JP3546658B2 - Methanol reforming method - Google Patents

Methanol reforming method Download PDF

Info

Publication number
JP3546658B2
JP3546658B2 JP25599797A JP25599797A JP3546658B2 JP 3546658 B2 JP3546658 B2 JP 3546658B2 JP 25599797 A JP25599797 A JP 25599797A JP 25599797 A JP25599797 A JP 25599797A JP 3546658 B2 JP3546658 B2 JP 3546658B2
Authority
JP
Japan
Prior art keywords
reforming
concentration
catalyst
methanol
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25599797A
Other languages
Japanese (ja)
Other versions
JPH1179702A (en
Inventor
進 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP25599797A priority Critical patent/JP3546658B2/en
Publication of JPH1179702A publication Critical patent/JPH1179702A/en
Application granted granted Critical
Publication of JP3546658B2 publication Critical patent/JP3546658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

【0001】
【技術分野】
本発明は,水素燃料電池,各種有機化合物の水素化,或いは各種工業用等に用いられる水素ガスを製造するためのメタノールの改質方法,特にそれに用いる改質触媒の賦活,再生方法に関する。
【0002】
【従来技術】
メタノール改質方法は,近年,特に自動車搭載用の水素燃料電池に適用すべく,種々の研究開発が行なわれている。
メタノール改質方法は,気相によりメタノールと水とを改質触媒の存在下で反応させる改質反応操作を行ない,水素ガスと炭酸ガスとからなる改質ガスを製造する方法である。
【0003】
そして,上記改質触媒としては,酸化銅(CuO)と酸化亜鉛(ZnO)とアルミナ(Al)とからなる混合酸化物が用いられている。
また,上記改質反応操作は,通常200〜300℃で行なわれる。
また,上記従来の改質方法においては,一般に上記改質反応操作の初期は改質触媒の活性が大きいために比較的低温度で反応を行ない,活性低下と共に反応温度を上昇させている。
【0004】
【解決しようとする課題】
しかしながら,このような昇温方式を採用すると,高温になるに従って改質触媒の破砕が生じ易く,そのため触媒層に目づまりが発生して,触媒層内の圧力損失が大きくなる。そのため,かかる圧力損失により,生産効率が低下する。また,上記昇温操作に伴い,大きな加熱エネルギーを必要とする。
【0005】
そこで,従来は,かかる生産効率,総合熱効率,それに伴うコストアップを考慮して,適当な段階で改質触媒を交換している。しかし,かかる改質触媒交換のためには,反応タンクからの古い改質触媒の取り出し,清掃,反応タンクへの新しい改質触媒の充填等に長期間を必要とする。
また,その間,改質反応操作は全く行なえず,改質ガスを製造することができない。かかる状態では,例えばメタノール改質装置を自動車に搭載して,それから得られる水素ガスを水素燃料電池に使用する場合,自動車使用に大きな障害となる。
【0006】
かかる問題を解決するために,特開昭62−36001号公報では間欠的に燃料ガス,改質ガスと酸素を触媒中に20時間にわたり共存させ,活性を回復する方法を提案している。しかし,この場合には,改質反応中に酸素が共存しても,劣化を止めることはできなかった。これについては,後述の実施例4で示す。
【0007】
また。特開平4−200640号公報では,改質触媒を120℃〜650℃にて分子状酸素濃度5モル%以下の雰囲気に付することを提案している。また,特開平9−75734号公報では,改質触媒を(1)水素含有ガスによる前処理,(2)酸素合有ガスによる酸化処理,及び(3)還元性ガスにより再生処理をすること提案している。しかしながら,上記2者の処理をするには,酸素濃度や水素濃度を規定した特別のガス供給装置をもつ必要が有る。
【0008】
また,上記3つの公報に示される方法においては,いずれの実施例でも,再生処理に,最低10分,ほとんどの場合10〜30時間を要している。
また,これらの方法は,改質率をガスクロマトグラフなどにより測定するのみであり,劣化度検出手段を有していない。
このように,上記方法は,特別のガス供給装置や,再生処理に長時間を要し,容易な劣化度検出手段をもたないため,高い改質率を維持しにくく,自動車用など移動用はもとより,定置用でも使用しにくい。
【0009】
本発明はかかる従来の問題点に鑑みて,改質触媒を高活性状態に維持し,長期間に渡り高能率でメタノールの改質を行なうことができるメタノールの改質方法を提供しようとするものである。
【0010】
【課題の解決手段】
本発明は,改質触媒の存在下で,メタノールの改質反応操作を行なうことにより水素ガスと炭酸ガスとを含有する改質ガスを製造する方法において,
上記改質触媒の劣化度を検出するために,温度,CO濃度,メタノール濃度,水素濃度,CO 2 濃度,H 2 O濃度,ガス流量のいずれか1つ以上を検出する劣化度検出手段を具備し,
上記劣化度検出手段により上記改質触媒が所定の設定劣化度に達したと検出された際には,改質反応を一旦停止して,上記改質触媒に対して空気を供給してその再生を図る再生操作を行ない,その後再び上記改質反応操作を行ない,かかる改質反応操作と再生操作とを繰り返して改質ガスを製造することを特徴とするメタノールの改質方法にある。
【0011】
本発明において最も注目すべき点は,改質触媒が所定の活性度まで劣化した場合には改質触媒に対して空気を供給して,その賦活,再生を図り,その後再び改質反応を行ない,これを繰り返すことである。
【0012】
次に,本発明の作用効果につき説明する。
本発明においては,後に詳述するごとく,上記改質反応操作中に改質触媒が劣化し,その活性が所定の設定劣化度に達したときに,改質反応操作を一旦中止して,改質触媒に対して,空気を供給する再生操作を行なう。これにより,改質触媒は再び当初とほぼ同程度の活性に再生される。
【0013】
そこで,再び改質反応操作を行なう。そして,この改質反応操作中に再び上記設定劣化度に達したときには,上記と同様の再生操作を行なう。
そのため,改質触媒は,常に高活性状態に維持され,長期間に渡り高能率でメタノールの改質を行なうことができる。
【0014】
また,改質触媒の存在下で,気相によりメタノールと水とを反応させる改質反応操作を行なうこと又は,メタノールと水と空気とを反応させる改質反応操作を行なうことにより水素ガスと炭酸ガス,又は水素ガスと炭酸ガスと窒素ガスとを含有する改質ガスを製造する方法において,
上記改質触媒が所定の設定劣化度に達した際には,上記改質触媒に対して空気を供給してその再生を図る再生操作を行ない,その後再び上記改質反応操作を行ない,かかる改質反応操作と再生操作とを繰り返して改質ガスを製造するメタノールの改質方法がある。
この場合にも上記と同様の効果を得ることができる。
【0015】
また,本発明においては,上記設定劣化度を検出するために,劣化度検出手段を具備する。
これにより,設定劣化度を自動的に検出することができる。
上記劣化度検出手段としては,温度,CO濃度,メタノール濃度,水素濃度,CO 2 濃度,H 2 O濃度,ガス流量のいずれか1種類以上を検出する。
【0016】
次に,上記改質方法を行う際の好ましい態様につき,説明する。
上記劣化度検出手段としては,温度,CO濃度,メタノール濃度,水素濃度,CO2濃度,H2O濃度,ガス流量のいずれか1種類以上を検出する手段を具備し,かつ改質触媒の入り口側と出口側の比により劣化度を決定する手段を有することが好ましい。
【0017】
更に,劣化度検出手段としては,温度CO濃度,メタノール濃度,水素濃度,CO濃度,HO濃度ガス流量のいずれか1種類以上を検出する手段を具備し,かつ,検出された値を劣化度とし,この劣化度と設定劣化度との比をとり,設定劣化度に達するまでの期間の比例予測に基づいて再生操作の時期を決定する手段を有することが好ましい。
【0018】
更に,劣化度検出手段としては,,温度,CO濃度,メタノール濃度,水素濃度,CO濃度,HO濃度,ガス流量のいずれか1種類以上を検出する手段を具備し,改質触媒の入口側と出口側の比と設定値を比較し,設定劣化度に達するまでの期間の比例予測に基づいて再生時期を決定する手段を有することが好ましい。
【0019】
次に,上記改質触媒としては,金属またはコージェライト系セラミックを担体とし銅,亜鉛,アルミニウム,クロムのいずれか一つまたは二つ以上の混合酸化物を主成分とする改質触媒成分を担持したものであることが好ましい。
【0020】
また,改質触媒としては,金属またはコージェライト系セラミックを担体とし銅,亜鉛,アルミニウム,クロムのいずれか一つまたは二つ以上の混合酸化物を主成分とする改質触媒物質を担持し,劣化度検出手段として,改質触媒入口側と出口側温度および出口CO濃度を測定し,入口側と出口側の温度に対応した出口CO濃度の設定値と比較し,設定劣化度に達する期間の比例予測に基づき再生時期を決定する方法を採ることが好ましい。
この場合には,触媒のシンタリングといった再生不可能な劣化が生じた場合にも出口CO濃度を一定値に保つという効果が得られる。
【0021】
次に,本発明において,上記改質触媒の触媒成分としては,例えばCuOとZnOとAlとからなる混合酸化物,銅,クロム,亜鉛を担持したものや,それらの酸化物等がある。
また,改質触媒の構造としては,触媒成分単独でペレットやタブレットの形状に作成された単独触媒がある。また,上記改質触媒は,ステンレススチール等の金属をハニカム状等の立体形状に構成した金属担体に,上記混合酸化物等の触媒成分を担持させた担持触媒がある(図4参照)。
【0022】
本発明は,上記単独触媒,担持触媒いずれの場合にも適用することができる。なお,後者の担持触媒は,熱容量が小さいため始動性に優れている。また,反応ガス(メタノール+水のガス)と改質触媒との接触面積が大きく取れるため,生産効率も優れ,また触媒層の単位体積当りの重量も軽量である。
また,この場合には改質反応操作時のメタノール基準液空間速度は,例えば2〜7/時と大きく,生産性が高い。なお,前者の単独触媒の場合には,上記空間速度は,約0.3〜1.0/時と小さい。
【0023】
上記設定劣化度とは,長時間の改質反応操作中に触媒活性が低下したため上記再生操作を行なう必要が生じた触媒活性度をいう。
該設定劣化度は,例えば触媒層における温度が180〜320℃のある設定温度に上昇した時点とする。これは,通常,改質反応操作は180〜320℃において行なうため,その改質反応操作温度よりも0.1〜140℃高い温度を設定劣化度とするためである。
【0024】
また,上記設定劣化度は,出口CO濃度を測定することによって定めることもできる。この場合には,例えば,CO濃度が0.01〜2%の間のいずれかのCO濃度に達した時点を設定劣化度とする。
COは,例えば,本発明のメタノール改質方法を低温型燃料電池(固体高分子電解質型燃料電池やリン酸型燃料電池)の水素源として利用する際,燃料電池の電極触媒の被毒物質となるため,できるだけ低く抑える必要がある。
【0025】
本発明の改質方法の後処理として改質ガス中のCOを低減する方法としては,水性ガスシフト反応,またCOを選択的に酸化したり,メタン化する方法がある。しかし,いずれにしても,反応器をコンパクトにし,かつ燃料電池に供給するCO濃度を充分に低減するためには,改質時において,できるだけCO濃度を低減しておく必要がある。
このようにCO濃度を設定劣化度として選択することは,燃料電池システムなどに本発明を適用する際に適当である。
【0026】
また,上記設定劣化度は,改質反応操作時における改質率,即ちメタノールの何%が水素ガスに改質されたかを測定することによって定めることもできる。この場合には,例えば,改質率が80〜99.9%の間のいずれかの改質率に達した時点を設定劣化度とする。
【0027】
上記改質率は,触媒出口における,水素濃度,CO濃度,メタノール濃度,HO濃度,ガス流量のいずれか一つを測定することでも検知できる。即ち,既知であるメタノールと水の供給量とあらかじめ測定しておいた水素濃度,CO濃度,メタノール濃度,HO濃度,ガス流量のいずれか一つまたは二つ以上の量と,改質率の関係から簡易的に改質率を求めることができる。
【0028】
改質反応操作中の温度やCO濃度,又は簡易な改質率による設定劣化度の設定は,温度や各種濃度のいずれか,又はガス流量により検知できるため,応答性に優れている。一方,全てのガス成分を測定して改質率を求める場合には,実質的な改質程度により設定劣化度を設定することができる。
【0029】
次に,上記再生操作における空気の供給は,触媒層におけるガス空間速度を200〜800/時とすることが好ましい。なお,この空間速度は,25℃の空気を用いた場合の値である。200/時未満では再生操作に長時間を要し,800/時を越えると,次に示すごとく,改質触媒の表面温度が上昇し過ぎて,改質触媒表面がシンタリング(焼結)を起こして活状能力が低下してしまうおそれがある。
後述の実施例では,この範囲で空気供給したが,320℃を越えないならば空気を増量し,反応を早めてもよい。
【0030】
即ち,上記再生操作時には,空気の供給によって,改質触媒の温度が上昇する。これは,改質反応操作中に改質ガスの水素ガスによって一旦Cu等に還元されていた触媒成分が上記空気中の酸素と反応して酸化物に再生され,その時の反応熱によって上昇するためと考えられる。
【0031】
そこで,この改質触媒の温度上昇を検知し,再生操作時における触媒層の温度が一定値に達したところで空気の供給,即ち再生操作を中止する。上記温度の上限は,450℃が好ましく,更に好ましくは320℃である。これよりも,高温度になると,改質触媒の表面がシンタリングを起こし,触媒性能が劣化するおそれがある。
【0032】
上記再生操作時における空気の供給は,改質反応操作を中止した直後に行なうことが好ましい。これにより,再生操作を高温下(180〜320℃)において,開始することができ,再生操作を効率的に行なうことができる。
また,再生操作は,改質反応操作中止後,例えば窒素(N)ガスを供給して触媒層中の反応ガス,改質ガスをパージした後,空気を供給することにより行なうこともできる。この場合には,触媒層に残留した改質ガス又はメタノールの酸化による発熱を柔らげる効果が得られる。また,再生操作を効率的に行なうため,空気供給の開始時には触媒層の温度は100〜450℃であることが好ましく
更に好ましくは180〜300℃の範囲である。
【0033】
以上は,改質触媒が所定の設定劣化度に達した際の再生操作について述べたが,本発明のメタノール改質ガスを自動車搭載用の改質装置に適用する場合には,上記再生操作は,例えば夜間等,自動車運転の終了時に短時間行なうこともできる。これにより,翌朝は,常に高活状状態の改質触媒による改質反応操作を行なうことができる。
また,給油時などシステム停止時に短時間で再生させ,次回始動時には,高活性状態の改質触媒による改質反応操作を行なうこともできる。
【0034】
【発明の実施の形態】
実施形態例1
本発明の実施形態例にかかるメタノールの改質方法につき図1〜図3を用いて説明する。
本例のメタノールの改質方法は,図2,図3に示すごとく,改質触媒11の存在下で,気相によりメタノールと水とを反応させる改質反応操作を行なうことにより水素ガスと炭酸ガスとからなる改質ガスを製造する方法である。
【0035】
そして,上記改質反応操作中に上記改質触媒11が所定の設定劣化度,例えば設定温度に達した際(図2)には,上記改質触媒11に対して空気を供給してその再生を図る再生操作を行ない,その後再び上記改質反応操作を行ない,かかる改質反応操作と再生操作とを繰り返して改質ガスを製造する。
【0036】
以下,上記改質方法につき,詳細に説明する。
まず,図3は,上記改質方法に用いるメタノール改質装置の概略説明図である。
本装置は,改質触媒11を充填した反応タンク1と,該反応タンク1にポンプ22,気化器23,原料パイプ24を介して接続した溶液タンク21と,上記反応タンク1に空気パイプ32を介して接続したブロワー31とを有する。また,反応タンク1の下流側には改質ガスを送出する改質ガスパイプ12,パージパイプ16を有する。反応タンク1は,外壁をヒータ加熱して,改質触媒11に熱供給する。
【0037】
また,上記反応タンク1内の温度又はCO濃度など各種濃度,又はガス流量を検出して,上記パイプ22又はブロワー31を運転制御するコントローラ3を有する。また,該コントローラは反応タンク1内に配置した触媒層入口側温度センサ35,触媒層出口側温度センサ36,又は入口側濃度センサ又はガス流量センサ37出口側濃度センサ又はガス流量センサ38を有する。
【0038】
上記改質装置により,上記改質方法を行なう場合につき例示すると,まず反応タンク1には溶液タンク21内のメタノール及び水の混合液20をポンプ22により反応タンク1内の改質触媒11に供給する。このとき,上記混合液は約300℃に加熱した気化器23により気化され,原料パイプ24よりガス状態で送入される。反応タンク1の外壁は約290℃に加熱される。そして,触媒層平均温度約280℃において改質反応操作が行なわれ,水素ガス(H)と炭酸ガス(CO)とからなる改質ガスは改質ガスパイプ12より送出される。
【0039】
このように改質反応操作が行なわれている間に,改質触媒11は徐々に劣化していく。そこで,反応タンク1内の改質触媒11の温度,例えば入口側温度と出口側温度の平均温度が,所定の設定劣化度である例えば285℃に上昇したことを温度センサ35,36がキャッチすると,コントローラ3はポンプ22を停止する。また,これと共に反応タンク1のヒータ加熱を停止し,上記混合液20の供給を停止する。これにより,改質反応操作が中止される。
次いで,コントローラ3はブロワー31を作動させて,空気パイプ32を介して,反応タンク1内に空気を送り再生操作を行なう。再生操作時のガスはパージパイプ16より排出する。
【0040】
上記の改質反応操作及び再生操作時における,反応タンク1内の温度変化,改質反応操作時の改質率変化の概要を図1に,またその部分拡大説明図を図2に示す。
両図に示すごとく,時間と共に改質率が徐々に低下し,改質反応の吸熱量が小さくなり,またこれに伴って反応タンク内の触媒層温度も徐々に上昇する。そして,触媒層温度が設定劣化度として設定した温度(上記285℃)まで上昇したときには上記再生操作を行なう。そして,その後再び改質反応操作を行なう。
これにより,図1に示すごとく,改質率は曲線41〜45に示すごとく低下,上昇,低下のジグザグ状態を繰り返す。これに伴って,触媒層の温度も曲線410〜450に示すごとく,ジグザグ状態を繰り返す。
【0041】
また,図2は,再生操作時における触媒層の温度状態を示している。同図に示すごとく,改質反応操作時に温度は徐々に上昇し,設定劣化度である設定温度に達したときには,上記のごとく,混合液20の供給を停止し反応タンク1のヒータが熱を停止して,再生開始温度まで降温させ,空気を供給する。
そのため,上記のごとく酸化反応により,触媒層の温度は上昇する。そこで,本例では,触媒層の温度を上限の320℃以下にコントロールしながら再生操作を行う。そして,再生操作の終了後に再び改質反応操作を行なう。
上記のようにして,改質反応操作と再生操作を繰り返す。
【0042】
なお,図1には,上記再生操作を行なわなかった場合における改質率の低下状態を点線曲線49で示した。また,上例は,改質触媒として,ハニカム状メタル担体にCuO−ZnO−Alからなる触媒成分を担持した改質触媒(実施形態例2の図4参照)につき示した。
【0043】
上記より知られるごとく,本発明の改質方法によれば,改質触媒を高活性状態に維持し,高能率でメタノールの改質を行なうことができる。
【0044】
実施形態例2
本例は,図4,図5に示すごとく,実施形態例1に示した改質装置を用いて改質ガスの製造を行なった具体例につき説明する。
まず,改質触媒11は,図4に示すごとく,メタル担体5に触媒成分10を担持したものである。メタル担体5は多数の平板51の間にそれぞれ波板52を配置し,両者間を接合したもので,600セル/平方インチのハニカム構造を呈している。
【0045】
触媒成分10は上記平板51,波板52の表面に接着された状態にある。
上記メタル担体5の平板51,波板52はステンレス鋼板を用いてある。メタル担体に対する触媒成分10の担持量は172g/リットルである。触媒成分は,約42重量%CuO−約47重量%ZnO−約11重量%Alからなる。
改質反応操作に当っては,まず初めに還元ガスにより,触媒層の平均温度200℃,ガス空間速度2000/時で,4時間還元処理を行なった。その後改質反応操作を行なった。
【0046】
改質反応操作においては,メタノール47重量%と水53重量%よりなる混合液を,気化器にて気化させ,これを260〜290℃の触媒層内に,メタノール空間速度(LHSV−M)=2h−1で供給した。
改質反応操作により得られた改質ガスの組成は,ガスクロマトグラフにより測定した。
また,上記改質反応操作においては,設定劣化度として,触媒層入口側温度270℃を設定した。
【0047】
そして,触媒層入口側温度が上記設定劣化度である270℃に上昇した時点で,改質反応操作を中止し,直ちに再生操作を行なった。
再生操作は約25℃の空気を0.2〜0.4リットル/分,即ち空間速度400〜800/時で,触媒層内に供給することにより,10分間行なった。
また,上記再生操作時には,触媒層の温度が320℃を超えないように,空気供給量を調整した。なお,再生にかかる時間は温度変化から5分以内であった。上記再生操作終了後は,再び上記と同じ改質反応操作を行ない,その後同様の再生操作と改質反応操作を繰り返し行なった。
【0048】
図5は,上記改質反応操作,再生操作を繰り返し行なった場合における,触媒層使用開始後380〜410時間の間の触媒層温度と改質率とを示している。
また,同図の上部には,再生操作を行なった時間を矢印で示してある。
また,各空気供給時における改質ガス中のCO濃度,触媒層入口側温度は,表1のようであった。
【0049】
【表1】

Figure 0003546658
【0050】
同図及び表1より知られるごとく,改質反応操作の間,触媒層の温度は約250〜310℃に維持され,また改質率は95〜100%を保持していることがわかる。また,各再生操作後は改質率が向上することがわかる。
【0051】
実施形態例3
本例は,図6に示すごとく,再生操作として,まず窒素ガス(N)1リットル/分で,10分間,触媒層のパージを行ない,その後空気を0.2〜0.4リットル/分,10分間,触媒層に供給し,更に約12時間後に再び改質反応操作を行なった例を示している。
【0052】
また,同図の上部には,上記再生操作を行なった時間を矢印で示した。
この場合には,設定劣化度として出口CO濃度0.53%を採用している。出口CO濃度が0.53%を越えると上記再生操作を実施した。
また,各空気供給時における改質ガス中のCO濃度,触媒層入口側温度は,表2のようであった。
【0053】
【表2】
Figure 0003546658
【0054】
同図及び表2より知られるごとく,再生操作はNガスによるパージの後に行ない,また改質反応操作は再生操作の約12時間後に行なっても,高い改質率を長時間維持できることがわかる。また,各再生操作後には,改質率が向上することがわかる。
【0055】
なお,上記のNガスはNとCO又はHOとの混合ガスでもよく,空気中の酸素を原料であるメタノールや改質ガス中の水素,COと酸化反応させて除去することにより,移動用改質器でも容易に使用可能である。
【0056】
実施形態例4
本例は表3に示すごとく,まず実施形態例2と同一触媒で同一条件で改質反応を行ない,改質率が87%まで劣化した状態(表中の1)の触媒に特開昭62−36001にならって,燃料ガスのみを供給して改質反応中に,触媒中に空気を導入した。
そして,燃料ガスと改質ガスと酸素(空気)とを触媒中で30〜50分間共存させ後,この燃料ガスと改質ガスと酸素(空気)共存下で改質反応した。この場合の改質率,温度を同表に示す(表中の2と4)。
そして,空気を止め,燃料ガスのみを供給した場合の改質率,温度を示す(表中の3と5)。
【0057】
表3から明らかなように,燃料ガスと改質ガスと酸素(空気)を触媒中で共存させても再生は起こらず,改質率は回復しない。その後,本発明の再生操作を実施した場合の改質率,温度を同表に示す。改質触媒は,本発明の再生操作を行なうことにより,活性回復し吸熱反応が活発になり触媒層入口温度は低下し,改質率は改質開始初期と同等の99%以上にまで再生している(表中の6と7)。
【0058】
【表3】
Figure 0003546658
【0059】
【発明の効果】
本発明によれば,改質触媒を高活性状態に維持し,長期間に渡り高能率でメタノールの改質を行なうことができるメタノールの改質方法を提供することができる。
【図面の簡単な説明】
【図1】実施形態例1における,改質反応操作時間と,改質率及び触媒層温度の関係を示す線図。
【図2】実施形態例1における,再生操作時の前後における触媒層の温度変化を示す線図。
【図3】実施形態例1における,改質装置の説明図。
【図4】実施形態例2における,メタル担体触媒の説明図。
【図5】実施形態例2における,改質反応操作時間と,改質率及び触媒層温度などの関係を示す線図。
【図6】実施形態例3における,改質反応操作時間と,改質率及び触媒層温度などの関係を示す線図。
【符号の説明】
1...反応タンク,
11...触媒層,
20...メタノールと水の混合液,
3...コントローラ,[0001]
【Technical field】
The present invention relates to a method for reforming methanol for producing hydrogen gas used for hydrogen fuel cells, various organic compounds, or various industrial uses, and more particularly to a method for activating and regenerating a reforming catalyst used therein.
[0002]
[Prior art]
In recent years, various researches and developments have been made on the methanol reforming method, particularly for application to a hydrogen fuel cell mounted on a vehicle.
The methanol reforming method is a method of producing a reformed gas composed of hydrogen gas and carbon dioxide gas by performing a reforming reaction operation of reacting methanol and water in the presence of a reforming catalyst in a gas phase.
[0003]
As the reforming catalyst, a mixed oxide composed of copper oxide (CuO), zinc oxide (ZnO), and alumina (Al 2 O 3 ) is used.
The above-mentioned reforming reaction operation is usually performed at 200 to 300 ° C.
In the above-mentioned conventional reforming method, the reaction is generally performed at a relatively low temperature in the early stage of the reforming reaction operation because the activity of the reforming catalyst is large, and the reaction temperature is raised as the activity decreases.
[0004]
[Problem to be solved]
However, when such a temperature raising method is adopted, the reforming catalyst is liable to be crushed as the temperature rises, so that the catalyst layer becomes clogged and the pressure loss in the catalyst layer increases. Therefore, the production efficiency decreases due to the pressure loss. In addition, a large heating energy is required for the above-mentioned temperature raising operation.
[0005]
Therefore, conventionally, the reforming catalyst is replaced at an appropriate stage in consideration of the production efficiency, the overall thermal efficiency, and the accompanying cost increase. However, in order to exchange such a reforming catalyst, it takes a long time to take out and clean the old reforming catalyst from the reaction tank, and to fill the reaction tank with a new reforming catalyst.
In the meantime, the reforming reaction operation cannot be performed at all, and the reformed gas cannot be produced. In such a state, for example, when a methanol reformer is mounted on an automobile and hydrogen gas obtained therefrom is used for a hydrogen fuel cell, it becomes a major obstacle to use of the automobile.
[0006]
To solve this problem, Japanese Patent Application Laid-Open No. 62-36001 proposes a method of intermittently coexisting fuel gas, reformed gas and oxygen in a catalyst for 20 hours to recover the activity. However, in this case, the deterioration could not be stopped even if oxygen coexisted during the reforming reaction. This will be described in a fourth embodiment described later.
[0007]
Also. JP-A-4-200640 proposes to subject the reforming catalyst to an atmosphere having a molecular oxygen concentration of 5 mol% or less at 120 ° C. to 650 ° C. Japanese Patent Application Laid-Open No. 9-75734 proposes that a reforming catalyst be (1) pretreated with a hydrogen-containing gas, (2) oxidized with an oxygen-containing gas, and (3) regenerated with a reducing gas. are doing. However, in order to perform the above two treatments, it is necessary to have a special gas supply device that regulates the oxygen concentration and the hydrogen concentration.
[0008]
Further, in the methods disclosed in the above three publications, in any of the embodiments, the reproduction process requires at least 10 minutes, and in most cases, 10 to 30 hours.
In addition, these methods only measure the reforming rate by gas chromatography or the like, and do not have means for detecting the degree of deterioration.
As described above, the above method does not require a special gas supply device or a long time for the regeneration treatment, and does not have a means for easily detecting the degree of deterioration. Therefore, it is difficult to maintain a high reforming rate. Of course, it is difficult to use even for stationary use.
[0009]
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a methanol reforming method capable of maintaining a highly active state of a reforming catalyst and performing methanol reforming with high efficiency for a long period of time. It is.
[0010]
[Means for solving the problem]
The present invention relates to a method for producing a reformed gas containing hydrogen gas and carbon dioxide gas by performing a methanol reforming reaction operation in the presence of a reforming catalyst,
In order to detect the degree of deterioration of the reforming catalyst, there is provided a degree of deterioration detecting means for detecting any one or more of temperature, CO concentration, methanol concentration, hydrogen concentration, CO 2 concentration, H 2 O concentration and gas flow rate. And
When the reforming catalyst is detected to have reached the predetermined set degree of deterioration by the deterioration degree detecting means, once you stop the reforming reaction, the reproduction by supplying air to the reforming catalyst The method for reforming methanol is characterized in that a reforming operation is performed to achieve the above, and then the reforming reaction operation is performed again, and the reforming reaction operation and the regenerating operation are repeated to produce a reformed gas.
[0011]
The most remarkable point in the present invention is that when the reforming catalyst has deteriorated to a predetermined activity, air is supplied to the reforming catalyst to activate and regenerate it, and then the reforming reaction is performed again. , To repeat this.
[0012]
Next, the operation and effect of the present invention will be described.
In the present invention, as will be described in detail later, when the reforming catalyst deteriorates during the above-mentioned reforming reaction operation and its activity reaches a predetermined degree of deterioration, the reforming reaction operation is temporarily stopped and the reforming reaction is stopped. A regeneration operation for supplying air to the high quality catalyst is performed. As a result, the reforming catalyst is again regenerated to almost the same activity as at the beginning.
[0013]
Then, the reforming reaction operation is performed again. Then, when the set deterioration degree is reached again during the reforming reaction operation, the same regeneration operation as described above is performed.
Therefore, the reforming catalyst is always maintained in a high activity state, and can reform methanol with high efficiency over a long period of time.
[0014]
In addition, by performing a reforming reaction operation in which methanol and water react in a gas phase in the presence of a reforming catalyst, or by performing a reforming reaction operation in which methanol, water and air are reacted, hydrogen gas and carbon dioxide are reacted. In a method for producing a reformed gas containing gas or hydrogen gas, carbon dioxide gas and nitrogen gas,
When the reforming catalyst reaches a predetermined degree of deterioration, a regeneration operation for supplying air to the reforming catalyst to regenerate the reforming catalyst is performed, and then the reforming reaction operation is performed again. There is a method for reforming methanol in which a reformed gas is produced by repeating a quality reaction operation and a regeneration operation.
In this case, the same effect as above can be obtained.
[0015]
Further, the present invention includes a deterioration degree detecting means for detecting the set deterioration degree .
Thereby, the degree of setting deterioration can be automatically detected.
The deterioration degree detecting means detects at least one of temperature, CO concentration, methanol concentration, hydrogen concentration, CO 2 concentration, H 2 O concentration, and gas flow rate.
[0016]
Next, a preferred embodiment in performing the above-described reforming method will be described.
The means for detecting the degree of deterioration includes means for detecting at least one of temperature, CO concentration, methanol concentration, hydrogen concentration, CO 2 concentration, H 2 O concentration, and gas flow rate. It is preferable to have means for determining the degree of deterioration based on the ratio between the side and the outlet side.
[0017]
Further, the deterioration degree detecting means includes means for detecting at least one of a temperature , a CO concentration, a methanol concentration, a hydrogen concentration, a CO 2 concentration, and a H 2 O concentration gas flow rate. It is preferable to have means for determining the timing of the reproduction operation based on the ratio of the degree of deterioration to the set degree of deterioration and taking the ratio of the degree of deterioration to the set degree of deterioration, based on a proportional prediction of the period until the set degree of deterioration is reached.
[0018]
Further, the deterioration degree detecting means includes means for detecting any one or more of temperature, CO concentration, methanol concentration, hydrogen concentration, CO 2 concentration, H 2 O concentration, and gas flow rate. It is preferable to have means for comparing the ratio between the inlet side and the outlet side with the set value and determining the regeneration time based on the proportional prediction of the period until the set deterioration degree is reached.
[0019]
Next, as the reforming catalyst, a metal or cordierite-based ceramic is used as a carrier, and a reforming catalyst component containing one or more mixed oxides of copper, zinc, aluminum, and chromium as main components is supported. It is preferable that they are obtained.
[0020]
As the reforming catalyst, a metal or a cordierite-based ceramic is used as a carrier, and a reforming catalyst material mainly containing any one or more mixed oxides of copper, zinc, aluminum, and chromium is supported. As the deterioration degree detection means, the temperature of the reforming catalyst inlet and outlet and the outlet CO concentration are measured and compared with the set values of the outlet CO concentration corresponding to the inlet and outlet temperatures, and the period of time to reach the set deterioration degree is measured. It is preferable to adopt a method of determining the regeneration time based on the proportional prediction.
In this case, the effect of keeping the outlet CO concentration at a constant value is obtained even when non-renewable deterioration such as sintering of the catalyst occurs.
[0021]
Next, in the present invention, as a catalyst component of the reforming catalyst, for example, a mixed oxide composed of CuO, ZnO, and Al 2 O 3 , a substance carrying copper, chromium, and zinc, and an oxide thereof are used. is there.
Further, as a structure of the reforming catalyst, there is a single catalyst prepared in a pellet or tablet shape by using the catalyst component alone. As the reforming catalyst, there is a supported catalyst in which a metal component such as stainless steel is formed in a three-dimensional shape such as a honeycomb shape and a catalyst component such as the mixed oxide is supported (see FIG. 4).
[0022]
The present invention can be applied to both the single catalyst and the supported catalyst. The latter supported catalyst has a small heat capacity and is excellent in startability. Further, since the contact area between the reaction gas (methanol + water gas) and the reforming catalyst can be increased, the production efficiency is excellent, and the weight per unit volume of the catalyst layer is light.
In this case, the space velocity of the methanol reference liquid during the reforming reaction operation is large, for example, 2 to 7 / hour, and the productivity is high. In the case of the former single catalyst, the space velocity is as low as about 0.3 to 1.0 / hour.
[0023]
The set degree of deterioration refers to the degree of catalyst activity that requires the regeneration operation because the catalyst activity has decreased during the long-term reforming reaction operation.
The set deterioration degree is, for example, a time point when the temperature in the catalyst layer rises to a certain set temperature of 180 to 320 ° C. This is because the reforming reaction operation is usually performed at 180 to 320 ° C., and a temperature 0.1 to 140 ° C. higher than the reforming reaction operation temperature is set as the degree of deterioration.
[0024]
Further, the set deterioration degree can also be determined by measuring the outlet CO concentration. In this case, for example, a point in time when the CO concentration reaches any one of the CO concentrations between 0.01 and 2% is set as the set deterioration degree.
When, for example, the methanol reforming method of the present invention is used as a hydrogen source in a low-temperature fuel cell (a solid polymer electrolyte fuel cell or a phosphoric acid fuel cell), CO is used as a poisoning substance for the electrode catalyst of the fuel cell. Therefore, it is necessary to keep it as low as possible.
[0025]
As a method of reducing CO in the reformed gas as a post-treatment of the reforming method of the present invention, there are a water gas shift reaction, a method of selectively oxidizing CO, and a method of methanizing. However, in any case, in order to make the reactor compact and sufficiently reduce the CO concentration supplied to the fuel cell, it is necessary to reduce the CO concentration as much as possible during reforming.
Selecting the CO concentration as the set deterioration degree in this way is appropriate when applying the present invention to a fuel cell system or the like.
[0026]
Further, the set deterioration degree can also be determined by measuring the reforming rate during the reforming reaction operation, that is, what percentage of methanol has been reformed into hydrogen gas. In this case, for example, a point in time when the reforming rate reaches any one of the reforming rates between 80 and 99.9% is set as the set degree of deterioration.
[0027]
The reforming rate can also be detected by measuring any one of hydrogen concentration, CO 2 concentration, methanol concentration, H 2 O concentration, and gas flow rate at the catalyst outlet. That is, the known supply amounts of methanol and water, the previously measured hydrogen concentration, CO 2 concentration, methanol concentration, H 2 O concentration, or one or more of the gas flow rates, and reforming. The reforming rate can be easily obtained from the relationship of the rates.
[0028]
The setting of the degree of deterioration by setting the temperature or CO concentration during the reforming reaction operation or the simple reforming rate can be detected by any one of the temperature and various concentrations or the gas flow rate, so that the responsiveness is excellent. On the other hand, when the reforming rate is obtained by measuring all the gas components, the set deterioration degree can be set according to the substantial reforming degree.
[0029]
Next, it is preferable that the supply of air in the regeneration operation be performed at a gas space velocity in the catalyst layer of 200 to 800 / hour. This space velocity is a value when air at 25 ° C. is used. If it is less than 200 / hr, the regeneration operation takes a long time, and if it exceeds 800 / hr, the surface temperature of the reforming catalyst rises too much and the sintering (sintering) occurs on the reforming catalyst surface as shown below. There is a possibility that the activity capacity may be lowered to lower the activity capacity.
In the examples described later, air is supplied within this range, but if the temperature does not exceed 320 ° C., the amount of air may be increased to accelerate the reaction.
[0030]
That is, during the regeneration operation, the temperature of the reforming catalyst rises due to the supply of air. This is because, during the reforming reaction operation, the catalyst component once reduced to Cu or the like by the hydrogen gas of the reforming gas reacts with the oxygen in the air to be regenerated into an oxide, which rises due to the reaction heat at that time. it is conceivable that.
[0031]
Therefore, the temperature rise of the reforming catalyst is detected, and when the temperature of the catalyst layer at the time of the regeneration operation reaches a certain value, the supply of air, that is, the regeneration operation is stopped. The upper limit of the above temperature is preferably 450 ° C, more preferably 320 ° C. If the temperature is higher than this, the surface of the reforming catalyst may sinter and the catalyst performance may be degraded.
[0032]
The supply of air during the regeneration operation is preferably performed immediately after the reforming reaction operation is stopped. Thus, the regeneration operation can be started at a high temperature (180 to 320 ° C.), and the regeneration operation can be performed efficiently.
In addition, the regeneration operation can be performed by stopping the reforming reaction operation, for example, by supplying nitrogen (N 2 ) gas to purge the reaction gas and reformed gas in the catalyst layer, and then supplying air. In this case, the effect of softening the heat generated by the oxidation of the reformed gas or methanol remaining in the catalyst layer can be obtained. In order to perform the regeneration operation efficiently, the temperature of the catalyst layer at the start of air supply is preferably 100 to 450 ° C, more preferably 180 to 300 ° C.
[0033]
In the above, the regeneration operation when the reforming catalyst has reached the predetermined degree of deterioration has been described. However, when the methanol reformed gas of the present invention is applied to a reformer mounted on a vehicle, the regeneration operation is not performed. For example, it can be performed for a short time at the end of driving a car, such as at night. As a result, the reforming reaction operation using the highly active reforming catalyst can be always performed the next morning.
In addition, regeneration can be performed in a short time when the system is stopped, such as when refueling, and the reforming reaction operation using a highly active reforming catalyst can be performed at the next startup.
[0034]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1
A method for reforming methanol according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 2 and FIG. 3, the methanol reforming method of this embodiment performs a reforming reaction operation for reacting methanol and water in a gas phase in the presence of a reforming catalyst 11 to thereby produce hydrogen gas and carbon dioxide. This is a method for producing a reformed gas composed of gas.
[0035]
When the reforming catalyst 11 reaches a predetermined set deterioration degree, for example, a set temperature during the reforming reaction operation (FIG. 2), air is supplied to the reforming catalyst 11 to regenerate the reforming catalyst. Then, the reforming reaction operation is performed again, and the reforming reaction operation and the regeneration operation are repeated to produce a reformed gas.
[0036]
Hereinafter, the reforming method will be described in detail.
First, FIG. 3 is a schematic explanatory view of a methanol reformer used in the above-mentioned reforming method.
This apparatus comprises a reaction tank 1 filled with a reforming catalyst 11, a solution tank 21 connected to the reaction tank 1 via a pump 22, a vaporizer 23, and a raw material pipe 24, and an air pipe 32 to the reaction tank 1. And a blower 31 connected thereto. Further, a downstream side of the reaction tank 1 has a reformed gas pipe 12 for sending out a reformed gas and a purge pipe 16. The reaction tank 1 supplies heat to the reforming catalyst 11 by heating the outer wall with a heater.
[0037]
In addition, a controller 3 that detects various concentrations such as the temperature or CO concentration in the reaction tank 1 or the gas flow rate and controls the operation of the pipe 22 or the blower 31 is provided. The controller has a catalyst layer inlet side temperature sensor 35, a catalyst layer outlet side temperature sensor 36, or an inlet side concentration sensor or gas flow sensor 37 disposed in the reaction tank 1 and an outlet side concentration sensor or gas flow sensor 38.
[0038]
To illustrate the case where the above-described reforming method is performed by the above-described reforming apparatus, first, a mixed liquid 20 of methanol and water in a solution tank 21 is supplied to a reforming catalyst 11 in the reaction tank 1 by a pump 22. I do. At this time, the liquid mixture is vaporized by the vaporizer 23 heated to about 300 ° C., and is sent in a gaseous state from the raw material pipe 24. The outer wall of the reaction tank 1 is heated to about 290 ° C. Then, a reforming reaction operation is performed at an average catalyst layer temperature of about 280 ° C., and a reformed gas composed of hydrogen gas (H 2 ) and carbon dioxide gas (CO 2 ) is sent out from a reformed gas pipe 12.
[0039]
While the reforming reaction operation is being performed, the reforming catalyst 11 gradually deteriorates. Then, when the temperature sensors 35 and 36 catch that the temperature of the reforming catalyst 11 in the reaction tank 1, for example, the average temperature of the inlet side temperature and the outlet side temperature has risen to a predetermined degree of deterioration, for example, 285 ° C. , The controller 3 stops the pump 22. At the same time, the heater heating of the reaction tank 1 is stopped, and the supply of the mixed liquid 20 is stopped. Thereby, the reforming reaction operation is stopped.
Next, the controller 3 operates the blower 31 to send air into the reaction tank 1 through the air pipe 32 to perform a regeneration operation. Gas during the regeneration operation is discharged from the purge pipe 16.
[0040]
FIG. 1 shows an outline of a change in the temperature in the reaction tank 1 and a change in the reforming rate during the reforming reaction operation during the above-described reforming reaction operation and regeneration operation, and FIG. 2 is a partially enlarged explanatory view thereof.
As shown in both figures, the reforming rate gradually decreases with time, the amount of heat absorbed in the reforming reaction decreases, and the temperature of the catalyst layer in the reaction tank gradually increases accordingly. When the temperature of the catalyst layer rises to the temperature (285 ° C.) set as the degree of deterioration, the regeneration operation is performed. Then, the reforming reaction operation is performed again.
As a result, as shown in FIG. 1, the reforming rate repeats a zigzag state of decreasing, increasing, and decreasing as shown by curves 41 to 45. Along with this, the temperature of the catalyst layer also repeats a zigzag state as shown by curves 410 to 450.
[0041]
FIG. 2 shows the temperature state of the catalyst layer during the regeneration operation. As shown in the figure, the temperature gradually rises during the reforming reaction operation, and when the temperature reaches the set temperature, which is the set deterioration degree, the supply of the mixed liquid 20 is stopped and the heater of the reaction tank 1 heats up as described above. Stop, cool down to the regeneration start temperature, and supply air.
Therefore, the temperature of the catalyst layer increases due to the oxidation reaction as described above. Therefore, in this example, the regeneration operation is performed while controlling the temperature of the catalyst layer to the upper limit of 320 ° C. or less. After the regeneration operation, the reforming reaction operation is performed again.
As described above, the reforming reaction operation and the regeneration operation are repeated.
[0042]
In FIG. 1, a dotted line curve 49 shows a state in which the reforming rate is reduced when the regeneration operation is not performed. Further, above example, as the reforming catalyst, it is shown per honeycomb metal carrier to the reforming catalyst supporting a catalyst component consisting of CuO-ZnO-Al 2 O 3 ( see FIG. 4 of Embodiment 2).
[0043]
As is known from the above, according to the reforming method of the present invention, the reforming catalyst can be maintained in a highly active state, and methanol can be reformed with high efficiency.
[0044]
Embodiment 2
In this example, as shown in FIGS. 4 and 5, a specific example in which a reformed gas is produced using the reforming apparatus shown in the first embodiment will be described.
First, as shown in FIG. 4, the reforming catalyst 11 has a catalyst component 10 supported on a metal carrier 5. The metal carrier 5 has corrugated plates 52 disposed between a number of flat plates 51 and joined to each other, and has a honeycomb structure of 600 cells / square inch.
[0045]
The catalyst component 10 is in a state of being bonded to the surfaces of the flat plate 51 and the corrugated plate 52.
The flat plate 51 and the corrugated plate 52 of the metal carrier 5 are made of a stainless steel plate. The supported amount of the catalyst component 10 on the metal carrier is 172 g / liter. The catalyst component consists of about 42 wt% CuO- about 47 wt% ZnO- about 11 wt% Al 2 O 3.
In the reforming reaction operation, first, a reduction treatment was performed for 4 hours with a reducing gas at an average temperature of the catalyst layer of 200 ° C. and a gas space velocity of 2000 / hour. Thereafter, a reforming reaction operation was performed.
[0046]
In the reforming reaction operation, a mixed solution consisting of 47% by weight of methanol and 53% by weight of water is vaporized by a vaporizer, and the mixture is placed in a catalyst layer at 260 to 290 ° C. with a methanol space velocity (LHSV-M) = Feeded at 2h -1 .
The composition of the reformed gas obtained by the reforming reaction operation was measured by gas chromatography.
In the above-mentioned reforming reaction operation, the catalyst layer inlet side temperature 270 ° C. was set as the set degree of deterioration.
[0047]
When the temperature at the catalyst layer inlet side rose to 270 ° C., which is the set degree of deterioration, the reforming reaction operation was stopped, and the regeneration operation was immediately performed.
The regeneration operation was performed for 10 minutes by supplying air at about 25 ° C. into the catalyst layer at a rate of 0.2 to 0.4 liter / minute, that is, a space velocity of 400 to 800 / hour.
During the regeneration operation, the amount of air supplied was adjusted so that the temperature of the catalyst layer did not exceed 320 ° C. The time required for regeneration was within 5 minutes from the temperature change. After completion of the regeneration operation, the same reforming reaction operation as described above was performed again, and thereafter, the same regeneration operation and reforming reaction operation were repeatedly performed.
[0048]
FIG. 5 shows the catalyst layer temperature and the reforming rate between 380 and 410 hours after the start of use of the catalyst layer when the above-mentioned reforming reaction operation and regeneration operation are repeatedly performed.
At the top of the figure, the time at which the reproduction operation was performed is indicated by an arrow.
Table 1 shows the CO concentration in the reformed gas and the catalyst layer inlet side temperature at each air supply.
[0049]
[Table 1]
Figure 0003546658
[0050]
As can be seen from FIG. 1 and Table 1, during the reforming reaction operation, the temperature of the catalyst layer is maintained at about 250 to 310 ° C., and the reforming rate is maintained at 95 to 100%. Also, it can be seen that the reforming rate is improved after each regeneration operation.
[0051]
Embodiment 3
In this example, as shown in FIG. 6, as a regeneration operation, first, the catalyst layer is purged with nitrogen gas (N 2 ) at 1 liter / min for 10 minutes, and then air is purged at 0.2 to 0.4 liter / min. For 10 minutes, and the reforming reaction operation was performed again after about 12 hours.
[0052]
At the top of the figure, the time at which the reproduction operation was performed is indicated by an arrow.
In this case, the outlet CO concentration of 0.53% is adopted as the set deterioration degree. When the outlet CO concentration exceeded 0.53%, the above-mentioned regeneration operation was performed.
Table 2 shows the CO concentration in the reformed gas and the catalyst layer inlet side temperature at each air supply.
[0053]
[Table 2]
Figure 0003546658
[0054]
As can be seen from the figure and Table 2, it is understood that the high reforming rate can be maintained for a long time even if the regeneration operation is performed after purging with N 2 gas and the reforming reaction operation is performed about 12 hours after the regeneration operation. . Further, it can be seen that the reforming rate is improved after each regeneration operation.
[0055]
The above N 2 gas may be a mixed gas of N 2 and CO 2 or H 2 O, and the oxygen in the air is removed by oxidizing reaction with the raw material methanol, hydrogen and CO in the reformed gas. Therefore, it can be used easily even in a reformer for transfer.
[0056]
Embodiment 4
In this example, as shown in Table 3, first, a reforming reaction was carried out under the same conditions with the same catalyst as in Example 2 and the catalyst in the state (1 in the table) in which the reforming rate was deteriorated to 87% was used. In accordance with -36001, air was introduced into the catalyst during the reforming reaction by supplying only the fuel gas.
Then, the fuel gas, the reformed gas, and oxygen (air) were allowed to coexist in the catalyst for 30 to 50 minutes, and then the reforming reaction was performed in the coexistence of the fuel gas, the reformed gas, and oxygen (air). The reforming rate and temperature in this case are shown in the same table (2 and 4 in the table).
Then, the reforming rate and temperature when the air is stopped and only the fuel gas is supplied are shown (3 and 5 in the table).
[0057]
As is clear from Table 3, even when the fuel gas, the reformed gas and the oxygen (air) coexist in the catalyst, the regeneration does not occur, and the reforming rate does not recover. Thereafter, the reforming rate and temperature when the regeneration operation of the present invention is performed are shown in the same table. By performing the regeneration operation of the present invention, the reforming catalyst recovers its activity, activates the endothermic reaction, lowers the catalyst layer inlet temperature, and regenerates the reforming rate to 99% or more, which is the same as the initial stage of reforming. (6 and 7 in the table).
[0058]
[Table 3]
Figure 0003546658
[0059]
【The invention's effect】
According to the present invention, it is possible to provide a methanol reforming method capable of maintaining methanol in a highly active state and reforming methanol with high efficiency over a long period of time.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a reforming reaction operation time, a reforming rate, and a catalyst layer temperature in Embodiment 1;
FIG. 2 is a diagram showing a change in temperature of a catalyst layer before and after a regeneration operation in the first embodiment.
FIG. 3 is an explanatory diagram of a reforming apparatus according to the first embodiment.
FIG. 4 is an explanatory view of a metal carrier catalyst in a second embodiment.
FIG. 5 is a diagram showing a relationship between a reforming reaction operation time, a reforming rate, a catalyst layer temperature, and the like in the second embodiment.
FIG. 6 is a diagram showing a relationship between a reforming reaction operation time, a reforming rate, a catalyst layer temperature, and the like in a third embodiment.
[Explanation of symbols]
1. . . Reaction tank,
11. . . Catalyst layer,
20. . . Mixture of methanol and water,
3. . . controller,

Claims (4)

改質触媒の存在下で,メタノールの改質反応操作を行なうことにより水素ガスと炭酸ガスとを含有する改質ガスを製造する方法において,
上記改質触媒の劣化度を検出するために,温度,CO濃度,メタノール濃度,水素濃度,CO 2 濃度,H 2 O濃度,ガス流量のいずれか1つ以上を検出する劣化度検出手段を具備し,
上記劣化度検出手段により上記改質触媒が所定の設定劣化度に達したと検出された際には,改質反応を一旦停止して,上記改質触媒に対して空気を供給してその再生を図る再生操作を行ない,その後再び上記改質反応操作を行ない,かかる改質反応操作と再生操作とを繰り返して改質ガスを製造することを特徴とするメタノールの改質方法。
In a method for producing a reformed gas containing hydrogen gas and carbon dioxide gas by performing a methanol reforming reaction operation in the presence of a reforming catalyst,
In order to detect the degree of deterioration of the reforming catalyst, there is provided a degree of deterioration detecting means for detecting any one or more of temperature, CO concentration, methanol concentration, hydrogen concentration, CO 2 concentration, H 2 O concentration and gas flow rate. And
When the reforming catalyst is detected to have reached the predetermined set degree of deterioration by the deterioration degree detecting means, once you stop the reforming reaction, the reproduction by supplying air to the reforming catalyst A method for reforming methanol, comprising: performing a regeneration operation for the purpose of performing the above-mentioned reforming operation; thereafter, performing the reforming reaction operation again; and repeating the reforming reaction operation and the regeneration operation to produce a reformed gas.
請求項1において,上記改質触媒の劣化度は,上記改質触媒の入口側と出口側の温度,CO濃度,メタノール濃度,水素濃度,COIn claim 1, the degree of deterioration of the reforming catalyst includes the temperature, CO concentration, methanol concentration, hydrogen concentration, CO2 concentration at the inlet and outlet of the reforming catalyst. 2Two 濃度,HConcentration, H 2Two O濃度,ガス流量のいずれか1つ以上の比により決定することを特徴とするメタノール改質方法。A methanol reforming method characterized by determining the ratio based on at least one of O concentration and gas flow rate. 請求項1において,上記再生操作の時期は,上記劣化度検出手段により検出される劣化度と上記設定劣化度との比をとり決定することを特徴とするメタノール改質方法。2. The methanol reforming method according to claim 1, wherein the timing of the regeneration operation is determined by taking a ratio between the degree of deterioration detected by the degree of deterioration detection means and the set degree of deterioration. 請求項1において,上記再生操作の時期は,上記改質触媒の入口側と出口側の温度,CO濃度,メタノール濃度,水素濃度,CO2. The method according to claim 1, wherein the timing of the regeneration operation includes a temperature on the inlet side and an outlet side of the reforming catalyst, a CO concentration, a methanol concentration, a hydrogen concentration, and a CO concentration. 2Two 濃度,HConcentration, H 2Two O濃度,ガス流量のいずれか1つ以上の比と設定値とを比較し,決定することを特徴とするメタノール改質方法。A methanol reforming method characterized by comparing and determining a set value with one or more ratios of O concentration and gas flow rate.
JP25599797A 1997-09-03 1997-09-03 Methanol reforming method Expired - Fee Related JP3546658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25599797A JP3546658B2 (en) 1997-09-03 1997-09-03 Methanol reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25599797A JP3546658B2 (en) 1997-09-03 1997-09-03 Methanol reforming method

Publications (2)

Publication Number Publication Date
JPH1179702A JPH1179702A (en) 1999-03-23
JP3546658B2 true JP3546658B2 (en) 2004-07-28

Family

ID=17286477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25599797A Expired - Fee Related JP3546658B2 (en) 1997-09-03 1997-09-03 Methanol reforming method

Country Status (1)

Country Link
JP (1) JP3546658B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043640A (en) * 2008-07-18 2010-02-25 Toyota Central R&D Labs Inc Reformed gas production device and reformed gas combustion engine system equipped with the same, and activity recovery method of reformed catalyst
WO2015118815A1 (en) * 2014-02-10 2015-08-13 株式会社デンソー Fuel reformulation device for internal combustion engine

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351606A (en) * 1999-06-08 2000-12-19 Matsushita Electric Ind Co Ltd Fuel-reforming apparatus
GB9914662D0 (en) 1999-06-24 1999-08-25 Johnson Matthey Plc Catalysts
JP4967185B2 (en) * 2000-10-24 2012-07-04 トヨタ自動車株式会社 Removal of precipitated carbon in the reformer
JP2002175826A (en) * 2000-12-07 2002-06-21 Ebara Ballard Corp Fuel cell power generation system
JP4001723B2 (en) * 2001-03-28 2007-10-31 本田技研工業株式会社 Method for recovering catalyst performance of reforming catalyst device
JP4039304B2 (en) * 2003-04-18 2008-01-30 トヨタ自動車株式会社 Reforming catalyst deterioration determining device, fuel reforming device, and reforming catalyst deterioration determining method
JP4038723B2 (en) 2003-05-21 2008-01-30 アイシン精機株式会社 Method for activating solid polymer fuel cell
WO2005018035A1 (en) * 2003-08-19 2005-02-24 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation system, method of detecting deterioration degree of reformer for the system, and fuel cell power generation method
US7285247B2 (en) * 2003-10-24 2007-10-23 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer so as to purge soot therefrom
JP4784047B2 (en) * 2004-06-09 2011-09-28 トヨタ自動車株式会社 Fuel cell system
DE102004059647B4 (en) * 2004-12-10 2008-01-31 Webasto Ag Process for regenerating a reformer
JP4992239B2 (en) * 2006-01-17 2012-08-08 カシオ計算機株式会社 Power generation system
JP2007284322A (en) * 2006-04-20 2007-11-01 Yanmar Co Ltd Method for activating catalyst in fuel reforming catalyst apparatus
JP5064830B2 (en) * 2007-02-16 2012-10-31 Jx日鉱日石エネルギー株式会社 Reformer system, fuel cell system, and operation method thereof
JP5439840B2 (en) * 2009-02-13 2014-03-12 日産自動車株式会社 Fuel reformer
US8015952B2 (en) * 2010-04-08 2011-09-13 Ford Global Technologies, Llc Engine fuel reformer monitoring
JP2012012340A (en) 2010-07-01 2012-01-19 Meidensha Corp Method for producing aromatic hydrocarbon
US8784515B2 (en) * 2010-10-14 2014-07-22 Precision Combustion, Inc. In-situ coke removal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043640A (en) * 2008-07-18 2010-02-25 Toyota Central R&D Labs Inc Reformed gas production device and reformed gas combustion engine system equipped with the same, and activity recovery method of reformed catalyst
WO2015118815A1 (en) * 2014-02-10 2015-08-13 株式会社デンソー Fuel reformulation device for internal combustion engine
JP2015151873A (en) * 2014-02-10 2015-08-24 株式会社デンソー Fuel reformer of internal combustion engine

Also Published As

Publication number Publication date
JPH1179702A (en) 1999-03-23

Similar Documents

Publication Publication Date Title
JP3546658B2 (en) Methanol reforming method
US6972119B2 (en) Apparatus for forming hydrogen
JP5065605B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
US6486087B1 (en) Method for periodically reactivating a copper-containing catalyst material
JP4991571B2 (en) Hydrogen generator, fuel cell system, and operation method thereof
WO2000048261A1 (en) Carbon monoxide converting apparatus for fuel cell and generating system of fuel cell
JP3759406B2 (en) Methanol reforming catalyst, methanol reforming apparatus and methanol reforming method
US6171992B1 (en) Treatment process for a methanol reforming catalyst therefor
JP4001723B2 (en) Method for recovering catalyst performance of reforming catalyst device
JP4779446B2 (en) Catalyst regeneration method, hydrogen generator and fuel cell system
CN101878285B (en) System for processing combustible gas and method for processing combustible gas
JP3473896B2 (en) Hydrogen purification equipment
CN101488573A (en) Fuel cell and control method thereof
JPH08133702A (en) Carbon monoxide removing device and method therefor
JPH07185303A (en) Device for removing carbon monoxide
JPH11130406A (en) Device for selectively removing carbon monoxide and formation of catalytic body
JPH08133701A (en) Carbon monoxide removing device
JP2005238025A (en) Fuel reforming catalyst and fuel reforming system using the same
CN113795958A (en) Mitigating fuel cell start-up/shut-down degradation through removal of oxygen adsorbing/absorbing media
US20040258598A1 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
JP2005050788A (en) Reformed fuel refining system for fuel processing system
JPH08100184A (en) Carbon monoxide removing system
EP1329417A1 (en) Hydrogen forming device
JP2761066B2 (en) Solid polymer electrolyte fuel cell device and power generation method
US20050217181A1 (en) Method and system for supplying hydrogen to fuel cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees