JP3547698B2 - Electrical connection method, connection structure and connector between opposed electrodes - Google Patents

Electrical connection method, connection structure and connector between opposed electrodes Download PDF

Info

Publication number
JP3547698B2
JP3547698B2 JP2000257375A JP2000257375A JP3547698B2 JP 3547698 B2 JP3547698 B2 JP 3547698B2 JP 2000257375 A JP2000257375 A JP 2000257375A JP 2000257375 A JP2000257375 A JP 2000257375A JP 3547698 B2 JP3547698 B2 JP 3547698B2
Authority
JP
Japan
Prior art keywords
connector
electronic
electrode
electrodes
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000257375A
Other languages
Japanese (ja)
Other versions
JP2001155803A (en
Inventor
一 道家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2000257375A priority Critical patent/JP3547698B2/en
Publication of JP2001155803A publication Critical patent/JP2001155803A/en
Application granted granted Critical
Publication of JP3547698B2 publication Critical patent/JP3547698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、対向する電極間の電気的接続方法、接続構造及びコネクタに関するものである。
【0002】
【従来の技術】
従来、表面実装型LSI、液晶表示パネル、プラズマディスプレイ、電子回路基板等の電子部材の電極間の電気的接続は、ACF(Anisotropic・Conductive・Film:異方性導電膜)等の接合剤を用いて熱圧着する方法により行われるか、あるいは、弾性体コネクタを対向する電子部材の電極間に配置して、圧接することにより電極間を電気的に接続する方法などが行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、ACFによる熱圧着の場合、電子部材の電極端子間の正確な位置合わせが必要であり、接続作業が容易ではなかった。
更には熱圧着による電子部材の破壊、例えばCOG(Chip・On・Glass)型液晶においては、熱圧着に起因して生じる残留応力のために液晶表示パネルや液晶駆動用IC等に負担が加わったり、液晶駆動用ICを接合しているACFが熱圧着による熱により軟化し、液晶駆動用ICの接続に不具合が発生する恐れがあった。
なお、熱圧着の温度を低く設定することにより、このような不具合の発生を回避することも可能であるが、こうすると充分な接着強度が得られなくなる可能性が有る。
また、一回熱圧着してしまうと剥離が極めて難しく、例えば液晶表示パネルの表示テストにおいて接続不良や、FPCの不良等、液晶表示パネルに起因しない表示不良が発生したような場合、液晶表示パネルは良品であるのに関わらず、リペアが出来ずに、高価な液晶表示パネルを廃棄しなくてはならないといった問題もある。
また、弾性体コネクタを用いて圧接する方法の場合、剥離はできるが、電極に対するコネクタの正確な位置合わせが容易でなく生産性が上がらないという問題がある。
【0004】
本発明の課題は、ACF等の熱圧着工程による電子部材の破壊や過負荷、高価な電子部材の廃棄といったコスト、収率の問題を解決し、電子部材間の接続作業を簡便かつ容易に行うことのできる接続方法及びそのコネクタの提供にある。
【0005】
【課題を解決するための手段】
上述課題を解決するために、本発明は、次のような手段を採用した。
請求項1に記載の発明は、対向する該電子部材のそれぞれの電極間をコネクタを用いて接続する電気的接続方法であって、前記コネクタが、弾性体コネクタとクリップ部材とを一体化して構成されるとともに、前記電子部材の一方の電極部分外を前記クリップ部材でクリップすることによって、前記弾性体コネクタの一端を該電子部材の電極部分に当接させ、該弾性体コネクタの他端に他方の電子部材の電極を当接させて、該弾性体コネクタをこれら電子部材により圧縮し、該電子部材の対向する電極間を電気的接続することを特徴としている。
【0006】
請求項2に記載の発明は、対向する電子部材のそれぞれの電極間を電気的に接続するコネクタであって、前記コネクタが、弾性部材の両面に電極が形成され、該両面の電極間がそれぞれ導通している弾性体コネクタと、該弾性体コネクタが一体化され、前記電子部材の一方の電極部分外をクリップすることによって、前記弾性体コネクタの電極と該電子部材の電極とが当接するように構成されたクリップ部材とを備えたことを特徴とするコネクタであり、好ましくは弾性体コネクタは、断面略X字状の絶縁性エラストマーと、該絶縁性エラストマーの略X字状に延びたアームの1つの表面先端からX字の中心点をほぼ対称点とする対向する他のアームの裏面先端へと延出する導電線条材とを備えている。
【0007】
請求項3に記載の発明は、一対の電子部材を対向させて電極同志を対向配置し、電極間に請求項2に記載のコネクタを介在させて、電極間の電気的接続をするように構成した接続構造である。
【0008】
【発明の実施の形態】
以下、本発明に係るコネクタの実施形態について説明する。
本発明に係るコネクタは、一対の電子部材を対向させ、対向させた電極(電極端子)間を電気的に接続するものであって、弾性部材の両面に電極が形成され両面の電極間がそれぞれ導通している弾性体コネクタと、該弾性体コネクトと一体的に形成され前記電子部材の電極部分外をクリップさせると弾性体コネクタの電極がその電子部材の電極に当接するように構成されたクリップ部材とを備えたものである。このコネクタが用いられる電子部材としては、表面実装型LSI、液晶表示パネル、プラズマディスプレイ、電子回路基板等があるが、以下、電子部材として、一方が液晶表示パネル、他方が回路基板の場合について説明する。
【0009】
図1は、本発明の実施形態であるコネクタ10を、液晶表示パネルと回路基板の電極間の電気的接続に使用した液晶表示装置100の縦断面図であり、図2はその分解斜視図である。
図において、101は回路基板、102は液晶表示パネル、103はバックライト用LED、104はバックライト用LED103の光を液晶表示パネル102の背面に導くためのライトガイド、105はシールドケース、106は液晶駆動用ICである。また、101aは回路基板101に形成された電極端子、102aは液晶表示パネル102に形成された電極端子であり、これら電極端子101a、102aを電気的に接続するためのものがコネクタ10である。
【0010】
コネクタ10は、圧接型(弾性体)コネクタ12と、金属製クリップ部材14とを一体化させ、金属製クリップ部材14により液晶表示パネル102の電極端子102a部分に圧接型コネクタ12を取付け保持し、液晶表示パネル102及び回路基板101間でコネクタ12を圧縮することで電気的接続を行うものである。このコネクタ10の詳細については実施例1に記載する。
【0011】
接続に用いる圧接型コネクタは、液晶表示パネルの駆動電流の大きさによって選択すれば良く、液晶表示パネルの駆動用ICが回路基板側に搭載され、液晶表示パネルに入力される電流が小さい場合などは、コネクタ自体に大きな電流容量を必要としないため、図6に示すようなゴムコネクタ62を使用すれば良く、COG型液晶表示パネルのように、液晶駆動用ICが液晶表示パネルに直接搭載されており、比較的大きな電流を必要とするような場合、ゴムコネクタでは抵抗値が高く、電流容量が少ないため、電流による発熱が発生しやすく、また、信号の遅延や損失が発生するため使用は好ましくない。
【0012】
従って、導体に金属箔を線条形に加工した物、もしくは金属ワイヤーを用いた、電流容量の大きい圧接型コネクタ、たとえば、図1に示すX型コネクタ12、図3に示す金属細線U字型コネクタ32あるいは図4、図5に示す金属細線コネクタ42、52等を用いれば良い。
【0013】
金属細線コネクタ52は、一定ピッチ配列した金属ワイヤー52cを絶縁性エラストマー52a、52bで挟持したものを金属ワイヤー52c方向が一定になるように積層し、この物をスライスした後、適宜寸法に切断する金属細線マトリックス型コネクタ52としたもので、金属細線コネクタ42の代わりにこのようにして良い。
最近では液晶表示パネルの薄型化・軽量化が進み、液晶表示パネル自体の強度が低下している。
従って圧接型コネクタを使用する場合においては、低い圧縮荷重での接続が必要であるため、接続時の圧縮荷重が低く抑えられる、X型コネクタ12の使用が最も望ましい。
【0014】
圧接型コネクタに金属箔を線条体に加工した物を用いる場合、その素材には銅、アルミニウム、アルミニウム−けい素合金、真鍮、りん青銅、ベリリウム銅、ニッケル、ニッケル−チタン合金、モリブデン、タングステン、ステンレス、鉄、鉄−炭素合金などを用いることができ、これらの表面に金または金合金などのメッキ加工を施すことが望ましい。
特にステンレスに金メッキを施したものは、接触抵抗が低く、かつ、素材自体のバネ性があるため、コネクターの座屈防止や、繰り返し圧縮性において優れ、また、コストが低く抑えられるため最も望ましい。
この時に金属箔の厚みは0.01〜0.5mmとし、好ましくは0.02〜0.5mmが良い。
0.01mm未満では材料自体の強度が無く、製品とした場合の耐久性が悪く、成形時のハンドリンク性が悪くなる。
0.5mm以上では材料の剛性が高すぎ、接続荷重を低く抑えることが困難となり、また加工性が低下する。
【0015】
金属箔を一定ピッチの導電線条体に加工する方法としては、エッチング、レーザー、スタンピングプレスによる抜き加工等を用いることが出来る。
ピッチ精度を必要とし、接続電極幅が狭い場合、例えば0.03〜0.5mmピッチでは、エッチングにより金属箔を所定のピッチに加工するのが良い。
逆に接続電極幅が広い場合、例えば0.5〜2.0mmピッチではレーザーにて所定のピッチに加工する方法、スタンピングプレスによる抜き加工等を用いると量産性やコストの面で良い。
【0016】
また、圧接型コネクタに金属ワイヤーを用いる場合、その素材には金、金合金、銅、アルミニウム、アルミニウム−けい素合金、真鍮、りん青銅、ベリリウム銅、ニッケル、ニッケル−チタン合金、モリブデン、タングステン、ステンレス、鉄、鉄−炭素合金などを用いることができ、金、金合金以外の素材表面には金または金合金などのメッキ加工を施すことが望ましい。
【0017】
金属ワイヤーの直径は、0.01mm〜0.5mm程度の物が使用出来るが、0.01mm未満ではワイヤー自体の強度が低いため加工性が悪く、また、直径が0.1mmを越えると、逆に強度が高くなりすぎ、コネクタにしたときの接圧が高くなりすぎてしまうため、直径0.02mmから0.1mmの範囲が最も望ましい。
【0018】
圧接型コネクタにゴムコネクタを用いる場合、導電性エラストマー及び絶縁性エラストマーを交互積層し、非圧接面側に一対の絶縁性エラストマーからなるサポート材を付与した圧接型ゴムコネクタを用いる。
ゴムコネクタに用いられる絶縁性エラストマーは弾性を有し、かつ絶縁性を有するエラストマー部材が良く、シリコーンゴム、ポリブタジエンゴム、天然ゴム、ポリイソプレンゴム、ウレタンゴム、クロロプレンゴム、ポリエステル系ゴム、スチレン−ブタジエン共重合体ゴム、エピクロルヒドリンゴムの非発泡材料、またはこれらの発泡材料などが使用できる。
中でも、電気絶縁性、耐熱性、圧縮永久歪みに優れるシリコーンゴムの使用が最も望ましい。
【0019】
また、導電性エラストマーは前記した各種エラストマー素材に、カーボン、グラファイト、金、銀、銅、ニッケルといった導電性を有する素材、またはこれらのメッキ加工を施した粉体、微小球体、鱗片状体を添加したものが使用できる。絶縁性及び導電性エラストマー部材のゴム強度は、低いゴム硬度の場合、低い接圧が得られるが、圧縮による永久歪や、熱によるへたりが発生しやすい。
また、高いゴム硬度を有する材料は接圧が高くなってしまう。
従って、接圧が低く、かつ永久歪の少ないエラストマー部材として、ゴム硬度10〜70°Hが良く、好ましくはゴム硬度30〜60°Hのシリコーンゴムの使用が望ましい。
【0020】
金属製クリップ部材は、銅、アルミニウム、アルミニウム−けい素合金、真鍮、りん青銅、ペリリウム銅、ニッケル、ニッケル−チタン合金、モリブデン、タングステン、ステンレス、鉄、鉄−炭素合金などの素材を用いることができるが、クリップとしての機能を考慮した場合、バネ性の高い素材を使用することが好ましく、中でもステンレスが、バネ性・加工性・コスト的に優れるため最も望ましい。
【0021】
金属製クリップ部材の形状は、液晶表示パネルの大きさ・厚み・使用する圧接型コネクタの大きさ・種類等によって異なってくるため、各液晶表示パネルに応じた設計を行う必要があるが、液晶表示パネルへの保持・固定を行う部分(クリップ部分)は、金属製クリップ部材中に少なくとも一カ所以上、望ましくは、液晶表示パネルへの固定強度等を考慮した場合、2カ所以上設けるのが良く、また、金属製クリップ部材の長さは、使用する液晶表示パネルの長さと同じにしておくことが望ましい。
これは、液晶表示パネルの端面と金属製クリップ部材の長さ方向端面の位置を合わせるだけで容易に位置決めが出来、作業性が向上するからである。
【0022】
クリップ部分の形状は、略断面形状が‘コ’あるいは‘C’のような形状が金属製部材の加工性、液晶表示パネル端子部分への保持・固定のし易さ等から考えても好ましいが、液晶表示パネルの電極端子部分外を挟み込み、保持・固定できる形であれば良い。
この時クリップ部分の開口部の端部を、クリップの広がる方向に若干曲げておく、またはクリップの閉まる方向に折り返しておくことにより、液晶表示パネル端子部分への取り付けが容易になるため望ましい。
なお、上述したなかでは、金属製クリップ部材でクリップするところを、液晶表示パネルとしているが、回路基板側をクリップするようにしても同じことが行える。
【0023】
【実施例】
(実施例1)
図1,2に示すコネクタ10の製造方法について説明する。
大きさ30mm×100mm、厚み50μmのステンレス板を、外周部10mmの額縁部を残して0.07mmピッチ・導体長さ10mmにスリット部をエッチングし、この物に下地ニッケル、表面金メッキ処理を施した。
エラストマー支持体成形用金型に、硬化後ゴム硬度50°Hのシリコーンゴムを充填し、これを120゜C・5分間加圧加熱し略V字状のシリコーンゴム支持体12a、12bとした。なお、これらシリコーンゴム支持体12a、12bは本発明にいう第一、第二の支持弾性体に相当する。
【0024】
上記に得られたシリコーンゴム支持体にシリコーン系接着剤を20μm厚に塗布し、この物二つと前記ステンレス板を導体部材長さの中心点を基準として点対称となるように接着用治具にセットした後、120℃で5分間加圧加熱し、出来上がった成形体から不要部分の額縁部とスリット部を切断除去して導電線条材12cを形成し、更にスリット部ピッチ配列方向に約15mmの長さに切断し、図1、2に示すような幅約1.5mm、高さ約1.5mm、長さ約15mmのX型コネクタ12とした。
【0025】
次いで、厚み100μmのステンレス板を、金属製クリップ部材の展開形状に、プレス加工にて打ち抜いた後、所定の形状に曲げ加工して、長さ約40mm、幅約2.5mm、高さ約2.0mmで、長さ方向の両端部分に略断面形状が‘コ’の字をしたクリップ部分を有する金属製クリップ部材14とした。
この物にシリコーン系接着剤を塗布し、前記X型コネクタ12を取付け、120゜Cで10分間加熱することにより接着固定して、金属製クリップ部材付X型コネクタ10を得た。
この物を、COG型液晶表示パネルの端子部分に、金属製クリップ部材のクリップ部分を用いて取付け、回路基板との間で圧縮したところ、液晶表示パネルが正常に点灯し、安定した導通が得られることが確認された。
【0026】
(実施例2)
図3に示すコネクタ30の製造方法について説明する。
下地ニッケルメッキ、表面金メッキを施した直径40μmの真鍮線32cを、硬化後ゴム硬度50゜H、厚み100μmの未硬化シリコーンゴム上に、0.1mmピッチにて一定間隔で配列し、この物を120°Cで30分間加熱・硬化させ、更に真鍮線32cの配列方向に直交する方向に約9mmの長さで切断した。
次いでこの物を治具に掘られた、幅約3mm、深さ約2mmのU字型の溝に、真鍮線32cが、外面に来るように押し込み、更に加熱によりスポンジ状に発泡し、硬化後ゴム硬度が20゜Hとなる未硬化シリコーンゴム32aを充填し、蓋をかぶせた後、120゜Cで5分間加熱・発泡・硬化させた後に取り出し、真鍮線の配列方向に約10mmの長さに切断し、幅約2mm、高さ約3mm、長さ約10mmの金属細線U字型コネクタ32とした。
【0027】
次いで、厚み100μmのステンレス板を、金属製クリップ部材の展開形状に、プレス加工にて打ち抜いた後、所定の形状に曲げ加工して、長さ約30mm、幅約2.5mm、高さ約2.0mmで、長さ方向の両端部分に略断面形状が‘コ’の字をしたクリップ部分を有する金属製クリップ部材34とした。
この物にシリコーン系接着剤を塗布し、前記金属細線U字型コネクタ32を取付け、120゜Cで10分間加熱することにより接着固定して、金属製クリップ部材付金属細線U字型コネクタ30を得た。
この物を、COG型液晶表示パネルの端子部分に、金属製クリップ部材34のクリップ部分を用いて取付け、回路基板との間で圧縮したところ、液晶表示パネルが正常に点灯し、安定した導通が得られることが確認された。
【0028】
(実施例3)
図4に示すコネクタ40についての製造方法について説明する。
下地ニッケルメッキ、表面金メッキを施した直径30μmの真鍮線42cを、硬化後ゴム硬度30゜H、厚み100μmの未硬化シリコーンゴム上に、0.05mmピッチにて一定間隔で配列し、更に、硬化後ゴム硬度30゜H、厚み100μmの未硬化シリコーンゴムを、配列した真鍮線42c上に貼り、この物を120℃で30分間加熱・硬化させ、この物の両表面に、シリコーン系接着剤を厚み20μmで塗布し、ここに厚み約0.9mm、ゴム硬度30゜Hのシリコーンゴム板(サポート材)42a,42bを貼り合わせ、更に120゜Cで10分間加熱・硬化させた後、真鍮線の配列方向に約20mm、真鍮線の配列方向に直交する方向に約5mmに切断し、長さ約20mm、幅約2mm、高さ約5mmの金属細線コネクタ42とした。
【0029】
次いで、厚み80μmのステンレス板を、金属製クリップ部材の展開形状に、プレス加工にて打ち抜いた後、所定の形状に曲げ加工して、長さ約30mm、幅約3mm、高さ約3mmで、長さ方向の両端部分に略断面形状が‘C’の字をしたクリップ部分を有する金属製クリップ部材44とした。
この物にシリコーン系接着剤を塗布し、前記金属細線コネクタ42を取付け、120゜Cで10分間加熱することにより接着固定して、金属製クリップ部材付金属細線コネクタ40を得た。
この物を、COG型液晶表示パネルの端子部分に、金属製クリップ部材のクリップ部分を用いて取付け、回路基板との間で圧縮したところ、液晶表示パネルが正常に点灯し、安定した導通が得られることが確認された。
【0030】
(実施例4)
図5に示すコネクタ50の製造方法について説明する。
下地ニッケルメッキ、表面金メッキを施した直径40μmの真鍮線52cを、硬化後ゴム硬度50゜H、厚み100μmの未硬化シリコーンゴム52a上に、0.2mmピッチにて一定間隔で配列し、更に、硬化後ゴム硬度50゜H、厚み100μmの未硬化シリコーンゴム52bを、配列した真鍮線52c上に貼り、この物を120゜Cで30分間加熱・硬化させ、この物10枚をシリコーン系接着剤にて真鍮線の配列方向を揃えて貼り合わせ、更に120゜Cで10分間加熱・硬化させた後、真鍮線の配列方向に直交する方向に約2.5mmに切断し、更にこの物を長さ約15mm、幅約2mmに切断し、長さ約15mm、幅約2mm、高さ約2.5mmの金属細線マトリックス型コネクタ52とした。
【0031】
次いで、厚み100μmのステンレス板を、金属製クリップ部材の展開形状に、プレス加工にて打ち抜いた後、所定の形状に曲げ加工して、長さ約25mm、幅約3mm、高さ約3mmで、長さ方向の両端部分に略断面形状が‘C’の字をしたクリップ部分を有する金属製クリップ部材54とした。
この物にシリコーン系接着剤を塗布し、前記金属細線マトリックス型コネクタ52を取付け、120゜Cで10分間加熱することにより接着固定して、金属製クリップ部材付金属細線マトリックス型コネクタ50を得た。
この物を、COG型液晶表示パネルの端子部分に、金属製クリップ部材のクリップ部分を用いて取付け、回路基板との間で圧縮したところ、液晶表示パネルが正常に点灯し、安定した導通が得られることが確認された。
【0032】
(実施例5)
図6に示すコネクタ60の製造方法について説明する。
厚み50μmの絶縁性シリコーンゴム62aと、厚み50μmの導通性シリコーンゴム62cを交互に積層し、この物を積層方向に対し直交方向に厚み0.6mmで切断し、この物の両表面にシリコーン系接着剤を20μmの厚みに塗布し、ここに厚み約0.93mm、ゴム硬度20゜Hのシリコーンゴム板(サポート材)62bを貼り、140゜Cで10分間加熱・硬化させた後、絶縁性シリコーンゴムと導電性シリコーンゴムの積層方向に約30mm、これに直交する方向に約3mmの大きさに切断し、長さ約30mm、幅約2.5mm、高さ約3mmのゴムコネクタ62とした。
【0033】
次いで、厚み100μmのステンレス板を、金属製クリップ部材の展開形状に、プレス加工にて打ち抜いた後、所定の形状に曲げ加工して、長さ約45mm、幅約3mm、高さ約3mmで、長さ方向の両端部分に略断面形状が‘C’の字をしたクリップ部分を有する金属製クリップ部材64とした。
この物にシリコーン系接着剤を塗布し、前記ゴムコネクタを取付け、120゜C・10分間加熱することにより接着固定して、金属製クリップ部材付ゴムコネクタ60を得た。
この物を、液晶表示パネル端子部分に、金属製クリップ部材のクリップ部分を用いて取付け、回路基板との間で圧縮したところ、液晶表示パネルが正常に点灯し、安定した導通が得られることが確認された。
【0034】
なお、上記実施の形態及び実施例中では、クリップ部材として金属部材を用いたが、同様の効果を奏するものならば例えばプラスチック等の他の部材でも良い。
なお、上記実施の形態では、液晶表示パネルと回路基板間の対向する電極間の接続にコネクタ10を用いたが、冒頭で説明したように、このコネクタが用いられる電子部材としては、表面実装型LSI、液晶表示パネル、プラズマディスプレイ、電子回路基板等種々のものがある。
【0035】
【発明の効果】
以上説明したように、本発明によれば、ACF等の熱圧着工程が不要のため、熱圧着による電子部材の破壊を防止でき、かつ、電子部材の対向する電極間の接続作業をクリップを用いることにより極めて容易に行うことが可能となり、生産能力が向上する。
また、電子部材の一方に不良が発生した場合にも、簡便かつ容易にリペアが可能であり、良品である他方の高価な電子部材も廃棄しなくてはならないといった問題も解決でき、コストメリットも大きい。
【図面の簡単な説明】
【図1】本発明の実施の形態であるコネクタを液晶表示パネルと回路基板との接続に用いた液晶表示装置の縦断面図である。
【図2】図1に示す液晶表示装置の分解斜視図である。
【図3】コネクタの実施例2を示し、(a)は分解図、(b)は組立て図である。
【図4】コネクタの実施例3を示し、(a)は分解図、(b)は組立て図である。
【図5】コネクタの実施例4を示し、(a)は分解図、(b)は組立て図である。
【図6】コネクタの実施例5を示し、(a)は分解図、(b)は組立て図である。
【符号の説明】
10、30、40、50、60 コネクタ
12、32、42、52、62 圧接型(弾性体)コネクタ
12c、32c、42c、52c 金属細線(導電線条材)
14、34、44、54、64 金属製クリップ部材
100 液晶表示装置
101 回路基板
101a 電極端子
102 液晶表示パネル
102a 電極端子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrical connection method, a connection structure, and a connector between opposed electrodes.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, electrical connection between electrodes of electronic members such as a surface mount LSI, a liquid crystal display panel, a plasma display, and an electronic circuit board uses a bonding agent such as ACF (Anisotropic, Conductive, Film: anisotropic conductive film). This is performed by a method of thermocompression bonding, or a method of electrically connecting the electrodes by arranging an elastic connector between the electrodes of the opposing electronic member and pressing them together.
[0003]
[Problems to be solved by the invention]
However, in the case of thermocompression bonding using ACF, accurate positioning between the electrode terminals of the electronic member is required, and the connection operation is not easy.
Further, destruction of electronic members due to thermocompression, for example, in a COG (Chip-On-Glass) type liquid crystal, a load is applied to a liquid crystal display panel or a liquid crystal driving IC due to residual stress caused by thermocompression. In addition, the ACF joining the liquid crystal driving IC may be softened by the heat of the thermocompression bonding, and a problem may occur in the connection of the liquid crystal driving IC.
In addition, by setting the temperature of the thermocompression bonding to be low, it is possible to avoid the occurrence of such a problem, but in this case, there is a possibility that a sufficient adhesive strength cannot be obtained.
Also, once thermocompression bonding is performed, peeling is extremely difficult. For example, in a display test of a liquid crystal display panel, when a display defect not caused by the liquid crystal display panel, such as a connection failure or an FPC failure, occurs, There is also a problem that, despite good quality, repair cannot be performed and the expensive liquid crystal display panel must be discarded.
Further, in the case of the method of pressure contact using an elastic connector, although peeling can be performed, there is a problem that accurate positioning of the connector with respect to the electrode is not easy and productivity does not increase.
[0004]
An object of the present invention is to solve the problems of cost and yield, such as destruction and overload of electronic members due to a thermocompression bonding process such as ACF and disposal of expensive electronic members, and to perform connection work between electronic members simply and easily. It is an object of the present invention to provide a connection method and a connector for the connection method.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention employs the following means.
The invention according to claim 1 is an electrical connection method for connecting each electrode of the electronic member facing each other using a connector, wherein the connector is configured by integrating an elastic connector and a clip member. And by clipping the outside of one electrode portion of the electronic member with the clip member, one end of the elastic connector is brought into contact with the electrode portion of the electronic member, and the other end of the elastic connector is connected to the other end. The electrodes of the electronic member are brought into contact with each other, the elastic connector is compressed by these electronic members, and the opposing electrodes of the electronic member are electrically connected.
[0006]
The invention according to claim 2 is a connector for electrically connecting between respective electrodes of the opposing electronic member, wherein the connector has electrodes formed on both sides of the elastic member, and the electrodes on both sides are respectively provided. The conductive elastic connector and the elastic connector are integrated, and the outside of one electrode portion of the electronic member is clipped so that the electrode of the elastic connector and the electrode of the electronic member come into contact with each other. Wherein the elastic connector preferably includes an insulating elastomer having a substantially X-shaped cross section and an arm extending substantially in the X shape of the insulating elastomer. And a conductive wire extending from one end of the front surface to the end of the back surface of another opposing arm having the center point of the X-shape as a substantially symmetrical point.
[0007]
According to a third aspect of the present invention, a pair of electronic members are opposed to each other so that the electrodes are opposed to each other, and the connector according to the second aspect is interposed between the electrodes to electrically connect the electrodes. This is the connection structure.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the connector according to the present invention will be described.
The connector according to the present invention is a connector in which a pair of electronic members are opposed to each other to electrically connect the opposed electrodes (electrode terminals). A conductive elastic connector, and a clip formed integrally with the elastic connect so that when the outside of the electrode portion of the electronic member is clipped, the electrode of the elastic connector comes into contact with the electrode of the electronic member. And a member. Examples of electronic members to which this connector is used include a surface mount LSI, a liquid crystal display panel, a plasma display, and an electronic circuit board. Hereinafter, a case where one of the electronic members is a liquid crystal display panel and the other is a circuit board will be described. I do.
[0009]
FIG. 1 is a longitudinal sectional view of a liquid crystal display device 100 in which a connector 10 according to an embodiment of the present invention is used for electrical connection between electrodes of a liquid crystal display panel and a circuit board, and FIG. 2 is an exploded perspective view thereof. is there.
In the figure, 101 is a circuit board, 102 is a liquid crystal display panel, 103 is a backlight LED, 104 is a light guide for guiding the light of the backlight LED 103 to the back of the liquid crystal display panel 102, 105 is a shield case, 106 is This is a liquid crystal driving IC. Reference numeral 101a denotes an electrode terminal formed on the circuit board 101, reference numeral 102a denotes an electrode terminal formed on the liquid crystal display panel 102, and the connector 10 electrically connects the electrode terminals 101a and 102a.
[0010]
The connector 10 integrates a pressure contact type (elastic body) connector 12 and a metal clip member 14, and attaches and holds the pressure contact type connector 12 to the electrode terminal 102 a of the liquid crystal display panel 102 by the metal clip member 14. The electrical connection is made by compressing the connector 12 between the liquid crystal display panel 102 and the circuit board 101. Details of the connector 10 will be described in a first embodiment.
[0011]
The press-connecting connector used for connection may be selected according to the magnitude of the driving current of the liquid crystal display panel. For example, when the driving IC for the liquid crystal display panel is mounted on the circuit board side and the current input to the liquid crystal display panel is small. Since a large current capacity is not required for the connector itself, a rubber connector 62 as shown in FIG. 6 may be used, and a liquid crystal driving IC is directly mounted on the liquid crystal display panel like a COG type liquid crystal display panel. When a relatively large current is required, the rubber connector has a high resistance value and a small current capacity, so it is easy to generate heat due to the current, and signal delay or loss occurs. Not preferred.
[0012]
Therefore, a crimping type connector having a large current capacity using a material obtained by processing a metal foil into a linear shape or a metal wire, such as an X-type connector 12 shown in FIG. 1 and a thin U-shaped metal wire shown in FIG. The connector 32 or the thin metal wire connectors 42 and 52 shown in FIGS. 4 and 5 may be used.
[0013]
The thin metal wire connector 52 is formed by laminating metal wires 52c arranged at a constant pitch between insulating elastomers 52a and 52b so that the direction of the metal wires 52c is constant, and after slicing the products, cutting them into appropriate dimensions. This is a thin metal wire matrix type connector 52, which may be used instead of the thin metal wire connector 42.
Recently, the liquid crystal display panel has been made thinner and lighter, and the strength of the liquid crystal display panel itself has been reduced.
Therefore, when a press-connecting connector is used, it is necessary to connect with a low compressive load. Therefore, it is most preferable to use the X-type connector 12, which can suppress the compressive load at the time of connection low.
[0014]
When using a product obtained by processing a metal foil into a striatum for a press-fit connector, the material is copper, aluminum, aluminum-silicon alloy, brass, phosphor bronze, beryllium copper, nickel, nickel-titanium alloy, molybdenum, tungsten , Stainless steel, iron, an iron-carbon alloy, or the like, and it is desirable to apply a plating process of gold or a gold alloy to the surface thereof.
In particular, stainless steel plated with gold is most desirable because it has low contact resistance and has the resiliency of the material itself, so that it is excellent in preventing buckling of the connector, repetitive compressibility, and keeping costs low.
At this time, the thickness of the metal foil is 0.01 to 0.5 mm, preferably 0.02 to 0.5 mm.
If the thickness is less than 0.01 mm, the material itself does not have sufficient strength, the durability of the product is poor, and the hand linkability at the time of molding is poor.
If it is 0.5 mm or more, the rigidity of the material is too high, and it is difficult to keep the connection load low, and the workability is reduced.
[0015]
As a method of processing the metal foil into a conductive wire having a constant pitch, etching, laser, punching by a stamping press, or the like can be used.
When pitch accuracy is required and the connection electrode width is narrow, for example, at a pitch of 0.03 to 0.5 mm, the metal foil is preferably processed to a predetermined pitch by etching.
Conversely, when the width of the connection electrode is wide, for example, at a pitch of 0.5 to 2.0 mm, using a method of processing to a predetermined pitch with a laser, punching by a stamping press, or the like is advantageous in terms of mass productivity and cost.
[0016]
When a metal wire is used for a press-fit connector, the material is gold, gold alloy, copper, aluminum, aluminum-silicon alloy, brass, phosphor bronze, beryllium copper, nickel, nickel-titanium alloy, molybdenum, tungsten, Stainless steel, iron, an iron-carbon alloy, or the like can be used, and it is preferable to apply a plating process of gold or a gold alloy on the surface of a material other than gold or a gold alloy.
[0017]
A metal wire having a diameter of about 0.01 mm to 0.5 mm can be used. If the diameter is less than 0.01 mm, the workability is poor because the strength of the wire itself is low. Therefore, the diameter is most preferably in the range of 0.02 mm to 0.1 mm because the strength becomes too high and the contact pressure when the connector is used becomes too high.
[0018]
When a rubber connector is used as the press contact type connector, a press contact type rubber connector in which a conductive elastomer and an insulating elastomer are alternately laminated and a support material made of a pair of insulating elastomers is provided on the non-pressing surface side.
The insulating elastomer used for the rubber connector is preferably an elastic and insulating elastomer member. Silicone rubber, polybutadiene rubber, natural rubber, polyisoprene rubber, urethane rubber, chloroprene rubber, polyester rubber, styrene-butadiene Non-foamed materials such as copolymer rubber and epichlorohydrin rubber, or foamed materials thereof can be used.
Among them, it is most desirable to use silicone rubber which is excellent in electric insulation, heat resistance and compression set.
[0019]
In addition, the conductive elastomer is obtained by adding a conductive material such as carbon, graphite, gold, silver, copper, and nickel, or a powder, a microsphere, and a flaky material obtained by plating these materials to the various elastomer materials described above. Can be used. As for the rubber strength of the insulating and conductive elastomer members, when the rubber hardness is low, a low contact pressure can be obtained, but permanent distortion due to compression and sag due to heat are likely to occur.
Further, a material having a high rubber hardness has a high contact pressure.
Therefore, as an elastomer member having a low contact pressure and a small permanent set, it is desirable to use a silicone rubber having a rubber hardness of 10 to 70 ° H, preferably 30 to 60 ° H.
[0020]
For the metal clip member, a material such as copper, aluminum, aluminum-silicon alloy, brass, phosphor bronze, perylium copper, nickel, nickel-titanium alloy, molybdenum, tungsten, stainless steel, iron, iron-carbon alloy, etc. may be used. Although it is possible, in consideration of the function as a clip, it is preferable to use a material having a high spring property. Among them, stainless steel is most desirable because of its excellent spring property, workability, and cost.
[0021]
The shape of the metal clip member varies depending on the size and thickness of the liquid crystal display panel, the size and type of the press-connecting connector used, and so on. At least one or more portions (clip portions) for holding and fixing to the display panel are preferably provided in the metal clip member at two or more positions in consideration of the fixing strength to the liquid crystal display panel and the like. It is desirable that the length of the metal clip member is the same as the length of the liquid crystal display panel used.
This is because positioning can be easily performed only by aligning the position of the end face of the liquid crystal display panel with the lengthwise end face of the metal clip member, and workability is improved.
[0022]
The shape of the clip portion is preferably such that the substantially cross-sectional shape is like “C” or “C” from the viewpoint of workability of the metal member, ease of holding and fixing to the liquid crystal display panel terminal portion, and the like. Any shape can be used as long as it can hold and fix the outside of the electrode terminal portion of the liquid crystal display panel.
At this time, it is desirable to slightly bend the end of the opening of the clip portion in the direction in which the clip expands or to turn it back in the direction in which the clip closes, since attachment to the liquid crystal display panel terminal portion becomes easy.
In the above description, the portion to be clipped by the metal clip member is the liquid crystal display panel. However, the same can be performed by clipping the circuit board side.
[0023]
【Example】
(Example 1)
A method of manufacturing the connector 10 shown in FIGS.
A 30 mm × 100 mm, 50 μm thick stainless steel plate was etched with a slit of 0.07 mm pitch and a conductor length of 10 mm, leaving a 10 mm outer peripheral frame, and this was plated with nickel undercoat and surface gold. .
A silicone rubber having a rubber hardness of 50 ° H after curing was filled in a mold for molding an elastomer support, and this was pressurized and heated at 120 ° C for 5 minutes to obtain substantially V-shaped silicone rubber supports 12a and 12b. Incidentally, these silicone rubber supports 12a and 12b correspond to the first and second support elastic bodies in the present invention.
[0024]
A silicone-based adhesive is applied to the silicone rubber support obtained above to a thickness of 20 μm, and the two adhesives and the stainless steel plate are bonded to a bonding jig so as to be point-symmetric with respect to the center of the length of the conductor member. After setting, pressurizing and heating at 120 ° C. for 5 minutes to cut and remove unnecessary frame portions and slit portions from the formed molded body to form the conductive wire 12c, and further, about 15 mm in the slit pitch direction. To about 1.5 mm in width, 1.5 mm in height and 15 mm in length as shown in FIGS.
[0025]
Next, a stainless steel plate having a thickness of 100 μm is punched into a developed shape of a metal clip member by press working, and then bent into a predetermined shape to have a length of about 40 mm, a width of about 2.5 mm, and a height of about 2 mm. A metal clip member 14 having a length of 0.0 mm and a clip portion having a substantially U-shaped cross section at both ends in the length direction.
The X-type connector 12 was attached to the product, and the X-type connector 12 was attached. The X-type connector 12 was heated and fixed at 120 ° C. for 10 minutes to obtain an X-type connector 10 having a metal clip member.
This product was attached to the terminal part of the COG type liquid crystal display panel using the clip part of a metal clip member, and was compressed between the circuit board. As a result, the liquid crystal display panel turned on normally and stable conduction was obtained. Was confirmed.
[0026]
(Example 2)
A method for manufacturing the connector 30 shown in FIG. 3 will be described.
The brass wire 32c having a diameter of 40 μm and having a nickel plating undercoat and a surface gold plating is arranged at regular intervals at a pitch of 0.1 mm on an uncured silicone rubber having a rubber hardness of 50 ° H and a thickness of 100 μm after curing. It was heated and cured at 120 ° C. for 30 minutes, and further cut at a length of about 9 mm in a direction perpendicular to the arrangement direction of the brass wires 32c.
Next, the brass wire 32c was pushed into the outer surface of a U-shaped groove of about 3 mm in width and about 2 mm in depth, which was dug into a jig, and was further foamed into a sponge shape by heating. After filling with uncured silicone rubber 32a having a rubber hardness of 20 ° H, covering with a lid, heating, foaming, and curing at 120 ° C for 5 minutes, take out, and take a length of about 10 mm in the brass wire arrangement direction. Into a metal thin wire U-shaped connector 32 having a width of about 2 mm, a height of about 3 mm, and a length of about 10 mm.
[0027]
Next, a stainless steel plate having a thickness of 100 μm is punched into a developed shape of a metal clip member by press working, and then bent into a predetermined shape to be about 30 mm long, about 2.5 mm wide, and about 2 mm high. A metal clip member 34 having a length of 0.0 mm and a clip portion having a substantially U-shaped cross section at both ends in the length direction.
A silicone adhesive is applied to this material, the metal thin wire U-shaped connector 32 is attached, and heated and fixed at 120 ° C. for 10 minutes to bond and fix the metal thin wire U-shaped connector 30 with a metal clip member. Obtained.
This product was attached to the terminal portion of the COG type liquid crystal display panel using the clip portion of the metal clip member 34 and compressed between the circuit board and the liquid crystal display panel turned on normally, and stable conduction was achieved. It was confirmed that it could be obtained.
[0028]
(Example 3)
A method for manufacturing the connector 40 shown in FIG. 4 will be described.
Brass wires 42c having a diameter of 30 μm and having a base nickel plating and a surface gold plating are arranged at regular intervals at a 0.05 mm pitch on an uncured silicone rubber having a rubber hardness of 30 ° H. and a thickness of 100 μm after curing. Thereafter, an uncured silicone rubber having a rubber hardness of 30 ° H and a thickness of 100 µm is stuck on the arranged brass wires 42c, and the material is heated and cured at 120 ° C for 30 minutes, and a silicone-based adhesive is applied to both surfaces of the material. It is applied in a thickness of 20 μm, silicone rubber plates (support materials) 42a and 42b each having a thickness of about 0.9 mm and a rubber hardness of 30 ° H are adhered to each other, and further heated and cured at 120 ° C. for 10 minutes. About 20mm in the direction of arrangement and about 5mm in the direction perpendicular to the arrangement direction of the brass wire to form a thin metal wire connector 42 with a length of about 20mm, a width of about 2mm and a height of about 5mm. .
[0029]
Then, after punching out a stainless steel plate having a thickness of 80 μm into a developed shape of a metal clip member by press working, and bending it into a predetermined shape, the length is about 30 mm, the width is about 3 mm, and the height is about 3 mm. The metal clip member 44 has a clip portion having a substantially C-shaped cross section at both ends in the length direction.
A silicone adhesive was applied to this product, and the metal thin wire connector 42 was attached thereto. The wire was heated and fixed at 120 ° C. for 10 minutes to obtain a metal thin wire connector 40 with a metal clip member.
This product was attached to the terminal part of the COG type liquid crystal display panel using the clip part of a metal clip member, and was compressed between the circuit board. As a result, the liquid crystal display panel turned on normally and stable conduction was obtained. Was confirmed.
[0030]
(Example 4)
A method for manufacturing the connector 50 shown in FIG. 5 will be described.
A brass wire 52c having a diameter of 40 μm and having a base nickel plating and a surface gold plating is arranged at regular intervals at a pitch of 0.2 mm on an uncured silicone rubber 52a having a rubber hardness of 50 ° H and a thickness of 100 μm after curing. After curing, an uncured silicone rubber 52b having a rubber hardness of 50 ° H and a thickness of 100 μm is stuck on the arranged brass wires 52c, and the material is heated and cured at 120 ° C. for 30 minutes. After aligning the brass wires in the same direction and bonding them together, further heat and cure them at 120 ° C for 10 minutes, cut them into about 2.5 mm in a direction perpendicular to the brass wire array direction, and further lengthen the material. It was cut into a length of about 15 mm and a width of about 2 mm to obtain a metal wire matrix connector 52 having a length of about 15 mm, a width of about 2 mm, and a height of about 2.5 mm.
[0031]
Next, a 100 μm-thick stainless steel plate is punched out in a developed shape of a metal clip member by press working, and then bent into a predetermined shape to have a length of about 25 mm, a width of about 3 mm, and a height of about 3 mm. The metal clip member 54 has a clip portion having a substantially C-shaped cross section at both ends in the length direction.
A silicone adhesive was applied to this product, and the metal wire matrix type connector 52 was attached. The connector was heated and fixed at 120 ° C. for 10 minutes to obtain a metal wire matrix type connector 50 with a metal clip member. .
This product was attached to the terminal part of the COG type liquid crystal display panel using the clip part of a metal clip member and compressed between the circuit board and the liquid crystal display panel turned on normally, and stable conduction was obtained. Was confirmed.
[0032]
(Example 5)
A method for manufacturing the connector 60 shown in FIG. 6 will be described.
An insulating silicone rubber 62a having a thickness of 50 μm and a conductive silicone rubber 62c having a thickness of 50 μm are alternately laminated, and the product is cut at a thickness of 0.6 mm in a direction perpendicular to the laminating direction. An adhesive is applied to a thickness of 20 μm, and a silicone rubber plate (support material) 62b having a thickness of about 0.93 mm and a rubber hardness of 20 ° H. is adhered thereto, and heated and cured at 140 ° C. for 10 minutes. It is cut into a size of about 30 mm in the laminating direction of the silicone rubber and the conductive silicone rubber and about 3 mm in a direction perpendicular to the laminating direction, to obtain a rubber connector 62 having a length of about 30 mm, a width of about 2.5 mm, and a height of about 3 mm. .
[0033]
Then, after punching out a stainless steel plate having a thickness of 100 μm into a developed shape of a metal clip member by pressing, and bending it into a predetermined shape, the length is about 45 mm, the width is about 3 mm, and the height is about 3 mm. The metal clip member 64 has a clip portion having a substantially C-shaped cross section at both ends in the length direction.
A silicone-based adhesive was applied to the product, and the rubber connector was attached and heated and bonded at 120 ° C. for 10 minutes to obtain a rubber connector 60 with a metal clip member.
When this product was attached to the liquid crystal display panel terminal portion using the clip portion of a metal clip member and compressed between the circuit board, the liquid crystal display panel turned on normally, and stable conduction was obtained. confirmed.
[0034]
In the above embodiments and examples, a metal member is used as the clip member, but other members such as plastic may be used as long as they have the same effect.
In the above-described embodiment, the connector 10 is used to connect the opposing electrodes between the liquid crystal display panel and the circuit board. However, as described at the beginning, the electronic member using this connector is a surface mount type. There are various types such as LSIs, liquid crystal display panels, plasma displays, and electronic circuit boards.
[0035]
【The invention's effect】
As described above, according to the present invention, since a thermocompression bonding step of ACF or the like is not required, destruction of an electronic member due to thermocompression can be prevented, and a connection operation between opposing electrodes of the electronic member uses a clip. As a result, it is possible to carry out extremely easily, and the production capacity is improved.
In addition, even if a defect occurs in one of the electronic members, repair can be performed easily and easily, and the problem that the other expensive electronic member that is a good product must be discarded can be solved. large.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a liquid crystal display device using a connector according to an embodiment of the present invention for connecting a liquid crystal display panel to a circuit board.
FIG. 2 is an exploded perspective view of the liquid crystal display device shown in FIG.
3A and 3B show a second embodiment of the connector, wherein FIG. 3A is an exploded view and FIG. 3B is an assembly view.
4A and 4B show a third embodiment of the connector, wherein FIG. 4A is an exploded view and FIG.
FIG. 5 shows a fourth embodiment of the connector, wherein (a) is an exploded view and (b) is an assembled view.
FIG. 6 shows a fifth embodiment of the connector, wherein (a) is an exploded view and (b) is an assembled view.
[Explanation of symbols]
10, 30, 40, 50, 60 Connectors 12, 32, 42, 52, 62 Press-fit (elastic) connectors 12c, 32c, 42c, 52c Fine metal wires (conductive wires)
14, 34, 44, 54, 64 Metal clip member 100 Liquid crystal display device 101 Circuit board 101a Electrode terminal 102 Liquid crystal display panel 102a Electrode terminal

Claims (3)

対向する電子部材のそれぞれの電極間をコネクタを用いて接続する電気的接続方法であって、
前記コネクタが、弾性体コネクタとクリップ部材とを一体化して構成されるとともに、前記電子部材の一方の電極部分外を前記クリップ部材でクリップすることによって、前記弾性体コネクタの一端を該電子部材の電極部分に当接させ、該弾性体コネクタの他端に他方の電子部材の電極を当接させて、弾性コネクタをこれら電子部材により圧縮し、該電子部材の対向する電極間を電気的接続することを特徴とする対向電極間の電気的接続方法。
An electrical connection method for connecting between respective electrodes of opposing electronic members using a connector,
The connector, together with formed by integrating an elastic body connector and the clip member, the one electrode portion outside of said electronic member by the clipping by the clip member, said one end of the elastic body connector is brought into contact with the electrode portion of the electronic member, the other end of the elastic body connector by contacting the electrode of the other electronic components, the elastic connector is compressed by these electronic components, between opposing electrodes of the electron member electrical connection between the opposing electrodes, characterized by electrical connecting.
対向する電子部材のそれぞれの電極間を電気的に接続するコネクタであって、
前記コネクタが、弾性部材の両面に電極が形成され、該両面の電極間がそれぞれ導通している弾性体コネクタと、該弾性体コネクタ一体化され、前記電子部材の一方の電極部分外をクリップすることによって、前記弾性体コネクタの電極と該電子部材の電極とが当接するように構成されたクリップ部材とを備えたことを特徴とするコネクタ。
A connector for electrically connecting between respective electrodes of the opposing electronic member ,
Clip the connector, electrodes are formed on both sides of the elastic member, the elastic body connector between the two sides of the electrode is conductive, respectively, are integrated with the elastic body connector, the one electrode portion outside of said electronic member connectors by, characterized in that the electrodes of the elastic body connector electrode and the electronic member and a clip member configured to abut to.
対向配置した第1と第2の電子部材のそれぞれの電極間をコネクタを用いて電気的接続する接続構造であって、
前記コネクタが、両面に電極を形成した弾性部材の両面の電極間をそれぞれ導通させた弾性体コネクタとクリップ部材とを一体的に構成して形成され、該クリップ部材を第1の電子部材の電極部分外にクリップして第1の電子部材の電極と該弾性体コネクタの電極とを当接させ、第1と第2の電子部材間に該弾性体コネクタを介在させて対向電極間を電気的接続する構成としたことを特徴とする対向電極間の電気的接続構造。
A connection structure for electrically connecting each electrode of the first and second electronic members disposed to face each other using a connector,
The connector is formed by integrally forming an elastic connector and a clip member, each of which is electrically connected between electrodes on both sides of an elastic member having electrodes formed on both sides, and the clip member is formed as an electrode of a first electronic member. The electrode of the first electronic member is brought into contact with the electrode of the elastic connector by clipping outside the portion, and the elastic connector is interposed between the first and second electronic members to electrically connect the opposing electrodes. electrical connection structure between opposing electrodes, characterized in that it has a structure to be connected.
JP2000257375A 1999-09-16 2000-08-28 Electrical connection method, connection structure and connector between opposed electrodes Expired - Fee Related JP3547698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000257375A JP3547698B2 (en) 1999-09-16 2000-08-28 Electrical connection method, connection structure and connector between opposed electrodes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-261672 1999-09-16
JP26167299 1999-09-16
JP2000257375A JP3547698B2 (en) 1999-09-16 2000-08-28 Electrical connection method, connection structure and connector between opposed electrodes

Publications (2)

Publication Number Publication Date
JP2001155803A JP2001155803A (en) 2001-06-08
JP3547698B2 true JP3547698B2 (en) 2004-07-28

Family

ID=26545186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000257375A Expired - Fee Related JP3547698B2 (en) 1999-09-16 2000-08-28 Electrical connection method, connection structure and connector between opposed electrodes

Country Status (1)

Country Link
JP (1) JP3547698B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100700610B1 (en) * 2001-09-13 2007-03-28 엘지전자 주식회사 Portable electronic equipment
KR100434048B1 (en) * 2001-10-05 2004-06-04 엘지전자 주식회사 Lcd module connecting device of potable electronic system
CN100452567C (en) * 2004-06-28 2009-01-14 邓玉泉 LCD terminal punching method

Also Published As

Publication number Publication date
JP2001155803A (en) 2001-06-08

Similar Documents

Publication Publication Date Title
EP1085611B1 (en) Method for electrically connecting two sets of electrode terminals in array on electronic board units
GB2072433A (en) Electronic components connection device
WO2017078162A1 (en) Electric connection structure, glass plate with terminal, and method for manufacturing glass plate with terminal
WO2004002203A1 (en) Circuit board device and method for board-to-board connection
JP7405337B2 (en) Electrical connection sheet and glass plate structure with terminals
JP3547698B2 (en) Electrical connection method, connection structure and connector between opposed electrodes
CN113544911A (en) Electrical connection member and glass plate structure with terminal
US20110110542A1 (en) Piezoelectric exciter and piezoelectric exciter unit
JP4039975B2 (en) Wire type anisotropic conductive connector
JP3328596B2 (en) Press-connecting connector and method of manufacturing the same
EP1394905A1 (en) CONNECTOR FOR ELECTRO−ACOUSTIC COMPONENT AND CONNECTION STRUCTURE THEREOF
US7323245B2 (en) Electric connecting part
JP2002260755A (en) Pressure-contact connector and its manufacturing method
JP2002056908A (en) Electrical connector and its manufacturing method
JPH0837048A (en) Connector
CN112753135B (en) Electric connection sheet and glass plate structure with terminal
CN219302817U (en) Electronic equipment
JP4222123B2 (en) Flexible substrate bonding structure and flexible substrate bonding method
JP2001110487A (en) Connection structure of flexible printed board
JP4012525B2 (en) Electrical connector
JP2000331726A (en) Electrical connector
JPS5917536A (en) Liquid crystal display device
JP2002108232A (en) Display device and its manufacturing method and electronic equipment
JP2011198542A (en) Connector
JP3105164U (en) Anisotropic conductive insulation displacement connector

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees