feedforward control using the base hydraulic pressure, the target slip ratio can be controlled by making the base hydraulic pressure follow the fluctuation even when the running state changes.
[0010]
In addition, by performing feedback control of the hydraulic pressure of the lock-up clutch based on the difference between the target slip rate and the actual slip rate, it is possible to perform control to further increase the regenerative efficiency. Therefore, it is possible to control the oil pressure of the lock-up clutch so that high regenerative efficiency can be obtained even when the running state changes.
[0011]
Here, the regenerative amount determination information includes the remaining battery charge (SOC), the gear position (GP) of the automatic transmission, the presence or absence of the operation of the air conditioner, the engine speed, the brake operation status, and the like. Further, the friction torque information includes the presence / absence of cylinder deactivation, presence / absence of fuel cutoff (fuel cut), engine speed, presence / absence of operation of an air conditioner (load condition of the air conditioner), temperature of engine cooling water, and the like. In particular, it is preferable that the friction torque information includes a fuel cut during deceleration, a cylinder stop, and a load condition of the air conditioner.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a driving force control device for a hybrid vehicle according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a driving force control device 1 for a hybrid vehicle according to an embodiment of the present invention.
[0013]
As shown in the figure, an
[0014]
The
[0015]
Further, a lock-up clutch 4 is provided between the
[0016]
The lock-up clutch 4 can be controlled to be engaged with the
When the lock-up clutch 4 is directly engaged, the rotational driving force is directly transmitted from the
[0017]
The degree of engagement of the lock-up clutch 4 is made variable by controlling the operating oil pressure of the lock-up clutch 4, and the rotation transmitted from the
[0018]
The transmission 6 has a gear train (not shown) provided between the
[0019]
As shown in FIG. 1,
[0020]
A case where regenerative braking is performed in the driving force control device 1 for a hybrid vehicle configured as described above will be described with reference to FIG. FIG. 2 is a main flow of the lock-up clutch 4 when regenerative braking is performed by the driving force control device 1 of FIG.
First, as shown in step S20 of the figure, it is determined whether or not the regeneration process can be performed (whether or not the regeneration is permitted). If the determination is "YES", the flow proceeds to step S30. If the determination result is "NO", the series of processing ends.
[0021]
If regeneration is permitted, a search for a target regeneration amount according to the running state of the vehicle is performed as shown in step S30. The search for the target regenerative amount is performed based on regenerative amount determination information, which will be described later in detail.
[0022]
Next, as shown in step S40, the regenerative torque corresponding to the target regenerative amount is searched, and the friction torque in the engine as the power source is searched, and the required torque is calculated by adding the friction torque to the regenerative torque. (The torque at the
[0023]
Next, as shown in step S50, the base hydraulic pressure of the lock-up clutch 4 is calculated based on the required torque, and feedforward control is performed so that the hydraulic pressure of the lock-up clutch 4 becomes the base hydraulic pressure.
[0024]
Then, as shown in step S60, the hydraulic pressure of the lock-up clutch 4 is feedback-controlled based on the difference between the target slip rate (target ETR) and the actual slip rate (actual ETR), so that the lock-up clutch 4 Adjust the degree of engagement.
[0025]
Each process in the above-described main flow will be described in more detail with reference to FIGS. FIG. 3 is a sub-flow chart of the target regeneration amount search process in the
[0026]
As an example of this, FIG. 4 shows a case where the target regeneration amount is read from the table in the brake operating state, which is one of the regeneration amount determination information. FIG. 4A is a table showing the relationship between the engine speed when the brake is off and the corresponding regeneration amount, and FIG. 4B is a table showing the engine speed and the corresponding regeneration when the brake is on. It is a table which shows the relationship with quantity. These relationships are obtained for each gear position (GP), and lines A to D in FIG. 4 show a state where the gear positions are in the second to fifth speeds. FIG. 4A shows a case where the target regeneration amount is read from the input engine speed when the gear position is the fourth speed (line C). Similarly, tables corresponding to the other regeneration amount determination information are held, and a target regeneration amount corresponding to the input regeneration amount determination information is searched. In this way, an appropriate regeneration amount can be determined according to the traveling state.
[0027]
Next, the regenerative torque and the friction torque are searched. FIG. 5 is a sub-flow chart showing the regenerative torque and friction torque search processing shown in step S40 of FIG. In this process, friction torque information for searching for friction torque is input to the
[0028]
The processing of FIG. 5 described above will be described with reference to FIG. FIG. 6A is a table showing the relationship between the engine speed and the regenerative amount for each gear position, and FIG. 6B is a table in which the regenerative amount is converted into regenerative torque. In these figures, lines A to D correspond to the case where the gear position is in the second to fifth gears. In the present embodiment, the line C when the gear position is the fourth speed is searched as the regenerative torque.
[0029]
FIG. 6C is a table showing the relationship between the engine speed and the engine friction torque corresponding to the presence or absence of cylinder deactivation, which is one of the friction torque information. In the figure, a line E indicates a case where cylinder deactivation is performed, and a line F indicates a case where cylinder deactivation is not performed. FIG. 6D is a table showing the relationship between the engine speed and the required torque. The required torque is obtained by adding the friction torque of FIG. 6C to the regenerative torque of FIG. A line G in FIG. 6D shows a case where the gear position is in the fourth speed (line C in FIG. 6B) and a case where the cylinder is not deactivated (line F in FIG. 6C). ing. In this way, noise and vibration can be suppressed to maintain good drivability, and a torque that can provide a required amount of regeneration can be obtained. Similarly, for other pieces of friction torque information, tables corresponding to the respective pieces of friction torque information are held, and a friction torque suitable for a running state can be determined from these tables.
[0030]
Next, the base hydraulic pressure of the lock-up clutch 4 is searched. FIG. 7 is a sub-flow chart showing a search process of the base oil pressure of the lock-up clutch (L / C) 4 of FIG. In step S51 in FIG. 8, the required torque (the torque at the end of the
[0031]
Then, as shown in step S52, a base oil pressure corresponding to the target torque capacity α 'is searched from FIG. FIG. 8 is a table showing the relationship between the target torque capacity and the base oil pressure. In this table, lines I to K correspond to the cases where the temperature of the hydraulic oil is 60 degrees, 70 degrees, and 80 degrees. FIG. 7 shows a case where the base oil pressure β is calculated from the target torque capacity α ′ in the line I where the temperature of the hydraulic oil is 60 degrees. The hydraulic pressure of the lock-up clutch 4 is subjected to feedforward control based on the calculated base hydraulic pressure.
[0032]
Thus, the lock-up clutch 4 can be controlled so as to be in an appropriate engagement state according to the traveling state. Further, even if the running state changes, a base oil pressure corresponding thereto is obtained, and the lock-up clutch 4 is controlled by this base oil pressure. Hydraulic pressure can be controlled.
[0033]
Then, as described below, the hydraulic pressure of the lock-up clutch 4 is feedback-controlled. FIG. 9 is a sub-flow chart showing the feedback control processing of the lock-up clutch 4 shown in step S60 of FIG. FIG. 10 is a block diagram showing the processing contents of FIG. In the present embodiment, the feedback control is performed based on a torque converter slip ratio (ETR). This slip ratio is defined as in the following equation (1).
[0034]
Formula (1): ETR = Ns / Ne
[0035]
Here, Ns is the rotation speed of the
[0036]
As described above, in the driving force control device for a hybrid vehicle according to the present embodiment, the hydraulic pressure of the lock-up clutch can be controlled so that high regenerative efficiency can be obtained even when the running state changes. Note that the content of the present invention is not limited to the embodiment. For example, the automatic transmission may be an AT (stepped transmission) or a CVT (stepless transmission).
[0037]
【The invention's effect】
According to the first and second aspects of the present invention, the regenerative amount can be set so that high regenerative efficiency can be obtained even when the running state of the vehicle changes. Further, it is possible to obtain a torque that can obtain a required regeneration amount while suppressing noise and vibration and maintaining good drivability. Then, the lock-up clutch can be controlled so as to be in an appropriate engagement state according to the running state, and the lock-up clutch can sufficiently follow the change in the running state. In addition, by performing feedback control, control accuracy can be further increased. Therefore, it is possible to control the oil pressure of the lock-up clutch so that high regenerative efficiency can be obtained even when the running state changes.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a driving force control device for a hybrid vehicle according to an embodiment of the present invention.
FIG. 2 is a main flowchart showing control of a lock-up clutch when performing regenerative braking in the driving force control device of FIG. 1;
FIG. 3 is a sub-flow chart showing a target regeneration amount search process of FIG. 2;
FIG. 4 is a table used in the processing steps of FIG. 3;
FIG. 5 is a process diagram showing a sub-flow showing a friction torque search process during regeneration in FIG. 2;
FIG. 6 is a table used in the processing steps of FIG. 4;
FIG. 7 is a sub-flow chart showing a search process of a base oil pressure applied to the lock-up clutch of FIG. 2;
FIG. 8 is a table used in the processing steps of FIG. 7;
FIG. 9 is a sub-flow chart showing a lock-up clutch slip feedback control process of FIG. 2;
FIG. 10 is a block diagram illustrating a control process of FIG. 9;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Driving force control device of
5 Torque converter 6 Transmission 7
Claims (2)
前記制御手段は、
車両の走行状態に応じて得られる回生量決定情報により目標回生量を検索し、
該目標回生量に見合った回生トルクにフリクショントルク情報により検索されるフリクショントルクを加味して、エンジンとモータ・ジェネレータ端での必要トルクを算出し、
この必要トルクを保持可能なベース油圧を算出し、このベース油圧にロックアップクラッチの油圧を制御して、ロックアップクラッチの目標すべり率を得るフィードフォワード制御を行い、
目標すべり率と実すべり率との差分に基づいて、ロックアップクラッチの油圧をフィードバック制御することを特徴とするハイブリッド車両の駆動力制御装置。An automatic transmission is provided between the power source and the drive wheels via a torque converter having a lock-up clutch, which uses an engine and a motor / generator as power sources. A driving force control device for a hybrid vehicle including a control unit for controlling a slip ratio by hydraulic pressure,
The control means,
Search for the target regeneration amount by the regeneration amount determination information obtained according to the traveling state of the vehicle,
In consideration of the friction torque searched by the friction torque information to the regenerative torque corresponding to the target regenerative amount , the necessary torque at the engine and the motor / generator end is calculated,
Calculate a base oil pressure capable of holding the required torque, control the oil pressure of the lock-up clutch to this base oil pressure, and perform feedforward control to obtain a target slip ratio of the lock-up clutch,
A driving force control device for a hybrid vehicle, wherein feedback control of a hydraulic pressure of a lock-up clutch is performed based on a difference between a target slip ratio and an actual slip ratio.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002072639A JP3547732B2 (en) | 2002-03-15 | 2002-03-15 | Driving force control device for hybrid vehicle |
DE10310594A DE10310594A1 (en) | 2002-03-15 | 2003-03-11 | Drive power control device for a hybrid vehicle |
US10/385,728 US7100720B2 (en) | 2002-03-15 | 2003-03-12 | Driving power control devices for hybrid vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002072639A JP3547732B2 (en) | 2002-03-15 | 2002-03-15 | Driving force control device for hybrid vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003269604A JP2003269604A (en) | 2003-09-25 |
JP3547732B2 true JP3547732B2 (en) | 2004-07-28 |
Family
ID=28035180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002072639A Expired - Fee Related JP3547732B2 (en) | 2002-03-15 | 2002-03-15 | Driving force control device for hybrid vehicle |
Country Status (3)
Country | Link |
---|---|
US (1) | US7100720B2 (en) |
JP (1) | JP3547732B2 (en) |
DE (1) | DE10310594A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9278685B2 (en) * | 2012-12-10 | 2016-03-08 | Ford Global Technologies, Llc | Method and system for adapting operation of a hybrid vehicle transmission torque converter lockup clutch |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6945905B2 (en) * | 2003-10-22 | 2005-09-20 | General Motors Corporation | CVT hybrid powertrain fueling and engine stop-start control method |
JP3701662B2 (en) * | 2004-02-18 | 2005-10-05 | 本田技研工業株式会社 | Automatic transmission control device for hybrid vehicle |
DE102004009030B4 (en) * | 2004-02-23 | 2020-07-23 | Renk Aktiengesellschaft | Drive for a tracked vehicle |
JP2006081324A (en) * | 2004-09-10 | 2006-03-23 | Toyota Motor Corp | Hybrid car and its control method |
DE102004061034A1 (en) * | 2004-12-18 | 2006-06-22 | Daimlerchrysler Ag | Method for monitoring a transmission oil pump |
DE102005035824A1 (en) * | 2005-07-30 | 2007-02-01 | Renk Ag | Hybrid drive for a motor vehicle |
JP4462170B2 (en) * | 2005-11-07 | 2010-05-12 | 日産自動車株式会社 | Engine start control device for hybrid vehicle |
KR100708596B1 (en) | 2006-01-06 | 2007-04-18 | 한국파워트레인 주식회사 | Oil pressure control method of torque converter for hybrid electric vehicle |
DE102006018058A1 (en) * | 2006-04-19 | 2007-11-08 | Zf Friedrichshafen Ag | Method for operating a parallel hybrid drive train of a vehicle with multiple drive units |
DE102006034935B4 (en) * | 2006-07-28 | 2016-10-06 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Drive train and associated operating method |
KR100756722B1 (en) | 2006-08-09 | 2007-09-07 | 현대자동차주식회사 | Hybrid power train for a vehicle |
KR100774666B1 (en) * | 2006-10-18 | 2007-11-08 | 현대자동차주식회사 | Hybrid power train structure |
KR100992769B1 (en) * | 2007-10-17 | 2010-11-05 | 기아자동차주식회사 | Control method for fuel consumption improvement of hybrid electric vehicles |
US8430789B2 (en) * | 2009-01-08 | 2013-04-30 | Aisin Aw Co., Ltd. | Vehicle control device |
CN102625886B (en) * | 2009-05-19 | 2014-05-14 | 丰田自动车株式会社 | Control device for vehicular power transmission system |
JP4896184B2 (en) * | 2009-06-09 | 2012-03-14 | 本田技研工業株式会社 | Control device for lock-up clutch |
KR101081338B1 (en) | 2009-06-22 | 2011-11-08 | 주식회사 케피코 | Apparatus and method for preventing shudder by Cylinder De-Activation and Damper Clutch |
EP2634054B1 (en) * | 2010-10-27 | 2021-01-27 | Nissan Motor Co., Ltd | Electric vehicle control apparatus |
JP5673815B2 (en) * | 2011-06-01 | 2015-02-18 | トヨタ自動車株式会社 | Control device for vehicle drive device |
US8517892B2 (en) * | 2011-08-08 | 2013-08-27 | Bae Systems Controls Inc. | Method and apparatus for controlling hybrid electric vehicles |
DE112011105679T5 (en) * | 2011-09-28 | 2014-07-17 | Toyota Jidosha Kabushiki Kaisha | Control device for vehicle drive device |
CN104011438B (en) * | 2012-01-11 | 2016-06-29 | 本田技研工业株式会社 | The control device of lock-up clutch |
WO2014027401A1 (en) * | 2012-08-14 | 2014-02-20 | 三菱電機株式会社 | Train-information management device and device control method |
US9416743B2 (en) * | 2012-10-03 | 2016-08-16 | GM Global Technology Operations LLC | Cylinder activation/deactivation sequence control systems and methods |
US9719439B2 (en) | 2012-08-24 | 2017-08-01 | GM Global Technology Operations LLC | System and method for controlling spark timing when cylinders of an engine are deactivated to reduce noise and vibration |
US9249747B2 (en) * | 2012-09-10 | 2016-02-02 | GM Global Technology Operations LLC | Air mass determination for cylinder activation and deactivation control systems |
US9376973B2 (en) | 2012-09-10 | 2016-06-28 | GM Global Technology Operations LLC | Volumetric efficiency determination systems and methods |
US9650978B2 (en) | 2013-01-07 | 2017-05-16 | GM Global Technology Operations LLC | System and method for randomly adjusting a firing frequency of an engine to reduce vibration when cylinders of the engine are deactivated |
US9638121B2 (en) * | 2012-08-24 | 2017-05-02 | GM Global Technology Operations LLC | System and method for deactivating a cylinder of an engine and reactivating the cylinder based on an estimated trapped air mass |
US9249749B2 (en) | 2012-10-15 | 2016-02-02 | GM Global Technology Operations LLC | System and method for controlling a firing pattern of an engine to reduce vibration when cylinders of the engine are deactivated |
US9458778B2 (en) | 2012-08-24 | 2016-10-04 | GM Global Technology Operations LLC | Cylinder activation and deactivation control systems and methods |
US9140622B2 (en) | 2012-09-10 | 2015-09-22 | GM Global Technology Operations LLC | System and method for controlling a firing sequence of an engine to reduce vibration when cylinders of the engine are deactivated |
US9534550B2 (en) | 2012-09-10 | 2017-01-03 | GM Global Technology Operations LLC | Air per cylinder determination systems and methods |
US9239024B2 (en) | 2012-09-10 | 2016-01-19 | GM Global Technology Operations LLC | Recursive firing pattern algorithm for variable cylinder deactivation in transient operation |
US9222427B2 (en) | 2012-09-10 | 2015-12-29 | GM Global Technology Operations LLC | Intake port pressure prediction for cylinder activation and deactivation control systems |
US9249748B2 (en) | 2012-10-03 | 2016-02-02 | GM Global Technology Operations LLC | System and method for controlling a firing sequence of an engine to reduce vibration when cylinders of the engine are deactivated |
US9458779B2 (en) | 2013-01-07 | 2016-10-04 | GM Global Technology Operations LLC | Intake runner temperature determination systems and methods |
US9726139B2 (en) | 2012-09-10 | 2017-08-08 | GM Global Technology Operations LLC | System and method for controlling a firing sequence of an engine to reduce vibration when cylinders of the engine are deactivated |
US9382853B2 (en) | 2013-01-22 | 2016-07-05 | GM Global Technology Operations LLC | Cylinder control systems and methods for discouraging resonant frequency operation |
US9458780B2 (en) | 2012-09-10 | 2016-10-04 | GM Global Technology Operations LLC | Systems and methods for controlling cylinder deactivation periods and patterns |
US10227939B2 (en) | 2012-08-24 | 2019-03-12 | GM Global Technology Operations LLC | Cylinder deactivation pattern matching |
US8979708B2 (en) * | 2013-01-07 | 2015-03-17 | GM Global Technology Operations LLC | Torque converter clutch slip control systems and methods based on active cylinder count |
JP5578336B2 (en) * | 2012-12-11 | 2014-08-27 | 三菱自動車工業株式会社 | Control device for hybrid vehicle |
US9494092B2 (en) | 2013-03-13 | 2016-11-15 | GM Global Technology Operations LLC | System and method for predicting parameters associated with airflow through an engine |
US9145128B2 (en) | 2013-10-15 | 2015-09-29 | Ford Global Technologies, Llc | Coordinating regenative braking with torque converter clutch operation |
US9441550B2 (en) | 2014-06-10 | 2016-09-13 | GM Global Technology Operations LLC | Cylinder firing fraction determination and control systems and methods |
US9341128B2 (en) | 2014-06-12 | 2016-05-17 | GM Global Technology Operations LLC | Fuel consumption based cylinder activation and deactivation control systems and methods |
DE102014211552A1 (en) * | 2014-06-17 | 2015-12-31 | Continental Automotive Gmbh | Control of a coupling device for optimizing a recuperation of an electric motor |
US9556811B2 (en) | 2014-06-20 | 2017-01-31 | GM Global Technology Operations LLC | Firing pattern management for improved transient vibration in variable cylinder deactivation mode |
US9599047B2 (en) | 2014-11-20 | 2017-03-21 | GM Global Technology Operations LLC | Combination cylinder state and transmission gear control systems and methods |
US10337441B2 (en) | 2015-06-09 | 2019-07-02 | GM Global Technology Operations LLC | Air per cylinder determination systems and methods |
JP6531627B2 (en) * | 2015-11-12 | 2019-06-19 | トヨタ自動車株式会社 | Lock-up clutch control device |
JP2018062886A (en) * | 2016-10-12 | 2018-04-19 | いすゞ自動車株式会社 | Fuel-saving control device and fuel-saving control method |
JP6787023B2 (en) * | 2016-10-12 | 2020-11-18 | いすゞ自動車株式会社 | Fuel economy control device and fuel economy control method |
US10336316B2 (en) | 2016-11-03 | 2019-07-02 | Ford Global Technologies, Llc | Control system for a clutch during a regenerative braking event |
US10393258B2 (en) | 2017-01-17 | 2019-08-27 | Ford Global Technologies, Llc | Hybrid vehicle clutch control system |
WO2019037869A1 (en) * | 2017-08-25 | 2019-02-28 | Volvo Construction Equipment Ab | A drive system and a method for controlling a drive system of a working machine |
US10377369B2 (en) * | 2017-12-12 | 2019-08-13 | Ford Global Technologies, Llc | Methods and system for predicting driveline disconnect clutch torque |
KR102507232B1 (en) * | 2017-12-21 | 2023-03-07 | 현대자동차주식회사 | Controlled method of damper pulley clutch for vehicles |
BE1025861B9 (en) * | 2017-12-29 | 2019-10-14 | Punch Powertrain Nv | DRIVER FOR A COUPLING IN A DRIVE LINE AND METHOD FOR DRIVING A COUPLING IN A DRIVE LINE AND A DRIVE LINE CONTAINING THE DRIVING DEVICE |
US10746291B2 (en) * | 2019-01-17 | 2020-08-18 | Ford Global Technologies, Llc | Engine torque and torque converter bypass clutch slip control during vehicle launch |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01141273A (en) | 1987-11-27 | 1989-06-02 | Mazda Motor Corp | Lock-up clutch controller for automatic transmission |
JP2807495B2 (en) | 1989-07-27 | 1998-10-08 | マツダ株式会社 | Fluid coupling slip control device |
JPH0596978A (en) | 1991-10-09 | 1993-04-20 | Mazda Motor Corp | Control device for engine |
JPH05133469A (en) | 1991-11-11 | 1993-05-28 | Japan Electron Control Syst Co Ltd | Controller of automatic transmission for vehicle |
JPH05172239A (en) | 1991-12-19 | 1993-07-09 | Japan Electron Control Syst Co Ltd | Lockup control device for automatic transmission |
JPH0687356A (en) | 1992-09-09 | 1994-03-29 | Toyota Motor Corp | Engine brake force automatic control device |
JP3319054B2 (en) | 1993-08-04 | 2002-08-26 | 三菱自動車工業株式会社 | Control device for torque converter clutch |
JPH0868459A (en) | 1994-08-30 | 1996-03-12 | Mitsubishi Motors Corp | Fluid coupling clutch control device |
JP3201246B2 (en) | 1996-01-26 | 2001-08-20 | 日産自動車株式会社 | Control device with correction function |
JP3505909B2 (en) | 1996-04-30 | 2004-03-15 | 日産自動車株式会社 | Lockup control device for automatic transmission |
JP2857666B2 (en) * | 1996-06-12 | 1999-02-17 | 本田技研工業株式会社 | Control device for hybrid vehicle |
JP3585207B2 (en) | 1997-08-28 | 2004-11-04 | 本田技研工業株式会社 | Control device for lock-up clutch |
JP2000118246A (en) | 1998-10-15 | 2000-04-25 | Toyota Motor Corp | Control device for driving gear of vehicle |
JP3893778B2 (en) | 1998-11-09 | 2007-03-14 | トヨタ自動車株式会社 | Lock-up clutch control device |
JP3858487B2 (en) | 1998-12-08 | 2006-12-13 | トヨタ自動車株式会社 | Powertrain control device |
JP2001090830A (en) | 1999-09-24 | 2001-04-03 | Toyota Motor Corp | Vehicular braking force control device |
JP2001193834A (en) | 2000-01-04 | 2001-07-17 | Hitachi Ltd | Control device for lockup clutch |
JP2002305806A (en) * | 2001-03-30 | 2002-10-18 | Aisin Aw Co Ltd | Drive control device for hybrid vehicle, drive control method for hybrid vehicle and its program |
JP3547734B2 (en) * | 2002-03-27 | 2004-07-28 | 本田技研工業株式会社 | Hybrid vehicle |
JP2003278910A (en) * | 2002-03-27 | 2003-10-02 | Honda Motor Co Ltd | Hybrid vehicle |
JP2004224110A (en) * | 2003-01-21 | 2004-08-12 | Suzuki Motor Corp | Regeneration power generation control device for hybrid vehicle |
-
2002
- 2002-03-15 JP JP2002072639A patent/JP3547732B2/en not_active Expired - Fee Related
-
2003
- 2003-03-11 DE DE10310594A patent/DE10310594A1/en not_active Withdrawn
- 2003-03-12 US US10/385,728 patent/US7100720B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9278685B2 (en) * | 2012-12-10 | 2016-03-08 | Ford Global Technologies, Llc | Method and system for adapting operation of a hybrid vehicle transmission torque converter lockup clutch |
Also Published As
Publication number | Publication date |
---|---|
US20030173125A1 (en) | 2003-09-18 |
US7100720B2 (en) | 2006-09-05 |
DE10310594A1 (en) | 2003-10-09 |
JP2003269604A (en) | 2003-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3547732B2 (en) | Driving force control device for hybrid vehicle | |
JP3912235B2 (en) | Vehicle hydraulic control device | |
JP4127142B2 (en) | Control device for hybrid vehicle | |
JP3514142B2 (en) | Vehicle control device | |
US6565473B2 (en) | Hydraulic pressure control apparatus for automatic transmission of vehicle | |
EP1628849B1 (en) | Control apparatus and control method for drive apparatus of hybrid vehicle | |
JP3622689B2 (en) | Hydraulic oil temperature control device for power transmission | |
CN104684781B (en) | For the control device of vehicle | |
JP3716659B2 (en) | Vehicle travel control device | |
JP4277856B2 (en) | Vehicle and control method thereof | |
US20180043791A1 (en) | Vehicle | |
JP6098395B2 (en) | Control device for hybrid vehicle | |
JP5906575B2 (en) | Control device for continuously variable transmission | |
JP3826248B2 (en) | Control device for hybrid vehicle | |
JP3648411B2 (en) | Electric hydraulic pump control apparatus and method for automatic transmission | |
JP2000170903A (en) | Control device for power train | |
WO2013005325A1 (en) | Vehicle control device and control method | |
JP3949618B2 (en) | Control device for hybrid vehicle | |
JP4155962B2 (en) | Hybrid vehicle | |
JP2000197209A (en) | Controller for hybrid vehicle | |
JP2005132181A (en) | Parallel hybrid vehicle | |
JP2008189243A (en) | Control apparatus and control method for power train, program for implementing the method, and recording medium with the program recorded thereon | |
JP2020131719A (en) | Control device | |
JP2008162348A (en) | Apparatus and method for controlling power train, program for implementing the method, and recording medium with the program recorded | |
JP3899701B2 (en) | Control device for front and rear wheel drive vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040406 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040414 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3547732 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080423 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140423 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |