JP3547383B2 - Wiring formation method - Google Patents

Wiring formation method Download PDF

Info

Publication number
JP3547383B2
JP3547383B2 JP2000275779A JP2000275779A JP3547383B2 JP 3547383 B2 JP3547383 B2 JP 3547383B2 JP 2000275779 A JP2000275779 A JP 2000275779A JP 2000275779 A JP2000275779 A JP 2000275779A JP 3547383 B2 JP3547383 B2 JP 3547383B2
Authority
JP
Japan
Prior art keywords
wiring
forming
film
resist
connection hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000275779A
Other languages
Japanese (ja)
Other versions
JP2002093901A (en
Inventor
和也 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000275779A priority Critical patent/JP3547383B2/en
Publication of JP2002093901A publication Critical patent/JP2002093901A/en
Application granted granted Critical
Publication of JP3547383B2 publication Critical patent/JP3547383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はデュアルダマシン法による配線の形成方法に関し、特に層間絶縁膜に形成される配線溝の形式方法に関する。
【0002】
【従来の技術】
半導体素子の高集積化に伴い、配線幅の微細化及び配線間のピッチの縮小化が必要となっているが、配線幅のドライエッチングによる微細化には、配線の加工限界が生じる為、配線層を縦方向に積層させる多層配線形式を採用するのが、現在の配線技術の主流となっている。更に、配線材料としては、近年、Alに代わって、抵抗率が低く、エレクトロマイグレーション耐性の高いCuが使用されつつある。
【0003】
しかしながら、Cu配線は、Al配線よりもRIE(反応性イオンエッチング)技術での加工が困難である。
【0004】
そこで、この問題を解決する手法にデュアルダマシン(dual damascene)法がある。この方法は、層間絶縁膜中に接続孔(ビアホールとも言う)と接続孔に重畳して配線部を形成するための配線溝を形成し、接続孔と配線部に金属材料を埋め込み、CMP(化学的機械研磨)法によって、研磨をして不要部の金属材料を取り去って接続孔にプラグ状の金属層と、溝配線を同時に形成する方法である(例えば月刊Semiconductor World,1996年12月号,頁129〜134参照)。尚、配線溝は、配線溝形成用のレジストパターンを形成し、エッチングされることにより形成される。この場合、Si基板の全面にレジストを塗布すると、微少な孔径で深く形成された接続孔にレジストが埋め込まれてしまい、エッチング後のレジスト剥離時に接続孔の底部に不要なレジストが残るという問題が生じる。
【0005】
そこで、上記問題を解決する製造工程が特開平8−306616号に記載されている。この方法は、Si基板に形成された溝部に、水溶性の物質であるポリビニルアルコール(PVA)膜を塗布して埋め込み、その後、Si基板上にレジストを塗布しても、溝の中にはポリビニルアルコール(PVA)膜も水洗で容易に除去できるので、接続孔の底部レジスト残りを防止できるというものである。
【0006】
そこで、上記手段を、デュアルダマシン法に適用した場合を図2に基づいて説明する。図2(a)に示すように、Si基板(図示せず)上の絶縁膜11上に、配線部22を形成し、続いて層間絶縁膜33を形成する。次に、フォトリソグラフィー工程により現像、エッチングして層間絶縁膜33中に接続孔44を形成する。次に、図2(b)に示すように、ポリビニルアルコール(PVA)膜55を全面に塗布する。ポリビニルアルコール(PVA)膜55は粘性が小さいため、接続孔44内に埋め込まれ、表面の層間絶縁膜33上には100nm程度の膜厚が形成されて、ポリビニルアルコール(PVA)膜55の塗布されたSi基板の表面は平坦になる。次に、図2(c)に示すように、酸素プラズマを用いて、ポリビニルアルコール(PVA)膜55をエッチバックして、層間絶縁膜33の表面を露出させる。次に、図2(d)に示すように、レジスト77を塗布して露光を行う。次に、図2(e)及び図2(f)に示すように、配線溝100のパターンのレジスト露光及び湿式の現像時に、接続孔44内のポリビニルアルコール(PVA)膜55が完全に除去され、その後、層間絶縁膜33をエッチングすることにより配線溝100は形成される。
【0007】
【発明が解決しようとする課題】
しかしながら、従来技術である月刊Semiconductor World,1996年12月号,頁129〜134記載の方法を用いると、配線溝を形成するために、レジストを全面に塗布すると、接続孔の底部までレジストが埋め込まれる。配線溝のエッチングを行った後、接続孔の内部のレジストがエッチング中にプラズマのダメージを受け、変質するので、Oプラズマや有機剥離によるレジスト剥離時に、接続孔の底部に不要なレジストが残ってしまい、金属材料を接続孔及び配線溝に埋め込んだ後、接触抵抗が高くなるという問題が生じる。
【0008】
また、特開平8−306616号記載のレジストパターン形成技術をデュアルダマシン法に適用させた場合には、レジスト剥離時において、レジスト及びPVA膜が完全に除去されてしまい、配線溝を形成する際に、エッチング工程時において接続孔と接している下の配線部をエッチングしてしまうという問題が生じる(図3参照)。
【0009】
そこで、本発明は、上記問題を解決する半導体製造方法、詳しくはレジストパターン形成方法を提供するものである。
【0010】
【課題を解決するための手段】
上記課題を解決する為に、本発明は、半導体基板に形成した配線部上に、層間絶縁膜を形成する工程と、層間絶縁膜に接続孔を形成する工程と、層間絶縁膜に接続孔を埋めるように半導体基板上に水溶性物質の薄膜を形成する工程と、前記薄膜の表面に、シリル化層である保護膜を形成する工程と、レジスト膜を塗布する工程と、レジストパターンを形成する工程と、接続孔に重畳するように、溝配線部をエッチングにより形成する工程と、水溶性物質を除去する工程と、配線材料を接続孔と溝配線部に同時に埋め込み配線を形成する工程とを順次行うことを特徴とする配線形成方法である。
【0012】
また、前記塗布により全面に形成された水溶性物質の薄膜の表面に、HMDS(ヘキサメチレンジシラザン)によりシリル化層からなる保護膜を形成することを特徴とする配線形成方法である。
【0013】
また、前記水溶性物質は、レジストパターン時の露光による感光性が無いことを特徴とする配線形成方法である。
【0014】
また、前記水溶性物質が、ポリビニルアルコールであることを特徴とする配線形成方法である。
【0015】
【発明の実施の形態】
本発明の実施形態を図面を参照して説明する。図1(a)に示すように、Si基板(図示せず)に、絶縁膜1を介して配線層2を形成し、次に層間絶縁膜3としてSiOx膜をCVD法により800nm程度堆積させる。そのレジストを塗布し、所定のマスクを用いて露光、現像を行って、直径0.2μm程度の孔径のレジストパターンを形成し、このレジストパターンをマスクにドライエッチング法により、層間絶縁膜3のエッチングを行い直径0.2μmの接続孔4を形成する。
【0016】
次に、図1(b)に示すように、水溶性物質であるポリビニルアルコール膜5(以後PVA膜5と記す)を、スピンコータで回転数を3000rpm程度で20秒間で塗布し、90℃でベーキングを行いPVA膜5を50nm程度堆積させる。PVA膜5は、G線、I線、エキシマレーザ等の露光に対して感光性が無く、露光プロセスにおいてレジスト膜表面に塗布し、露光時のレジスト膜中での光の多重干渉効果を抑制し、レジスト膜の定在波効果を抑制するために用いられる材料であり、水に可溶性で、レジスト膜の現像時に現像液に含まれる水分や現像後の水洗時に除去されるため、プロセスの構成が容易となるという特徴がある。更に、粘性が低いため、微細な接続孔4内にも完全にPVA膜5を埋め込むことができるという特徴がある。
【0017】
次に、図1(c)に示すように、PVA膜5の表面にヘキサメチレンジシラザン(以後HMDSと記す)を気相塗布し、シリル化反応を行い、PVA膜5の表面にシリル化層6を10nm程度を形成する。この時の気相塗布の条件は、温度が100℃、圧力が100Torr、塗布時間を5分とした。また、シリル化剤としてHMDSだけでなく、その他のシリル化剤としてジメチルシランジメチルアミン(DMSDMA)、テトラメチルジシラザン(TMDS)、トリメチルシランジメチルアミン(TMSDMA)等のどれかを液相または気相塗布で処理してその後熱処理を加えて用いても良い。HMDSによる、PVA膜5のシリル化反応を以下に記す。
【0018】
【数1】

Figure 0003547383
【0019】
このシリル化層6はエーテル結合を含むため、PVA膜5の表面には水に対して不溶な膜が形成される。
【0020】
次に、図1(d)に示すように、レジスト膜7を1.0μm塗布する。この時、接続孔4はPVA膜5で完全に埋め込まれているため、レジスト膜は均一に塗布される。
【0021】
次に、図1(e)に示すように、接続孔4の上部に所定のマスクを用いてレジスト膜7の露光、ウェット現像を行い、0.3μmの幅を有する配線溝のレジストパターン8を形成する。現像条件は、アルカリ現像液で現像し、水洗後に110℃のベーキングを実施した。この際、レジスト膜7の下には、水に不溶性のシリル化層6が存在しているため、水量を多量に含む現像液や水洗時にシリル化層6がPVA膜5が溶解するのを防止するので、レジストパターン8が剥がれることはない。
【0022】
次に、図1(f)に示すように、配線溝形成用のレジストパターン8をマスクとして、CF系ガスを用いたドライエッチング法により層間絶縁膜3のエッチングを行い配線溝9を形成した。層間絶縁膜3のドライエッチング条件は、ICP(Induced Coupled Plasuma Etching System)装置を使用した、エッチングガスはC、C、Ar、CO等の混合ガスを使用し、圧力は5mTorr、ソースパワーを1900W等の条件で行った。シリル化層6は上記ガス系において、容易にエッチングができ、且つ、シリル化層6は、単分子層であるため、膜厚は非常に薄く、シリル化層6自体のエッチングレートは500〜700nm程度であるので、エッチングに要する時間は非常に短い。また、前記エッチング条件での層間絶縁膜3に対するPVA膜5のエッチング選択比は3程度である。尚、本実施形態において、層間絶縁膜3の膜厚は600〜1000nmであり、層間絶縁膜3の中に形成するデュアルダマシンの配線部の深さ(層間絶縁膜3のエッチング深さ)は300nmである。配線部を300nmエッチング中に接続孔4中に残るPVA膜5はシリル化層6の真下のPVA膜5は70nm程度膜減りする程度になる。
【0023】
次に、図1(g)に示すように、スピンコーターにおいて、純水を滴下しながらウェーハを1分間回転させ、レジストを除去する。尚、レジスト除去については、純水ではなく現像液を用いても良く、またはディップ式で純水または現像液の入った槽の中にウェーハを入れても良い。更に、スピンコーターにて、シンナー等の有機溶媒で、再度滴下しながらウェーハを回転させて除去するか、またはディップ式で、純水の入った第1の槽の中にウェーハを入れPVA、シリル化層、レジストを除去し、シンナー等の有機溶媒の入った第2の槽の中に入れる。次に、純水の入った第3の槽の中に入れて洗浄する。また、第1、第2の槽においては超音波洗浄を用いて剥離される。
【0024】
次に、図1(h)に示すように、全面にバリアメタル10として、TaやTiやWの窒化混合物スパッタリング法等で形成し、その後全面に、CuまたはCu合金を電界メッキで1000nm程度形成し、CMP(化学的機械研磨)法を用い、接続孔4及び配線溝9にCu配線を形成する。この後、通常の半導体製造工程により、上層の層間絶縁膜の形成など製造工程を経て目的とする半導体装置が完成する。
【0025】
【発明の効果】
本発明によると、デュアルダマシン形成方法において、接続孔内にレジストを埋め込まないので、接続孔内に有機物が残留することがなく、安定した低抵抗の金属配線を形成することができる。また、接続孔内にレジストを埋め込まず、PVA等の水溶性且つ非感光性の材料を埋め込むために、粘度が低く微細な接続孔でも完全な埋め込みが可能となる。その為、レジスト膜を均一に塗布することが可能となり、寸法制御性の高い配線溝のレジストパターンが形成が可能となる。また、配線溝のエッチングの際には、接続孔と接する下の配線層に、プラズマが届くことがないので、下の配線層がエッチングされたり、プラズマダメージによりチャージアップしたりすることがない。また、配線溝のレジストパターンを除去する際には、Oプラズマによるアッシングや有機剥離等の一般的な剥離方法を用いなくても、水や現像液で容易に除去することが可能であるとともに、レジスト表面にエッチング中のプラズマ等により除去しにくい変質層が生じていても、リフトオフによりレジストを除去する為、完全にレジストを除去することができる。また、PVAを塗布後、HMDS等によりシリル化することによりPVA表面を−OH(水酸基)から−O−Si(CHへと変化させることによりエーテル結合ができ、疎水性になるため、現像時にPVAが溶解して、レジストパターンが飛ぶことがない。
【図面の簡単な説明】
【図1】本発明の配線形成方法を工程順に示す概略断面図である。
【図2】従来技術の配線形成方法を工程順に示す概略断面図である。
【図3】従来技術で配線形成方法を用いた時に生じる問題点を示す概略断面図である。
【符号の説明】
1 絶縁膜
2 配線層
3 層間絶縁膜
4 接続孔
5 ポリビニルアルコール膜(PVA膜)
6 シリル化層
7 レジスト膜
8 レジストパターン
9 配線溝
10 バリアメタル
11 絶縁膜
22 配線部
33 層間絶縁膜
44 接続孔
55 ポリビニルアルコール(PVA)膜
77 レジスト
100 配線溝[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of forming a wiring by a dual damascene method, and more particularly to a method of forming a wiring groove formed in an interlayer insulating film.
[0002]
[Prior art]
Higher integration of semiconductor devices requires finer wiring widths and smaller pitches between wirings. However, miniaturization of wiring widths by dry etching imposes wiring processing limits. The mainstream of current wiring technology is to adopt a multilayer wiring format in which layers are stacked in a vertical direction. Further, in recent years, instead of Al, Cu having low resistivity and high electromigration resistance has been used as a wiring material.
[0003]
However, Cu wiring is more difficult to process by RIE (reactive ion etching) technology than Al wiring.
[0004]
Then, there is a dual damascene method as a method for solving this problem. In this method, a connection hole (also referred to as a via hole) is formed in an interlayer insulating film, a wiring groove for forming a wiring portion is formed so as to overlap the connection hole, a metal material is embedded in the connection hole and the wiring portion, and a CMP (chemical In this method, a plug-like metal layer and a grooved wiring are simultaneously formed in a connection hole by removing unnecessary metal material by polishing using a mechanical polishing method (for example, monthly Semiconductor World, December 1996, See pages 129-134). The wiring groove is formed by forming a resist pattern for forming the wiring groove and etching the resist pattern. In this case, when the resist is applied to the entire surface of the Si substrate, the resist is buried in the connection hole formed deeply with a small hole diameter, and an unnecessary resist remains at the bottom of the connection hole when the resist is peeled off after etching. Occurs.
[0005]
Therefore, a manufacturing process for solving the above problem is described in Japanese Patent Application Laid-Open No. Hei 8-306616. In this method, a polyvinyl alcohol (PVA) film, which is a water-soluble substance, is applied to and embedded in a groove formed on a Si substrate, and then, even if a resist is applied on the Si substrate, the polyvinyl alcohol is still present in the groove. The alcohol (PVA) film can also be easily removed by washing with water, so that the resist remaining at the bottom of the connection hole can be prevented.
[0006]
Therefore, a case where the above means is applied to a dual damascene method will be described with reference to FIG. As shown in FIG. 2A, a wiring portion 22 is formed on an insulating film 11 on a Si substrate (not shown), and then an interlayer insulating film 33 is formed. Next, a connection hole 44 is formed in the interlayer insulating film 33 by developing and etching by a photolithography process. Next, as shown in FIG. 2B, a polyvinyl alcohol (PVA) film 55 is applied to the entire surface. Since the polyvinyl alcohol (PVA) film 55 has low viscosity, it is buried in the connection hole 44, a thickness of about 100 nm is formed on the interlayer insulating film 33 on the surface, and the polyvinyl alcohol (PVA) film 55 is applied. The surface of the Si substrate becomes flat. Next, as shown in FIG. 2C, the surface of the interlayer insulating film 33 is exposed by etching back the polyvinyl alcohol (PVA) film 55 using oxygen plasma. Next, as shown in FIG. 2D, a resist 77 is applied and exposed. Next, as shown in FIGS. 2E and 2F, at the time of resist exposure of the pattern of the wiring groove 100 and wet development, the polyvinyl alcohol (PVA) film 55 in the connection hole 44 is completely removed. Thereafter, the wiring groove 100 is formed by etching the interlayer insulating film 33.
[0007]
[Problems to be solved by the invention]
However, using the method described in the prior art Monthly Semiconductor World, December 1996, pages 129 to 134, when a resist is applied to the entire surface in order to form a wiring groove, the resist is buried to the bottom of the connection hole. It is. After etching the wiring groove, the resist inside the connection hole is damaged by the plasma during the etching and deteriorates, so that when the resist is stripped by O 2 plasma or organic stripping, unnecessary resist remains at the bottom of the connection hole. This causes a problem that the contact resistance increases after the metal material is embedded in the connection hole and the wiring groove.
[0008]
When the resist pattern forming technique described in JP-A-8-306616 is applied to the dual damascene method, the resist and the PVA film are completely removed at the time of peeling the resist, so that when the wiring groove is formed, In addition, a problem arises in that the lower wiring portion in contact with the connection hole is etched during the etching step (see FIG. 3).
[0009]
Therefore, the present invention provides a semiconductor manufacturing method which solves the above-mentioned problem, and more specifically, provides a resist pattern forming method.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a step of forming an interlayer insulating film on a wiring portion formed on a semiconductor substrate, a step of forming a connection hole in the interlayer insulating film, and a step of forming a connection hole in the interlayer insulating film. Forming a thin film of a water-soluble substance on a semiconductor substrate so as to fill the surface, forming a protective film as a silylated layer on the surface of the thin film, applying a resist film, and forming a resist pattern a step, so as to overlap the contact hole, and forming by etching a trench wiring portion, and removing the water-soluble substance, and forming simultaneously buried wiring wiring material in the connection hole and the groove wiring portion This is a wiring forming method characterized by performing the steps sequentially .
[0012]
Further, the surface of a thin film of water-soluble material formed on the entire surface by the coating, is a wiring forming method comprising forming a protective film made of interest Lil layer by the HMDS (hexamethylene disilazane) .
[0013]
Further, in the wiring forming method, the water-soluble substance has no photosensitivity due to exposure during a resist pattern.
[0014]
Further, in the wiring forming method, the water-soluble substance is polyvinyl alcohol.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1A, a wiring layer 2 is formed on a Si substrate (not shown) via an insulating film 1, and then a SiOx film as an interlayer insulating film 3 is deposited to a thickness of about 800 nm by a CVD method. The resist is applied, exposed and developed using a predetermined mask to form a resist pattern having a hole diameter of about 0.2 μm, and etching the interlayer insulating film 3 by dry etching using the resist pattern as a mask. Is performed to form a connection hole 4 having a diameter of 0.2 μm.
[0016]
Next, as shown in FIG. 1B, a polyvinyl alcohol film 5 (hereinafter referred to as a PVA film 5), which is a water-soluble substance, is applied by a spin coater at a rotation speed of about 3000 rpm for 20 seconds, and baked at 90 ° C. Is performed to deposit a PVA film 5 of about 50 nm. The PVA film 5 has no photosensitivity to exposure to G-rays, I-rays, excimer lasers, etc., and is applied to the resist film surface in the exposure process to suppress the multiple interference effect of light in the resist film at the time of exposure. , A material used to suppress the standing wave effect of the resist film, is soluble in water, and is removed during the development of the resist film by the water contained in the developing solution or by washing with water after the development. There is a feature that it becomes easy. Furthermore, since the viscosity is low, the feature is that the PVA film 5 can be completely embedded in the fine connection hole 4.
[0017]
Next, as shown in FIG. 1 (c), hexamethylene disilazane (hereinafter referred to as HMDS) is vapor-phase-coated on the surface of the PVA film 5, and a silylation reaction is carried out to form a silylated layer on the surface of the PVA film 5. 6 is formed to a thickness of about 10 nm. The conditions for the gas phase coating at this time were a temperature of 100 ° C., a pressure of 100 Torr, and a coating time of 5 minutes. In addition to HMDS as a silylating agent, any other silylating agent such as dimethylsilane dimethylamine (DMSDMA), tetramethyldisilazane (TMDS), or trimethylsilanedimethylamine (TMSDMA) may be used in a liquid or gas phase. It is also possible to use a coating treatment followed by a heat treatment. The silylation reaction of the PVA film 5 by HMDS is described below.
[0018]
(Equation 1)
Figure 0003547383
[0019]
Since the silylated layer 6 contains an ether bond, a water-insoluble film is formed on the surface of the PVA film 5.
[0020]
Next, as shown in FIG. 1D, a resist film 7 is applied by 1.0 μm. At this time, since the connection holes 4 are completely filled with the PVA film 5, the resist film is uniformly applied.
[0021]
Next, as shown in FIG. 1E, the resist film 7 is exposed and wet-developed on the connection hole 4 using a predetermined mask to form a resist pattern 8 of a wiring groove having a width of 0.3 μm. Form. Developing conditions were such that development was performed with an alkali developing solution, baking at 110 ° C. was performed after washing with water. At this time, since the water-insoluble silylation layer 6 exists under the resist film 7, the silylation layer 6 prevents the PVA film 5 from dissolving at the time of washing with water or a developing solution containing a large amount of water. Therefore, the resist pattern 8 does not peel off.
[0022]
Next, as shown in FIG. 1F, using the resist pattern 8 for forming a wiring groove as a mask, the interlayer insulating film 3 was etched by a dry etching method using a CF-based gas to form a wiring groove 9. The dry etching condition of the interlayer insulating film 3 is such that an ICP (Induced Coupled Plasma Etching System) device is used, an etching gas is a mixed gas of C 4 F 8 , C 2 F 6 , Ar, CO, etc., and a pressure is 5 mTorr. , And a source power of 1900 W or the like. The silylated layer 6 can be easily etched in the above-mentioned gas system, and since the silylated layer 6 is a monomolecular layer, the film thickness is very small, and the etching rate of the silylated layer 6 itself is 500 to 700 nm. Therefore, the time required for etching is very short. The etching selectivity of the PVA film 5 to the interlayer insulating film 3 under the above-mentioned etching conditions is about 3. In this embodiment, the thickness of the interlayer insulating film 3 is 600 to 1000 nm, and the depth of the wiring portion of the dual damascene formed in the interlayer insulating film 3 (the etching depth of the interlayer insulating film 3) is 300 nm. It is. The PVA film 5 remaining in the connection hole 4 during the etching of the wiring portion by 300 nm is reduced by about 70 nm in the PVA film 5 immediately below the silylated layer 6.
[0023]
Next, as shown in FIG. 1 (g), the wafer is rotated for 1 minute while dropping pure water with a spin coater to remove the resist. For removing the resist, a developing solution may be used instead of pure water, or a wafer may be put into a tank containing pure water or a developing solution by a dipping method. Further, with a spin coater, the wafer is removed by rotating it again with an organic solvent such as a thinner while dripping again, or the wafer is put into a first tank containing pure water by dipping, and PVA, silyl is added. The resist layer and the resist are removed and placed in a second tank containing an organic solvent such as thinner. Next, it is placed in a third tank containing pure water for cleaning. In the first and second tanks, they are separated by using ultrasonic cleaning.
[0024]
Next, as shown in FIG. 1H, a barrier metal 10 is formed on the entire surface by sputtering of a nitride mixture of Ta, Ti or W, and thereafter Cu or a Cu alloy is formed on the entire surface by electroplating to a thickness of about 1000 nm. Then, Cu wiring is formed in the connection hole 4 and the wiring groove 9 by using a CMP (chemical mechanical polishing) method. Thereafter, through a normal semiconductor manufacturing process, a target semiconductor device is completed through manufacturing processes such as formation of an upper interlayer insulating film.
[0025]
【The invention's effect】
According to the present invention, in the dual damascene forming method, since no resist is buried in the connection hole, no organic matter remains in the connection hole, and a stable low-resistance metal wiring can be formed. In addition, since a water-soluble and non-photosensitive material such as PVA is embedded without embedding a resist in the connection hole, complete embedding is possible even in a fine connection hole having a low viscosity. Therefore, it is possible to apply the resist film uniformly, and it is possible to form a resist pattern of a wiring groove having high dimensional controllability. Further, when the wiring groove is etched, since the plasma does not reach the lower wiring layer in contact with the connection hole, the lower wiring layer is not etched or charged up due to plasma damage. Further, when removing the resist pattern in the wiring groove, it is possible to easily remove the resist pattern with water or a developing solution without using a general stripping method such as ashing with O 2 plasma or organic stripping. Even if a deteriorated layer which is difficult to remove due to plasma during etching is formed on the resist surface, the resist can be completely removed because the resist is removed by lift-off. Further, after coating the PVA, it is ether bond by changing the PVA surface by silylation from -OH (hydroxyl group) to -O-Si (CH 3) 3 by HMDS etc., to become hydrophobic, PVA does not dissolve during development and the resist pattern does not fly.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a wiring forming method of the present invention in the order of steps.
FIG. 2 is a schematic sectional view showing a conventional wiring forming method in the order of steps.
FIG. 3 is a schematic cross-sectional view showing a problem that occurs when a wiring forming method is used in a conventional technique.
[Explanation of symbols]
Reference Signs List 1 insulating film 2 wiring layer 3 interlayer insulating film 4 connection hole 5 polyvinyl alcohol film (PVA film)
Reference Signs List 6 silylation layer 7 resist film 8 resist pattern 9 wiring groove 10 barrier metal 11 insulating film 22 wiring portion 33 interlayer insulating film 44 connection hole 55 polyvinyl alcohol (PVA) film 77 resist 100 wiring groove

Claims (4)

半導体基板に形成した配線部上に、層間絶縁膜を形成する工程と、層間絶縁膜に接続孔を形成する工程と、層間絶縁膜に接続孔を埋めるように半導体基板上に水溶性物質の薄膜を形成する工程と、前記薄膜の表面に、シリル化層である保護膜を形成する工程と、レジスト膜を塗布する工程と、レジストパターンを形成する工程と、接続孔に重畳するように、溝配線部をエッチングにより形成する工程と、水溶性物質を除去する工程と、配線材料を接続孔と溝配線部に同時に埋め込み配線を形成する工程とを順次行うことを特徴とする配線形成方法。A step of forming an interlayer insulating film on a wiring portion formed on the semiconductor substrate, a step of forming a connection hole in the interlayer insulating film, and a thin film of a water-soluble substance on the semiconductor substrate so as to fill the connection hole in the interlayer insulating film. Forming a protective film that is a silylated layer on the surface of the thin film, applying a resist film, forming a resist pattern, and forming a groove so as to overlap the connection hole. A method for forming a wiring, wherein a step of forming a wiring portion by etching, a step of removing a water-soluble substance, and a step of simultaneously forming a wiring material by burying a wiring material in a connection hole and a groove wiring portion are sequentially performed . 布により全面に形成された水溶性物質の薄膜の表面に、HMDS(ヘキサメチレンジシラザン)によりシリル化層からなる保護膜を形成する請求項1に記載の配線形成方法。 On the surface of a thin film of water-soluble material formed on the entire surface by a coating fabric, wiring forming method according to claim 1 for forming a protective film made of the silylated layer by HMDS (hexamethylene disilazane). 溶性物質、レジストパターン時の露光による感光性がい請求項1または2に記載の配線形成方法。 Water soluble substance, a wiring forming method according to claim 1 or 2, photosensitivity have name by exposure for the resist pattern. 溶性物質が、ポリビニルアルコールである請求項1〜3のいずれか1つに記載の配線形成方法。Wiring forming method according to the water-soluble substance, any one of claims 1 to 3 Ru Oh polyvinyl alcohol.
JP2000275779A 2000-09-12 2000-09-12 Wiring formation method Expired - Fee Related JP3547383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000275779A JP3547383B2 (en) 2000-09-12 2000-09-12 Wiring formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000275779A JP3547383B2 (en) 2000-09-12 2000-09-12 Wiring formation method

Publications (2)

Publication Number Publication Date
JP2002093901A JP2002093901A (en) 2002-03-29
JP3547383B2 true JP3547383B2 (en) 2004-07-28

Family

ID=18761343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000275779A Expired - Fee Related JP3547383B2 (en) 2000-09-12 2000-09-12 Wiring formation method

Country Status (1)

Country Link
JP (1) JP3547383B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309172A (en) 2002-04-17 2003-10-31 Nec Electronics Corp Method of forming pattern in dual damascene process
KR100461784B1 (en) * 2002-06-11 2004-12-14 동부전자 주식회사 Method for manufacturing semiconductor device with dual damascene structure
JP4531475B2 (en) * 2003-08-15 2010-08-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US7538025B2 (en) * 2003-11-14 2009-05-26 Taiwan Semiconductor Manufacturing Company Dual damascene process flow for porous low-k materials
JP2010533966A (en) * 2007-07-13 2010-10-28 インターモレキュラー, インコーポレイテッド Surface conditioning of low dielectric constant dielectric materials
CN114078749A (en) 2020-08-18 2022-02-22 长鑫存储技术有限公司 Semiconductor structure and forming method thereof

Also Published As

Publication number Publication date
JP2002093901A (en) 2002-03-29

Similar Documents

Publication Publication Date Title
JP3390329B2 (en) Semiconductor device and manufacturing method thereof
EP0455031B1 (en) Process for forming multi-level coplanar conductor/insulator films employing photosensitive polyimide polymer compositions
EP0932187A2 (en) Trench etching using borosilicate glass mask
US6093656A (en) Method of minimizing dishing during chemical mechanical polishing of semiconductor metals for making a semiconductor device
JPH11168105A (en) Manufacture of semiconductor integrated circuit
JP2006049900A (en) Method of forming metal wiring of semiconductor device
JPH0831522B2 (en) Method for forming multi-layer conductor / insulator coplanar thin film using photosensitive polyimide polymer composition
JP3547383B2 (en) Wiring formation method
US6936534B2 (en) Method for the post-etch cleaning of multi-level damascene structures having underlying copper metallization
US6670271B1 (en) Growing a dual damascene structure using a copper seed layer and a damascene resist structure
JP3981353B2 (en) Method of manufacturing an integrated circuit
TW564494B (en) Growing copper vias or lines within a patterned resist using a copper seed layer
US6528428B1 (en) Method of forming dual damascene structure
JP4082812B2 (en) Semiconductor device manufacturing method and multilayer wiring structure forming method
JP2002299437A (en) Method of manufacturing semiconductor device
JP2006133315A (en) Planarization material, anti-reflection coating formation material, and method of manufacturing semiconductor device using them
US20090166882A1 (en) Method for forming metal line in semiconductor device
JP2004128074A (en) Manufacturing method of semiconductor device
US20060148244A1 (en) Method for cleaning a semiconductor substrate
JP2004023030A (en) Method of manufacturing semiconductor device
JP3704030B2 (en) Manufacturing method of semiconductor device
JP3282607B2 (en) Method for manufacturing semiconductor device
TWI251264B (en) Method for burying resist and method for manufacturing semiconductor device
JPH08203901A (en) Wiring layer forming method of semiconductor device
US7524760B2 (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees