JP2761066B2 - Solid polymer electrolyte fuel cell device and power generation method - Google Patents

Solid polymer electrolyte fuel cell device and power generation method

Info

Publication number
JP2761066B2
JP2761066B2 JP1338731A JP33873189A JP2761066B2 JP 2761066 B2 JP2761066 B2 JP 2761066B2 JP 1338731 A JP1338731 A JP 1338731A JP 33873189 A JP33873189 A JP 33873189A JP 2761066 B2 JP2761066 B2 JP 2761066B2
Authority
JP
Japan
Prior art keywords
fuel cell
carbon monoxide
hydrogen
polymer electrolyte
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1338731A
Other languages
Japanese (ja)
Other versions
JPH03203165A (en
Inventor
長一 古屋
国延 市川
香 和田
哲也 今井
竹内  善幸
政明 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1338731A priority Critical patent/JP2761066B2/en
Publication of JPH03203165A publication Critical patent/JPH03203165A/en
Application granted granted Critical
Publication of JP2761066B2 publication Critical patent/JP2761066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、固体高分子電解質膜を用いた燃料電池装置
及びその発電方法に関する。
Description: TECHNICAL FIELD The present invention relates to a fuel cell device using a solid polymer electrolyte membrane and a power generation method thereof.

(従来の技術) 第2図は、従来の固体高分子電解質型燃料電池装置の
概念図である。燃料電池本体4は、固体高分子電解質膜
を2枚のガラス拡散電極で挟み、ガスセパレータで各燃
料電池セルを隔離する構造を有する。まず、メタノール
原料をタンクからメタノール分解装置8に導入し、水素
と一酸化炭素からなる分解ガスを生成し、水タンク6か
らの水とともに一酸化炭素シフト接触反応装置9に導入
して、一酸化炭素と水蒸気から水素と二酸化炭素を生成
し、水素リッチな生成ガスを加湿装置10を経て燃料電池
本体4の水素極に導入して発電を行うもので、上記水タ
ンク6から一酸化炭素シフト触媒反応装置9並びに燃料
電池本体4に供給した冷却水は、蒸気膨張機12に導入し
て膨張させ、エネルギー回収を行うと共に、同軸のコン
プレッサーを駆動して、空気を吸入加圧し、燃料電池本
体の酸素極に圧送する。
(Prior Art) FIG. 2 is a conceptual diagram of a conventional solid polymer electrolyte fuel cell device. The fuel cell body 4 has a structure in which a solid polymer electrolyte membrane is sandwiched between two glass diffusion electrodes, and each fuel cell is separated by a gas separator. First, a methanol raw material is introduced from a tank into a methanol decomposition apparatus 8 to generate a decomposition gas composed of hydrogen and carbon monoxide, and is introduced into a carbon monoxide shift contacting reaction apparatus 9 together with water from a water tank 6, thereby forming Hydrogen and carbon dioxide are generated from carbon and water vapor, and a hydrogen-rich generated gas is introduced into the hydrogen electrode of the fuel cell body 4 through the humidifier 10 to generate power. The cooling water supplied to the reaction device 9 and the fuel cell main body 4 is introduced into the steam expander 12 to expand and recover energy, and at the same time, the coaxial compressor is driven to inhale and pressurize air, and the fuel cell main body 4 is cooled. Pump to oxygen electrode.

上記のメタノール分解装置から流出する分解ガスは、
20%近くの多重の一酸化炭素を含有するため、一酸化炭
素シフト接触反応装置で一酸化炭素は相当除去される
が、一酸化炭素シフト反応は、水蒸気と一酸化炭素のモ
ル比を、例えば、3:1のように水蒸気過剰の条件で反応
させても、一酸化炭素濃度を0.2%(2000ppm)程度まで
低下させるのが限度であり、このガスを燃料電池本体の
水素極に供給し、200℃を越える動作温度で発電を行っ
ていた。
The cracked gas flowing out of the above methanol cracker is
Although containing nearly 20% of multiple carbon monoxide, carbon monoxide is considerably removed in a carbon monoxide shift catalytic reactor, but the carbon monoxide shift reaction requires a molar ratio of water vapor to carbon monoxide, for example. , Even if the reaction is carried out under the condition of excess steam such as 3: 1, the limit is to reduce the concentration of carbon monoxide to about 0.2% (2000 ppm). This gas is supplied to the hydrogen electrode of the fuel cell body, Power was being generated at operating temperatures exceeding 200 ° C.

(発明が解決しようとする課題) 100℃前後で作動させる固体高分子電解質膜を用いる
燃料電池は、ガス拡散電極が水素ガス中の一酸化炭素に
より被毒されるため、発電性能が低下するという問題が
あるが、上記の一酸化炭素シフト反応を利用する限り、
水素ガス中の一酸化炭素濃度を上記の値よりさらに低下
させることは難しい。そこで、被毒の影響を少しでも抑
えて発電を行うために、燃料電池を200℃以上の温度で
動作させ、発電せざるを得ず、この動作温度に耐える固
体高分子電解質膜の選択に大きな制約があった。また、
このような動作温度では、必然的に膜の寿命も短くな
る。
(Problems to be Solved by the Invention) In a fuel cell using a solid polymer electrolyte membrane operated at about 100 ° C., the power generation performance is reduced because the gas diffusion electrode is poisoned by carbon monoxide in hydrogen gas. Although there is a problem, as long as the above carbon monoxide shift reaction is used,
It is difficult to further reduce the concentration of carbon monoxide in hydrogen gas from the above value. Therefore, in order to generate power while minimizing the effect of poisoning, the fuel cell must be operated at a temperature of 200 ° C or higher, generating power.Therefore, it is important to select a solid polymer electrolyte membrane that can withstand this operating temperature. There were restrictions. Also,
At such operating temperatures, the life of the film is necessarily shortened.

本発明者等の研究によると、固体高分子電解質型燃料
電池を100℃以下で高い発電性能の下で安定して動作さ
せるためには、燃料極に供給する水素ガス中の一酸化炭
素濃度を10ppm以下に抑える必要があるが、これに適し
た一酸化炭素の除去装置は未だ存在しない。
According to the study of the present inventors, in order to operate a solid polymer electrolyte fuel cell stably under high power generation performance at 100 ° C. or less, the concentration of carbon monoxide in hydrogen gas supplied to a fuel electrode must be reduced. Although it is necessary to keep the concentration below 10 ppm, there is no carbon monoxide removal apparatus suitable for this purpose.

他方、従来の燃料電池本体に組み込む固体高分子電解
質膜は、常時湿潤状態を維持する必要がある。この目的
のために、水タンクから燃料電池本体に冷却水を供給
し、かつ、加湿装置に水を供給して、燃料電池本体に供
給する直前の水素ガスに水分を補給していた。
On the other hand, a solid polymer electrolyte membrane to be incorporated in a conventional fuel cell body must always be kept in a wet state. For this purpose, cooling water has been supplied from the water tank to the fuel cell main body, and water has been supplied to the humidifier to supply water to the hydrogen gas immediately before supply to the fuel cell main body.

しかし、燃料電池の負荷変動により、燃料電池の発熱
量が大きく変動するため、水蒸気の添加量の調節が大変
難しかった。
However, since the calorific value of the fuel cell greatly fluctuates due to the load fluctuation of the fuel cell, it has been very difficult to adjust the amount of steam to be added.

そこで、本発明は、上記の問題を解消し、水素ガス中
の一酸化炭素濃度を10ppm以下に抑えるための一酸化炭
素除去装置、及び、変動する動作温度における略飽和水
蒸気を常時電解質膜面に保有させるための調湿手段を設
けることにより、負荷変動時においても、固体高分子電
解質膜を一定の湿潤状態に維持し、安定して発電させる
ことのできる固体高分子電解質型燃料電池装置及び発電
方法を提供しようとするものである。
Therefore, the present invention solves the above problems, and a carbon monoxide removing device for suppressing the carbon monoxide concentration in hydrogen gas to 10 ppm or less, and almost saturated steam at a varying operating temperature is constantly applied to the surface of the electrolyte membrane. A solid polymer electrolyte fuel cell device capable of maintaining a constant wet state of the solid polymer electrolyte membrane even when the load fluctuates and providing stable power generation by providing a humidity control means for holding It seeks to provide a way.

(課題を解決するための手段) 本発明は、 (1)固体高分子電解質膜を2枚のガラス拡散電極で挟
んだ燃料電池本体に、メタノールから生成した水素を供
給して発電する燃料電池装置において、メタノール水蒸
気改質装置と、一酸化炭素除去装置と、調湿装置と、前
記燃料電池本体とを順次接続して、前記燃料電池本体の
水素極に水素を供給可能とし、かつ、前記調湿装置には
疎水性ガス拡散膜を設けて、前記燃料電池本体から流出
する冷却水と、前記一酸化炭素除去装置から流出する改
質ガスとを前記疎水性ガス拡散膜を介して接触可能とし
たことを特徴とする燃料電池装置、 (2)前記一酸化炭素除去装置として、微量の酸素を導
入して一酸化炭素を選択的に酸化除去する装置、及び/
又は一酸化炭素の吸着性能を有する触媒電極を備えた電
解酸化装置を用いたことを特徴とする上記(1)記載の
燃料電池装置、及び、 (3)固体高分子電解質型燃料電池装置にメタノール原
料を供給して発電する方法において、メタノール原料を
水蒸気改質反応により、水素を主成分とする改質ガスを
生成し、該改質ガスの一酸化炭素濃度を10ppm以下に低
下させた後、燃料電池本体から流出する冷却水とほぼ平
衡する水蒸気を添加してから、燃料電池本体の水素極に
供給し、50〜100℃の範囲の動作温度で発電することを
特徴とする発電方法、 である。
(Means for Solving the Problems) The present invention provides: (1) a fuel cell device that generates hydrogen by supplying hydrogen generated from methanol to a fuel cell body in which a solid polymer electrolyte membrane is sandwiched between two glass diffusion electrodes. , A methanol steam reformer, a carbon monoxide remover, a humidity controller, and the fuel cell main body are sequentially connected to enable supply of hydrogen to a hydrogen electrode of the fuel cell main body, and The wet device is provided with a hydrophobic gas diffusion film, so that the cooling water flowing out of the fuel cell body and the reformed gas flowing out of the carbon monoxide removing device can be contacted via the hydrophobic gas diffusion film. (2) a device for selectively oxidizing and removing carbon monoxide by introducing a small amount of oxygen, and / or
Or a fuel cell device according to the above (1), wherein an electrolytic oxidation device provided with a catalyst electrode having carbon monoxide adsorption performance is used; and (3) methanol is added to the solid polymer electrolyte fuel cell device. In a method of supplying a raw material and generating power, a steam reforming reaction of a methanol raw material is used to generate a reformed gas containing hydrogen as a main component, and reduce the carbon monoxide concentration of the reformed gas to 10 ppm or less. A power generation method characterized by adding steam substantially equilibrium with the cooling water flowing out of the fuel cell main body, supplying the water vapor to the hydrogen electrode of the fuel cell main body, and generating power at an operating temperature in the range of 50 to 100 ° C. is there.

(作用) 第1図は、本発明の固体高分子電解質型燃料電池の概
念図である。
(Operation) FIG. 1 is a conceptual diagram of a solid polymer electrolyte fuel cell of the present invention.

メタノール水蒸気改質装置1で生成した改質ガスを選
択酸化装置、電解酸化装置等の一酸化炭素除去装置2に
導入して一酸化炭素濃度を10ppm以下に低下させ、次い
で調湿装置3で水分調節を行い、燃料電池本体4に供給
して発電するものである。冷却水は、水タンク6よりポ
ンプ7で燃料電池本体4に供給され、間接的に燃料電池
本体4を冷却するか、燃料電池本体4のガスセパレータ
のの水素極側及び又は酸素側に設けた水供給溝に導入し
て、燃料電池本体4の冷却とともに、固体高分子電解質
膜に水分を補給する。燃料電池本体4から流出する冷却
水は、上記調湿装置3に導入して、該冷却水の温度にお
ける略飽和水蒸気を上記水素ガスに添加する。なお、該
調湿装置3から流出する冷却水は、イオン交換器5で溶
存するイオンを除去して水タンク6に戻し、循環使用す
ることにより機器の腐食を防止する。
The reformed gas generated by the methanol steam reformer 1 is introduced into a carbon monoxide remover 2 such as a selective oxidizer or an electrolytic oxidizer to reduce the carbon monoxide concentration to 10 ppm or less. The power is adjusted and supplied to the fuel cell main body 4 to generate power. The cooling water is supplied from the water tank 6 to the fuel cell body 4 by the pump 7 to indirectly cool the fuel cell body 4 or provided on the hydrogen electrode side and / or the oxygen side of the gas separator of the fuel cell body 4. It is introduced into the water supply groove to cool the fuel cell body 4 and supply water to the solid polymer electrolyte membrane. The cooling water flowing out of the fuel cell main body 4 is introduced into the humidity control device 3, and substantially saturated steam at the temperature of the cooling water is added to the hydrogen gas. The cooling water flowing out of the humidity controller 3 removes dissolved ions in the ion exchanger 5 and returns to the water tank 6 to prevent the equipment from being corroded by being circulated.

一酸化炭素除去装置2としては、微量の酸素を導入し
て一酸化炭素を選択的に酸化除去する選択酸化装置、一
酸化炭素吸着性能を有する触媒電極を用いた電解酸化装
置等を用いることができる。
As the carbon monoxide removing device 2, a selective oxidizing device for selectively oxidizing and removing carbon monoxide by introducing a small amount of oxygen, an electrolytic oxidizing device using a catalyst electrode having carbon monoxide adsorption performance, or the like may be used. it can.

上記の選択酸化装置では、0.1〜50重量%、好ましく
は1〜10重量%の金を含有する触媒を用い、O2/COモル
比を0.5〜5、好ましくは1〜3に調整し、100℃以下で
選択酸化させる。この触媒は、Fe2O3、CoO、NiO、Al
2O3、TiO2、ZrO2、SiO2からなる群の1種以上の酸化物
担体に塩化金酸水溶液を含浸させ、乾燥し、焼成する
か、上記酸化物構成元素の硝酸塩と塩化金酸を含む水溶
液をアルカリ水溶液で中和して共沈させ、水洗し、乾燥
し、焼成して得ることができる。(特願昭63−304053号
参照)また、上記触媒の代わりに、Al2O3等の担体にPt
とFe、Mn、Co等の酸化物を担持させた触媒を使用するこ
ともできる。
In the above selective oxidation apparatus, a catalyst containing 0.1 to 50% by weight, preferably 1 to 10% by weight of gold is used, and the O 2 / CO molar ratio is adjusted to 0.5 to 5, preferably 1 to 3, and 100 Selectively oxidize below ℃. The catalyst is Fe 2 O 3 , CoO, NiO, Al
One or more oxide carriers of the group consisting of 2 O 3 , TiO 2 , ZrO 2 , SiO 2 are impregnated with an aqueous solution of chloroauric acid, dried and calcined, or nitrates of the above oxide constituent elements and chloroauric acid Is co-precipitated by neutralizing with an aqueous alkali solution, washed with water, dried and calcined. (See Japanese Patent Application No. 63-304053.) In place of the above catalyst, a carrier such as Al 2 O 3
Also, a catalyst supporting an oxide such as Fe, Mn, and Co can be used.

また、電解酸化装置に用いる触媒電極としては、燃料
電池用のガス拡散電極をそのまま使用することができ、
その材質は白金族金属、白金族金属の合金、白金族金属
の酸化物等を用いることができる。そして、この触媒電
極は、断続的に通電することにより、吸着している一酸
化炭素を電解酸化して二酸化炭素として脱離するもので
ある。
Further, as a catalyst electrode used in the electrolytic oxidation device, a gas diffusion electrode for a fuel cell can be used as it is,
The material may be a platinum group metal, an alloy of a platinum group metal, an oxide of a platinum group metal, or the like. The catalyst electrode is provided with an intermittent energization to electrolytically oxidize adsorbed carbon monoxide and desorb as carbon dioxide.

本発明の一酸化炭素除去装置としては、上記装置の併
用が好ましい。即ち、熱力学的平衡の制約をともなう
が、一酸化炭素高濃度ガスの処理に適した選択酸化装置
と、一酸化炭素低濃度ガスの処理に適した電解酸化装置
を組み合わせることにより、10ppm以下の一酸化炭素濃
度の水素ガスを容易に得ることができる。そして、これ
らの一酸化炭素除去装置を固体高分子電解質型燃料電池
に組み込むことにより、燃料電池の負荷増大に対応して
水素ガス供給量を増加させるときにも、選択酸化装置へ
の空気の供給量を増加させたり、電解酸化装置の再生サ
イクルを短縮することにより、一酸化炭素除去量を増大
させ、上記の一酸化炭素濃度の水素ガスを安定して供給
することができる。
As the apparatus for removing carbon monoxide of the present invention, a combination of the above apparatuses is preferable. That is, with the restriction of thermodynamic equilibrium, by combining a selective oxidation device suitable for processing high concentration gas of carbon monoxide and an electrolytic oxidation device suitable for processing low concentration gas of carbon monoxide, 10 ppm or less Hydrogen gas having a carbon monoxide concentration can be easily obtained. By incorporating these carbon monoxide removal devices into a solid polymer electrolyte fuel cell, the supply of air to the selective oxidation device can be increased even when the supply amount of hydrogen gas is increased in response to an increase in the load on the fuel cell. By increasing the amount or shortening the regeneration cycle of the electrolytic oxidation apparatus, the amount of carbon monoxide to be removed can be increased, and the hydrogen gas having the above-mentioned carbon monoxide concentration can be supplied stably.

また、上記の一酸化炭素除去装置は、いずれも100℃
以下の比較的低温で作動させることができるので、精製
水素ガスを熱交換せずに、そのまま燃料電池に供給する
ことができ、50〜100℃の温度範囲で発電する固体高分
子電解質型燃料電池と整合性が良く、装置をコンパクト
にまとめることができる。
In addition, all of the above carbon monoxide removal devices are 100 ° C.
It can be operated at the following relatively low temperatures, so that purified hydrogen gas can be supplied to the fuel cell without heat exchange without heat exchange, and a solid polymer electrolyte fuel cell that generates power in the temperature range of 50 to 100 ° C And the apparatus can be compactly assembled.

さらに、調湿装置は、疎水性細孔を有するガス拡散膜
とこれを支持する基体からなり、該ガス拡散膜の両側
に、一酸化炭素除去装置から流出した水素ガスと燃料電
池本体から流出した冷却水を流し、該冷却水の温度にお
ける水蒸気圧差により、ガス拡散膜の細孔を介して水蒸
気を移動させて水素ガス中の水分調整を行う。
Further, the humidity control device is composed of a gas diffusion film having hydrophobic pores and a base supporting the gas diffusion film. On both sides of the gas diffusion film, the hydrogen gas flowing out of the carbon monoxide removing device and the hydrogen gas flowing out of the fuel cell main body. Cooling water is caused to flow, and the water vapor in the hydrogen gas is adjusted by moving the water vapor through the pores of the gas diffusion film according to the water vapor pressure difference at the temperature of the cooling water.

本発明の固体高分子電解質型燃料電池は、このような
装置構成を採用することにより、一酸化炭素濃度を10pp
m以下に抑えた水素ガスを燃料電池本体に供給し、50〜1
00℃の動作温度で発電することができ、そして、負荷変
動時においても、燃料電池本体の冷却と固体高分子電解
質膜の一定の湿潤状態を維持することができる負荷応答
性に優れた発電を可能にした。
The solid polymer electrolyte fuel cell of the present invention adopts such a device configuration to reduce the carbon monoxide concentration to 10 pp.
m to the fuel cell body,
Power generation can be performed at an operating temperature of 00 ° C., and even when the load fluctuates, the power generation can be performed with excellent load response, which can cool the fuel cell body and maintain a constant wet state of the solid polymer electrolyte membrane. Made it possible.

(実施例) 第1図の燃料電池装置を用いて、メタノール原料で発
電を行った。
(Example) Using the fuel cell device shown in Fig. 1, power was generated from a methanol raw material.

選択酸化装置に用いる触媒は、AuとFeの原子比を5:95
とする硝酸鉄と塩化金酸の混合液をアルカリ水溶液で中
和して共沈させ、その共沈物を水洗し乾燥した後、400
℃で焼成して得たものである。また、電解酸化装置に
は、白金電極を用いた。さらに、燃料電池本体のガスセ
パレータの水素極側には、水供給溝を設けて冷却と水分
の調整を可能とした。
The catalyst used in the selective oxidation device has an atomic ratio of Au to Fe of 5:95.
The mixture of iron nitrate and chloroauric acid is neutralized with an aqueous alkali solution to coprecipitate, and the coprecipitate is washed with water and dried.
It was obtained by firing at ℃. A platinum electrode was used for the electrolytic oxidation device. Further, a water supply groove is provided on the hydrogen electrode side of the gas separator of the fuel cell body to enable cooling and adjustment of moisture.

まず、メタノール改質装置には、メタノール160mol/h
rと水320mol/hrの混合液を供給し、H2:59%、CO2:19
%、H2O:21%、CO:1%を含有する270℃の改質ガスを2Kg
/cm2Gで生成させた。この改質ガスは水冷式冷却器で50
℃まで冷却した。その後、上記選択酸化触媒を充填した
選択酸化装置を、50℃の温水を10ml/minで冷却しなが
ら、上記改質ガスと空気約1Nm3/hrを導入して一酸化炭
素を選択酸化し、一酸化炭素濃度を100ppmまで低下させ
た。このガスを、下記の一酸化炭素吸着性触媒電極を備
えた電解酸化装置に導入して一酸化炭素濃度を10ppm以
下に低下させた。なお、上記電極には6.0A、0.8Vの定電
流を10分間隔で正負交互に2秒間通電して吸着電極の再
生を行った。このようにして得た精製水素ガスは、調湿
装置を経て温度70℃、供給量7.2Nm3/hr、水蒸気分圧0.0
75kg/m2Gで燃料電池本体に導入し、冷却用温水は、温度
90℃、供給量5ml/minで導入して発電を行った。なお、
燃料電池本体を流出した冷却用温水は、上記調湿装置に
導入した。
First, the methanol reformer has a methanol concentration of 160 mol / h.
A mixture of r and 320 mol / hr of water is supplied, H 2 : 59%, CO 2 : 19
%, H 2 O: 21%, CO: 1%, 2 kg of reformed gas at 270 ℃
/ cm 2 G. This reformed gas is cooled by a water-cooled cooler to 50
Cooled to ° C. Thereafter, the selective oxidation apparatus filled with the selective oxidation catalyst was cooled at 50 ml of warm water at 50 ° C. at 10 ml / min, and the reformed gas and about 1 Nm 3 / hr of air were introduced to selectively oxidize carbon monoxide. The carbon monoxide concentration was reduced to 100 ppm. This gas was introduced into an electrolytic oxidation apparatus equipped with the following carbon monoxide-adsorbing catalyst electrode to lower the carbon monoxide concentration to 10 ppm or less. The electrodes were regenerated by applying a constant current of 6.0 A and 0.8 V alternately for two seconds at 10 minute intervals. The purified hydrogen gas thus obtained was passed through a humidity control device at a temperature of 70 ° C., a supply rate of 7.2 Nm 3 / hr, and a partial pressure of steam of 0.0
Introduced into the fuel cell at 75 kg / m 2 G, and the hot water for cooling
Power generation was performed at 90 ° C. at a supply rate of 5 ml / min. In addition,
The cooling water flowing out of the fuel cell body was introduced into the humidity control device.

(発明の効果) 本発明は、上記の構成を採用することにより、残留一
酸化炭素濃度を10ppm以下とする水素ガスを調湿して燃
料電池本体に供給することができ、50〜100℃という比
較的低温で燃料電池を稼働させることができるようにな
った。また、負荷変動時においても、燃料電池本体の冷
却と固体高分子電解質膜への水分補給を迅速に行うこと
ができ、負荷変動に対する応答性も大幅に向上させるこ
とができた。さらに、一酸化炭素の除去装置を燃料電池
本体とほぼ同じ温度で稼働させることができるので、両
者の整合性が良く、燃料電池装置の小型化に大きく寄与
するものである。
(Effect of the Invention) According to the present invention, by employing the above configuration, it is possible to control the humidity of hydrogen gas having a residual carbon monoxide concentration of 10 ppm or less and supply it to the fuel cell main body. It has become possible to operate fuel cells at relatively low temperatures. In addition, even when the load fluctuated, the cooling of the fuel cell body and the replenishment of water to the solid polymer electrolyte membrane could be rapidly performed, and the responsiveness to the load fluctuation could be greatly improved. Further, since the carbon monoxide removing device can be operated at substantially the same temperature as that of the fuel cell body, the compatibility between the two is good, and this greatly contributes to downsizing of the fuel cell device.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の燃料電池装置の構成図、第2図は従来
装置の構成図である。
FIG. 1 is a configuration diagram of a fuel cell device of the present invention, and FIG. 2 is a configuration diagram of a conventional device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 善幸 広島県広島市西区観音新町4丁目6番22 号 三菱重工業株式会社広島研究所内 (72)発明者 柳 政明 広島県広島市西区観音新町4丁目6番22 号 三菱重工業株式会社広島研究所内 (56)参考文献 特許2670146(JP,B2) (58)調査した分野(Int.Cl.6,DB名) H01M 8/04 H01M 8/10 H01M 8/06──────────────────────────────────────────────────続 き Continued on the front page (72) Yoshiyuki Takeuchi, Inventor 4-62-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory (72) Inventor Masaaki Yanagi 4-chome, Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture No. 6-22 Mitsubishi Heavy Industries, Ltd. Hiroshima Laboratory (56) References Patent 2670146 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 8/04 H01M 8/10 H01M 8 / 06

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固体高分子電解質膜を2枚のガス拡散電極
で挟んだ燃料電池本体に、メタノールから生成した水素
を供給して発電する燃料電池装置において、メタノール
水蒸気改質装置と、一酸化炭素除去装置と、調湿装置
と、前記燃料電池本体とを順次接続して、前記燃料電池
本体の水素極に水素を供給可能とし、かつ、前記調湿装
置には疎水性ガス拡散膜を設けて、前記燃料電池本体か
ら流出する冷却水と、前記一酸化炭素除去装置から流出
する改質ガスとを前記疎水性ガス拡散膜を介して接触可
能としたことを特徴とする燃料電池装置。
1. A fuel cell apparatus for generating electricity by supplying hydrogen generated from methanol to a fuel cell body having a solid polymer electrolyte membrane sandwiched between two gas diffusion electrodes, comprising: a methanol steam reformer; The carbon removing device, the humidity control device, and the fuel cell main body are sequentially connected to enable supply of hydrogen to the hydrogen electrode of the fuel cell main body, and the humidity control device is provided with a hydrophobic gas diffusion film. A cooling water flowing out of the fuel cell main body and a reformed gas flowing out of the carbon monoxide removing device can be contacted via the hydrophobic gas diffusion membrane.
【請求項2】前記一酸化炭素除去装置として、微量の酸
素を導入して一酸化炭素を選択的に酸化除去する装置、
及び/又は一酸化炭素の吸着性能を有する触媒電極を備
えた電極酸化装置を用いたことを特徴とする請求項
(1)記載の燃料電池装置。
2. An apparatus for selectively oxidizing and removing carbon monoxide by introducing a small amount of oxygen as said carbon monoxide removing apparatus,
The fuel cell device according to claim 1, wherein an electrode oxidizing device provided with a catalyst electrode having a performance of adsorbing carbon monoxide is used.
【請求項3】固体高分子電解質型燃料電池装置にメタノ
ール原料を供給して発電する方法において、メタノール
原料を水蒸気改質反応により、水素を主成分とする改質
ガスを生成し、該改質ガスの一酸化炭素濃度を10ppm以
下に低下させた後、燃料電池本体から流出する冷却水と
ほぼ平衡する水蒸気を添加してから、燃料電池本体の水
素極に供給し、50〜100℃の範囲の動作温度で発電する
ことを特徴とする発電方法。
3. A method for generating electricity by supplying a methanol raw material to a polymer electrolyte fuel cell device, wherein the methanol raw material is subjected to a steam reforming reaction to produce a reformed gas containing hydrogen as a main component. After reducing the concentration of gaseous carbon monoxide to 10 ppm or less, water vapor substantially equilibrium with the cooling water flowing out of the fuel cell body is added, and then supplied to the hydrogen electrode of the fuel cell body, in a temperature range of 50 to 100 ° C. A power generation method, wherein power is generated at an operating temperature.
JP1338731A 1989-12-28 1989-12-28 Solid polymer electrolyte fuel cell device and power generation method Expired - Fee Related JP2761066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1338731A JP2761066B2 (en) 1989-12-28 1989-12-28 Solid polymer electrolyte fuel cell device and power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1338731A JP2761066B2 (en) 1989-12-28 1989-12-28 Solid polymer electrolyte fuel cell device and power generation method

Publications (2)

Publication Number Publication Date
JPH03203165A JPH03203165A (en) 1991-09-04
JP2761066B2 true JP2761066B2 (en) 1998-06-04

Family

ID=18320931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1338731A Expired - Fee Related JP2761066B2 (en) 1989-12-28 1989-12-28 Solid polymer electrolyte fuel cell device and power generation method

Country Status (1)

Country Link
JP (1) JP2761066B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2272430B (en) * 1992-11-11 1995-12-20 Vickers Shipbuilding & Eng Processing of fuel gases,in particular for fuel cells and apparatus therefor
DE19646354C1 (en) * 1996-11-09 1998-06-18 Forschungszentrum Juelich Gmbh Fuel cell with oxygen supply in the fuel
DE19817534A1 (en) * 1998-04-16 1999-10-21 Mannesmann Ag Production of electrical energy from hydrogen-rich crude gas
GB9914023D0 (en) 1999-06-17 1999-08-18 Johnson Matthey Plc Gas diffusion substrate and electrode
DE10104246C1 (en) * 2001-01-31 2002-06-06 Zsw Fuel cell e.g. for electric traction drive, incorporates dampening of process gas used for operation of fuel cell

Also Published As

Publication number Publication date
JPH03203165A (en) 1991-09-04

Similar Documents

Publication Publication Date Title
US6376114B1 (en) Reformate fuel treatment system for a fuel cell power plant
JP3878549B2 (en) Fuel cell and fuel cell system containing non-aqueous electrolyte
US20010037948A1 (en) Regeneration methods to remove carbon monoxide from reformate fuel using an adsorption/electro-catalytic oxidation (ECO) approach
US20100263832A1 (en) Thermochemical Energy Storage System
US7157166B2 (en) Ammonia fuel cell
JP4779446B2 (en) Catalyst regeneration method, hydrogen generator and fuel cell system
JP4096690B2 (en) Fuel cell system and hydrogen gas supply device
JP2004284875A (en) Hydrogen production system, and fuel cell system
JP2607682B2 (en) Purification device for hydrogen gas supplied to fuel cell
JP2761066B2 (en) Solid polymer electrolyte fuel cell device and power generation method
JP2004311159A (en) Method and device for manufacturing high pressure hydrogen and fuel cell electric vehicle
JP2005200266A (en) Reforming method, reformer, power generator and fuel vessel
JPH09266005A (en) Solid high polymer fuel cell system
JP2003151599A (en) Fuel cell system
JPH11130406A (en) Device for selectively removing carbon monoxide and formation of catalytic body
JPH03208801A (en) Method for removing carbon monoxide in reformed gas as raw material for hydrogen
JP4278132B2 (en) Highly efficient hydrogen production method and apparatus
JP3625487B2 (en) Fuel cell system
JPH07185303A (en) Device for removing carbon monoxide
KR20090065444A (en) Catalyst for oxidizing selectively carbon monoxide, method of reducing carbon monoxide concentration and fuel cell system
JP2000021431A (en) Method of stopping reforming equipment for fuel cell
JP4284095B2 (en) Hydrogen and carbon dioxide production equipment
KR101117633B1 (en) Carbon monoxide adsorbent for fuel cell, carbon monoxide remover for fuel cell, fuel cell system, and removal method using the carbon monoxide adsorbent
JP4820106B2 (en) Method for reducing CO selective oxidation catalyst
JP2001102076A (en) Fuel cell apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees