JP2015151873A - Fuel reformer of internal combustion engine - Google Patents

Fuel reformer of internal combustion engine Download PDF

Info

Publication number
JP2015151873A
JP2015151873A JP2014023885A JP2014023885A JP2015151873A JP 2015151873 A JP2015151873 A JP 2015151873A JP 2014023885 A JP2014023885 A JP 2014023885A JP 2014023885 A JP2014023885 A JP 2014023885A JP 2015151873 A JP2015151873 A JP 2015151873A
Authority
JP
Japan
Prior art keywords
fuel
reforming
control
egr
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014023885A
Other languages
Japanese (ja)
Inventor
陽介 中川
Yosuke Nakagawa
陽介 中川
賢司 青柳
Kenji Aoyagi
賢司 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014023885A priority Critical patent/JP2015151873A/en
Priority to PCT/JP2015/000244 priority patent/WO2015118815A1/en
Publication of JP2015151873A publication Critical patent/JP2015151873A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/36Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for adding fluids other than exhaust gas to the recirculation passage; with reformers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress deterioration of a fuel reforming catalyst (lowering of fuel reforming performance), and to enhance fuel consumption improvement effect by fuel reformation.SOLUTION: When a prescribed fuel reforming execution condition is established, rich control for controlling an injection amount of main fuel so that an air-fuel ratio of an exhaust gas becomes richer than stoichiometric one, and lean control for controlling the injection amount of the main fuel so that the air-fuel ratio of the exhaust gas becomes leaner than the stoichiometric one are switched to each other alternately at a prescribed cycle. Then, by injecting fuel to be reformed when a rich gas (rich EGR gas) by the rich control passes a reforming fuel injection valve 35, reforming control for reforming the fuel to be reformed by a fuel reforming catalyst 36 is performed. On the other hand, by prohibiting the injection of the fuel to be reformed when a lean gas (lean EGR gas) by the lean control passes the reforming fuel injection valve 35, regeneration control for restoring the fuel reforming performance of the fuel reforming catalyst 36 is performed.

Description

本発明は、内燃機関の燃料を改質する燃料改質触媒を備えた内燃機関の燃料改質装置に関する発明である。   The present invention relates to a fuel reforming apparatus for an internal combustion engine provided with a fuel reforming catalyst for reforming the fuel of the internal combustion engine.

内燃機関の燃料を改質して燃費を改善する技術として、例えば、特許文献1(特開2009−144612号公報)に記載されたものがある。このものは、内燃機関の排気通路から排出ガスの一部をEGRガスとして吸気通路へ還流させるEGR通路の途中に、改質用燃料を噴射する改質用燃料噴射弁と改質用燃料を改質する燃料改質触媒とを配置する。そして、改質用燃料噴射弁により噴射された改質用燃料とEGRガス中の水分(水蒸気)等を燃料改質触媒で改質反応させて水素や一酸化炭素を生成することで、改質用燃料を改質して燃焼性の高い改質ガスを生成し、その改質ガスを内燃機関の吸気通路に供給するようにしている。   As a technique for improving the fuel consumption by reforming the fuel of the internal combustion engine, for example, there is one described in Patent Document 1 (Japanese Unexamined Patent Application Publication No. 2009-144612). This is a modification of the reforming fuel injection valve for injecting reforming fuel and the reforming fuel in the middle of the EGR passage for returning a part of the exhaust gas from the exhaust passage of the internal combustion engine to the intake passage as EGR gas. And a fuel reforming catalyst to be improved. Then, the reforming fuel injected by the reforming fuel injection valve and the moisture (water vapor) in the EGR gas undergo a reforming reaction with the fuel reforming catalyst to generate hydrogen and carbon monoxide. The reformed fuel is reformed to generate a reformed gas having high combustibility, and the reformed gas is supplied to the intake passage of the internal combustion engine.

しかし、燃料改質触媒で改質用燃料を改質する改質制御では、燃料中の炭素成分が析出して燃料改質触媒に堆積するため、改質制御を継続すると、時間経過に伴って燃料改質触媒の炭素堆積量が増加して燃料改質触媒の燃料改質性能が低下するという問題がある。   However, in reforming control in which reforming fuel is reformed by a fuel reforming catalyst, carbon components in the fuel are deposited and deposited on the fuel reforming catalyst. There is a problem in that the amount of carbon deposition of the fuel reforming catalyst increases and the fuel reforming performance of the fuel reforming catalyst decreases.

そこで、上記特許文献1では、燃料改質触媒の劣化度が劣化限度を越えたときに、燃料改質触媒の燃料改質性能を回復させる回復制御を行うようにしている。この回復制御では、改質用燃料の噴射を停止すると共に排出ガスの空燃比をリーン側に制御して燃料改質触媒に酸素を供給することで、燃料改質触媒に堆積した炭素を燃焼させて燃料改質触媒の燃料改質性能を回復させる。   Therefore, in Patent Document 1, when the degree of deterioration of the fuel reforming catalyst exceeds the deterioration limit, recovery control for recovering the fuel reforming performance of the fuel reforming catalyst is performed. In this recovery control, the injection of reforming fuel is stopped, the air-fuel ratio of the exhaust gas is controlled to the lean side, and oxygen is supplied to the fuel reforming catalyst to burn carbon deposited on the fuel reforming catalyst. The fuel reforming performance of the fuel reforming catalyst is recovered.

特開2009−144612号公報JP 2009-144612 A

しかし、上記特許文献1の技術では、燃料改質触媒の劣化度が劣化限度を越えたときに回復制御を実行するだけであり、燃料改質触媒の劣化(燃料改質性能の低下)を抑制することはできないため、燃料改質性能が比較的早く低下してしまい、燃料改質による燃費改善効果を十分に高めることができない。   However, in the technique disclosed in Patent Document 1, only the recovery control is executed when the degree of deterioration of the fuel reforming catalyst exceeds the deterioration limit, and the deterioration of the fuel reforming catalyst (decrease in fuel reforming performance) is suppressed. Therefore, the fuel reforming performance deteriorates relatively quickly, and the fuel efficiency improvement effect by the fuel reforming cannot be sufficiently enhanced.

そこで、本発明が解決しようとする課題は、燃料改質触媒の劣化を抑制することができ、燃料改質による燃費改善効果を高めることができる内燃機関の燃料改質装置を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a fuel reforming apparatus for an internal combustion engine that can suppress deterioration of the fuel reforming catalyst and enhance the fuel efficiency improvement effect by fuel reforming. .

上記課題を解決するために、請求項1に係る発明は、内燃機関(11)に供給される主燃料を噴射する主燃料噴射手段(21)と、内燃機関(11)の排気通路(23)から排出ガスの一部をEGRガスとして吸気通路(12)へ還流させるEGR通路(32)と、EGR通路(32)内に改質用燃料を噴射する改質用燃料噴射手段(35)と、EGR通路(32)に配置されて改質用燃料噴射手段(35)により噴射された改質用燃料を改質する燃料改質触媒(36)とを備えた内燃機関の燃料改質装置において、所定の燃料改質実行条件が成立したときに、排出ガスの空燃比をリッチにするように主燃料の噴射量を制御するリッチ制御と排出ガスの空燃比をリーンにするように主燃料の噴射量を制御するリーン制御とを所定周期で交互に切り替え、リッチ制御によるリッチなEGRガス(以下「リッチガス」という)が改質用燃料噴射手段(35)を通過するときに改質用燃料を噴射して燃料改質触媒(36)で改質用燃料を改質する改質制御を実行し、リーン制御によるリーンなEGRガス(以下「リーンガス」という)が改質用燃料噴射手段(35)を通過するときに改質用燃料の噴射を禁止して燃料改質触媒(36)の燃料改質性能を回復させる再生制御を実行する制御手段(37)を備えた構成としたものである。   In order to solve the above problems, the invention according to claim 1 is directed to a main fuel injection means (21) for injecting main fuel supplied to the internal combustion engine (11), and an exhaust passage (23) of the internal combustion engine (11). An EGR passage (32) that recirculates a part of the exhaust gas as EGR gas to the intake passage (12), reforming fuel injection means (35) that injects reforming fuel into the EGR passage (32), A fuel reformer for an internal combustion engine, comprising a fuel reforming catalyst (36) disposed in the EGR passage (32) and reforming the reforming fuel injected by the reforming fuel injection means (35). When a predetermined fuel reforming execution condition is satisfied, rich control for controlling the injection amount of the main fuel so as to make the air-fuel ratio of the exhaust gas rich, and injection of the main fuel so that the air-fuel ratio of the exhaust gas becomes lean Alternates lean control to control the amount at a predetermined cycle In other words, when the rich EGR gas by rich control (hereinafter referred to as “rich gas”) passes through the reforming fuel injection means (35), the reforming fuel is injected and reformed by the fuel reforming catalyst (36). Reforming control is performed to reform the fuel, and when the lean EGR gas by lean control (hereinafter referred to as “lean gas”) passes through the reforming fuel injection means (35), the reforming fuel injection is prohibited. Thus, the control means (37) for executing the regeneration control for restoring the fuel reforming performance of the fuel reforming catalyst (36) is provided.

この構成では、リッチ制御とリーン制御とを交互に切り替えて、リッチ制御によるリッチガスが通過するときに改質制御を実行し、リーン制御によるリーンガスが通過するときに再生制御を実行することで、改質制御と再生制御とを交互に実行することができる。このように、改質制御と再生制御とを交互に実行することで、燃料改質触媒の劣化(燃料改質性能の低下)を抑制することができる。その結果、燃料改質触媒の燃料改質性能を比較的高い状態に維持することができ、燃料改質による燃費改善効果を高めることができる。   In this configuration, the rich control and the lean control are alternately switched, the reforming control is executed when the rich gas by the rich control passes, and the regeneration control is executed when the lean gas by the lean control passes. Quality control and regeneration control can be executed alternately. As described above, by alternately performing the reforming control and the regeneration control, it is possible to suppress deterioration of the fuel reforming catalyst (decrease in fuel reforming performance). As a result, the fuel reforming performance of the fuel reforming catalyst can be maintained at a relatively high state, and the fuel efficiency improvement effect by the fuel reforming can be enhanced.

図1は本発明の一実施例におけるエンジン制御システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an engine control system in one embodiment of the present invention. 図2は改質制御及び再生制御ルーチンの処理の流れを示すフローチャート(その1)である。FIG. 2 is a flowchart (part 1) showing the flow of processing of the reforming control and regeneration control routine. 図3は改質制御及び再生制御ルーチンの処理の流れを示すフローチャート(その2)である。FIG. 3 is a flowchart (part 2) showing the flow of processing of the reforming control and regeneration control routine. 図4は改質制御及び再生制御を説明するタイムチャートである。FIG. 4 is a time chart for explaining reforming control and regeneration control. 図5は本実施例の効果を説明する図である。FIG. 5 is a diagram for explaining the effect of this embodiment.

以下、本発明を実施するための形態を具体化した一実施例を説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関であるエンジン11の吸気管12(吸気通路)の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。
Hereinafter, an embodiment embodying a mode for carrying out the present invention will be described.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 (intake passage) of the engine 11 that is an internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. A throttle valve 16 whose opening is adjusted by a motor 15 and a throttle opening sensor 17 for detecting the opening (throttle opening) of the throttle valve 16 are provided on the downstream side of the air flow meter 14.

更に、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18に、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20に接続された吸気ポート又はその近傍に、それぞれ吸気ポートに主燃料を噴射する主燃料噴射弁21(主燃料噴射手段)が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各気筒の点火プラグ22の火花放電によって各気筒内の混合気に着火される。   Further, a surge tank 18 is provided on the downstream side of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure is provided in the surge tank 18. The surge tank 18 is provided with an intake manifold 20 for introducing air into each cylinder of the engine 11, and main fuel is injected into the intake port at or near the intake port connected to the intake manifold 20 of each cylinder. A main fuel injection valve 21 (main fuel injection means) is attached. An ignition plug 22 is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in each cylinder is ignited by spark discharge of the ignition plug 22 of each cylinder.

一方、エンジン11の排気管23(排気通路)には、排出ガスを浄化する三元触媒等の触媒24が設けられ、この触媒24の上流側と下流側に、それぞれ排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ25,26(空燃比センサ、酸素センサ等)が設けられている。   On the other hand, the exhaust pipe 23 (exhaust passage) of the engine 11 is provided with a catalyst 24 such as a three-way catalyst for purifying exhaust gas, and the exhaust gas air-fuel ratio or rich gas is respectively provided upstream and downstream of the catalyst 24. / Exhaust gas sensors 25 and 26 (air-fuel ratio sensor, oxygen sensor, etc.) for detecting lean etc. are provided.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ27や、ノッキングを検出するノックセンサ28が取り付けられている。また、クランク軸29の外周側には、クランク軸29が所定クランク角回転する毎にパルス信号を出力するクランク角センサ30が取り付けられ、このクランク角センサ30の出力信号に基づいてクランク角やエンジン回転速度が検出される。   A cooling water temperature sensor 27 that detects the cooling water temperature and a knock sensor 28 that detects knocking are attached to the cylinder block of the engine 11. A crank angle sensor 30 that outputs a pulse signal every time the crankshaft 29 rotates by a predetermined crank angle is attached to the outer peripheral side of the crankshaft 29. Based on the output signal of the crank angle sensor 30, the crank angle and engine The rotation speed is detected.

このエンジン11には、排気管23から排出ガスの一部をEGRガスとして吸気管12へ還流させるEGR装置31が搭載されている。このEGR装置31は、排気管23のうちの触媒24の上流側と吸気管12のうちのスロットルバルブ16の下流側との間にEGR配管32(EGR通路)が接続され、このEGR配管32に、EGRガスを冷却するEGRクーラ33と、EGRガスの流量を調節するEGRバルブ34が設けられている。このEGRバルブ34を開弁することで排気管23からEGR配管32を通して吸気管12へEGRガスを還流させるようになっている。   The engine 11 is equipped with an EGR device 31 that recirculates a part of the exhaust gas from the exhaust pipe 23 to the intake pipe 12 as EGR gas. The EGR device 31 has an EGR pipe 32 (EGR passage) connected between the upstream side of the catalyst 24 in the exhaust pipe 23 and the downstream side of the throttle valve 16 in the intake pipe 12. , An EGR cooler 33 for cooling the EGR gas, and an EGR valve 34 for adjusting the flow rate of the EGR gas are provided. By opening the EGR valve 34, the EGR gas is recirculated from the exhaust pipe 23 to the intake pipe 12 through the EGR pipe 32.

また、EGR配管32のうちのEGRクーラ33の上流側には、EGR配管32内に改質用燃料を噴射する改質用燃料噴射弁35(改質用燃料噴射手段)が設けられている。主燃料噴射弁21と改質用燃料噴射弁35には、共通の燃料タンク(図示せず)から燃料が供給される。更に、EGR配管32のうちの改質用燃料噴射弁35の下流側には、改質用燃料噴射弁35により噴射された改質用燃料を改質する燃料改質触媒36が配置されている。この燃料改質触媒36は、排気管23内を流れる排出ガスと熱交換するように構成され、排出ガスの熱を利用して改質用燃料とEGRガス中の水分(水蒸気)等を改質反応させて水素や一酸化炭素を生成することで、改質用燃料を改質して燃焼性の高い改質ガスを生成する。   A reforming fuel injection valve 35 (reforming fuel injection means) for injecting reforming fuel into the EGR pipe 32 is provided on the upstream side of the EGR cooler 33 in the EGR pipe 32. The main fuel injection valve 21 and the reforming fuel injection valve 35 are supplied with fuel from a common fuel tank (not shown). Further, a fuel reforming catalyst 36 for reforming the reforming fuel injected by the reforming fuel injection valve 35 is disposed on the downstream side of the reforming fuel injection valve 35 in the EGR pipe 32. . The fuel reforming catalyst 36 is configured to exchange heat with the exhaust gas flowing in the exhaust pipe 23, and reforms the reforming fuel and moisture (water vapor) in the EGR gas by using the heat of the exhaust gas. By making hydrogen and carbon monoxide react, the reforming fuel is reformed to generate a reformed gas with high combustibility.

上述した各種センサの出力は、電子制御ユニット(以下「ECU」と表記する)37に入力される。このECU37は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。   Outputs of the various sensors described above are input to an electronic control unit (hereinafter referred to as “ECU”) 37. The ECU 37 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount and the ignition timing are determined according to the engine operating state. The throttle opening (intake air amount) and the like are controlled.

その際、ECU37は、所定のEGR制御実行条件が成立したときに、エンジン運転状態に基づいて目標EGR率(EGR率の目標値)を算出し、この目標EGR率を実現するようにEGRバルブ34の開度を制御するEGR制御を実行する。ここで、EGR率は、筒内流入総ガス流量に対する筒内流入EGRガス流量の比率(=筒内流入EGRガス流量/筒内流入総ガス流量)とする。   At this time, the ECU 37 calculates a target EGR rate (target value of the EGR rate) based on the engine operating state when a predetermined EGR control execution condition is satisfied, and the EGR valve 34 so as to realize the target EGR rate. EGR control is performed to control the opening degree. Here, the EGR rate is a ratio of the in-cylinder inflow EGR gas flow rate to the in-cylinder inflow total gas flow rate (= in-cylinder inflow EGR gas flow rate / in-cylinder inflow total gas flow rate).

また、ECU37は、EGRバルブ34を開弁して排気管24からEGR配管32を通して吸気管12へEGRガスを還流させながら、改質用燃料噴射弁35でEGR配管32内に改質用燃料を噴射し、その改質用燃料とEGRガス中の水分(水蒸気)等を燃料改質触媒36で改質反応させて水素や一酸化炭素を生成することで、改質用燃料を改質して燃焼性の高い改質ガスを生成し、その改質ガスを吸気管12に供給する。   The ECU 37 opens the EGR valve 34 and recirculates the EGR gas from the exhaust pipe 24 to the intake pipe 12 through the EGR pipe 32, and supplies the reforming fuel into the EGR pipe 32 by the reforming fuel injection valve 35. The reforming fuel is reformed by injecting and reforming the reforming fuel and moisture (water vapor) in the EGR gas by the fuel reforming catalyst 36 to generate hydrogen and carbon monoxide. A reformed gas having high combustibility is generated, and the reformed gas is supplied to the intake pipe 12.

しかし、燃料改質触媒36で改質用燃料を改質する改質制御では、燃料中の炭素成分が析出して燃料改質触媒36に堆積するため、図5に破線で示すように、改質制御を継続すると、時間経過に伴って燃料改質触媒36の炭素堆積量が増加して燃料改質触媒36の燃料改質性能が低下する(例えば吸気管12に還流されるEGRガス中の水素や一酸化炭素等の改質成分の濃度が低下する)という問題がある。   However, in the reforming control in which the fuel for reforming is reformed by the fuel reforming catalyst 36, the carbon component in the fuel is deposited and deposited on the fuel reforming catalyst 36. Therefore, as shown by the broken line in FIG. If the quality control is continued, the carbon deposition amount of the fuel reforming catalyst 36 increases with the passage of time and the fuel reforming performance of the fuel reforming catalyst 36 decreases (for example, in the EGR gas recirculated to the intake pipe 12). The concentration of reforming components such as hydrogen and carbon monoxide is reduced).

そこで、本実施例では、ECU37により後述する図2及び図3の改質制御及び再生制御ルーチンを実行することで、燃料改質触媒36で改質用燃料を改質する改質制御と、燃料改質触媒36の燃料改質性能を回復させる再生制御を次のようにして実行する。   Therefore, in this embodiment, the ECU 37 executes reforming control and regeneration control routines shown in FIGS. 2 and 3 to be described later, thereby reforming the reforming fuel with the fuel reforming catalyst 36, and the fuel. Regeneration control for recovering the fuel reforming performance of the reforming catalyst 36 is executed as follows.

図4に示すように、所定の燃料改質実行条件が成立したときに、排出ガスの空燃比をストイキよりもリッチにするように主燃料の噴射量を制御するリッチ制御と、排出ガスの空燃比をストイキよりもリーンにするように主燃料の噴射量を制御するリーン制御とを所定周期で交互に切り替える。   As shown in FIG. 4, when a predetermined fuel reforming execution condition is satisfied, rich control for controlling the injection amount of the main fuel so that the air-fuel ratio of the exhaust gas becomes richer than the stoichiometric, and the exhaust gas empty The lean control for controlling the injection amount of the main fuel is alternately switched at a predetermined cycle so that the fuel ratio is leaner than the stoichiometric ratio.

そして、リッチ制御によるリッチガス(リッチなEGRガス)が改質用燃料噴射弁35を通過するときに改質用燃料を噴射して燃料改質触媒36で改質用燃料を改質する改質制御を実行する。この改質制御では、改質用燃料噴射弁35でEGR配管32内に改質用燃料を噴射し、その改質用燃料とリッチガス中の水分(水蒸気)等を燃料改質触媒36で改質反応させて水素や一酸化炭素を生成することで、改質用燃料を改質して燃焼性の高い改質ガスを生成する。   Then, reforming control for injecting reforming fuel and reforming reforming fuel by the fuel reforming catalyst 36 when rich gas (rich EGR gas) by rich control passes through the reforming fuel injection valve 35. Execute. In this reforming control, reforming fuel is injected into the EGR pipe 32 by the reforming fuel injection valve 35, and the reforming fuel and moisture (water vapor) in the rich gas are reformed by the fuel reforming catalyst 36. By making hydrogen and carbon monoxide react, the reforming fuel is reformed to generate a reformed gas with high combustibility.

一方、リーン制御によるリーンガス(リーンなEGRガス)が改質用燃料噴射弁35を通過するときに改質用燃料の噴射を禁止して燃料改質触媒36の燃料改質性能を回復させる再生制御を実行する。この再生制御では、改質用燃料の噴射を停止すると共にEGR配管32にリーンガスを導入して燃料改質触媒36に酸素を供給することで、燃料改質触媒36に堆積した炭素を燃焼させて燃料改質触媒36の燃料改質性能を回復させる。   On the other hand, when lean gas (lean EGR gas) by lean control passes through the reforming fuel injection valve 35, the regeneration control for prohibiting the injection of reforming fuel and restoring the fuel reforming performance of the fuel reforming catalyst 36 is performed. Execute. In this regeneration control, the injection of the reforming fuel is stopped, lean gas is introduced into the EGR pipe 32, and oxygen is supplied to the fuel reforming catalyst 36, so that the carbon deposited on the fuel reforming catalyst 36 is burned. The fuel reforming performance of the fuel reforming catalyst 36 is recovered.

その際、本実施例では、触媒24内の空燃比の反転タイミングでリッチ制御とリーン制御とを切り替える。具体的には、リッチ制御の実行中に触媒24内の空燃比がリッチ側に反転したタイミング(例えば触媒24の酸素吸着量がリッチ判定値以下になったタイミング)でリーン制御に切り替える。このリーン制御の実行中に触媒24内の空燃比がリーン側に反転したタイミング(例えば触媒24の酸素吸着量がリーン判定値以上になったタイミング)でリッチ制御に切り替える。   At this time, in this embodiment, the rich control and the lean control are switched at the reversal timing of the air-fuel ratio in the catalyst 24. Specifically, the control is switched to the lean control at the timing when the air-fuel ratio in the catalyst 24 is reversed to the rich side during the execution of the rich control (for example, the timing when the oxygen adsorption amount of the catalyst 24 becomes equal to or less than the rich determination value). During the execution of the lean control, the control is switched to the rich control at the timing when the air-fuel ratio in the catalyst 24 is reversed to the lean side (for example, the timing when the oxygen adsorption amount of the catalyst 24 becomes equal to or greater than the lean determination value).

そして、リッチ制御によるリッチガスが改質用燃料噴射弁35に到達するタイミングで改質用燃料の噴射を開始し、リーン制御によるリーンガスが改質用燃料噴射弁35に到達するタイミングで改質用燃料の噴射を終了する(つまりリッチガスが改質用燃料噴射弁35に到達してからリーンガスが改質用燃料噴射弁35に到達するまで改質用燃料の噴射を行う)。   Then, the injection of the reforming fuel is started at the timing when the rich gas by the rich control reaches the reforming fuel injection valve 35, and the reforming fuel at the timing at which the lean gas by the lean control reaches the reforming fuel injection valve 35 (I.e., the reforming fuel is injected until the lean gas reaches the reforming fuel injection valve 35 after the rich gas reaches the reforming fuel injection valve 35).

また、本実施例では、改質制御中と再生制御中とで目標EGR率を変更する。具体的には、改質制御中は、EGRガス中の改質成分濃度(例えば水素や一酸化炭素の濃度)が高くなってエンジン11の燃焼性が向上する(つまりEGR限界が高くなる)ため、再生制御中よりも目標EGR率を大きくする。一方、再生制御中は、EGRガス中の改質成分濃度が低くなってエンジン11の燃焼性が低下する(つまりEGR限界が低くなる)ため、改質制御中よりも目標EGR率を小さくする。   In this embodiment, the target EGR rate is changed during reforming control and regeneration control. Specifically, during reforming control, the reforming component concentration in the EGR gas (for example, the concentration of hydrogen or carbon monoxide) is increased, and the combustibility of the engine 11 is improved (that is, the EGR limit is increased). The target EGR rate is made larger than during regeneration control. On the other hand, during the regeneration control, the reforming component concentration in the EGR gas is lowered and the combustibility of the engine 11 is lowered (that is, the EGR limit is lowered), so the target EGR rate is made smaller than during the reforming control.

しかし、改質制御と再生制御との切り替えに伴って目標EGR率を変更したときには、EGRガスの移送遅れにより、目標EGR率を変更してから実際にEGRガス流量が目標EGR率に相当する目標EGRガス流量に変化するまでには遅れがある。   However, when the target EGR rate is changed in accordance with switching between reforming control and regeneration control, the target in which the EGR gas flow rate actually corresponds to the target EGR rate after changing the target EGR rate due to the delay in the transfer of EGR gas. There is a delay before changing to the EGR gas flow rate.

そこで、本実施例では、目標EGR率を変更したときに、EGRガスの移送遅れによるEGRガス流量の変化遅れに基づいて改質用燃料の噴射量や主燃料の噴射量を補正する。具体的には、改質制御への切り替えに伴って目標EGR率を変更(大きく)したときには、EGRガスの移送遅れによるEGRガス流量の増加遅れ(目標EGRガス流量に対する不足分)に合わせて改質用燃料の噴射量と主燃料の噴射量を補正する。一方、再生制御へ移行する際(例えば再生制御へ移行する前)に目標EGR率を変更(小さく)したときには、EGRガスの移送遅れによるEGRガス流量の減少遅れ(目標EGRガス流量に対する過剰分)に合わせて改質用燃料の噴射量と主燃料の噴射量を補正する。   Therefore, in the present embodiment, when the target EGR rate is changed, the injection amount of the reforming fuel and the injection amount of the main fuel are corrected based on the change delay of the EGR gas flow rate due to the delay of the EGR gas transfer. Specifically, when the target EGR rate is changed (increased) in accordance with the switching to the reforming control, the EGR gas flow rate is increased in accordance with the EGR gas transfer delay (shortage with respect to the target EGR gas flow rate). The injection quantity of quality fuel and the injection quantity of main fuel are corrected. On the other hand, when the target EGR rate is changed (decreased) when shifting to the regeneration control (for example, before shifting to the regeneration control), the EGR gas flow rate decreases due to the EGR gas transfer delay (the excess amount relative to the target EGR gas flow rate). Accordingly, the injection amount of the reforming fuel and the injection amount of the main fuel are corrected.

以下、本実施例でECU37が実行する図2及び図3の改質制御及び再生制御ルーチンの処理内容を説明する。
図2及び図3に示す改質制御及び再生制御ルーチンは、ECU37の電源オン期間中に所定周期で繰り返し実行され、特許請求の範囲でいう制御手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、燃料改質実行条件が成立しているか否かを、例えば、EGR制御の実行条件が成立していること(つまりEGR制御の実行中であること)、燃料改質触媒36の温度が活性温度以上であること等の条件が全て成立しているか否かによって判定する。
Hereinafter, the processing contents of the reforming control and regeneration control routines of FIGS. 2 and 3 executed by the ECU 37 in this embodiment will be described.
The reforming control and regeneration control routines shown in FIGS. 2 and 3 are repeatedly executed at predetermined intervals during the power-on period of the ECU 37, and serve as control means in the claims. When this routine is started, first, in step 101, it is determined whether or not the fuel reform execution condition is satisfied. For example, the execution condition of EGR control is satisfied (that is, the EGR control is being executed). That is, the determination is made based on whether all the conditions such as the temperature of the fuel reforming catalyst 36 being equal to or higher than the activation temperature are satisfied.

このステップ101で、燃料改質実行条件が不成立であると判定された場合には、ステップ102以降の処理を実行することなく、本ルーチンを終了する。   If it is determined in step 101 that the fuel reforming execution condition is not satisfied, this routine is terminated without executing the processing from step 102 onward.

一方、上記ステップ101で、燃料改質実行条件が成立していると判定された場合には、ステップ102に進み、改質用燃料噴射量(改質用燃料の噴射量)を算出する。この場合、改質制御時の目標EGR率に基づいて改質制御時のEGRガス流量を推定(算出)し、改質制御時のEGRガス中のS/C(水蒸気と炭素の比)が目標S/Cとなるように改質用燃料噴射量を算出する。この際、EGRガスの挙動を模擬したモデル(数式等)を用いて現在のEGRガス流量を推定(算出)し、現在のEGRガス流量及び目標EGR率と改質制御時の目標EGR率とに基づいて改質制御時のEGRガス流量を推定するようにしても良い。   On the other hand, when it is determined in step 101 that the fuel reforming execution condition is satisfied, the process proceeds to step 102, where the reforming fuel injection amount (reforming fuel injection amount) is calculated. In this case, the EGR gas flow rate during reforming control is estimated (calculated) based on the target EGR rate during reforming control, and the S / C (ratio of steam to carbon) in the EGR gas during reforming control is the target. The reforming fuel injection amount is calculated so as to be S / C. At this time, the current EGR gas flow rate is estimated (calculated) using a model (formula etc.) simulating the behavior of EGR gas, and the current EGR gas flow rate, the target EGR rate, and the target EGR rate during reforming control are obtained. Based on this, the EGR gas flow rate during the reforming control may be estimated.

この後、ステップ103に進み、リッチ制御時の主燃料噴射量(主燃料の噴射量)を算出する。この場合、リッチ制御時の目標空燃比に基づいて総噴射量(=主燃料噴射量+改質用燃料噴射量)を算出し、この総噴射量と改質用燃料噴射量との差分をリッチ制御時の主燃料噴射量として算出する。リッチ制御時の目標空燃比は、ストイキよりもリッチ側の値に設定されている。   Thereafter, the process proceeds to step 103, and the main fuel injection amount (main fuel injection amount) at the time of rich control is calculated. In this case, the total injection amount (= main fuel injection amount + reforming fuel injection amount) is calculated based on the target air-fuel ratio at the time of rich control, and the difference between the total injection amount and the reforming fuel injection amount is rich. Calculated as the main fuel injection amount during control. The target air-fuel ratio at the time of rich control is set to a value on the rich side with respect to stoichiometry.

この後、ステップ104に進み、リッチ制御を実行する。このリッチ制御では、主燃料噴射弁21の噴射量をリッチ制御時の主燃料噴射量に制御して、排出ガスの空燃比をストイキよりもリッチにする。   Thereafter, the process proceeds to step 104 and rich control is executed. In this rich control, the injection amount of the main fuel injection valve 21 is controlled to the main fuel injection amount at the time of rich control, and the air-fuel ratio of the exhaust gas is made richer than the stoichiometric.

この後、ステップ105に進み、リッチガス到達タイミング(リッチ制御によるリッチガスが改質用燃料噴射弁35に到達するタイミング)であるか否かを判定する。この場合、リッチガス到達タイミングは、例えば次のようにして推定(算出)する。リッチガスの挙動を模擬したモデル(数式等)、又は、エンジン運転状態とリッチガス到達タイミングとの関係を規定したマップを用いて、現在のエンジン運転状態に基づいてリッチガス到達タイミングを推定(算出)する。   Thereafter, the routine proceeds to step 105, where it is determined whether or not it is a rich gas arrival timing (a timing at which the rich gas by the rich control reaches the reforming fuel injection valve 35). In this case, the rich gas arrival timing is estimated (calculated) as follows, for example. The rich gas arrival timing is estimated (calculated) based on the current engine operating state using a model (such as a mathematical expression) that simulates the behavior of the rich gas, or a map that defines the relationship between the engine operating state and the rich gas arrival timing.

このステップ105で、リッチガス到達タイミングであると判定された時点で、ステップ106に進み、改質用燃料噴射弁35で改質用燃料の噴射を開始して改質制御を実行すると共に、目標EGR率を改質制御時の目標EGR率に変更する。   When it is determined in this step 105 that the rich gas arrival timing is reached, the routine proceeds to step 106 where the reforming fuel injection valve 35 starts the reforming fuel injection and executes the reforming control. The rate is changed to the target EGR rate at the time of reforming control.

改質制御中は、EGRガス中の改質成分濃度が高くなってエンジン11の燃焼性が向上する(つまりEGR限界が高くなる)ため、改質制御時の目標EGR率は、再生制御時や通常制御時の目標EGR率よりも大きい値に設定されている。   During the reforming control, the reforming component concentration in the EGR gas is increased and the combustibility of the engine 11 is improved (that is, the EGR limit is increased). Therefore, the target EGR rate during the reforming control is the same as that during the regeneration control. It is set to a value larger than the target EGR rate during normal control.

改質制御では、改質用燃料噴射弁35の噴射量を改質用燃料噴射量に制御して、EGR配管32内に改質用燃料を噴射し、その改質用燃料とリッチガス中の水分(水蒸気)等を燃料改質触媒36で改質反応させて水素や一酸化炭素を生成することで、改質用燃料を改質して燃焼性の高い改質ガスを生成する。   In the reforming control, the injection amount of the reforming fuel injection valve 35 is controlled to the reforming fuel injection amount, the reforming fuel is injected into the EGR pipe 32, and the reforming fuel and moisture in the rich gas are injected. By reforming reaction of (steam) or the like with the fuel reforming catalyst 36 to generate hydrogen or carbon monoxide, the reforming fuel is reformed to generate highly combustible reformed gas.

この際、改質制御への切り替えに伴って目標EGR率を変更(大きく)したときには、EGRガスの移送遅れにより、目標EGR率を変更してから実際にEGRガス流量が目標EGR率に相当する目標EGRガス流量に変化(増加)するまでには遅れがある。   At this time, when the target EGR rate is changed (increased) in accordance with the switching to the reforming control, the EGR gas flow rate actually corresponds to the target EGR rate after changing the target EGR rate due to the delay in the transfer of EGR gas. There is a delay before the target EGR gas flow rate changes (increases).

そこで、改質制御への切り替えに伴って目標EGR率を変更(大きく)したときには、EGRガスの移送遅れによるEGRガス流量の増加遅れ(目標EGRガス流量に対する不足分)に合わせて目標S/Cになるように改質用燃料噴射量を減量補正し、その分、主燃料噴射量を増量補正する。この場合、EGRガスの移送遅れによるEGRガス流量の増加遅れ(目標EGRガス流量に対する不足分)は、例えば次のようにして推定(算出)する。EGRガスの挙動を模擬したモデル(数式等)、又は、エンジン運転状態とEGRガス流量の増加遅れとの関係を規定したマップを用いて、現在のエンジン運転状態に基づいてEGRガス流量の増加遅れを推定(算出)する。   Therefore, when the target EGR rate is changed (increased) in accordance with the switching to the reforming control, the target S / C is adjusted in accordance with the increase delay of the EGR gas flow rate due to the delay in the transfer of the EGR gas (shortage with respect to the target EGR gas flow rate) The reforming fuel injection amount is corrected to decrease so that the main fuel injection amount is increased accordingly. In this case, the increase delay of the EGR gas flow rate due to the EGR gas transfer delay (deficiency with respect to the target EGR gas flow rate) is estimated (calculated) as follows, for example. An increase in EGR gas flow rate based on the current engine operating state using a model that simulates the behavior of EGR gas (formula etc.) or a map that defines the relationship between the engine operating state and the increase delay in EGR gas flow rate Is estimated (calculated).

この後、ステップ107に進み、触媒内空燃比のリッチ側反転タイミング(触媒24内の空燃比がリッチ側に反転したタイミング)であるか否かを判定する。この場合、例えば、触媒24の酸素吸着量を推定し、この触媒24の酸素吸着量がリッチ判定値以下になったか否かによって、触媒内空燃比のリッチ側反転タイミングであるか否かを判定する。   Thereafter, the routine proceeds to step 107, where it is determined whether or not it is the rich side inversion timing of the in-catalyst air-fuel ratio (the timing at which the air-fuel ratio in the catalyst 24 is inverted to the rich side). In this case, for example, the oxygen adsorption amount of the catalyst 24 is estimated, and it is determined whether or not it is the rich-side inversion timing of the air-fuel ratio in the catalyst based on whether or not the oxygen adsorption amount of the catalyst 24 has become equal to or less than the rich determination value. To do.

このステップ107で、触媒内空燃比のリッチ側反転タイミングであると判定された時点で、図3のステップ108に進み、目標EGR率を再生制御時の目標EGR率に変更する。再生制御中は、EGRガス中の改質成分濃度が低くなってエンジン11の燃焼性が低下する(つまりEGR限界が低くなる)ため、再生制御時の目標EGR率は、改質制御時の目標EGR率よりも小さい値に設定されている。このように再生制御へ移行する前に目標EGR率を再生制御時の目標EGR率に変更しておくことで、再生制御へ切り替えたときにエンジン11の燃焼性が悪化することを抑制する。   When it is determined in step 107 that it is the rich side inversion timing of the air-fuel ratio in the catalyst, the process proceeds to step 108 in FIG. 3, and the target EGR rate is changed to the target EGR rate during regeneration control. During the regeneration control, the reforming component concentration in the EGR gas is lowered and the combustibility of the engine 11 is lowered (that is, the EGR limit is lowered). Therefore, the target EGR rate at the regeneration control is the target at the reforming control. It is set to a value smaller than the EGR rate. As described above, by changing the target EGR rate to the target EGR rate at the time of regeneration control before shifting to regeneration control, it is possible to suppress deterioration of the combustibility of the engine 11 when switching to regeneration control.

再生制御へ移行する際に目標EGR率を変更(小さく)したときには、EGRガスの移送遅れにより、目標EGR率を変更してから実際にEGRガス流量が目標EGR率に相当する目標EGRガス流量に変化(減少)するまでには遅れがある。   When the target EGR rate is changed (decreased) when shifting to the regeneration control, the EGR gas flow rate actually changes to the target EGR gas flow rate corresponding to the target EGR rate after changing the target EGR rate due to the delay in EGR gas transfer. There is a delay before it changes (decreases).

そこで、再生制御へ移行する際に目標EGR率を変更(小さく)したときには、EGRガスの移送遅れによるEGRガス流量の減少遅れに合わせて目標S/Cになるように改質用燃料噴射量を減量補正し、その分、主燃料噴射量を増量補正する。この場合、EGRガスの移送遅れによるEGRガス流量の減少遅れは、例えば次のようにして推定(算出)する。EGRガスの挙動を模擬したモデル(数式等)、又は、エンジン運転状態とEGRガス流量の減少遅れとの関係を規定したマップを用いて、現在のエンジン運転状態に基づいてEGRガス流量の減少遅れを推定(算出)する。   Therefore, when the target EGR rate is changed (decreased) when shifting to the regeneration control, the reforming fuel injection amount is set so that the target S / C becomes the target S / C in accordance with the decrease in the EGR gas flow rate due to the EGR gas transfer delay. A decrease correction is made, and the main fuel injection amount is increased by that amount. In this case, the decrease delay of the EGR gas flow rate due to the delay of the EGR gas transfer is estimated (calculated) as follows, for example. Decrease in EGR gas flow rate based on the current engine operating state using a model that simulates the behavior of EGR gas (formula etc.) or a map that defines the relationship between engine operating state and EGR gas flow rate decreasing delay Is estimated (calculated).

この後、EGRガス流量が目標EGRガス流量に収束したとき(EGRガス流量の減少遅れがほぼ0になったとき)に、ステップ109に進み、リーン制御時の目標空燃比に基づいてリーン制御時の主燃料噴射量を算出する。リーン制御時の目標空燃比は、ストイキよりもリーン側の値に設定されている。   Thereafter, when the EGR gas flow rate converges to the target EGR gas flow rate (when the decrease delay of the EGR gas flow rate becomes almost zero), the routine proceeds to step 109, and the lean control time is based on the target air-fuel ratio at the lean control time. The main fuel injection amount is calculated. The target air-fuel ratio at the time of lean control is set to a value on the lean side with respect to stoichiometry.

この後、ステップ110に進み、リーン制御を実行する。このリーン制御では、主燃料噴射弁21の噴射量をリーン制御時の主燃料噴射量に制御して、排出ガスの空燃比をストイキよりもリーンにする。   Thereafter, the process proceeds to step 110 to execute lean control. In this lean control, the injection amount of the main fuel injection valve 21 is controlled to the main fuel injection amount at the time of lean control, and the air-fuel ratio of the exhaust gas is made leaner than the stoichiometric.

この後、ステップ111に進み、リーンガス到達タイミング(リーン制御によるリーンガスが改質用燃料噴射弁35に到達するタイミング)であるか否かを判定する。この場合、リーンガス到達タイミングは、例えば次のようにして推定(算出)する。リーンガスの挙動を模擬したモデル(数式等)、又は、エンジン運転状態とリーンガス到達タイミングとの関係を規定したマップを用いて、現在のエンジン運転状態に基づいてリーンガス到達タイミングを推定(算出)する。   Thereafter, the routine proceeds to step 111, where it is determined whether or not it is the lean gas arrival timing (the timing at which the lean gas by the lean control reaches the reforming fuel injection valve 35). In this case, the lean gas arrival timing is estimated (calculated) as follows, for example. The lean gas arrival timing is estimated (calculated) based on the current engine operating state using a model (such as a mathematical expression) that simulates the behavior of lean gas, or a map that defines the relationship between the engine operating state and the lean gas arrival timing.

このステップ111で、リーンガス到達タイミングであると判定された時点で、ステップ112に進み、改質用燃料噴射弁35での改質用燃料の噴射を終了して再生制御を実行する。この再生制御では、改質用燃料の噴射を停止すると共にEGR配管32にリーンガスを導入して燃料改質触媒36に酸素を供給することで、燃料改質触媒36に堆積した炭素を燃焼させて燃料改質触媒36の燃料改質性能を回復させる。   When it is determined in this step 111 that the lean gas arrival timing is reached, the routine proceeds to step 112 where the reforming fuel injection at the reforming fuel injection valve 35 is terminated and regeneration control is executed. In this regeneration control, the injection of the reforming fuel is stopped, lean gas is introduced into the EGR pipe 32, and oxygen is supplied to the fuel reforming catalyst 36, so that the carbon deposited on the fuel reforming catalyst 36 is burned. The fuel reforming performance of the fuel reforming catalyst 36 is recovered.

この後、ステップ113に進み、触媒内空燃比のリーン側反転タイミング(触媒24内の空燃比がリーン側に反転したタイミング)であるか否かを判定する。この場合、例えば、触媒24の酸素吸着量を推定し、この触媒24の酸素吸着量がリーン判定値以上になったか否かによって、触媒内空燃比のリーン側反転タイミングであるか否かを判定する。   Thereafter, the routine proceeds to step 113, where it is determined whether or not it is the lean side inversion timing of the in-catalyst air-fuel ratio (the timing at which the air-fuel ratio in the catalyst 24 is inverted to the lean side). In this case, for example, the oxygen adsorption amount of the catalyst 24 is estimated, and it is determined whether or not it is the lean side inversion timing of the air-fuel ratio in the catalyst based on whether or not the oxygen adsorption amount of the catalyst 24 is equal to or greater than the lean determination value. To do.

このステップ113で、触媒内空燃比のリーン側反転タイミングであると判定された時点で、本ルーチンを終了する。上記ステップ101で、燃料改質実行条件が成立していると判定されれば、上記ステップ102〜113の処理を繰り返す。   When it is determined in step 113 that it is the lean side inversion timing of the air-fuel ratio in the catalyst, this routine is finished. If it is determined in step 101 that the fuel reforming execution condition is satisfied, the processes in steps 102 to 113 are repeated.

以上説明した本実施例では、所定の燃料改質実行条件が成立したときに、排出ガスの空燃比をリッチにするリッチ制御と排出ガスの空燃比をリーンにするリーン制御とを所定周期で交互に切り替える。そして、リッチ制御によるリッチガスが改質用燃料噴射弁35を通過するときに改質用燃料を噴射して燃料改質触媒36で改質用燃料を改質する改質制御を実行する。一方、リーン制御によるリーンガスが改質用燃料噴射弁35を通過するときに改質用燃料の噴射を禁止して燃料改質触媒36の燃料改質性能を回復させる再生制御を実行する。   In the present embodiment described above, the rich control that makes the exhaust gas air-fuel ratio rich and the lean control that makes the exhaust gas air-fuel ratio lean are alternately performed at predetermined intervals when a predetermined fuel reforming execution condition is satisfied. Switch to. Then, reforming control for injecting the reforming fuel when the rich gas by the rich control passes through the reforming fuel injection valve 35 and reforming the reforming fuel by the fuel reforming catalyst 36 is executed. On the other hand, regeneration control is performed to restore the fuel reforming performance of the fuel reforming catalyst 36 by prohibiting the injection of reforming fuel when the lean gas by the lean control passes through the reforming fuel injection valve 35.

このようにすれば、改質制御と再生制御とを交互に実行することができ、改質制御と再生制御とを交互に実行することで、燃料改質触媒36の劣化(燃料改質性能の低下)を抑制することができる。その結果、図5に実線で示すように、燃料改質触媒36の燃料改質性能を比較的高い状態(例えば吸気管12に還流されるEGRガス中の水素や一酸化炭素等の改質成分の濃度が比較的高い状態)に維持することができ、燃料改質による燃費改善効果を高めることができる。   In this way, the reforming control and the regeneration control can be executed alternately. By alternately executing the reforming control and the regeneration control, the deterioration of the fuel reforming catalyst 36 (of the fuel reforming performance) can be performed. Reduction) can be suppressed. As a result, as shown by a solid line in FIG. 5, the fuel reforming performance of the fuel reforming catalyst 36 is relatively high (for example, reforming components such as hydrogen and carbon monoxide in the EGR gas recirculated to the intake pipe 12). Can be maintained at a relatively high concentration), and the fuel efficiency improvement effect by fuel reforming can be enhanced.

また、本実施例では、リッチ制御の実行中に触媒24内の空燃比がリッチ側に反転したタイミングでリーン制御に切り替え、リーン制御の実行中に触媒24内の空燃比がリーン側に反転したタイミングでリッチ制御に切り替えるようにしている。このようにすれば、触媒24内の状態(例えば酸素吸着量)を適正範囲に維持するがことができ、触媒24の排出ガス浄化率の悪化を抑制することができる。   In this embodiment, the control is switched to the lean control at the timing when the air-fuel ratio in the catalyst 24 is reversed to the rich side during the execution of the rich control, and the air-fuel ratio in the catalyst 24 is reversed to the lean side during the execution of the lean control. Switch to rich control at the timing. In this way, the state in the catalyst 24 (for example, the oxygen adsorption amount) can be maintained within an appropriate range, and deterioration of the exhaust gas purification rate of the catalyst 24 can be suppressed.

更に、本実施例では、リッチ制御によるリッチガスが改質用燃料噴射弁35に到達するタイミングで改質用燃料の噴射を開始し、リーン制御によるリーンガスが改質用燃料噴射弁35に到達するタイミングで改質用燃料の噴射を終了するようにしている。このようにすれば、リッチガスが改質用燃料噴射弁35を通過する期間だけ改質用燃料を噴射して、リーンガスが改質用燃料噴射弁35を通過する期間は改質用燃料の噴射を停止するようにできる。これにより、リーンガス中に改質用燃料が噴射されることを回避して、改質用燃料とリーンガスとの酸化反応を抑制することができる。   Further, in this embodiment, the injection of reforming fuel is started at the timing when the rich gas by the rich control reaches the reforming fuel injection valve 35, and the timing at which the lean gas by the lean control reaches the reforming fuel injection valve 35 Thus, the injection of the reforming fuel is terminated. In this way, the reforming fuel is injected only during the period during which the rich gas passes through the reforming fuel injection valve 35, and the reforming fuel is injected during the period during which the lean gas passes through the reforming fuel injection valve 35. You can stop it. Accordingly, it is possible to prevent the reforming fuel from being injected into the lean gas and suppress the oxidation reaction between the reforming fuel and the lean gas.

また、本実施例では、改質制御中と再生制御中とで目標EGR率を変更するようにしている。具体的には、改質制御中は、EGRガス中の改質成分濃度が高くなってエンジン11の燃焼性が向上する(つまりEGR限界が高くなる)ため、再生制御中よりも目標EGR率を大きくするようにしている。これにより、改質制御中の燃費改善効果を高めることができる。一方、再生制御中は、EGRガス中の改質成分濃度が低くなってエンジン11の燃焼性が低下する(つまりEGR限界が低くなる)ため、改質制御中よりも目標EGR率を小さくするようにしている。これにより、再生制御中の燃焼悪化を抑制することができる。   In the present embodiment, the target EGR rate is changed between reforming control and regeneration control. Specifically, during the reforming control, the reforming component concentration in the EGR gas is increased and the combustibility of the engine 11 is improved (that is, the EGR limit is increased). Therefore, the target EGR rate is set to be higher than that during the regeneration control. I try to make it bigger. Thereby, the fuel consumption improvement effect during reform control can be heightened. On the other hand, during the regeneration control, the reforming component concentration in the EGR gas is lowered and the combustibility of the engine 11 is lowered (that is, the EGR limit is lowered), so that the target EGR rate is made smaller than during the reforming control. I have to. Thereby, deterioration of combustion during regeneration control can be suppressed.

更に、本実施例では、改質制御への切り替えに伴って目標EGR率を変更(大きく)したときに、EGRガスの移送遅れによるEGRガス流量の増加遅れ(目標EGRガス流量に対する不足分)に合わせて改質用燃料の噴射量と主燃料の噴射量を補正するようにしている。これにより、改質制御への切り替えに伴って目標EGR率を変更(大きく)したときに、EGRガス流量の増加遅れにより実S/Cが目標S/Cからずれてしまうことを防止することができる。   Further, in the present embodiment, when the target EGR rate is changed (increased) in accordance with the switching to the reforming control, the increase in EGR gas flow rate due to the EGR gas transfer delay (shortage with respect to the target EGR gas flow rate) is caused. At the same time, the injection amount of the reforming fuel and the injection amount of the main fuel are corrected. This prevents the actual S / C from deviating from the target S / C due to a delay in the increase in the EGR gas flow rate when the target EGR rate is changed (increased) with the switching to the reforming control. it can.

一方、再生制御へ移行する際に目標EGR率を変更(小さく)したときに、EGRガスの移送遅れによるEGRガス流量の減少遅れに合わせて改質用燃料の噴射量と主燃料の噴射量を補正するようにしている。これにより、再生制御へ移行する際に目標EGR率を変更(小さく)したときに、実S/Cが目標S/Cからずれてしまうことを防止することができる。   On the other hand, when the target EGR rate is changed (decreased) when shifting to the regeneration control, the injection amount of the reforming fuel and the injection amount of the main fuel are set in accordance with the decrease in the EGR gas flow rate due to the delay in the EGR gas transfer. I am trying to correct it. This can prevent the actual S / C from deviating from the target S / C when the target EGR rate is changed (decreased) when shifting to the regeneration control.

尚、上記実施例では、触媒24内の空燃比の反転タイミングでリッチ制御とリーン制御とを切り替えるようにしたが、これに限定されず、例えば、触媒24の下流側の空燃比の反転タイミングでリッチ制御とリーン制御とを切り替えるようにしても良い。具体的には、リッチ制御の実行中に触媒24の下流側の空燃比がリッチ側に反転したタイミング(例えば触媒24の下流側の排出ガスセンサ26の検出空燃比がリッチ判定値以下になったタイミング)でリーン制御に切り替える。このリーン制御の実行中に触媒24の下流側の空燃比がリーン側に反転したタイミング(例えば触媒24の下流側の排出ガスセンサ26の検出空燃比がリーン判定値以上になったタイミング)でリッチ制御に切り替える。   In the above embodiment, the rich control and the lean control are switched at the inversion timing of the air-fuel ratio in the catalyst 24. However, the present invention is not limited to this. For example, at the inversion timing of the air-fuel ratio downstream of the catalyst 24. You may make it switch between rich control and lean control. Specifically, the timing at which the air-fuel ratio on the downstream side of the catalyst 24 is reversed to the rich side during execution of the rich control (for example, the timing at which the detected air-fuel ratio on the downstream side of the catalyst 24 becomes equal to or less than the rich determination value) ) To switch to lean control. During the execution of the lean control, the rich control is performed at the timing when the air-fuel ratio downstream of the catalyst 24 is reversed to the lean side (for example, the timing when the detected air-fuel ratio of the exhaust gas sensor 26 downstream of the catalyst 24 is equal to or greater than the lean determination value). Switch to.

或は、所定時間毎又は所定噴射回数毎にリッチ制御とリーン制御とを切り替えるようにしても良い。
その他、本発明は、図1に示すような吸気ポート噴射式エンジンに限定されず、筒内噴射式エンジンや、吸気ポート噴射用の燃料噴射弁と筒内噴射用の燃料噴射弁の両方を備えたデュアル噴射式のエンジンにも適用して実施できる。
Alternatively, the rich control and the lean control may be switched every predetermined time or every predetermined number of injections.
In addition, the present invention is not limited to the intake port injection type engine as shown in FIG. 1, but includes an in-cylinder injection type engine, and both an intake port injection fuel injection valve and an in-cylinder injection fuel injection valve. It can also be applied to dual-injection engines.

11…エンジン(内燃機関)、12…吸気管(吸気通路)、21…主燃料噴射弁(主燃料噴射手段)、23…排気管(排気通路)、24…触媒、32…EGR配管(EGR通路)、35…改質用燃料噴射弁(改質用燃料噴射手段)、36…燃料改質触媒、37…ECU(制御手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe (intake passage), 21 ... Main fuel injection valve (main fuel injection means), 23 ... Exhaust pipe (exhaust passage), 24 ... Catalyst, 32 ... EGR piping (EGR passage) ), 35 ... Reforming fuel injection valve (reforming fuel injection means), 36 ... Fuel reforming catalyst, 37 ... ECU (control means)

Claims (5)

内燃機関(11)に供給される主燃料を噴射する主燃料噴射手段(21)と、前記内燃機関(11)の排気通路(23)から排出ガスの一部をEGRガスとして吸気通路(12)へ還流させるEGR通路(32)と、前記EGR通路(32)内に改質用燃料を噴射する改質用燃料噴射手段(35)と、前記EGR通路(32)に配置されて前記改質用燃料噴射手段(35)により噴射された改質用燃料を改質する燃料改質触媒(36)とを備えた内燃機関の燃料改質装置において、
所定の燃料改質実行条件が成立したときに、前記排出ガスの空燃比をリッチにするように前記主燃料の噴射量を制御するリッチ制御と前記排出ガスの空燃比をリーンにするように前記主燃料の噴射量を制御するリーン制御とを所定周期で交互に切り替え、前記リッチ制御によるリッチなEGRガス(以下「リッチガス」という)が前記改質用燃料噴射手段(35)を通過するときに前記改質用燃料を噴射して前記燃料改質触媒(36)で前記改質用燃料を改質する改質制御を実行し、前記リーン制御によるリーンなEGRガス(以下「リーンガス」という)が前記改質用燃料噴射手段(35)を通過するときに前記改質用燃料の噴射を禁止して前記燃料改質触媒(36)の燃料改質性能を回復させる再生制御を実行する制御手段(37)を備えていることを特徴とする内燃機関の燃料改質装置。
A main fuel injection means (21) for injecting main fuel supplied to the internal combustion engine (11), and an intake passage (12) using EGR gas as a part of exhaust gas from the exhaust passage (23) of the internal combustion engine (11). An EGR passage (32) for recirculation, reforming fuel injection means (35) for injecting reforming fuel into the EGR passage (32), and the reforming fuel disposed in the EGR passage (32). A fuel reformer for an internal combustion engine, comprising a fuel reforming catalyst (36) for reforming the reforming fuel injected by the fuel injection means (35).
The rich control for controlling the injection amount of the main fuel so as to make the air-fuel ratio of the exhaust gas rich when the predetermined fuel reforming execution condition is satisfied, and the air-fuel ratio of the exhaust gas so as to be lean When the lean control for controlling the injection amount of the main fuel is alternately switched at a predetermined cycle, rich EGR gas (hereinafter referred to as “rich gas”) by the rich control passes through the reforming fuel injection means (35). A reforming control for injecting the reforming fuel and reforming the reforming fuel with the fuel reforming catalyst (36) is performed, and lean EGR gas (hereinafter referred to as “lean gas”) by the lean control is generated. Control means for executing regeneration control for restoring the fuel reforming performance of the fuel reforming catalyst (36) by prohibiting injection of the reforming fuel when passing through the reforming fuel injection means (35). 37) And the fuel reforming device of the internal combustion engine, characterized in that are.
前記内燃機関(11)の排出ガスを浄化する触媒(24)を備え、
前記制御手段(37)は、前記触媒(24)内の空燃比の反転タイミング又は前記触媒(24)の下流側の空燃比の反転タイミングで前記リッチ制御と前記リーン制御とを切り替えることを特徴とする請求項1に記載の内燃機関の燃料改質装置。
A catalyst (24) for purifying exhaust gas of the internal combustion engine (11);
The control means (37) switches between the rich control and the lean control at an inversion timing of an air-fuel ratio in the catalyst (24) or an inversion timing of an air-fuel ratio downstream of the catalyst (24). The fuel reformer for an internal combustion engine according to claim 1.
前記制御手段(37)は、前記リッチガスが前記改質用燃料噴射手段(35)に到達するタイミングで前記改質用燃料の噴射を開始し、前記リーンガスが前記改質用燃料噴射手段(35)に到達するタイミングで前記改質用燃料の噴射を終了することを特徴とする請求項1又は2に記載の内燃機関の燃料改質装置。   The control means (37) starts injection of the reforming fuel at a timing when the rich gas reaches the reforming fuel injection means (35), and the lean gas becomes the reforming fuel injection means (35). The fuel reforming apparatus for an internal combustion engine according to claim 1 or 2, wherein the injection of the reforming fuel is terminated at a timing when the pressure reaches the engine. 前記制御手段(37)は、前記改質制御中と前記再生制御中とで目標EGR率を変更することを特徴とする請求項1乃至3のいずれかに記載の内燃機関の燃料改質装置。   The internal combustion engine fuel reformer according to any one of claims 1 to 3, wherein the control means (37) changes a target EGR rate during the reforming control and during the regeneration control. 前記制御手段(37)は、前記目標EGR率を変更したときに前記EGRガスの移送遅れによるEGRガス流量の変化遅れに基づいて前記改質用燃料の噴射量と前記主燃料の噴射量のうちの少なくとも一方を補正することを特徴とする請求項4に記載の内燃機関の燃料改質装置。   The control means (37) is configured to determine whether the reforming fuel injection amount and the main fuel injection amount are based on a change delay of the EGR gas flow rate due to a delay in the transfer of the EGR gas when the target EGR rate is changed. The fuel reformer for an internal combustion engine according to claim 4, wherein at least one of the two is corrected.
JP2014023885A 2014-02-10 2014-02-10 Fuel reformer of internal combustion engine Pending JP2015151873A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014023885A JP2015151873A (en) 2014-02-10 2014-02-10 Fuel reformer of internal combustion engine
PCT/JP2015/000244 WO2015118815A1 (en) 2014-02-10 2015-01-21 Fuel reformulation device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014023885A JP2015151873A (en) 2014-02-10 2014-02-10 Fuel reformer of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2015151873A true JP2015151873A (en) 2015-08-24

Family

ID=53777630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014023885A Pending JP2015151873A (en) 2014-02-10 2014-02-10 Fuel reformer of internal combustion engine

Country Status (2)

Country Link
JP (1) JP2015151873A (en)
WO (1) WO2015118815A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203487A (en) * 2018-05-25 2019-11-28 株式会社豊田中央研究所 Fuel reforming device and control method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3546658B2 (en) * 1997-09-03 2004-07-28 株式会社豊田中央研究所 Methanol reforming method
JP2005090254A (en) * 2003-09-12 2005-04-07 Toyota Motor Corp Fuel injection control device of diesel engine
WO2009054421A1 (en) * 2007-10-23 2009-04-30 Honda Motor Co., Ltd. Method of exhaust cleaning for internal combustion engine and exhaust cleaner
JP2009138567A (en) * 2007-12-04 2009-06-25 Toyota Motor Corp Control device of internal combustion engine
JP2009138531A (en) * 2007-12-03 2009-06-25 Toyota Motor Corp Control device for internal combustion engine
JP2011012554A (en) * 2009-06-30 2011-01-20 Toyota Motor Corp Reforming catalyst system
JP2012188963A (en) * 2011-03-09 2012-10-04 Nissan Motor Co Ltd Internal combustion engine system
JP2014025375A (en) * 2012-07-25 2014-02-06 Nissan Motor Co Ltd Control device for internal combustion engine system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3546658B2 (en) * 1997-09-03 2004-07-28 株式会社豊田中央研究所 Methanol reforming method
JP2005090254A (en) * 2003-09-12 2005-04-07 Toyota Motor Corp Fuel injection control device of diesel engine
WO2009054421A1 (en) * 2007-10-23 2009-04-30 Honda Motor Co., Ltd. Method of exhaust cleaning for internal combustion engine and exhaust cleaner
JP2009103020A (en) * 2007-10-23 2009-05-14 Honda Motor Co Ltd Exhaust emission control method and exhaust emission control device for internal combustion engine
JP2009138531A (en) * 2007-12-03 2009-06-25 Toyota Motor Corp Control device for internal combustion engine
JP2009138567A (en) * 2007-12-04 2009-06-25 Toyota Motor Corp Control device of internal combustion engine
JP2011012554A (en) * 2009-06-30 2011-01-20 Toyota Motor Corp Reforming catalyst system
JP2012188963A (en) * 2011-03-09 2012-10-04 Nissan Motor Co Ltd Internal combustion engine system
JP2014025375A (en) * 2012-07-25 2014-02-06 Nissan Motor Co Ltd Control device for internal combustion engine system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203487A (en) * 2018-05-25 2019-11-28 株式会社豊田中央研究所 Fuel reforming device and control method therefor

Also Published As

Publication number Publication date
WO2015118815A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
JP6217269B2 (en) Fuel reformer for internal combustion engine
JP2011027059A (en) Engine cotrol apparatus
JP2007321732A (en) Control device for internal combustion engine
JP2012237217A (en) Fuel-property reforming control apparatus for internal combustion engine
JP2009287532A (en) Fuel injection control device for internal combustion engine
JP2010168949A (en) Control device for internal combustion engine, and flexible fuel vehicle
JP6413413B2 (en) Fuel reformer
JP6394365B2 (en) Fuel reformer for internal combustion engine
US9109524B2 (en) Controller for internal combustion engine
JP4412201B2 (en) Control device for internal combustion engine using hydrogen
WO2015118815A1 (en) Fuel reformulation device for internal combustion engine
JP2010084670A (en) Air-fuel ratio control device of internal combustion engine
JP2008095627A (en) Air-fuel ratio control device for internal combustion engine
JP2009092002A (en) Air-fuel ratio control device for internal combustion engine
JP2012117463A (en) Device for detecting abnormal variation of air-fuel ratio between cylinders
JP2007154692A (en) Exhaust emission control device for internal combustion engine
JP4389139B2 (en) Exhaust gas purification control device for internal combustion engine
JP6394364B2 (en) Fuel reformer for internal combustion engine
JP2013253565A (en) Combustion state control device for internal combustion engine of vehicle
JP3988425B2 (en) Exhaust gas purification control device for internal combustion engine
JP2010156309A (en) Fuel injection controller for internal combustion engine
JPH08291739A (en) Air-fuel ratio control device
JP2006291757A (en) Control device for internal combustion engine
JP5886002B2 (en) Control device for internal combustion engine
JP2014218946A (en) Air fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160307

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171226