JP6394365B2 - Fuel reformer for internal combustion engine - Google Patents
Fuel reformer for internal combustion engine Download PDFInfo
- Publication number
- JP6394365B2 JP6394365B2 JP2014258528A JP2014258528A JP6394365B2 JP 6394365 B2 JP6394365 B2 JP 6394365B2 JP 2014258528 A JP2014258528 A JP 2014258528A JP 2014258528 A JP2014258528 A JP 2014258528A JP 6394365 B2 JP6394365 B2 JP 6394365B2
- Authority
- JP
- Japan
- Prior art keywords
- reforming
- reforming control
- fuel
- control
- pressure information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 title claims description 176
- 238000002485 combustion reaction Methods 0.000 title claims description 27
- 238000002407 reforming Methods 0.000 claims description 552
- 239000003054 catalyst Substances 0.000 claims description 72
- 238000002347 injection Methods 0.000 claims description 54
- 239000007924 injection Substances 0.000 claims description 54
- 230000006866 deterioration Effects 0.000 claims description 32
- 230000000875 corresponding effect Effects 0.000 claims description 13
- 230000002596 correlated effect Effects 0.000 claims description 4
- 238000012937 correction Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 242
- 238000000034 method Methods 0.000 description 23
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 13
- 229910002091 carbon monoxide Inorganic materials 0.000 description 13
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 238000003908 quality control method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D21/00—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
- F02D21/06—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
- F02D21/08—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/35—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/36—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for adding fluids other than exhaust gas to the recirculation passage; with reformers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/45—Sensors specially adapted for EGR systems
- F02M26/46—Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
- F02M26/47—Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Hydrogen, Water And Hydrids (AREA)
Description
本発明は、内燃機関の燃料を改質する燃料改質触媒を備えた内燃機関の燃料改質装置に関する発明である。 The present invention relates to a fuel reforming apparatus for an internal combustion engine provided with a fuel reforming catalyst for reforming the fuel of the internal combustion engine.
内燃機関の燃料を改質して燃費を改善する技術として、例えば、特許文献1(特開2009−79548号公報)に記載されたものがある。このものは、内燃機関の排気通路から排出ガスの一部をEGRガスとして吸気通路へ還流させるEGR通路の途中に、改質用燃料を噴射する改質用燃料噴射弁と改質用燃料を改質する燃料改質触媒とを配置する。そして、改質用燃料噴射弁により噴射された改質用燃料とEGRガス中の水分(水蒸気)等を燃料改質触媒で改質反応させて水素(H2 )や一酸化炭素(CO)を生成することで、改質用燃料を改質して燃焼性の高い改質ガスを生成し、その改質ガスを内燃機関の吸気通路に供給するようにしている。また、この特許文献1では、EGR通路のうちの燃料改質触媒の下流側にH2 センサとCOセンサを設け、これらのセンサで改質ガス量を検知するようにしている。 As a technique for improving the fuel consumption by reforming the fuel of the internal combustion engine, for example, there is one described in Patent Document 1 (Japanese Patent Laid-Open No. 2009-79548). This is a modification of the reforming fuel injection valve for injecting reforming fuel and the reforming fuel in the middle of the EGR passage for returning a part of the exhaust gas from the exhaust passage of the internal combustion engine to the intake passage as EGR gas. And a fuel reforming catalyst to be improved. The reforming fuel injected by the reforming fuel injection valve and the moisture (water vapor) in the EGR gas are reformed by the fuel reforming catalyst to generate hydrogen (H 2 ) or carbon monoxide (CO). Thus, the reforming fuel is reformed to generate a reformed gas having high combustibility, and the reformed gas is supplied to the intake passage of the internal combustion engine. In Patent Document 1, an H 2 sensor and a CO sensor are provided on the downstream side of the fuel reforming catalyst in the EGR passage, and the amount of reformed gas is detected by these sensors.
しかし、上記特許文献1の技術では、改質ガス量を検知するためにH2 センサやCOセンサといった特殊なセンサ(一般的なエンジン制御システムではあまり使用されない高価なセンサ)を設ける必要がある。このため、近年の重要な技術的課題である低コスト化の要求を満たすことができない。 However, in the technique of Patent Document 1, it is necessary to provide a special sensor (an expensive sensor that is not often used in a general engine control system) such as an H 2 sensor or a CO sensor in order to detect the amount of reformed gas. For this reason, the request | requirement of cost reduction which is an important technical subject in recent years cannot be satisfied.
そこで、本発明が解決しようとする課題は、特殊なセンサを設けることなく、改質ガス量を算出することができる内燃機関の燃料改質装置を提供することにある。 Accordingly, an object of the present invention is to provide a fuel reformer for an internal combustion engine that can calculate the amount of reformed gas without providing a special sensor.
上記課題を解決するために、請求項1に係る発明は、内燃機関(11)に供給される主燃料を噴射する主燃料噴射手段(21)と、内燃機関(11)の排気通路(23)から排出ガスの一部をEGRガスとして吸気通路(12)へ還流させるEGR通路(32)と、EGR通路(32)内に改質用燃料を噴射する改質用燃料噴射手段(35)と、EGR通路(32)に配置されて改質用燃料噴射手段(35)により噴射された改質用燃料を改質する燃料改質触媒(36)とを備えた内燃機関の燃料改質装置において、所定の改質制御実行条件が成立したときに改質用燃料噴射手段(35)で改質用燃料を噴射して燃料改質触媒(36)で改質用燃料を改質して改質ガスを生成する改質制御を実行する改質制御手段(37)と、燃料改質触媒(36)の下流側のガスの圧力又はこれと相関関係を有する情報(以下これらを「圧力情報」と総称する)を検出又は推定する圧力情報取得手段(19,37,38)と、改質制御の実行中に圧力情報取得手段(19,37,38)で検出又は推定される圧力情報(以下「改質制御実行中圧力情報」という)と改質制御の停止中に圧力情報取得手段(19,37,38)で検出又は推定される圧力情報(以下「改質制御停止中圧力情報」という)との差に基づいて、改質制御の実行中に生成される改質ガス量を算出する改質ガス量算出手段(37)とを備えた構成としたものである。改質ガス量算出手段(37)は、改質制御の実行中に所定条件が成立したときに、圧力情報取得手段(19,37,38)で改質制御実行中圧力情報を検出又は推定した後、改質制御を停止して圧力情報取得手段(19,37,38)で改質制御停止中圧力情報を検出又は推定する。改質ガス量算出手段(37)は、改質制御実行中圧力情報を検出又は推定する前に、改質制御の実行中の目標EGR率から改質制御の停止中の目標EGR率に切り替えて、EGRガスの流量を改質制御の停止中の目標EGR率に相当するEGRガス流量に制御した状態で改質制御実行中圧力情報及び改質制御停止中圧力情報を検出又は推定する。 In order to solve the above problems, the invention according to claim 1 is directed to a main fuel injection means (21) for injecting main fuel supplied to the internal combustion engine (11), and an exhaust passage (23) of the internal combustion engine (11). An EGR passage (32) that recirculates a part of the exhaust gas as EGR gas to the intake passage (12), reforming fuel injection means (35) that injects reforming fuel into the EGR passage (32), A fuel reformer for an internal combustion engine, comprising a fuel reforming catalyst (36) disposed in the EGR passage (32) and reforming the reforming fuel injected by the reforming fuel injection means (35). When a predetermined reforming control execution condition is satisfied, reforming fuel is injected by the reforming fuel injection means (35), and the reforming fuel is reformed by the fuel reforming catalyst (36), and reformed gas Reforming control means (37) for executing reforming control for generating a fuel reforming catalyst ( 6) Pressure information acquisition means (19, 37, 38) for detecting or estimating the pressure of the gas on the downstream side or information correlated therewith (hereinafter collectively referred to as “pressure information”), and reforming control Pressure information acquisition means (19, 37, 38) during execution of pressure information (hereinafter referred to as "reforming control execution pressure information") and pressure information acquisition means (19 , 37, 38), the amount of reformed gas generated during the execution of the reforming control is calculated based on the difference from the pressure information detected or estimated (hereinafter referred to as “reforming control stopping pressure information”). A reformed gas amount calculating means (37) is provided. The reformed gas amount calculating means (37) detects or estimates the pressure information during execution of reforming control by the pressure information acquisition means (19, 37, 38) when a predetermined condition is satisfied during the execution of reforming control. Thereafter, reforming control is stopped, and pressure information acquisition means (19, 37, 38) detects or estimates pressure information during reforming control stop. The reformed gas amount calculation means (37) switches from the target EGR rate during the reforming control to the target EGR rate during the reforming control stop before detecting or estimating the pressure information during the reforming control. The reforming control execution pressure information and the reforming control stop pressure information are detected or estimated while the EGR gas flow rate is controlled to the EGR gas flow rate corresponding to the target EGR rate during the stop of the reforming control.
改質用燃料とEGRガス中の水分(水蒸気)等を燃料改質触媒で改質反応させて水素や一酸化炭素等を含む改質ガスを生成すると、モル数が増加するため、その分、燃料改質触媒の下流側のガス(改質ガスを含むEGRガス)の圧力が上昇する。このため、改質制御の実行中に燃料改質触媒で生成される改質ガス量に応じて、燃料改質触媒の下流側のガスの圧力が上昇して、改質制御実行中圧力と改質制御停止中圧力との圧力差(=改質制御実行中圧力−改質制御停止中圧力)が大きくなるという特性がある。 When reforming fuel and moisture (steam) in EGR gas are reformed with a fuel reforming catalyst to generate reformed gas containing hydrogen, carbon monoxide, etc., the number of moles increases. The pressure of the gas (EGR gas including reformed gas) on the downstream side of the fuel reforming catalyst increases. For this reason, the pressure of the gas on the downstream side of the fuel reforming catalyst increases in accordance with the amount of reformed gas generated by the fuel reforming catalyst during the reforming control, and the reforming control in-process pressure is changed. There is a characteristic that the pressure difference (= pressure during reforming control execution-pressure during reforming control stop) with the pressure during quality control stop increases.
このような特性に着目して、本発明は、改質制御実行中圧力情報と改質制御停止中圧力情報との差に基づいて、改質制御の実行中に生成される改質ガス量(例えば改質ガスの流量)を算出するため、改質ガス量を精度良く求めることができる。この場合、改質ガス量を検知するためにH2 センサやCOセンサといった特殊なセンサ(一般的なエンジン制御システムではあまり使用されない高価なセンサ)を設ける必要がない。また、燃料改質触媒の上流側と下流側の両方に圧力センサや温度センサを設けるといった必要もない。 Focusing on such characteristics, the present invention is based on the difference between the pressure information during reforming control execution and the pressure information during reforming control stop, and the amount of reformed gas generated during the reforming control ( For example, since the flow rate of the reformed gas is calculated, the reformed gas amount can be obtained with high accuracy. In this case, it is not necessary to provide a special sensor (an expensive sensor that is rarely used in a general engine control system) such as an H 2 sensor or a CO sensor in order to detect the amount of reformed gas. Further, there is no need to provide pressure sensors or temperature sensors on both the upstream side and the downstream side of the fuel reforming catalyst.
以下、本発明を実施するための形態を具体化した幾つかの実施例を説明する。 Hereinafter, some embodiments embodying the mode for carrying out the present invention will be described.
本発明の実施例1を図1乃至図5に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関であるエンジン11の吸気管12(吸気通路)の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An
更に、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18に、吸気圧力(吸気管12のガスの圧力)を検出する吸気圧力センサ19(圧力情報取得手段)が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20に接続された吸気ポート又はその近傍に、それぞれ吸気ポートに主燃料を噴射する主燃料噴射弁21(主燃料噴射手段)が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各気筒の点火プラグ22の火花放電によって各気筒内の混合気に着火される。
Further, a
一方、エンジン11の排気管23(排気通路)には、排出ガスを浄化する三元触媒等の触媒24が設けられ、この触媒24の上流側と下流側に、それぞれ排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ25,26(空燃比センサ、酸素センサ等)が設けられている。
On the other hand, the exhaust pipe 23 (exhaust passage) of the
また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ27や、ノッキングを検出するノックセンサ28が取り付けられている。また、クランク軸29の外周側には、クランク軸29が所定クランク角回転する毎にパルス信号を出力するクランク角センサ30が取り付けられ、このクランク角センサ30の出力信号に基づいてクランク角やエンジン回転速度が検出される。
A cooling
このエンジン11には、排気管23から排出ガスの一部をEGRガスとして吸気管12へ還流させるEGR装置31が搭載されている。このEGR装置31は、排気管23のうちの触媒24の上流側(又は下流側)と吸気管12のうちのスロットルバルブ16の下流側との間にEGR配管32(EGR通路)が接続され、このEGR配管32に、EGRガスを冷却するEGRクーラ33と、EGRガスの流量を調節するEGRバルブ34が設けられている。このEGRバルブ34を開弁することで排気管23からEGR配管32を通して吸気管12へEGRガスを還流させるようになっている。
The
また、EGR配管32のうちのEGRクーラ33の上流側には、EGR配管32内に改質用燃料を噴射する改質用燃料噴射弁35(改質用燃料噴射手段)が設けられている。主燃料噴射弁21と改質用燃料噴射弁35には、共通の燃料タンク(図示せず)から燃料が供給される。更に、EGR配管32のうちの改質用燃料噴射弁35の下流側には、改質用燃料噴射弁35により噴射された改質用燃料を改質する燃料改質触媒36が配置されている。この燃料改質触媒36は、排気管23内を流れる排出ガスと熱交換するように構成され、排出ガスの熱を利用して改質用燃料とEGRガス中の水分(水蒸気)等を改質反応させて水素(H2 )や一酸化炭素(CO)を生成することで、改質用燃料を改質して燃焼性の高い改質ガスを生成する。
A reforming fuel injection valve 35 (reforming fuel injection means) for injecting reforming fuel into the EGR
上述した各種センサの出力は、電子制御ユニット(以下「ECU」と表記する)37に入力される。このECU37は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。 Outputs of the various sensors described above are input to an electronic control unit (hereinafter referred to as “ECU”) 37. The ECU 37 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount and the ignition timing are determined according to the engine operating state. The throttle opening (intake air amount) and the like are controlled.
その際、ECU37は、所定のEGR制御実行条件が成立したときに、エンジン運転状態に基づいて目標EGR率(EGR率の目標値)を算出し、この目標EGR率に相当するEGRガス流量(目標EGRガス流量)を実現するようにEGRバルブ34の開度を制御するEGR制御を実行する。ここで、EGR率は、筒内流入総ガス流量に対する筒内流入EGRガス流量の比率(=筒内流入EGRガス流量/筒内流入総ガス流量)とする。
At that time, the ECU 37 calculates a target EGR rate (target value of the EGR rate) based on the engine operating state when a predetermined EGR control execution condition is satisfied, and an EGR gas flow rate (target value) corresponding to the target EGR rate. EGR control for controlling the opening degree of the
本実施例1では、後述する改質制御の実行中と停止中とで目標EGR率を変更する。具体的には、改質制御の実行中は、EGRガス中の改質成分濃度(例えば水素や一酸化炭素の濃度)が高くなってエンジン11の燃焼性が向上する(つまりEGR限界が高くなる)ため、改質制御の停止中よりも目標EGR率を大きくする。一方、改質制御の停止中は、EGRガス中の改質成分濃度が低くなってエンジン11の燃焼性が低下する(つまりEGR限界が低くなる)ため、改質制御の実行中よりも目標EGR率を小さくする。
In the first embodiment, the target EGR rate is changed between execution and stop of reforming control described later. Specifically, during the execution of the reforming control, the reforming component concentration (for example, the concentration of hydrogen or carbon monoxide) in the EGR gas is increased and the combustibility of the
また、本実施例1では、ECU37により後述する図4のルーチンを実行することで、所定の改質制御実行条件が成立したときに、改質制御を実行する。この改質制御では、改質用燃料噴射弁35でEGR配管32内に改質用燃料を噴射し、その改質用燃料とEGRガス中の水分(水蒸気)等を燃料改質触媒36で改質反応させて水素や一酸化炭素を生成することで、改質用燃料を改質して燃焼性の高い改質ガスを生成し、その改質ガスを吸気管12に供給する。
In the first embodiment, the
更に、本実施例1では、ECU37により後述する図4及び図5の各ルーチンを実行することで、改質制御の実行中に吸気圧力センサ19で検出される吸気圧力と改質制御の停止中に吸気圧力センサ19で検出される吸気圧力との圧力差に基づいて、改質制御の実行中に生成される改質ガス量(例えば改質ガスの流量)を算出する。以下、改質制御の実行中に吸気圧力センサ19で検出される吸気圧力を「改質制御実行中圧力」という。また、改質制御の停止中に吸気圧力センサ19で検出される吸気圧力を「改質制御停止中圧力」という。
Further, in the first embodiment, the routine of FIGS. 4 and 5 described later is executed by the
改質用燃料とEGRガス中の水分(水蒸気)等を燃料改質触媒36で改質反応させて水素や一酸化炭素等を含む改質ガスを生成すると、モル数が増加するため、その分、燃料改質触媒36の下流側のガス(改質ガスを含むEGRガス)の圧力が上昇する。このため、改質制御の実行中に燃料改質触媒36で生成される改質ガス量に応じて、燃料改質触媒36の下流側のガスの圧力が上昇して、吸気圧力センサ19で検出される吸気圧力が上昇し、改質制御実行中圧力と改質制御停止中圧力との圧力差(=改質制御実行中圧力−改質制御停止中圧力)が大きくなるという特性がある。従って、改質制御実行中圧力と改質制御停止中圧力との圧力差に基づいて、改質制御の実行中に生成される改質ガス量を算出することで、改質ガス量を精度良く求めることができる。
本実施例1では、次の(1) 〜(3) の三つ方法で改質制御停止中圧力及び改質制御実行中圧力を検出(又は推定)して改質ガス量を算出する。
When the reforming fuel and moisture (water vapor) in the EGR gas are reformed by the
In the first embodiment, the reforming gas amount is calculated by detecting (or estimating) the reforming control stop pressure and the reforming control execution pressure by the following three methods (1) to (3).
(1) 改質制御の停止中に改質制御実行条件が成立したときに、吸気圧力センサ19で改質制御停止中圧力を検出した後、改質制御を実行して吸気圧力センサ19で改質制御実行中圧力を検出する。
(1) When the reforming control execution condition is satisfied while the reforming control is stopped, after the reforming control stop pressure is detected by the
この場合、EGRガス流量を改質制御停止中の目標EGRガス流量(改質制御停止中の目標EGR率に相当するEGRガス流量)に制御した状態で、改質制御停止中圧力及び改質制御実行中圧力を検出し、改質制御実行中圧力を検出した後に、改質制御停止中の目標EGR率から改質制御実行中の目標EGR率に切り替える。 In this case, with the EGR gas flow rate controlled to the target EGR gas flow rate while the reforming control is stopped (the EGR gas flow rate corresponding to the target EGR rate when the reforming control is stopped), the reforming control stop pressure and the reforming control are controlled. After the execution pressure is detected and the reforming control execution pressure is detected, the target EGR rate during the reforming control stop is switched to the target EGR rate during the reforming control execution.
具体的には、図2に実線で示すように、改質制御の停止中に改質制御実行条件が成立したときに、EGRガス流量を改質制御停止中の目標EGRガス流量に制御した状態で、改質制御の停止中に吸気圧力センサ19で改質制御停止中圧力を検出する。
Specifically, as shown by a solid line in FIG. 2, when the reforming control execution condition is satisfied while the reforming control is stopped, the EGR gas flow rate is controlled to the target EGR gas flow rate when the reforming control is stopped. Thus, the reforming control stop pressure is detected by the
この後、EGRガス流量を改質制御停止中の目標EGRガス流量に制御した状態で、改質制御を実行し、この改質制御の実行中に吸気圧力センサ19で改質制御実行中圧力を検出する。
Thereafter, the reforming control is executed in a state where the EGR gas flow rate is controlled to the target EGR gas flow rate when the reforming control is stopped, and the reforming control execution pressure is set by the
このようにして、改質制御の停止から実行へ移行する際に、吸気圧力センサ19で改質制御停止中圧力及び改質制御実行中圧力を検出した後、改質制御実行中圧力と改質制御停止中圧力との圧力差に基づいて改質ガス量をマップ等により算出する。
In this way, when the reforming control is shifted from stop to execution, after the reforming control stop pressure and reforming control execution pressure are detected by the
この後、改質制御停止中の目標EGR率から改質制御実行中の目標EGR率に切り替えて、EGRガス流量を改質制御実行中の目標EGRガス流量(改質制御実行中の目標EGR率に相当するEGRガス流量)に制御する。 Thereafter, the target EGR rate when the reforming control is stopped is switched to the target EGR rate during the reforming control, and the EGR gas flow rate is changed to the target EGR gas flow rate during the reforming control execution (the target EGR rate during the reforming control execution). To EGR gas flow rate).
(2) 改質制御の実行中に所定条件が成立したとき(例えば改質制御の実行期間が所定値を越えたとき等)に、吸気圧力センサ19で改質制御実行中圧力を検出した後、改質制御を停止して吸気圧力センサ19で改質制御停止中圧力を検出する。
(2) After a predetermined condition is satisfied during the execution of reforming control (for example, when the reforming control execution period exceeds a predetermined value), after the pressure during reforming control is detected by the
この場合、改質制御実行中圧力を検出する前に、改質制御実行中の目標EGR率から改質制御停止中の目標EGR率に切り替えて、EGRガス流量を改質制御停止中の目標EGRガス流量(改質制御停止中の目標EGR率に相当するEGRガス流量)に制御した状態で、改質制御実行中圧力及び改質制御停止中圧力を検出する。 In this case, before detecting the pressure during reforming control, the target EGR rate during reforming control is switched from the target EGR rate during reforming control stop, and the EGR gas flow rate is changed to the target EGR while reforming control is stopped. While controlling the gas flow rate (the EGR gas flow rate corresponding to the target EGR rate when the reforming control is stopped), the reforming control execution pressure and the reforming control stop pressure are detected.
具体的には、図3に実線で示すように、改質制御の実行中に所定条件が成立したときに、改質制御実行中の目標EGR率から改質制御停止中の目標EGR率に切り替えて、EGRガス流量を改質制御停止中の目標EGRガス流量に制御する。 Specifically, as shown by a solid line in FIG. 3, when a predetermined condition is satisfied during the reforming control, the target EGR rate during the reforming control is switched to the target EGR rate during the reforming control stop. Then, the EGR gas flow rate is controlled to the target EGR gas flow rate while the reforming control is stopped.
この後、EGRガス流量を改質制御停止中の目標EGRガス流量に制御した状態で、改質制御の実行中に吸気圧力センサ19で改質制御実行中圧力を検出する。
この後、EGRガス流量を改質制御停止中の目標EGRガス流量に制御した状態で、改質制御を停止し、この改質制御の停止中に吸気圧力センサ19で改質制御停止中圧力を検出する。
Thereafter, with the EGR gas flow rate controlled to the target EGR gas flow rate while the reforming control is stopped, the pressure during reforming control is detected by the
Thereafter, the reforming control is stopped in a state where the EGR gas flow rate is controlled to the target EGR gas flow rate during which the reforming control is stopped, and the reforming control stopping pressure is set by the
このようにして、改質制御の実行から停止へ移行する際に、吸気圧力センサ19で改質制御実行中圧力及び改質制御停止中圧力を検出した後、改質制御実行中圧力と改質制御停止中圧力との圧力差に基づいて改質ガス量をマップ等により算出する。
In this way, when the reforming control is shifted from the execution to the stop, after the reforming control executing pressure and the reforming control stopping pressure are detected by the
(3) 改質制御の実行中に吸気圧力センサ19で改質制御実行中圧力を検出すると共に現在の運転条件における改質制御停止中圧力を推定する。
この場合、改質制御の停止中に吸気圧力センサ19で改質制御停止中圧力を検出して、その改質制御停止中圧力を運転条件毎に学習し、改質制御の実行中に吸気圧力センサ19で改質制御実行中圧力を検出したときに、改質制御停止中圧力の学習値に基づいて現在の運転条件における改質制御停止中圧力を推定する。
(3) While the reforming control is being executed, the reforming control executing pressure is detected by the
In this case, the reforming control stop pressure is detected by the
或は、予め運転条件と改質制御停止中圧力との関係を規定したマップを記憶しておき、改質制御の実行中に吸気圧力センサ19で改質制御実行中圧力を検出したときに、マップを用いて現在の運転条件における改質制御停止中圧力を推定する。
Alternatively, a map that prescribes the relationship between the operating conditions and the reforming control stop pressure is stored in advance, and when the reforming control executing pressure is detected by the
このようにして、改質制御の実行中に、吸気圧力センサ19で改質制御実行中圧力を検出すると共に学習値に基づいて改質制御停止中圧力を推定した後、改質制御実行中圧力と改質制御停止中圧力との圧力差に基づいて改質ガス量をマップ等により算出する。
In this way, while reforming control is being executed, the pressure during reforming control is detected by the
また、本実施例1では、算出した改質ガス量とその改質ガス量を算出した運転条件における基準改質ガス量とを比較して燃料改質触媒36の劣化状態を判定する。更に、本実施例1では、算出した改質ガス量に基づいて改質制御実行中の目標EGR率と改質用燃料の噴射量を補正する。
以下、本実施例でECU37が実行する図4及び図5の各ルーチンの処理内容を説明する。
Further, in the first embodiment, the deterioration state of the
Hereinafter, the processing content of each routine of FIG.4 and FIG.5 which ECU37 performs by a present Example is demonstrated.
[改質制御ルーチン]
図4に示す改質制御ルーチンは、ECU37の電源オン期間中に所定周期で繰り返し実行され、特許請求の範囲でいう、改質制御手段、改質ガス量算出手段、補正手段としての役割を果たす。
[Reforming control routine]
The reforming control routine shown in FIG. 4 is repeatedly executed at a predetermined cycle during the power-on period of the
本ルーチンが起動されると、まず、ステップ101で、改質制御実行条件が成立しているか否かを、例えば、EGR制御の実行条件が成立していること(つまりEGR制御の実行中であること)、燃料改質触媒36の温度が活性温度以上であること等の条件が全て成立しているか否かによって判定する。
このステップ101で、改質制御実行条件が不成立であると判定された場合には、ステップ102以降の処理を実行することなく、本ルーチンを終了する。
When this routine is started, first, at
If it is determined in
一方、上記ステップ101で、改質制御実行条件が成立していると判定された場合には、ステップ102に進み、EGRガス流量を改質制御停止中の目標EGRガス流量に制御した状態で、改質制御の停止中に吸気圧力センサ19で改質制御停止中圧力を検出し、その改質制御停止中圧力を学習する(例えばECU37のバックアップRAM等に記憶する)。この改質制御停止中圧力の学習値を、後述する図5のステップ207(改質制御の実行中に改質制御停止中圧力を推定する処理)で用いる場合には、検出した改質制御停止中圧力を運転条件(例えばEGRガス流量)毎に学習する。
On the other hand, if it is determined in
この後、ステップ103に進み、EGRガス流量を改質制御停止中の目標EGRガス流量に制御した状態で、改質用燃料噴射弁35により改質用燃料の噴射を開始して改質制御を実行する。この改質制御では、改質用燃料噴射弁35でEGR配管32内に改質用燃料を噴射し、その改質用燃料とEGRガス中の水分(水蒸気)等を燃料改質触媒36で改質反応させて水素や一酸化炭素を生成することで、改質用燃料を改質して燃焼性の高い改質ガスを生成する。この際、改質用燃料の噴射量は、燃料改質触媒36の温度と劣化状態のうちの少なくとも一方とEGRガス流量(例えば目標EGR率から推定したEGRガス流量)等に基づいてマップ等により算出する。
Thereafter, the process proceeds to step 103, and with the EGR gas flow rate controlled to the target EGR gas flow rate while the reforming control is stopped, the reforming
この後、ステップ104に進み、EGRガス流量を改質制御停止中の目標EGRガス流量に制御した状態で、改質制御の実行中に吸気圧力センサ19で改質制御実行中圧力を検出する。
Thereafter, the process proceeds to step 104, and the reforming control execution pressure is detected by the
このようにして、改質制御の停止から実行へ移行する際に、吸気圧力センサ19で改質制御停止中圧力及び改質制御実行中圧力を検出した後、ステップ105に進み、改質制御実行中圧力と改質制御停止中圧力との圧力差(=改質制御実行中圧力−改質制御停止中圧力)に基づいて改質ガス量をマップ等により算出する。この改質ガス量を算出するためのマップは、予め設計データや試験データ等に基づいて作成され、ECU37のROMに記憶されている。
In this way, when the reforming control is shifted from being stopped to being executed, the reforming control stopping pressure and the reforming control executing pressure are detected by the
この後、ステップ106に進み、改質制御停止中の目標EGR率のマップから改質制御実行中の目標EGR率のマップに切り替え、この改質制御実行中の目標EGR率のマップを用いて、現在のエンジン運転状態に応じた改質制御実行中の目標EGR率を算出する。更に、改質ガス量に基づいて実EGRガス流量をマップ等により算出し、この実EGRガス流量に基づいて改質制御実行中の目標EGR率を補正する。これにより、改質制御停止中の目標EGR率から改質制御実行中の目標EGR率に切り替えると共に改質ガス量に基づいて改質制御実行中の目標EGR率を補正する。また、燃料改質触媒36の温度と劣化状態のうちの少なくとも一方と実EGRガス流量等に基づいて改質用燃料の噴射量を補正することで、改質ガス量に基づいて改質用燃料の噴射量を補正する。
Thereafter, the process proceeds to step 106 where the map of the target EGR rate during the reforming control stop is switched to the map of the target EGR rate during the reforming control execution, and the map of the target EGR rate during the reforming control execution is used. A target EGR rate during execution of reforming control according to the current engine operating state is calculated. Furthermore, the actual EGR gas flow rate is calculated by a map or the like based on the reformed gas amount, and the target EGR rate during the reforming control is corrected based on the actual EGR gas flow rate. As a result, the target EGR rate during the reforming control stop is switched to the target EGR rate during the reforming control, and the target EGR rate during the reforming control is corrected based on the reformed gas amount. Further, the reforming fuel is corrected based on the reformed gas amount by correcting the injection amount of the reforming fuel based on at least one of the temperature and the deterioration state of the
[劣化判定ルーチン]
図5に示す劣化判定ルーチンは、改質制御の実行中に所定周期で繰り返し実行され、特許請求の範囲でいう、改質ガス量算出手段、劣化判定手段、補正手段としての役割を果たす。
[Deterioration judgment routine]
The deterioration determination routine shown in FIG. 5 is repeatedly executed at a predetermined period during the execution of the reforming control, and serves as a reformed gas amount calculating means, a deterioration determining means, and a correcting means as defined in the claims.
本ルーチンが起動されると、まず、ステップ201で、触媒劣化判定モード切替条件が成立しているか否かを、例えば、改質制御の実行期間が所定値を越えたか否か、改質用燃料の総噴射量が所定値を越えたか否か、燃焼変動が所定値を越えたか否か等によって判定する。
When this routine is started, first, in
このステップ201で、触媒劣化判定モード切替条件が成立していると判定された場合には、ステップ202に進み、改質制御実行中の目標EGR率のマップから改質制御停止中の目標EGR率のマップに切り替え、この改質制御停止中の目標EGR率のマップを用いて、現在のエンジン運転状態に応じた改質制御停止中の目標EGR率を算出する。これにより、改質制御実行中の目標EGR率から改質制御停止中の目標EGR率に切り替えて、EGRガス流量を改質制御停止中の目標EGRガス流量(改質制御停止中の目標EGR率に相当するEGRガス流量)に制御する。また、燃料改質触媒36の温度とEGRガス流量(例えば目標EGR率から推定したEGRガス流量)等に基づいて改質用燃料の噴射量を変更する。
If it is determined in
この後、ステップ203に進み、EGRガス流量を改質制御停止中の目標EGRガス流量に制御した状態で、改質制御の実行中に吸気圧力センサ19で改質制御実行中圧力を検出し、その改質制御実行中圧力を学習する。
Thereafter, the process proceeds to step 203, and the reforming control execution pressure is detected by the
この後、ステップ204に進み、EGRガス流量を改質制御停止中の目標EGRガス流量に制御した状態で、改質用燃料噴射弁35による改質用燃料の噴射を停止して改質制御を停止する。
Thereafter, the process proceeds to step 204, and the reforming control is performed by stopping the reforming fuel injection by the reforming
この後、ステップ205に進み、EGRガス流量を改質制御停止中の目標EGRガス流量に制御した状態で、改質制御の停止中に吸気圧力センサ19で改質制御停止中圧力を検出する。この改質制御停止中圧力の学習値を、後述するステップ207(改質制御の実行中に改質制御停止中圧力を推定する処理)で用いる場合には、検出した改質制御停止中圧力を運転条件(例えばEGRガス流量)毎に学習する。
Thereafter, the process proceeds to step 205, and the reforming control stop pressure is detected by the
このようにして、改質制御の実行から停止へ移行する際に、吸気圧力センサ19で改質制御実行中圧力及び改質制御停止中圧力を検出した後、ステップ208に進み、改質制御実行中圧力と改質制御停止中圧力との圧力差(=改質制御実行中圧力−改質制御停止中圧力)に基づいて改質ガス量をマップ等により算出する。
In this way, when the reforming control is shifted from the execution to the stop, the
一方、上記ステップ201で、触媒劣化判定モード切替条件が不成立であると判定された場合には、ステップ206に進み、改質制御の実行中に吸気圧力センサ19で改質制御実行中圧力を検出し、その改質制御実行中圧力を学習する。
On the other hand, if it is determined in
この後、ステップ207に進み、現在の運転条件(例えばEGRガス流量)における改質制御停止中圧力を次のようにして推定する。
改質制御の停止中に運転条件毎に学習した改質制御停止中圧力の学習値(複数の学習値)で補間して現在の運転条件における改質制御停止中圧力を求めることで、現在の運転条件における改質制御停止中圧力を推定する。この際、改質制御停止中圧力の学習値は、図4のステップ102や図5のステップ205で学習したものを用いるようにしても良い。或は、改質制御実行条件が成立する前の改質制御の停止中や改質制御実行条件が不成立になった後の改質制御の停止中に、吸気圧力センサ19で改質制御停止中圧力を検出して、その改質制御停止中圧力を運転条件毎に学習し、その改質制御停止中圧力の学習値を用いるようにしても良い。
Thereafter, the process proceeds to step 207, and the reforming control stoppage pressure under the current operating conditions (for example, EGR gas flow rate) is estimated as follows.
By interpolating with the learning value (a plurality of learning values) of the reforming control stop pressure learned for each operating condition while the reforming control is stopped, the reforming control stopping pressure at the current operating condition is obtained. Estimate the reforming control stop pressure under operating conditions. At this time, the learned value of the reforming control stop pressure may be the value learned in
或は、運転条件と改質制御停止中圧力との関係を規定したマップを用いて、現在の運転条件における改質制御停止中圧力を推定(算出)するようにしても良い。この場合、改質制御停止中圧力を推定(算出)するためのマップは、予め設計データや試験データ等に基づいて作成され、ECU37のROMに記憶されている。
Alternatively, the reforming control stop pressure under the current operating conditions may be estimated (calculated) using a map that defines the relationship between the operating conditions and the reforming control stop pressure. In this case, a map for estimating (calculating) the reforming control stoppage pressure is created in advance based on design data, test data, and the like, and stored in the ROM of the
このようにして、改質制御の実行中に、吸気圧力センサ19で改質制御実行中圧力を検出すると共に学習値に基づいて改質制御停止中圧力を推定した後、ステップ208に進み、改質制御実行中圧力と改質制御停止中圧力との圧力差(=改質制御実行中圧力−改質制御停止中圧力)に基づいて改質ガス量をマップ等により算出する。
In this way, while reforming control is being performed, the pressure during reforming control is detected by the
この後、ステップ209に進み、改質ガス量を算出した運転条件(例えば燃料改質触媒36の温度と改質用燃料の噴射量等)に基づいて、改質ガス量を算出した運転条件における基準改質ガス量を算出する。ここで、基準改質ガス量は、燃料改質触媒36が劣化なし状態(例えば新品状態)のときの改質ガス量(理想の改質ガス量)である。基準改質ガス量を算出するためのマップは、予め設計データや試験データ等に基づいて作成され、ECU37のROMに記憶されている。
Thereafter, the process proceeds to step 209, where the reformed gas amount is calculated based on the operating conditions (for example, the temperature of the
この後、ステップ210に進み、改質ガス量とその改質ガス量を算出した運転条件における基準改質ガス量との比(=改質ガス量/基準改質ガス量)を燃料改質触媒36の劣化率(劣化状態)として算出し、この燃料改質触媒36の劣化率が劣化判定値(例えば0.3)よりも大きいか否かを判定する。劣化判定値は、例えば、再生制御の実行条件等に基づいて設定するようにしても良い。
Thereafter, the process proceeds to step 210, and the ratio (= reformed gas amount / reference reformed gas amount) between the reformed gas amount and the reference reformed gas amount in the operation condition for which the reformed gas amount is calculated is determined as the fuel reforming catalyst. 36 is calculated as a deterioration rate (deterioration state), and it is determined whether or not the deterioration rate of the
このステップ210で、燃料改質触媒36の劣化率が劣化判定値よりも大きいと判定された場合には、燃料改質触媒36の燃料改質性能を回復させる再生制御を実行する必要はないと判断する。
If it is determined in
この場合、ステップ211に進み、改質制御停止中の目標EGR率のマップから改質制御実行中の目標EGR率のマップに切り替え、この改質制御実行中の目標EGR率のマップを用いて、現在のエンジン運転状態に応じた改質制御実行中の目標EGR率を算出する。更に、改質ガス量に基づいて実EGRガス流量をマップ等により算出し、この実EGRガス流量に基づいて改質制御実行中の目標EGR率を補正する。これにより、改質制御停止中の目標EGR率から改質制御実行中の目標EGR率に切り替えると共に改質ガス量に基づいて改質制御実行中の目標EGR率を補正する。また、燃料改質触媒36の温度と劣化状態のうちの少なくとも一方と実EGRガス流量等に基づいて改質用燃料の噴射量を補正することで、改質ガス量に基づいて改質用燃料の噴射量を補正し、改質用燃料噴射弁35により改質用燃料の噴射を開始して改質制御を実行する。
In this case, the process proceeds to step 211, where the map of the target EGR rate during the reforming control stop is switched to the map of the target EGR rate during the reforming control, and the map of the target EGR rate during the reforming control is used. A target EGR rate during execution of reforming control according to the current engine operating state is calculated. Furthermore, the actual EGR gas flow rate is calculated by a map or the like based on the reformed gas amount, and the target EGR rate during the reforming control is corrected based on the actual EGR gas flow rate. As a result, the target EGR rate during the reforming control stop is switched to the target EGR rate during the reforming control, and the target EGR rate during the reforming control is corrected based on the reformed gas amount. Further, the reforming fuel is corrected based on the reformed gas amount by correcting the injection amount of the reforming fuel based on at least one of the temperature and the deterioration state of the
一方、上記ステップ210で、燃料改質触媒36の劣化率が劣化判定値以下と判定された場合には、燃料改質触媒36の燃料改質性能を回復させる再生制御を実行する必要があると判断する。
On the other hand, if it is determined in
この場合、ステップ212に進み、再生制御を実行する。この再生制御では、例えば、排出ガスの空燃比をリッチとリーンに交互に変化させるディザ制御等を実行して燃料改質触媒36に酸素を供給することで、燃料改質触媒36に堆積した炭素を燃焼させて燃料改質触媒36の燃料改質性能を回復させる。
In this case, the process proceeds to step 212 and reproduction control is executed. In this regeneration control, for example, carbon is deposited on the
この後、ステップ213に進み、改質用燃料噴射弁35により改質用燃料の噴射を開始して改質制御を実行する。この際、燃料改質触媒36の温度と劣化状態のうちの少なくとも一方に基づいてEGRガス流量や改質用燃料の噴射量を算出する。
Thereafter, the process proceeds to step 213, and reforming fuel is started by the reforming
尚、この改質制御の開始前(停止中)に吸気圧力センサ19で改質制御停止中圧力を検出すると共に、改質制御の開始後(実行中)に吸気圧力センサ19で改質制御実行中圧力を検出し、その改質制御実行中圧力と改質制御停止中圧力との圧力差に基づいて改質ガス量を算出するようにしても良い。
The reforming control stop pressure is detected by the
以上説明した本実施例1では、改質制御の実行中に燃料改質触媒36で生成される改質ガス量に応じて、燃料改質触媒36の下流側のガスの圧力が上昇して、改質制御実行中圧力と改質制御停止中圧力との圧力差が大きくなるという特性に着目して、改質制御実行中圧力と改質制御停止中圧力との圧力差に基づいて、改質制御の実行中に生成される改質ガス量を算出するようにしたので、改質ガス量を精度良く求めることができる。しかも、改質ガス量を検知するためにH2 センサやCOセンサといった特殊なセンサ(一般的なエンジン制御システムではあまり使用されない高価なセンサ)を設ける必要がない。また、燃料改質触媒36の上流側と下流側の両方に圧力センサや温度センサを設けるといった必要もない。このため、近年の重要な技術的課題である低コスト化の要求を満たすことができる。
In the first embodiment described above, the pressure of the gas on the downstream side of the
また、本実施例1では、改質制御の実行中に所定条件が成立したときに、吸気圧力センサ19で改質制御実行中圧力を検出した後、改質制御を停止して吸気圧力センサ19で改質制御停止中圧力を検出するようにしている。このようにすれば、改質制御の実行中に所定条件が成立する毎に改質ガス量を算出することができる。
In the first embodiment, when a predetermined condition is satisfied during the execution of the reforming control, the reforming control is stopped by detecting the pressure during the reforming control by the
この際、本実施例1では、図3に実線で示すように、改質制御実行中圧力を検出する前に、改質制御の実行中の目標EGR率から改質制御の停止中の目標EGR率に切り替えて、EGRガス流量を改質制御停止中の目標EGRガス流量(改質制御停止中の目標EGR率に相当するEGRガス流量)に制御した状態で、改質制御実行中圧力及び改質制御停止中圧力を検出するようにしている。このようにすれば、同一のEGRガス流量(改質制御停止中の目標EGR率に相当するEGRガス流量)に制御した状態で検出した改質制御実行中圧力と改質制御停止中圧力との圧力差を用いて改質ガス量を算出することができ、改質ガス量の算出精度を向上させることができる。 At this time, in the first embodiment, as indicated by a solid line in FIG. 3, before the reforming control execution pressure is detected, the target EGR rate during the reforming control is changed from the target EGR rate during the reforming control execution. In the state where the EGR gas flow rate is controlled to the target EGR gas flow rate when the reforming control is stopped (the EGR gas flow rate corresponding to the target EGR rate when the reforming control is stopped). The pressure is detected while quality control is stopped. In this way, the reforming control execution pressure and the reforming control stop pressure detected in the state of being controlled to the same EGR gas flow rate (EGR gas flow rate corresponding to the target EGR rate during the stoppage of reforming control). The reformed gas amount can be calculated using the pressure difference, and the calculation accuracy of the reformed gas amount can be improved.
また、図3に破線で示す比較例ように、改質制御の実行から停止に移行する際に、EGRガス流量を改質制御実行中の目標EGR率に相当するEGRガス流量に制御した状態で、改質制御実行中圧力及び改質制御停止中圧力を検出する場合には、改質制御実行中の目標EGR率に維持したまま改質制御を停止する必要があるため、エンジン11の燃焼性が悪化する可能性がある。 Further, as shown in the comparative example indicated by the broken line in FIG. 3, when the reforming control is shifted from the execution to the stop, the EGR gas flow rate is controlled to the EGR gas flow rate corresponding to the target EGR rate during the reforming control execution. When the reforming control execution pressure and the reforming control stop pressure are detected, it is necessary to stop the reforming control while maintaining the target EGR rate during the reforming control execution. Can get worse.
この点、本実施例1では、図3に実線で示すように、改質制御停止中の目標EGR率に切り替えてから改質制御を停止することができ、エンジン11の燃焼性が悪化することを防止することができる。
In this regard, in the first embodiment, as indicated by a solid line in FIG. 3, the reforming control can be stopped after switching to the target EGR rate during which the reforming control is stopped, and the combustibility of the
尚、エンジン11の燃焼性の悪化を許容範囲内に抑えることができれば、改質制御の実行から停止に移行する際に、EGRガス流量を改質制御実行中の目標EGR率(又は改質制御実行中の目標EGR率と改質制御停止中の目標EGR率の中間の目標EGR率)に相当するEGRガス流量に制御した状態で、改質制御実行中圧力及び改質制御停止中圧力を検出するようにしても良い。
If the deterioration of the combustibility of the
また、本実施例1では、改質制御の実行中に吸気圧力センサ19で改質制御実行中圧力を検出すると共に現在の運転条件における改質制御停止中圧力を推定するようにしている。このようにすれば、改質制御の実行中に改質ガス量を何回も算出することができ、改質ガス量の算出頻度を多くすることができる。
In the first embodiment, the reforming control execution pressure is detected by the
この際、本実施例1では、改質制御の停止中に吸気圧力センサ19で改質制御停止中圧力を検出して、その改質制御停止中圧力を運転条件毎に学習し、改質制御の実行中に吸気圧力センサ19で改質制御実行中圧力を検出したときに、改質制御停止中圧力の学習値に基づいて現在の運転条件における改質制御停止中圧力を推定する。このようにすれば、改質制御の実行中に改質制御停止中圧力を精度良く推定することができる。
At this time, in the first embodiment, the reforming control stop pressure is detected by the
或は、予め運転条件と改質制御停止中圧力との関係を規定したマップを記憶しておき、改質制御の実行中に吸気圧力センサ19で改質制御実行中圧力を検出したときに、マップを用いて現在の運転条件における改質制御停止中圧力を推定する。このようにしても、改質制御の実行中に改質制御停止中圧力を精度良く推定することができる。
Alternatively, a map that prescribes the relationship between the operating conditions and the reforming control stop pressure is stored in advance, and when the reforming control executing pressure is detected by the
また、本実施例1では、改質制御の停止中に改質制御実行条件が成立したときに、吸気圧力センサ19で改質制御停止中圧力を検出した後、改質制御を実行して吸気圧力センサ19で改質制御実行中圧力を検出するようにしている。このようにすれば、改質制御の停止中に改質制御実行条件が成立して改質制御を実行する際に改質ガス量を算出することができる。
Further, in the first embodiment, when the reforming control execution condition is satisfied while the reforming control is stopped, the reforming control is executed after the reforming control stopping pressure is detected by the
この際、本実施例1では、図2に実線で示すように、EGRガス流量を改質制御停止中の目標EGRガス流量(改質制御停止中の目標EGR率に相当するEGRガス流量)に制御した状態で、改質制御停止中圧力及び改質制御実行中圧力を検出し、改質制御実行中圧力を検出した後に、改質制御停止中の目標EGR率から改質制御実行中の目標EGR率に切り替えるようにしている。このようにすれば、同一のEGRガス流量(改質制御の停止中の目標EGR率に相当するEGRガス流量)に制御した状態で検出した改質制御実行中圧力と改質制御停止中圧力との圧力差を用いて改質ガス量を算出することができ、改質ガス量の算出精度を向上させることができる。 At this time, in the first embodiment, as shown by a solid line in FIG. 2, the EGR gas flow rate is changed to the target EGR gas flow rate while the reforming control is stopped (EGR gas flow rate corresponding to the target EGR rate when the reforming control is stopped). In a controlled state, the pressure during reforming control stop and the pressure during reforming control are detected, and after the pressure during reforming control is detected, the target during reforming control is determined from the target EGR rate when reforming control is stopped. Switching to the EGR rate is made. By doing this, the reforming control execution pressure and the reforming control stop pressure detected in the state of being controlled to the same EGR gas flow rate (EGR gas flow rate corresponding to the target EGR rate during the stop of reforming control) The amount of reformed gas can be calculated using the pressure difference, and the calculation accuracy of the reformed gas amount can be improved.
また、図2に破線で示す比較例のように、改質制御の停止から実行に移行する際に、EGRガス流量を改質制御実行中の目標EGR率に相当するEGRガス流量に制御した状態で、改質制御停止中圧力及び改質制御実行中圧力を検出する場合には、改質制御の停止中に改質制御実行中の目標EGR率に切り替える必要があり、エンジン11の燃焼性が悪化する可能性がある。
In addition, as in the comparative example indicated by the broken line in FIG. 2, the state in which the EGR gas flow rate is controlled to the EGR gas flow rate corresponding to the target EGR rate during execution of the reforming control when the reforming control is stopped and executed. Thus, when the pressure during reforming control stop and the pressure during reforming control are detected, it is necessary to switch to the target EGR rate during reforming control while the reforming control is stopped, and the combustibility of the
この点、本実施例では、図2に実線で示すように、改質制御を実行してから改質制御実行中の目標EGR率に切り替えることができ、エンジン11の燃焼性が悪化することを防止することができる。
In this regard, in the present embodiment, as indicated by a solid line in FIG. 2, it is possible to switch to the target EGR rate during execution of the reforming control after executing the reforming control, and the combustibility of the
尚、エンジン11の燃焼性の悪化を許容範囲内に抑えることができれば、改質制御の停止から実行に移行する際に、EGRガス流量を改質制御実行中の目標EGR率(又は改質制御実行中の目標EGR率と改質制御停止中の目標EGR率の中間の目標EGR率)に相当するEGRガス流量に制御した状態で、改質制御停止中圧力及び改質制御実行中圧力を検出するようにしても良い。
If the deterioration of the combustibility of the
また、本実施例1では、算出した改質ガス量とその改質ガス量を算出した運転条件における基準改質ガス量とを比較して燃料改質触媒36の劣化状態(劣化率)を判定するようにしている。このようにすれば、実際に算出した改質ガス量を用いて燃料改質触媒36の劣化状態を精度良く判定することができる。
Further, in the first embodiment, the deterioration state (deterioration rate) of the
更に、本実施例1では、算出した改質ガス量に基づいて改質制御実行中の目標EGR率と改質用燃料の噴射量を補正するようにしている。このようにすれば、実際に算出した改質ガス量を用いて改質制御実行中の目標EGR率や改質用燃料の噴射量を精度良く補正することができる。 Further, in the first embodiment, the target EGR rate during the reforming control and the injection amount of the reforming fuel are corrected based on the calculated reformed gas amount. In this way, it is possible to accurately correct the target EGR rate during the reforming control and the injection amount of the reforming fuel using the actually calculated reformed gas amount.
次に、図6を用いて本発明の実施例2を説明する。但し、前記実施例1と実質的に同一部分には同一符号を付して説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。 Next, Embodiment 2 of the present invention will be described with reference to FIG. However, parts that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified, and parts different from those in the first embodiment are mainly described.
本実施例2では、図6に示すように、EGR配管32のうちのEGRクーラ33及びEGRバルブ34の下流側に、EGRガス圧力センサ38(圧力情報取得手段)が設けられ、このEGRガス圧力センサ38で燃料改質触媒36の下流側のガス(改質ガスを含むEGRガス)の圧力を検出する。
In the second embodiment, as shown in FIG. 6, an EGR gas pressure sensor 38 (pressure information acquisition means) is provided downstream of the
そして、ECU37により図4及び図5の各ルーチンを実行することで、改質制御の実行中にEGRガス圧力センサ38で検出されるガス圧力(改質制御実行中圧力)と改質制御の停止中にEGRガス圧力センサ38で検出されるガス圧力(改質制御停止中圧力)との圧力差に基づいて、改質制御の実行中に生成される改質ガス量を算出する。
4 and 5 are executed by the
以上説明した本実施例2においても前記実施例1とほぼ同様の効果を得ることができる。しかも、本実施例2では、EGR配管32に設けたEGRガス圧力センサ38で燃料改質触媒36の下流側のガスの圧力を直接検出することができるため、圧力差に基づいた改質ガス量の算出精度を更に向上させることができる。
In the second embodiment described above, substantially the same effects as those of the first embodiment can be obtained. Moreover, in the second embodiment, the pressure of the gas on the downstream side of the
尚、吸気圧力センサ19の出力等に基づいて燃料改質触媒36の下流側のガスの圧力をマップ又は数式等により推定(算出)し、改質制御実行中に推定されるガス圧力(改質制御実行中圧力)と改質制御停止中に推定されるガス圧力(改質制御停止中圧力)との圧力差に基づいて、改質制御実行中に生成される改質ガス量を算出するようにしても良い。この場合、EGRガス圧力センサ38を省略した構成としても良く、ECU37が特許請求の範囲でいう圧力情報取得手段としての役割を果たす。
Note that the gas pressure on the downstream side of the
また、上記各実施例1,2では、前述した(1) 〜(3) の三つ方法で改質制御停止中圧力及び改質制御実行中圧力を検出(又は推定)して改質ガス量を算出するようにしたが、これに限定されず、例えば、(1) 〜(3) のうちの一つの方法又は二つの方法で改質制御停止中圧力及び改質制御実行中圧力を検出(又は推定)して改質ガス量を算出するようにしても良い。 In each of the first and second embodiments, the reforming gas amount is detected by detecting (or estimating) the reforming control stoppage pressure and the reforming control execution pressure by the three methods (1) to (3) described above. However, the present invention is not limited to this. For example, the reforming control stop pressure and the reforming control execution pressure are detected by one or two methods (1) to (3) ( Alternatively, the reformed gas amount may be calculated by estimating.
また、上記各実施例1,2では、燃料改質触媒36の下流側のガスの圧力情報(圧力又はこれと相関関係を有する情報)として、燃料改質触媒36の下流側のガスの圧力又は吸気管12のガスの圧力(吸気圧力)を用いて、改質ガス量を算出するようにしている。しかし、これに限定されず、燃料改質触媒36の下流側のガスの圧力情報として、燃料改質触媒36の下流側のガスの流量又は吸気管12のガスの流量(吸気流量)を用いて、改質ガス量を算出するようにしても良い。
Further, in each of the first and second embodiments, as the pressure information (pressure or information correlated with the pressure) of the gas on the downstream side of the
この場合、例えば、EGRガス圧力センサ38の出力等に基づいて燃料改質触媒36の下流側のガスの流量をマップ又は数式等により推定(算出)し、改質制御実行中に推定されるガス流量(改質制御実行中流量)と改質制御停止中に推定されるガス流量(改質制御停止中流量)との流量差に基づいて、改質制御実行中に生成される改質ガス量を算出するようにしても良い。
In this case, for example, the gas flow rate on the downstream side of the
或は、吸気圧力センサ19の出力等に基づいて燃料改質触媒36の下流側のガスの流量をマップ又は数式等により推定(算出)し、改質制御実行中に推定されるガス流量(改質制御実行中流量)と改質制御停止中に推定されるガス流量(改質制御停止中流量)との流量差に基づいて、改質制御実行中に生成される改質ガス量を算出するようにしても良い。
Alternatively, the flow rate of the gas downstream of the
或は、燃料改質触媒36の下流側のガスの流量を検出する流量センサを設け、改質制御の実行中に流量センサで検出されるガス流量(改質制御実行中流量)と改質制御の停止中に流量センサで検出されるガス流量(改質制御停止中流量)との流量差に基づいて、改質制御の実行中に生成される改質ガス量を算出するようにしても良い。
Alternatively, a flow rate sensor for detecting the flow rate of the gas downstream of the
或は、吸気管12(例えばスロットルバルブ16の下流側)のガスの流量を検出する流量センサを設け、改質制御の実行中に流量センサで検出されるガス流量(改質制御実行中流量)と改質制御の停止中に流量センサで検出されるガス流量(改質制御停止中流量)との流量差に基づいて、改質制御の実行中に生成される改質ガス量を算出するようにしても良い。 Alternatively, a flow rate sensor that detects the flow rate of the gas in the intake pipe 12 (for example, downstream of the throttle valve 16) is provided, and the gas flow rate (flow rate during execution of reforming control) detected by the flow rate sensor during reforming control. And the amount of reformed gas generated during execution of reforming control is calculated based on the flow rate difference between the gas flow rate detected by the flow sensor during reforming control stoppage (flow rate during reforming control stoppage) Anyway.
また、上記各実施例1,2では、改質ガス量と基準改質ガス量との比(=改質ガス量/基準改質ガス量)を燃料改質触媒36の劣化状態として算出するようにしたが、これに限定されず、例えば、基準改質ガス量と改質ガス量との差(=基準改質ガス量−改質ガス量)を燃料改質触媒36の劣化状態として算出するようにしても良い。
In the first and second embodiments, the ratio between the reformed gas amount and the reference reformed gas amount (= reformed gas amount / reference reformed gas amount) is calculated as the deterioration state of the
その他、本発明は、図1及び図6に示すような吸気ポート噴射式エンジンに限定されず、筒内噴射式エンジンや、吸気ポート噴射用の燃料噴射弁と筒内噴射用の燃料噴射弁の両方を備えたデュアル噴射式のエンジンにも適用して実施できる。 In addition, the present invention is not limited to the intake port injection type engine as shown in FIG. 1 and FIG. 6, but includes an in-cylinder injection type engine, a fuel injection valve for intake port injection, and a fuel injection valve for in-cylinder injection. The present invention can also be applied to a dual injection engine equipped with both.
11…エンジン(内燃機関)、12…吸気管(吸気通路)、19…吸気圧力センサ(圧力情報取得手段)、21…主燃料噴射弁(主燃料噴射手段)、23…排気管(排気通路)、24…触媒、32…EGR配管(EGR通路)、35…改質用燃料噴射弁(改質用燃料噴射手段)、36…燃料改質触媒、37…ECU(改質制御手段,改質ガス量算出手段,劣化判定手段,補正手段,圧力情報取得手段)、38…EGRガス圧力センサ(圧力情報取得手段)
DESCRIPTION OF
Claims (8)
所定の改質制御実行条件が成立したときに前記改質用燃料噴射手段(35)で前記改質用燃料を噴射して前記燃料改質触媒(36)で前記改質用燃料を改質して改質ガスを生成する改質制御を実行する改質制御手段(37)と、
前記燃料改質触媒(36)の下流側のガスの圧力又はこれと相関関係を有する情報(以下これらを「圧力情報」と総称する)を検出又は推定する圧力情報取得手段(19,37,38)と、
前記改質制御の実行中に前記圧力情報取得手段(19,37,38)で検出又は推定される圧力情報(以下「改質制御実行中圧力情報」という)と前記改質制御の停止中に前記圧力情報取得手段(19,37,38)で検出又は推定される圧力情報(以下「改質制御停止中圧力情報」という)との差に基づいて、前記改質制御の実行中に生成される改質ガス量を算出する改質ガス量算出手段(37)と
を備え、
前記改質ガス量算出手段(37)は、前記改質制御の実行中に所定条件が成立したときに、前記圧力情報取得手段(19,37,38)で前記改質制御実行中圧力情報を検出又は推定した後、前記改質制御を停止して前記圧力情報取得手段(19,37,38)で前記改質制御停止中圧力情報を検出又は推定し、
前記改質ガス量算出手段(37)は、前記改質制御実行中圧力情報を検出又は推定する前に、前記改質制御の実行中の目標EGR率から前記改質制御の停止中の目標EGR率に切り替えて、前記EGRガスの流量を前記改質制御の停止中の目標EGR率に相当するEGRガス流量に制御した状態で前記改質制御実行中圧力情報及び前記改質制御停止中圧力情報を検出又は推定することを特徴とする内燃機関の燃料改質装置。 A main fuel injection means (21) for injecting main fuel supplied to the internal combustion engine (11), and an intake passage (12) using EGR gas as a part of exhaust gas from the exhaust passage (23) of the internal combustion engine (11). An EGR passage (32) for recirculation, reforming fuel injection means (35) for injecting reforming fuel into the EGR passage (32), and the reforming fuel disposed in the EGR passage (32). A fuel reformer for an internal combustion engine, comprising a fuel reforming catalyst (36) for reforming the reforming fuel injected by the fuel injection means (35).
When a predetermined reforming control execution condition is satisfied, the reforming fuel is injected by the reforming fuel injection means (35), and the reforming fuel is reformed by the fuel reforming catalyst (36). Reforming control means (37) for executing reforming control to generate reformed gas
Pressure information acquisition means (19, 37, 38) for detecting or estimating the pressure of the gas downstream of the fuel reforming catalyst (36) or information correlated therewith (hereinafter collectively referred to as “pressure information”). )When,
Pressure information detected or estimated by the pressure information acquisition means (19, 37, 38) during execution of the reforming control (hereinafter referred to as “pressure information during reforming control execution”) and while the reforming control is stopped Based on the difference from the pressure information detected or estimated by the pressure information acquisition means (19, 37, 38) (hereinafter referred to as “reforming control stop pressure information”), it is generated during the execution of the reforming control. that the reformed gas amount calculating means (37) for calculating a reformed gas amount and provided with,
The reformed gas amount calculating means (37) uses the pressure information acquisition means (19, 37, 38) to obtain the pressure information during execution of the reforming control when a predetermined condition is satisfied during the execution of the reforming control. After the detection or estimation, the reforming control is stopped, and the pressure information acquisition means (19, 37, 38) detects or estimates the pressure information during the reforming control stop,
The reformed gas amount calculating means (37) determines the target EGR during the stop of the reforming control from the target EGR rate during the reforming control before detecting or estimating the pressure information during the reforming control. The reforming control execution pressure information and the reforming control stop pressure information in a state where the EGR gas flow rate is controlled to the EGR gas flow rate corresponding to the target EGR rate during the stop of the reforming control. A fuel reformer for an internal combustion engine, characterized by detecting or estimating .
所定の改質制御実行条件が成立したときに前記改質用燃料噴射手段(35)で前記改質用燃料を噴射して前記燃料改質触媒(36)で前記改質用燃料を改質して改質ガスを生成する改質制御を実行する改質制御手段(37)と、
前記燃料改質触媒(36)の下流側のガスの圧力又はこれと相関関係を有する情報(以下これらを「圧力情報」と総称する)を検出又は推定する圧力情報取得手段(19,37,38)と、
前記改質制御の実行中に前記圧力情報取得手段(19,37,38)で検出又は推定される圧力情報(以下「改質制御実行中圧力情報」という)と前記改質制御の停止中に前記圧力情報取得手段(19,37,38)で検出又は推定される圧力情報(以下「改質制御停止中圧力情報」という)との差に基づいて、前記改質制御の実行中に生成される改質ガス量を算出する改質ガス量算出手段(37)と
を備え、
前記改質ガス量算出手段(37)は、前記改質制御の停止中に前記改質制御実行条件が成立したときに、前記圧力情報取得手段(19,37,38)で前記改質制御停止中圧力情報を検出又は推定した後、前記改質制御を実行して前記圧力情報取得手段(19,37,38)で前記改質制御実行中圧力情報を検出又は推定し、
前記改質ガス量算出手段(37)は、前記EGRガスの流量を前記改質制御の停止中の目標EGR率に相当するEGRガス流量に制御した状態で前記改質制御停止中圧力情報及び前記改質制御実行中圧力情報を検出又は推定し、前記改質制御実行中圧力情報を検出又は推定した後に、前記改質制御の停止中の目標EGR率から前記改質制御の実行中の目標EGR率に切り替えることを特徴とする内燃機関の燃料改質装置。 A main fuel injection means (21) for injecting main fuel supplied to the internal combustion engine (11), and an intake passage (12) using EGR gas as a part of exhaust gas from the exhaust passage (23) of the internal combustion engine (11). An EGR passage (32) for recirculation, reforming fuel injection means (35) for injecting reforming fuel into the EGR passage (32), and the reforming fuel disposed in the EGR passage (32). A fuel reformer for an internal combustion engine, comprising a fuel reforming catalyst (36) for reforming the reforming fuel injected by the fuel injection means (35).
When a predetermined reforming control execution condition is satisfied, the reforming fuel is injected by the reforming fuel injection means (35), and the reforming fuel is reformed by the fuel reforming catalyst (36). Reforming control means (37) for executing reforming control to generate reformed gas
Pressure information acquisition means (19, 37, 38) for detecting or estimating the pressure of the gas downstream of the fuel reforming catalyst (36) or information correlated therewith (hereinafter collectively referred to as “pressure information”). )When,
Pressure information detected or estimated by the pressure information acquisition means (19, 37, 38) during execution of the reforming control (hereinafter referred to as “pressure information during reforming control execution”) and while the reforming control is stopped Based on the difference from the pressure information detected or estimated by the pressure information acquisition means (19, 37, 38) (hereinafter referred to as “reforming control stop pressure information”), it is generated during the execution of the reforming control. A reformed gas amount calculating means (37) for calculating a reformed gas amount;
With
The reformed gas amount calculating means (37) stops the reforming control by the pressure information acquiring means (19, 37, 38) when the reforming control execution condition is satisfied while the reforming control is stopped. After detecting or estimating medium pressure information, the reforming control is executed, and the pressure information acquisition means (19, 37, 38) detects or estimates the reforming control execution pressure information,
The reformed gas amount calculating means (37) controls the reforming control stop pressure information and the EGR gas flow rate in a state in which the flow rate of the EGR gas is controlled to an EGR gas flow rate corresponding to the target EGR rate when the reforming control is stopped. After reforming control execution pressure information is detected or estimated, and after the reforming control execution pressure information is detected or estimated, the target EGR during execution of the reforming control is determined from the target EGR rate when the reforming control is stopped. the fuel reforming apparatus of the internal combustion engine you and switches the rate.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014258528A JP6394365B2 (en) | 2014-02-17 | 2014-12-22 | Fuel reformer for internal combustion engine |
PCT/JP2015/000506 WO2015122155A1 (en) | 2014-02-17 | 2015-02-05 | Fuel reformer for internal combustion engine |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014028025 | 2014-02-17 | ||
JP2014028025 | 2014-02-17 | ||
JP2014258528A JP6394365B2 (en) | 2014-02-17 | 2014-12-22 | Fuel reformer for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015166592A JP2015166592A (en) | 2015-09-24 |
JP6394365B2 true JP6394365B2 (en) | 2018-09-26 |
Family
ID=53799907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014258528A Active JP6394365B2 (en) | 2014-02-17 | 2014-12-22 | Fuel reformer for internal combustion engine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6394365B2 (en) |
WO (1) | WO2015122155A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019203487A (en) * | 2018-05-25 | 2019-11-28 | 株式会社豊田中央研究所 | Fuel reforming device and control method therefor |
JP2021148055A (en) * | 2020-03-18 | 2021-09-27 | 株式会社デンソー | Control device |
JP7476737B2 (en) | 2020-09-09 | 2024-05-01 | マツダ株式会社 | Engine fuel reforming system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08246962A (en) * | 1995-03-08 | 1996-09-24 | Hitachi Ltd | Egr diagnosing device for internal combustion engine |
JP4487394B2 (en) * | 2000-07-28 | 2010-06-23 | 日産自動車株式会社 | Reformed gas supply device for fuel reformed gas engine |
JP4867886B2 (en) * | 2007-10-18 | 2012-02-01 | トヨタ自動車株式会社 | Exhaust gas reformer |
JP2009144612A (en) * | 2007-12-14 | 2009-07-02 | Toyota Motor Corp | Fuel reforming device of internal combustion engine |
-
2014
- 2014-12-22 JP JP2014258528A patent/JP6394365B2/en active Active
-
2015
- 2015-02-05 WO PCT/JP2015/000506 patent/WO2015122155A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2015166592A (en) | 2015-09-24 |
WO2015122155A1 (en) | 2015-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6217269B2 (en) | Fuel reformer for internal combustion engine | |
US8267076B2 (en) | Engine control apparatus | |
JP2012241608A (en) | Diagnostic apparatus for deterioration in catalyst in fuel-reforming system for internal combustion engine | |
JP4013704B2 (en) | Exhaust reformer system for internal combustion engine | |
US9109524B2 (en) | Controller for internal combustion engine | |
JP6394365B2 (en) | Fuel reformer for internal combustion engine | |
JP4605060B2 (en) | Control device for internal combustion engine | |
JP2007315193A (en) | Air-fuel ratio detecting device of internal combustion engine | |
JP6241147B2 (en) | Catalyst temperature estimation device for internal combustion engine | |
JP2006029084A (en) | Control device of internal combustion engine | |
JP6658374B2 (en) | Control method for fuel reforming system | |
JP5966377B2 (en) | Control device for internal combustion engine | |
JP2006329012A (en) | Fuel injection control device of cylinder injection internal combustion engine | |
JP2008095627A (en) | Air-fuel ratio control device for internal combustion engine | |
US20080087260A1 (en) | Air-fuel ratio control system for internal combustion engine | |
JP2010084670A (en) | Air-fuel ratio control device of internal combustion engine | |
JP5187537B2 (en) | Fuel injection control device for internal combustion engine | |
JP6481567B2 (en) | Fuel reforming method and fuel reforming apparatus | |
JP2013015105A (en) | Knock determination apparatus for internal combustion engine | |
JP6394364B2 (en) | Fuel reformer for internal combustion engine | |
JP2015151873A (en) | Fuel reformer of internal combustion engine | |
JP4998742B2 (en) | Control device for internal combustion engine | |
JP2010084671A (en) | Air-fuel ratio control device of internal combustion engine | |
JP2006037921A (en) | Exhaust system part temperature estimating device of internal combustion engine | |
JP6361534B2 (en) | Control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20160307 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20160309 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180410 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180528 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180731 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180813 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6394365 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |