JP6394364B2 - Fuel reformer for internal combustion engine - Google Patents

Fuel reformer for internal combustion engine Download PDF

Info

Publication number
JP6394364B2
JP6394364B2 JP2014258527A JP2014258527A JP6394364B2 JP 6394364 B2 JP6394364 B2 JP 6394364B2 JP 2014258527 A JP2014258527 A JP 2014258527A JP 2014258527 A JP2014258527 A JP 2014258527A JP 6394364 B2 JP6394364 B2 JP 6394364B2
Authority
JP
Japan
Prior art keywords
reforming
fuel
injection
egr gas
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014258527A
Other languages
Japanese (ja)
Other versions
JP2015166591A (en
Inventor
賢司 青柳
賢司 青柳
陽介 中川
陽介 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014258527A priority Critical patent/JP6394364B2/en
Priority to PCT/JP2015/000505 priority patent/WO2015122154A1/en
Publication of JP2015166591A publication Critical patent/JP2015166591A/en
Application granted granted Critical
Publication of JP6394364B2 publication Critical patent/JP6394364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/36Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for adding fluids other than exhaust gas to the recirculation passage; with reformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics

Description

本発明は、内燃機関の燃料を改質する燃料改質触媒を備えた内燃機関の燃料改質装置に関する発明である。   The present invention relates to a fuel reforming apparatus for an internal combustion engine provided with a fuel reforming catalyst for reforming the fuel of the internal combustion engine.

内燃機関の燃料を改質して燃費を改善する技術として、例えば、特許文献1(特開2007−285157号公報)に記載されたものがある。このものは、内燃機関の排気通路から排出ガスの一部をEGRガスとして吸気通路へ還流させるEGR通路の途中に、改質用燃料を噴射する改質用燃料噴射弁と改質用燃料を改質する燃料改質触媒とを配置する。そして、改質用燃料噴射弁により噴射された改質用燃料とEGRガス中の水分(水蒸気)等を燃料改質触媒で改質反応させて水素(H2 )や一酸化炭素(CO)を生成することで、改質用燃料を改質して燃焼性の高い改質ガスを生成し、その改質ガスを内燃機関の吸気通路に供給するようにしている。また、この特許文献1では、燃料改質触媒の温度と改質ガス量とに基づいて設定された制御領域内となるように改質用燃料の噴射量を制御することで、燃料改質触媒の劣化を抑制して改質性能の向上を図るようにしている。 As a technique for improving the fuel consumption by reforming the fuel of the internal combustion engine, for example, there is one described in Patent Document 1 (Japanese Patent Laid-Open No. 2007-285157). This is a modification of the reforming fuel injection valve for injecting reforming fuel and the reforming fuel in the middle of the EGR passage for returning a part of the exhaust gas from the exhaust passage of the internal combustion engine to the intake passage as EGR gas. And a fuel reforming catalyst to be improved. The reforming fuel injected by the reforming fuel injection valve and the moisture (water vapor) in the EGR gas are reformed by the fuel reforming catalyst to generate hydrogen (H 2 ) or carbon monoxide (CO). Thus, the reforming fuel is reformed to generate a reformed gas having high combustibility, and the reformed gas is supplied to the intake passage of the internal combustion engine. Further, in Patent Document 1, the fuel reforming catalyst is controlled by controlling the injection amount of the reforming fuel so as to be within the control region set based on the temperature and the reforming gas amount of the fuel reforming catalyst. The reforming performance is improved by suppressing deterioration of the resin.

特開2007−285157号公報JP 2007-285157 A

ところで、内燃機関の排気圧の脈動等の影響でEGRガスの圧力が脈動し、このEGRガスの圧力脈動によってEGRガス流量が変動する。しかし、上記特許文献1の技術では、このようなEGRガスの圧力脈動の影響が全く考慮されていないため、EGRガスの圧力脈動によるEGRガス流量の変動の影響を受けて、改質用燃料の噴射毎にEGRガス(水蒸気)と改質用燃料の混合割合が変動してしまう可能性がある。EGRガスと改質用燃料の混合割合が変動すると、燃料改質触媒に供給されるガスのS/C(水蒸気と炭素の比)が変動して、燃料改質触媒の劣化抑制効果や改質性能が低下してしまう可能性がある。例えば、S/Cが小さくなる(つまり水蒸気に対して炭素が多くなる)と、燃料改質触媒での炭素の析出量が増加して、燃料改質触媒の炭素堆積量が増加するため、燃料改質触媒の劣化度合が大きくなって改質性能が低下する傾向がある。   By the way, the pressure of the EGR gas pulsates due to the influence of the exhaust pressure pulsation of the internal combustion engine, and the EGR gas flow rate fluctuates due to the pressure pulsation of the EGR gas. However, in the technique of the above-mentioned Patent Document 1, since the influence of the pressure pulsation of the EGR gas is not taken into consideration at all, the influence of the change in the EGR gas flow rate due to the pressure pulsation of the EGR gas causes the reforming fuel. There is a possibility that the mixing ratio of the EGR gas (water vapor) and the reforming fuel will fluctuate for each injection. When the mixing ratio of the EGR gas and the reforming fuel changes, the S / C (ratio of water vapor to carbon) of the gas supplied to the fuel reforming catalyst fluctuates, and the deterioration suppressing effect and reforming of the fuel reforming catalyst Performance may be degraded. For example, when the S / C is small (that is, carbon is increased with respect to water vapor), the amount of carbon deposited on the fuel reforming catalyst is increased, and the amount of carbon deposited on the fuel reforming catalyst is increased. The degree of deterioration of the reforming catalyst tends to increase and the reforming performance tends to decrease.

そこで、本発明が解決しようとする課題は、改質用燃料の各噴射毎のEGRガスと改質用燃料の混合割合の変動を抑制することができる内燃機関の燃料改質装置を提供することにある。   Accordingly, the problem to be solved by the present invention is to provide a fuel reformer for an internal combustion engine that can suppress fluctuations in the mixing ratio of EGR gas and reforming fuel for each injection of reforming fuel. It is in.

上記課題を解決するために、請求項1に係る発明は、内燃機関(11)に供給される主燃料を噴射する主燃料噴射手段(21)と、内燃機関(11)の排気通路(23)から排出ガスの一部をEGRガスとして吸気通路(12)へ還流させるEGR通路(32)と、EGR通路(32)内に改質用燃料を噴射する改質用燃料噴射手段(35)と、EGR通路(32)に配置されて改質用燃料噴射手段(35)により噴射された改質用燃料を改質する燃料改質触媒(36)とを備えた内燃機関の燃料改質装置において、所定の改質制御実行条件が成立したときに改質用燃料噴射手段(35)で改質用燃料を噴射して燃料改質触媒(36)で改質用燃料を改質して改質ガスを生成する改質制御を実行する改質制御手段(37)と、改質用燃料の噴射位置を通過するEGRガスの圧力又はこれと相関関係を有する情報(以下これらを「噴射位置付近のEGRガスの圧力情報」と総称する)を検出又は推定する圧力情報取得手段(37,38)とを備え、改質制御手段(37)は、噴射位置付近のEGRガスの圧力情報に基づいて改質用燃料の噴射条件を設定し、改質制御手段(37)は、噴射位置付近のEGRガスの圧力情報の脈動に同期するように改質用燃料の噴射時期を設定するようにしたものである。 In order to solve the above problems, the invention according to claim 1 is directed to a main fuel injection means (21) for injecting main fuel supplied to the internal combustion engine (11), and an exhaust passage (23) of the internal combustion engine (11). An EGR passage (32) that recirculates a part of the exhaust gas as EGR gas to the intake passage (12), reforming fuel injection means (35) that injects reforming fuel into the EGR passage (32), A fuel reformer for an internal combustion engine, comprising a fuel reforming catalyst (36) disposed in the EGR passage (32) and reforming the reforming fuel injected by the reforming fuel injection means (35). When a predetermined reforming control execution condition is satisfied, reforming fuel is injected by the reforming fuel injection means (35), and the reforming fuel is reformed by the fuel reforming catalyst (36), and reformed gas Reforming control means (37) for executing reforming control for generating reforming fuel and injection of reforming fuel Pressure information acquisition means (37, 38) for detecting or estimating the pressure of the EGR gas passing through the position or information correlated therewith (hereinafter collectively referred to as “pressure information of the EGR gas in the vicinity of the injection position”); The reforming control means (37) sets the injection condition of the reforming fuel based on the pressure information of the EGR gas near the injection position , and the reforming control means (37) is the EGR gas near the injection position. The reforming fuel injection timing is set in synchronization with the pulsation of the pressure information .

このようにすれば、噴射位置付近のEGRガスの圧力に応じて噴射位置付近のEGRガス流量が変化するのに対応して、改質用燃料の噴射条件(例えば噴射時期や噴射量)を適正に設定して、改質用燃料の各噴射毎のEGRガスと改質用燃料の混合割合をほぼ一定にすることができる。これにより、EGRガスの圧力脈動によってEGRガス流量が変動しても、改質用燃料の各噴射毎のEGRガスと改質用燃料の混合割合の変動(ばらつき)を抑制することができる。その結果、燃料改質触媒に供給されるガスのS/C(水蒸気と炭素の比)の変動(ばらつき)を抑制することができ、燃料改質触媒の劣化を抑制して改質性能を向上させることができる。   In this way, the reforming fuel injection conditions (for example, the injection timing and the injection amount) are appropriately set in response to the change in the EGR gas flow rate in the vicinity of the injection position in accordance with the pressure of the EGR gas in the vicinity of the injection position. Thus, the mixing ratio of EGR gas and reforming fuel for each injection of reforming fuel can be made substantially constant. As a result, even if the EGR gas flow rate fluctuates due to the pressure pulsation of the EGR gas, the fluctuation (variation) in the mixing ratio of the EGR gas and the reforming fuel for each injection of the reforming fuel can be suppressed. As a result, the fluctuation (variation) in the S / C (ratio of water vapor and carbon) of the gas supplied to the fuel reforming catalyst can be suppressed, and the reforming performance can be improved by suppressing the deterioration of the fuel reforming catalyst. Can be made.

図1は本発明の実施例1におけるエンジン制御システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an engine control system in Embodiment 1 of the present invention. 図2は実施例1の改質用燃料の噴射時期の設定方法を説明するタイムチャートである。FIG. 2 is a time chart illustrating a method for setting the reforming fuel injection timing according to the first embodiment. 図3は実施例1の改質制御ルーチンの処理の流れを示すフローチャートである。FIG. 3 is a flowchart showing the flow of processing of the reforming control routine of the first embodiment. 図4は実施例2の改質用燃料の噴射量の設定方法を説明するタイムチャートである。FIG. 4 is a time chart illustrating a method for setting the injection amount of the reforming fuel according to the second embodiment. 図5は実施例2の改質制御ルーチンの処理の流れを示すフローチャートである。FIG. 5 is a flowchart showing the flow of processing of the reforming control routine of the second embodiment.

以下、本発明を実施するための形態を具体化した幾つかの実施例を説明する。   Hereinafter, some embodiments embodying the mode for carrying out the present invention will be described.

本発明の実施例1を図1乃至図3に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関であるエンジン11の吸気管12(吸気通路)の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 (intake passage) of the engine 11 that is an internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. A throttle valve 16 whose opening is adjusted by a motor 15 and a throttle opening sensor 17 for detecting the opening (throttle opening) of the throttle valve 16 are provided on the downstream side of the air flow meter 14.

更に、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18に、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20に接続された吸気ポート又はその近傍に、それぞれ吸気ポートに主燃料を噴射する主燃料噴射弁21(主燃料噴射手段)が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各気筒の点火プラグ22の火花放電によって各気筒内の混合気に着火される。   Further, a surge tank 18 is provided on the downstream side of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure is provided in the surge tank 18. The surge tank 18 is provided with an intake manifold 20 for introducing air into each cylinder of the engine 11, and main fuel is injected into the intake port at or near the intake port connected to the intake manifold 20 of each cylinder. A main fuel injection valve 21 (main fuel injection means) is attached. An ignition plug 22 is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in each cylinder is ignited by spark discharge of the ignition plug 22 of each cylinder.

一方、エンジン11の排気管23(排気通路)には、排出ガスを浄化する三元触媒等の触媒24が設けられ、この触媒24の上流側と下流側に、それぞれ排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ25,26(空燃比センサ、酸素センサ等)が設けられている。   On the other hand, the exhaust pipe 23 (exhaust passage) of the engine 11 is provided with a catalyst 24 such as a three-way catalyst for purifying exhaust gas, and the exhaust gas air-fuel ratio or rich gas is respectively provided upstream and downstream of the catalyst 24. / Exhaust gas sensors 25 and 26 (air-fuel ratio sensor, oxygen sensor, etc.) for detecting lean etc. are provided.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ27や、ノッキングを検出するノックセンサ28が取り付けられている。また、クランク軸29の外周側には、クランク軸29が所定クランク角回転する毎にパルス信号を出力するクランク角センサ30が取り付けられ、このクランク角センサ30の出力信号に基づいてクランク角やエンジン回転速度が検出される。   A cooling water temperature sensor 27 that detects the cooling water temperature and a knock sensor 28 that detects knocking are attached to the cylinder block of the engine 11. A crank angle sensor 30 that outputs a pulse signal every time the crankshaft 29 rotates by a predetermined crank angle is attached to the outer peripheral side of the crankshaft 29. Based on the output signal of the crank angle sensor 30, the crank angle and engine The rotation speed is detected.

このエンジン11には、排気管23から排出ガスの一部をEGRガスとして吸気管12へ還流させるEGR装置31が搭載されている。このEGR装置31は、排気管23のうちの触媒24の上流側(又は下流側)と吸気管12のうちのスロットルバルブ16の下流側との間にEGR配管32(EGR通路)が接続され、このEGR配管32に、EGRガスを冷却するEGRクーラ33と、EGRガスの流量を調節するEGRバルブ34が設けられている。このEGRバルブ34を開弁することで排気管23からEGR配管32を通して吸気管12へEGRガスを還流させるようになっている。   The engine 11 is equipped with an EGR device 31 that recirculates a part of the exhaust gas from the exhaust pipe 23 to the intake pipe 12 as EGR gas. The EGR device 31 has an EGR pipe 32 (EGR passage) connected between the upstream side (or downstream side) of the catalyst 24 in the exhaust pipe 23 and the downstream side of the throttle valve 16 in the intake pipe 12. The EGR pipe 32 is provided with an EGR cooler 33 for cooling the EGR gas and an EGR valve 34 for adjusting the flow rate of the EGR gas. By opening the EGR valve 34, the EGR gas is recirculated from the exhaust pipe 23 to the intake pipe 12 through the EGR pipe 32.

また、EGR配管32のうちのEGRクーラ33の上流側には、EGR配管32内に改質用燃料を噴射する改質用燃料噴射弁35(改質用燃料噴射手段)が設けられている。主燃料噴射弁21と改質用燃料噴射弁35には、共通の燃料タンク(図示せず)から燃料が供給される。更に、EGR配管32のうちの改質用燃料噴射弁35の下流側には、改質用燃料噴射弁35により噴射された改質用燃料を改質する燃料改質触媒36が配置されている。この燃料改質触媒36は、排気管23内を流れる排出ガスと熱交換するように構成され、排出ガスの熱を利用して改質用燃料とEGRガス中の水分(水蒸気)等を改質反応させて水素(H2 )や一酸化炭素(CO)を生成することで、改質用燃料を改質して燃焼性の高い改質ガスを生成する。 A reforming fuel injection valve 35 (reforming fuel injection means) for injecting reforming fuel into the EGR pipe 32 is provided on the upstream side of the EGR cooler 33 in the EGR pipe 32. The main fuel injection valve 21 and the reforming fuel injection valve 35 are supplied with fuel from a common fuel tank (not shown). Further, a fuel reforming catalyst 36 for reforming the reforming fuel injected by the reforming fuel injection valve 35 is disposed on the downstream side of the reforming fuel injection valve 35 in the EGR pipe 32. . The fuel reforming catalyst 36 is configured to exchange heat with the exhaust gas flowing in the exhaust pipe 23, and reforms the reforming fuel and moisture (water vapor) in the EGR gas by using the heat of the exhaust gas. By reacting to generate hydrogen (H 2 ) and carbon monoxide (CO), the reforming fuel is reformed to generate a reformed gas having high combustibility.

また、EGR配管32のうちの改質用燃料噴射弁35の近傍には、改質用燃料の噴射位置を通過するEGRガスの圧力(以下「噴射位置付近のEGRガスの圧力」という)を検出する圧力センサ38(圧力情報取得手段)が設けられている。   Further, in the vicinity of the reforming fuel injection valve 35 in the EGR pipe 32, the pressure of the EGR gas passing through the reforming fuel injection position (hereinafter referred to as “the pressure of the EGR gas near the injection position”) is detected. A pressure sensor 38 (pressure information acquisition means) is provided.

上述した各種センサの出力は、電子制御ユニット(以下「ECU」と表記する)37に入力される。このECU37は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。   Outputs of the various sensors described above are input to an electronic control unit (hereinafter referred to as “ECU”) 37. The ECU 37 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount and the ignition timing are determined according to the engine operating state. The throttle opening (intake air amount) and the like are controlled.

その際、ECU37は、所定のEGR制御実行条件が成立したときに、エンジン運転状態に基づいて目標EGR率(EGR率の目標値)を算出し、この目標EGR率に相当するEGRガス流量(目標EGRガス流量)を実現するようにEGRバルブ34の開度を制御するEGR制御を実行する。ここで、EGR率は、筒内流入総ガス流量に対する筒内流入EGRガス流量の比率(=筒内流入EGRガス流量/筒内流入総ガス流量)とする。   At that time, the ECU 37 calculates a target EGR rate (target value of the EGR rate) based on the engine operating state when a predetermined EGR control execution condition is satisfied, and an EGR gas flow rate (target value) corresponding to the target EGR rate. EGR control for controlling the opening degree of the EGR valve 34 so as to realize (EGR gas flow rate) is executed. Here, the EGR rate is a ratio of the in-cylinder inflow EGR gas flow rate to the in-cylinder inflow total gas flow rate (= in-cylinder inflow EGR gas flow rate / in-cylinder inflow total gas flow rate).

また、本実施例1では、ECU37により後述する図3の改質制御ルーチンを実行することで、所定の改質制御実行条件が成立したときに、改質制御を実行する。この改質制御では、改質用燃料噴射弁35でEGR配管32内に改質用燃料を噴射し、その改質用燃料とEGRガス中の水分(水蒸気)等を燃料改質触媒36で改質反応させて水素や一酸化炭素を生成することで、改質用燃料を改質して燃焼性の高い改質ガスを生成し、その改質ガスを吸気管12に供給する。   In the first embodiment, the ECU 37 executes a reforming control routine shown in FIG. 3 to be described later, thereby executing reforming control when a predetermined reforming control execution condition is satisfied. In this reforming control, reforming fuel is injected into the EGR pipe 32 by the reforming fuel injection valve 35, and the reforming fuel and moisture (water vapor) in the EGR gas are reformed by the fuel reforming catalyst 36. The reforming fuel is reformed to generate a reformed gas having high combustibility by generating hydrogen and carbon monoxide through a quality reaction, and the reformed gas is supplied to the intake pipe 12.

ところで、エンジン11の排気圧の脈動等の影響でEGRガスの圧力が脈動し、このEGRガスの圧力脈動によってEGRガス流量が変動する(図2及び図4参照)。このため、図2に破線で示すように、EGRガスの圧力脈動の影響を考慮せずに改質用燃料の噴射時期を設定したり、或は、図4に破線で示すように、EGRガスの圧力脈動の影響を考慮せずに改質用燃料の噴射量を設定したりすると、EGRガスの圧力脈動によるEGRガス流量の変動の影響を受けて、改質用燃料の噴射毎にEGRガス(水蒸気)と改質用燃料の混合割合が変動してしまう可能性がある。EGRガスと改質用燃料の混合割合が変動すると、燃料改質触媒36に供給されるガスのS/C(水蒸気と炭素の比)が変動して、燃料改質触媒36の劣化抑制効果や改質性能が低下してしまう可能性がある。例えば、S/Cが小さくなる(つまり水蒸気に対して炭素が多くなる)と、燃料改質触媒36での炭素の析出量が増加して、燃料改質触媒36の炭素堆積量が増加するため、燃料改質触媒36の劣化度合が大きくなって改質性能が低下する傾向がある。
そこで、ECU37は、噴射位置付近のEGRガスの圧力(改質用燃料の噴射位置を通過するEGRガスの圧力)に基づいて改質用燃料の噴射条件を設定する。
Incidentally, the EGR gas pressure pulsates due to the pulsation of the exhaust pressure of the engine 11 and the EGR gas flow rate fluctuates due to the pressure pulsation of the EGR gas (see FIGS. 2 and 4). Therefore, as shown by the broken line in FIG. 2, the injection timing of the reforming fuel is set without considering the influence of the pressure pulsation of the EGR gas, or as shown by the broken line in FIG. If the injection amount of the reforming fuel is set without considering the effect of the pressure pulsation of the EGR gas, the EGR gas flow is affected by the change in the EGR gas flow rate due to the pressure pulsation of the EGR gas. There is a possibility that the mixing ratio of (steam) and reforming fuel will fluctuate. When the mixing ratio of the EGR gas and the reforming fuel varies, the S / C (ratio of water vapor to carbon) of the gas supplied to the fuel reforming catalyst 36 varies, and the deterioration suppressing effect of the fuel reforming catalyst 36 There is a possibility that the reforming performance deteriorates. For example, when the S / C is small (that is, the amount of carbon is increased with respect to water vapor), the amount of carbon deposited on the fuel reforming catalyst 36 increases, and the amount of carbon deposited on the fuel reforming catalyst 36 increases. The deterioration degree of the fuel reforming catalyst 36 tends to increase and the reforming performance tends to decrease.
Therefore, the ECU 37 sets the injection condition of the reforming fuel based on the pressure of the EGR gas in the vicinity of the injection position (the pressure of the EGR gas passing through the injection position of the reforming fuel).

本実施例1では、ECU37により後述する図3の改質制御ルーチンを実行することで、図2に実線で示すように、噴射位置付近のEGRガスの圧力脈動に同期するように改質用燃料の噴射時期を設定する。これにより、改質用燃料の各噴射時期における噴射位置付近のEGRガスの圧力(EGRガス流量)をほぼ一定にして、改質用燃料の各噴射毎のEGRガスと改質用燃料の混合割合をほぼ一定にすることができ、燃料改質触媒36に供給されるガスのS/Cをほぼ一定にすることができる。   In the first embodiment, the reforming control routine of FIG. 3 to be described later is executed by the ECU 37, so that the reforming fuel is synchronized with the pressure pulsation of the EGR gas in the vicinity of the injection position as shown by the solid line in FIG. Set the injection timing. As a result, the EGR gas pressure (EGR gas flow rate) near the injection position at each injection timing of the reforming fuel is made substantially constant, and the mixing ratio of the EGR gas and the reforming fuel for each injection of the reforming fuel. Can be made substantially constant, and the S / C of the gas supplied to the fuel reforming catalyst 36 can be made almost constant.

この際、本実施例1では、噴射位置付近のEGRガスの圧力がピーク値となるタイミングに改質用燃料の噴射時期を設定する(例えば、噴射位置付近のEGRガスの圧力がピーク値となるタイミングを改質用燃料の噴射期間が跨ぐように改質用燃料の噴射時期を設定する)ようにしている。   At this time, in the first embodiment, the injection timing of the reforming fuel is set at the timing when the pressure of the EGR gas near the injection position becomes the peak value (for example, the pressure of the EGR gas near the injection position becomes the peak value). The injection timing of the reforming fuel is set so that the timing of the injection period of the reforming fuel straddles the timing).

以下、本実施例1でECU37が実行する図3の改質制御ルーチンの処理内容を説明する。
図3に示す改質制御ルーチンは、ECU37の電源オン期間中に所定周期で繰り返し実行され、特許請求の範囲でいう改質制御手段としての役割を果たす。
Hereinafter, the processing content of the reforming control routine of FIG. 3 executed by the ECU 37 in the first embodiment will be described.
The reforming control routine shown in FIG. 3 is repeatedly executed at a predetermined cycle during the power-on period of the ECU 37, and plays a role as reforming control means in the claims.

本ルーチンが起動されると、まず、ステップ101で、改質制御実行条件が成立しているか否かを、例えば、EGR制御の実行条件が成立していること(つまりEGR制御の実行中であること)、燃料改質触媒36の温度が活性温度以上であること等の条件が全て成立しているか否かによって判定する。
このステップ101で、改質制御実行条件が不成立であると判定された場合には、ステップ102以降の処理を実行することなく、本ルーチンを終了する。
When this routine is started, first, at step 101, it is determined whether or not the reforming control execution condition is satisfied. For example, the execution condition of EGR control is satisfied (that is, the EGR control is being executed). That is, the determination is made based on whether all the conditions such as the temperature of the fuel reforming catalyst 36 being equal to or higher than the activation temperature are satisfied.
If it is determined in step 101 that the reforming control execution condition is not satisfied, this routine is terminated without executing the processing from step 102 onward.

一方、上記ステップ101で、改質制御実行条件が成立していると判定された場合には、ステップ102に進み、燃料改質触媒36の温度と燃料改質触媒36の劣化度合と目標EGR率等のうちの少なくとも一つに基づいて目標S/Cをマップ等により設定(算出)する。   On the other hand, if it is determined in step 101 that the reforming control execution condition is satisfied, the process proceeds to step 102 where the temperature of the fuel reforming catalyst 36, the degree of deterioration of the fuel reforming catalyst 36, and the target EGR rate. The target S / C is set (calculated) using a map or the like based on at least one of the above.

この後、ステップ103に進み、圧力センサ38で噴射位置付近のEGRガスの圧力を検出して、噴射位置付近のEGRガスの圧力脈動(圧力の波形)を検出する。この際、圧力センサ38から改質用燃料の噴射位置までの距離が比較的長い場合には、EGRガスの移送遅れを考慮したマップ又はEGRガスの挙動を模擬したモデル(数式等)を用いて、圧力センサ38の出力に基づいて噴射位置付近のEGRガスの圧力を算出する。   Thereafter, the process proceeds to step 103, where the pressure sensor 38 detects the pressure of the EGR gas near the injection position, and detects the pressure pulsation (pressure waveform) of the EGR gas near the injection position. At this time, if the distance from the pressure sensor 38 to the reforming fuel injection position is relatively long, a map that takes into account the EGR gas transfer delay or a model (formula etc.) that simulates the behavior of the EGR gas is used. Based on the output of the pressure sensor 38, the pressure of the EGR gas near the injection position is calculated.

尚、運転条件(例えば、エンジン回転速度、エンジン負荷、目標EGR率等)と噴射位置付近のEGRガスの圧力との関係を規定したマップを用いて、運転条件に基づいて噴射位置付近のEGRガスの圧力を推定(算出)して、噴射位置付近のEGRガスの圧力脈動を推定するようにしても良い。この場合、圧力センサ38を省略した構成としても良く、ECU37が特許請求の範囲でいう圧力情報取得手段としての役割を果たす。   It should be noted that EGR gas near the injection position based on the operation conditions using a map that defines the relationship between the operation conditions (for example, engine speed, engine load, target EGR rate, etc.) and the pressure of EGR gas near the injection position. The pressure pulsation of the EGR gas near the injection position may be estimated (calculated). In this case, the pressure sensor 38 may be omitted, and the ECU 37 serves as pressure information acquisition means in the scope of the claims.

この後、ステップ104に進み、EGRガスの挙動を模擬したモデル(数式等)を用いて、目標EGR率等に基づいてEGRガス流量を算出する。或は、圧力センサ38の出力に基づいてEGRガス流量をマップ等により算出する。この場合、噴射位置付近の平均的なEGRガス流量を算出するようにしても良いし、噴射時期(例えば噴射位置付近のEGRガスの圧力がピーク値となるタイミング)における噴射位置付近のEGRガス流量を算出するようにしても良い。   Thereafter, the process proceeds to step 104, and the EGR gas flow rate is calculated based on the target EGR rate and the like using a model (formula etc.) simulating the behavior of the EGR gas. Alternatively, the EGR gas flow rate is calculated by a map or the like based on the output of the pressure sensor 38. In this case, an average EGR gas flow rate in the vicinity of the injection position may be calculated, or an EGR gas flow rate in the vicinity of the injection position at the injection timing (for example, a timing at which the pressure of the EGR gas in the vicinity of the injection position becomes a peak value). May be calculated.

この後、ステップ105に進み、EGRガス流量と運転条件(例えば燃料の種類や空燃比等)に基づいてEGRガス中の水蒸気量をマップ等により算出して、目標S/Cになるように改質燃料の噴射量を算出する。   Thereafter, the process proceeds to step 105, where the amount of water vapor in the EGR gas is calculated by a map or the like based on the EGR gas flow rate and operating conditions (for example, fuel type, air-fuel ratio, etc.), and the target S / C is revised. The injection quantity of quality fuel is calculated.

この後、ステップ106に進み、EGRガス圧力ピークタイミング(噴射位置付近のEGRガスの圧力がピーク値となるタイミング)に改質用燃料の噴射時期を設定する。具体的には、EGRガス圧力ピークタイミングを改質用燃料の噴射期間が跨ぐように改質用燃料の噴射時期を設定する(図2参照)。或は、改質用燃料の噴射開始時期がEGRガス圧力ピークタイミングになるように改質用燃料の噴射時期を設定するようにしても良い。また、改質用燃料の噴射終了時期がEGRガス圧力ピークタイミングになるように改質用燃料の噴射時期を設定するようにしても良い。   Thereafter, the routine proceeds to step 106, where the injection timing of the reforming fuel is set at the EGR gas pressure peak timing (the timing at which the pressure of the EGR gas near the injection position reaches the peak value). Specifically, the reforming fuel injection timing is set such that the reforming fuel injection period straddles the EGR gas pressure peak timing (see FIG. 2). Alternatively, the reforming fuel injection timing may be set so that the reforming fuel injection start timing becomes the EGR gas pressure peak timing. Further, the reforming fuel injection timing may be set so that the reforming fuel injection end timing becomes the EGR gas pressure peak timing.

この後、ステップ107に進み、改質用燃料の噴射時期で改質用燃料噴射弁35により改質用燃料を噴射して改質制御を実行する。この改質制御では、改質用燃料噴射弁35でEGR配管32内に改質用燃料を噴射し、その改質用燃料とEGRガス中の水分(水蒸気)等を燃料改質触媒36で改質反応させて水素や一酸化炭素を生成することで、改質用燃料を改質して燃焼性の高い改質ガスを生成する。   Thereafter, the routine proceeds to step 107, where reforming fuel is injected by the reforming fuel injection valve 35 at the reforming fuel injection timing, and reforming control is executed. In this reforming control, reforming fuel is injected into the EGR pipe 32 by the reforming fuel injection valve 35, and the reforming fuel and moisture (water vapor) in the EGR gas are reformed by the fuel reforming catalyst 36. The reforming fuel is reformed to produce reformed gas with high combustibility by producing hydrogen and carbon monoxide through a quality reaction.

以上説明した本実施例1では、噴射位置付近のEGRガスの圧力脈動に同期するように改質用燃料の噴射時期を設定するようにしている。このようにすれば、改質用燃料の各噴射時期における噴射位置付近のEGRガスの圧力(EGRガス流量)をほぼ一定にして、改質用燃料の各噴射毎のEGRガスと改質用燃料の混合割合をほぼ一定にすることができる。これにより、EGRガスの圧力脈動によってEGRガス流量が変動しても、改質用燃料の各噴射毎のEGRガスと改質用燃料の混合割合の変動(ばらつき)を抑制することができる。その結果、燃料改質触媒36に供給されるガスのS/Cの変動(ばらつき)を抑制することができ、燃料改質触媒36の劣化を抑制して改質性能を向上させることができる。   In the first embodiment described above, the reforming fuel injection timing is set so as to be synchronized with the pressure pulsation of the EGR gas in the vicinity of the injection position. In this way, the EGR gas pressure (EGR gas flow rate) near the injection position at each injection timing of the reforming fuel is made substantially constant, and the EGR gas and the reforming fuel for each injection of the reforming fuel. The mixing ratio of can be made almost constant. As a result, even if the EGR gas flow rate fluctuates due to the pressure pulsation of the EGR gas, the fluctuation (variation) in the mixing ratio of the EGR gas and the reforming fuel for each injection of the reforming fuel can be suppressed. As a result, the S / C fluctuation (variation) of the gas supplied to the fuel reforming catalyst 36 can be suppressed, and the reforming performance can be improved by suppressing the deterioration of the fuel reforming catalyst 36.

また、本実施例1では、EGRガス圧力ピークタイミング(噴射位置付近のEGRガスの圧力がピーク値となるタイミング)に改質用燃料の噴射時期を設定するようにしている。EGRガス圧力ピークタイミングは比較的精度良く検出することができるため、EGRガス圧力ピークタイミングに改質用燃料の噴射時期を設定するようにすれば、改質用燃料の噴射時期を精度良く設定することができる。   In the first embodiment, the reforming fuel injection timing is set to the EGR gas pressure peak timing (the timing at which the pressure of the EGR gas near the injection position reaches the peak value). Since the EGR gas pressure peak timing can be detected with relatively high accuracy, if the reforming fuel injection timing is set to the EGR gas pressure peak timing, the reforming fuel injection timing is set with high accuracy. be able to.

尚、上記実施例1では、EGRガス圧力ピークタイミングに改質用燃料の噴射時期を設定するようにしたが、これに限定されず、例えば、EGRガス圧力ボトムタイミング(噴射位置付近のEGRガスの圧力がボトム値となるタイミング)に改質用燃料の噴射時期を設定するようにしても良い。具体的には、EGRガス圧力ボトムタイミングを改質用燃料の噴射期間が跨ぐように改質用燃料の噴射時期を設定する。或は、改質用燃料の噴射開始時期がEGRガス圧力ボトムタイミングになるように改質用燃料の噴射時期を設定するようにしても良い。また、改質用燃料の噴射終了時期がEGRガス圧力ボトムタイミングになるように改質用燃料の噴射時期を設定するようにしても良い。EGRガス圧力ボトムタイミングも比較的精度良く検出することができるため、EGRガス圧力ボトムタイミングに改質用燃料の噴射時期を設定するようにしても、改質用燃料の噴射時期を精度良く設定することができる。   In the first embodiment, the injection timing of the reforming fuel is set at the EGR gas pressure peak timing. However, the present invention is not limited to this. For example, the EGR gas pressure bottom timing (the EGR gas near the injection position) The injection timing of the reforming fuel may be set at the timing when the pressure reaches the bottom value. Specifically, the reforming fuel injection timing is set so that the reforming fuel injection period straddles the EGR gas pressure bottom timing. Alternatively, the reforming fuel injection timing may be set so that the reforming fuel injection start timing becomes the EGR gas pressure bottom timing. Further, the reforming fuel injection timing may be set so that the reforming fuel injection end timing becomes the EGR gas pressure bottom timing. Since the EGR gas pressure bottom timing can also be detected with relatively high accuracy, even when the reforming fuel injection timing is set at the EGR gas pressure bottom timing, the reforming fuel injection timing is set with high accuracy. be able to.

また、EGRガス圧力ピークタイミングやEGRガス圧力ボトムタイミングに限定されず、噴射位置付近のEGRガスの圧力脈動に同期した所定のタイミング(例えば噴射位置付近のEGRガスの圧力がピーク値とボトム値の中間値となるタイミング等)に改質用燃料の噴射時期を設定するようにしても良い。   Further, the timing is not limited to the EGR gas pressure peak timing or the EGR gas pressure bottom timing, but at a predetermined timing synchronized with the pressure pulsation of the EGR gas near the injection position (for example, the EGR gas pressure near the injection position has a peak value and a bottom value). The reforming fuel injection timing may be set at an intermediate value or the like.

また、上記実施例1では、噴射位置付近のEGRガスの圧力脈動に同期するように改質用燃料の噴射時期を設定するようにしたが、これに限定されず、噴射位置付近のEGRガスの流量(改質用燃料の噴射位置を通過するEGRガスの流量)の脈動に同期するように改質用燃料の噴射時期を設定するようにしても良い。   In the first embodiment, the reforming fuel injection timing is set so as to be synchronized with the pressure pulsation of the EGR gas near the injection position. The reforming fuel injection timing may be set so as to be synchronized with the pulsation of the flow rate (the flow rate of the EGR gas passing through the reforming fuel injection position).

この場合、改質用燃料噴射弁35の近傍に、噴射位置付近のEGRガスの流量を検出する流量センサ(圧力情報取得手段)を設け、この流量センサで噴射位置付近のEGRガスの流量を検出して、噴射位置付近のEGRガスの流量脈動(流量の波形)を検出するようにしても良い。或は、圧力センサ38の出力又は運転条件等に基づいて噴射位置付近のEGRガスの流量を推定(算出)して、噴射位置付近のEGRガスの流量脈動を推定するようにしても良い。   In this case, a flow rate sensor (pressure information acquisition means) for detecting the flow rate of EGR gas near the injection position is provided in the vicinity of the reforming fuel injection valve 35, and the flow rate of EGR gas near the injection position is detected by this flow rate sensor. The flow rate pulsation (flow rate waveform) of the EGR gas near the injection position may be detected. Alternatively, the flow rate pulsation of the EGR gas near the injection position may be estimated by calculating (calculating) the flow rate of the EGR gas near the injection position based on the output of the pressure sensor 38 or the operating condition.

そして、EGRガス流量ピークタイミング(噴射位置付近のEGRガスの流量がピーク値となるタイミング)に改質用燃料の噴射時期を設定する。具体的には、EGRガス流量ピークタイミングを改質用燃料の噴射期間が跨ぐように改質用燃料の噴射時期を設定する(図2参照)。或は、改質用燃料の噴射開始時期がEGRガス流量ピークタイミングになるように改質用燃料の噴射時期を設定するようにしても良い。また、改質用燃料の噴射終了時期がEGRガス流量ピークタイミングになるように改質用燃料の噴射時期を設定するようにしても良い。   Then, the injection timing of the reforming fuel is set at the EGR gas flow rate peak timing (timing at which the EGR gas flow rate near the injection position reaches the peak value). Specifically, the reforming fuel injection timing is set so that the reforming fuel injection period straddles the EGR gas flow rate peak timing (see FIG. 2). Alternatively, the reforming fuel injection timing may be set so that the reforming fuel injection start timing becomes the EGR gas flow rate peak timing. Further, the reforming fuel injection timing may be set so that the reforming fuel injection end timing becomes the EGR gas flow rate peak timing.

或は、EGRガス流量ボトムタイミング(噴射位置付近のEGRガスの流量がボトム値となるタイミング)に改質用燃料の噴射時期を設定するようにしても良い。具体的には、EGRガス流量ボトムタイミングを改質用燃料の噴射期間が跨ぐように改質用燃料の噴射時期を設定する。或は、改質用燃料の噴射開始時期がEGRガス流量ボトムタイミングになるように改質用燃料の噴射時期を設定するようにしても良い。また、改質用燃料の噴射終了時期がEGRガス流量ボトムタイミングになるように改質用燃料の噴射時期を設定するようにしても良い。   Alternatively, the reforming fuel injection timing may be set at the EGR gas flow bottom timing (timing at which the EGR gas flow rate near the injection position becomes the bottom value). Specifically, the reforming fuel injection timing is set so that the reforming fuel injection period straddles the EGR gas flow bottom timing. Alternatively, the reforming fuel injection timing may be set so that the reforming fuel injection start timing becomes the EGR gas flow bottom timing. Further, the reforming fuel injection timing may be set so that the reforming fuel injection end timing becomes the EGR gas flow rate bottom timing.

また、EGRガス流量ピークタイミングやEGRガス流量ボトムタイミングに限定されず、噴射位置付近のEGRガスの流量脈動に同期した所定のタイミング(例えば噴射位置付近のEGRガスの流量がピーク値とボトム値の中間値となるタイミング等)に改質用燃料の噴射時期を設定するようにしても良い。   The EGR gas flow rate peak timing and the EGR gas flow rate bottom timing are not limited to a predetermined timing synchronized with the EGR gas flow rate pulsation near the injection position (for example, the EGR gas flow rate near the injection position has a peak value and a bottom value). The reforming fuel injection timing may be set at an intermediate value or the like.

次に、図4及び図5を用いて本発明の実施例2を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 2 of the present invention will be described with reference to FIGS. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例2では、ECU37により後述する図5の改質制御ルーチンを実行することで、図4に実線で示すように、改質用燃料の噴射時期における噴射位置付近のEGRガスの圧力に応じて改質用燃料の噴射量を設定する。これにより、改質用燃料の各噴射時期毎に噴射位置付近のEGRガスの圧力(EGRガス流量)が変化しても、そのEGRガスの圧力(EGRガス流量)に応じて改質用燃料の噴射量を変化させて、改質用燃料の各噴射毎のEGRガスと改質用燃料の混合割合をほぼ一定にすることができ、燃料改質触媒36に供給されるガスのS/Cをほぼ一定にすることができる。   In the second embodiment, the reforming control routine of FIG. 5 described later is executed by the ECU 37, and as shown by the solid line in FIG. 4, the pressure of the EGR gas near the injection position at the injection timing of the reforming fuel is determined. To set the injection amount of reforming fuel. Thus, even if the pressure of the EGR gas (EGR gas flow rate) near the injection position changes at each injection timing of the reforming fuel, the reforming fuel is changed according to the pressure of the EGR gas (EGR gas flow rate). By changing the injection amount, the mixing ratio of the EGR gas and the reforming fuel for each injection of the reforming fuel can be made substantially constant, and the S / C of the gas supplied to the fuel reforming catalyst 36 can be reduced. It can be made almost constant.

この際、本実施例2では、改質用燃料の噴射時期における噴射位置付近のEGRガスの圧力が高いほど改質用燃料の噴射量を多くするようにしている。
以下、本実施例2でECU37が実行する図5の改質制御ルーチンの処理内容を説明する。
At this time, in the second embodiment, the injection amount of the reforming fuel is increased as the pressure of the EGR gas near the injection position at the reforming fuel injection timing is higher.
Hereinafter, the processing content of the reforming control routine of FIG. 5 executed by the ECU 37 in the second embodiment will be described.

図5に示す改質制御ルーチンでは、まず、ステップ201で、改質制御実行条件が成立しているか否かを図3のステップ101と同じ方法で判定し、改質制御実行条件が成立していると判定されれば、ステップ202に進み、目標S/Cを図3のステップ102と同じ方法で設定(算出)する。   In the reforming control routine shown in FIG. 5, first, in step 201, it is determined whether or not the reforming control execution condition is satisfied by the same method as in step 101 of FIG. If it is determined, the process proceeds to step 202, where the target S / C is set (calculated) in the same manner as in step 102 of FIG.

この後、ステップ203に進み、噴射位置付近のEGRガスの圧力脈動を図3のステップ103と同じ方法で検出又は推定した後、ステップ204に進み、改質用燃料の各噴射時期を所定クランク角周期又は所定時間周期で設定する。   Thereafter, the process proceeds to step 203, and after detecting or estimating the pressure pulsation of the EGR gas in the vicinity of the injection position by the same method as in step 103 of FIG. 3, the process proceeds to step 204, and each injection timing of the reforming fuel is set to a predetermined crank angle. Set at a cycle or a predetermined time cycle.

この後、ステップ205に進み、改質用燃料の各噴射時期における噴射位置付近のEGRガスの圧力に基づいて、改質用燃料の各噴射時期における噴射位置付近のEGRガス流量をマップ又はEGRガスの挙動を模擬したモデル(数式等)を用いて算出する。   Thereafter, the routine proceeds to step 205, where the EGR gas flow rate near the injection position at each injection timing of the reforming fuel is mapped or EGR gas based on the pressure of the EGR gas near the injection position at each injection timing of the reforming fuel. This is calculated using a model (such as a mathematical formula) that simulates the behavior of

この後、ステップ206に進み、改質用燃料の各噴射時期毎に、噴射位置付近のEGRガス流量と運転条件(例えば燃料の種類や空燃比等)に基づいてEGRガス中の水蒸気量をマップ等により算出して、目標S/Cになるように改質燃料の噴射量を算出することで、改質用燃料の各噴射時期における噴射量を算出する。この際、改質用燃料の噴射時期における噴射位置付近のEGRガスの圧力が高い(つまりEGRガス流量が多い)ほど改質用燃料の噴射量を多くする。
この後、ステップ207に進み、改質用燃料の噴射時期で改質用燃料噴射弁35により改質用燃料を噴射して改質制御を実行する。
Thereafter, the routine proceeds to step 206, where the amount of water vapor in the EGR gas is mapped on the basis of the EGR gas flow rate near the injection position and the operating conditions (for example, fuel type, air-fuel ratio, etc.) for each injection timing of the reforming fuel. The injection amount of the reformed fuel at each injection timing is calculated by calculating the injection amount of the reformed fuel so that the target S / C is obtained. At this time, the injection amount of the reforming fuel is increased as the pressure of the EGR gas near the injection position at the reforming fuel injection timing is higher (that is, the EGR gas flow rate is higher).
Thereafter, the routine proceeds to step 207, where reforming fuel is injected by the reforming fuel injection valve 35 at the reforming fuel injection timing, and reforming control is executed.

以上説明した本実施例2では、改質用燃料の噴射時期における噴射位置付近のEGRガスの圧力に応じて改質用燃料の噴射量を設定するようにしている。このようにすれば、改質用燃料の各噴射時期毎に噴射位置付近のEGRガスの圧力(EGRガス流量)が変化しても、そのEGRガスの圧力(EGRガス流量)に応じて改質用燃料の噴射量を変化させて、改質用燃料の各噴射毎のEGRガスと改質用燃料の混合割合をほぼ一定にすることができる。これにより、前記実施例1とほぼ同様の効果を得ることができる。   In the second embodiment described above, the injection amount of the reforming fuel is set according to the pressure of the EGR gas near the injection position at the reforming fuel injection timing. In this way, even if the pressure of the EGR gas (EGR gas flow rate) near the injection position changes at each injection timing of the reforming fuel, the reforming is performed according to the pressure of the EGR gas (EGR gas flow rate). The mixing ratio of the EGR gas and the reforming fuel for each injection of the reforming fuel can be made substantially constant by changing the injection amount of the reforming fuel. Thereby, substantially the same effect as the first embodiment can be obtained.

また、本実施例2では、改質用燃料の噴射時期における噴射位置付近のEGRガスの圧力が高いほど改質用燃料の噴射量を多くするようにしている。このようにすれば、改質用燃料の噴射時期における噴射位置付近のEGRガスの圧力が高いほど、噴射位置付近のEGRガス流量が多くなるのに対応して、改質用燃料の噴射量を多くして、EGRガスと改質用燃料の混合割合をほぼ一定にすることができる。   In the second embodiment, the injection amount of the reforming fuel is increased as the pressure of the EGR gas near the injection position at the injection timing of the reforming fuel is higher. In this way, the higher the EGR gas pressure near the injection position at the reforming fuel injection timing, the higher the EGR gas flow rate near the injection position, and the higher the EGR gas flow rate near the injection position. As a result, the mixing ratio of the EGR gas and the reforming fuel can be made substantially constant.

尚、上記実施例2では、改質用燃料の各噴射時期における噴射位置付近のEGRガスの圧力に基づいて、各噴射時期における噴射位置付近のEGRガス流量を算出し、これらのEGRガス流量に基づいて、各噴射時期における噴射量を算出することで、各噴射時期における噴射位置付近のEGRガスの圧力に応じて噴射量を設定するようにしている。しかし、これに限定されず、例えば、平均的なEGRガス流量に基づいて各噴射時期における噴射量を一律に算出した後、改質用燃料の各噴射時期毎に、噴射位置付近のEGRガスの圧力に応じて噴射量を補正することで、各噴射時期における噴射位置付近のEGRガスの圧力に応じて噴射量を設定するようにしても良い。   In the second embodiment, the EGR gas flow rate near the injection position at each injection timing is calculated based on the pressure of the EGR gas near the injection position at each injection timing of the reforming fuel, and the EGR gas flow rate is calculated as the EGR gas flow rate. Based on this, by calculating the injection amount at each injection timing, the injection amount is set according to the pressure of the EGR gas near the injection position at each injection timing. However, the present invention is not limited to this. For example, after uniformly calculating the injection amount at each injection timing based on the average EGR gas flow rate, the EGR gas in the vicinity of the injection position is changed at each injection timing of the reforming fuel. By correcting the injection amount in accordance with the pressure, the injection amount may be set in accordance with the pressure of the EGR gas near the injection position at each injection timing.

また、上記実施例2では、改質用燃料の噴射時期における噴射位置付近のEGRガスの圧力に応じて改質用燃料の噴射量を設定するようにしたが、これに限定されず、改質用燃料の噴射時期における噴射位置付近のEGRガスの流量に応じて改質用燃料の噴射量を設定するようにしても良い。   In the second embodiment, the injection amount of the reforming fuel is set according to the pressure of the EGR gas near the injection position at the injection timing of the reforming fuel. However, the present invention is not limited to this. The reforming fuel injection amount may be set in accordance with the flow rate of EGR gas near the injection position at the fuel injection timing.

この場合、改質用燃料噴射弁35の近傍に、噴射位置付近のEGRガスの流量を検出する流量センサ(圧力情報取得手段)を設け、この流量センサで各噴射時期における噴射位置付近のEGRガスの流量を検出し、これらのEGRガス流量(検出値)に基づいて、各噴射時期における噴射量を算出するようにしても良い。或は、運転条件等に基づいて各噴射時期における噴射位置付近のEGRガスの流量を推定(算出)し、これらのEGRガス流量(推定値)に基づいて、各噴射時期における噴射量を算出するようにしても良い。   In this case, a flow rate sensor (pressure information acquisition means) for detecting the flow rate of the EGR gas near the injection position is provided in the vicinity of the reforming fuel injection valve 35, and the EGR gas near the injection position at each injection timing by this flow rate sensor. May be detected, and the injection amount at each injection timing may be calculated based on these EGR gas flow rates (detected values). Alternatively, the flow rate of EGR gas in the vicinity of the injection position at each injection timing is estimated (calculated) based on operating conditions and the like, and the injection amount at each injection timing is calculated based on these EGR gas flow rates (estimated values). You may do it.

また、上記実施例1と上記実施例2を組み合わせて、噴射位置付近のEGRガスの圧力脈動に同期するように改質用燃料の噴射時期を設定し、更に、改質用燃料の噴射時期における噴射位置付近のEGRガスの圧力に応じて改質用燃料の噴射量を設定するようにしても良い。例えば、EGRガス圧力ピークタイミングとEGRガス圧力ボトムタイミングに改質用燃料の噴射時期を設定し、EGRガス圧力ピークタイミングにおける噴射位置付近のEGRガスの圧力に応じてEGRガス圧力ピークタイミングにおける噴射量を設定すると共に、EGRガス圧力ボトムタイミングにおける噴射位置付近のEGRガスの圧力に応じてEGRガス圧力ボトムタイミングにおける噴射量を設定する。   Also, by combining the first embodiment and the second embodiment, the injection timing of the reforming fuel is set so as to synchronize with the pressure pulsation of the EGR gas near the injection position, and further, at the injection timing of the reforming fuel The amount of reforming fuel injection may be set according to the pressure of EGR gas near the injection position. For example, the injection timing of the reforming fuel is set at the EGR gas pressure peak timing and the EGR gas pressure bottom timing, and the injection amount at the EGR gas pressure peak timing according to the pressure of the EGR gas near the injection position at the EGR gas pressure peak timing And the injection amount at the EGR gas pressure bottom timing is set according to the pressure of the EGR gas near the injection position at the EGR gas pressure bottom timing.

或は、噴射位置付近のEGRガスの流量脈動に同期するように改質用燃料の噴射時期を設定し、更に、改質用燃料の噴射時期における噴射位置付近のEGRガスの流量に応じて改質用燃料の噴射量を設定するようにしても良い。例えば、EGRガス流量ピークタイミングとEGRガス流量ボトムタイミングに改質用燃料の噴射時期を設定し、EGRガス流量ピークタイミングにおける噴射位置付近のEGRガスの流量に応じてEGRガス流量ピークタイミングにおける噴射量を設定すると共に、EGRガス流量ボトムタイミングにおける噴射位置付近のEGRガスの流量に応じてEGRガス流量ボトムタイミングにおける噴射量を設定する。   Alternatively, the reforming fuel injection timing is set so as to be synchronized with the flow rate pulsation of the EGR gas in the vicinity of the injection position, and further modified according to the EGR gas flow rate in the vicinity of the injection position at the reforming fuel injection timing. The injection amount of the quality fuel may be set. For example, the injection timing of the reforming fuel is set at the EGR gas flow rate peak timing and the EGR gas flow rate bottom timing, and the injection amount at the EGR gas flow rate peak timing according to the EGR gas flow rate near the injection position at the EGR gas flow rate peak timing And the injection amount at the EGR gas flow bottom timing is set according to the flow rate of the EGR gas near the injection position at the EGR gas flow bottom timing.

その他、本発明は、図1に示すような吸気ポート噴射式エンジンに限定されず、筒内噴射式エンジンや、吸気ポート噴射用の燃料噴射弁と筒内噴射用の燃料噴射弁の両方を備えたデュアル噴射式のエンジンにも適用して実施できる。   In addition, the present invention is not limited to the intake port injection type engine as shown in FIG. 1, but includes an in-cylinder injection type engine, and both an intake port injection fuel injection valve and an in-cylinder injection fuel injection valve. It can also be applied to dual-injection engines.

11…エンジン(内燃機関)、12…吸気管(吸気通路)、21…主燃料噴射弁(主燃料噴射手段)、23…排気管(排気通路)、24…触媒、32…EGR配管(EGR通路)、35…改質用燃料噴射弁(改質用燃料噴射手段)、36…燃料改質触媒、37…ECU(改質制御手段,圧力情報取得手段)、38…圧力センサ(圧力情報取得手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe (intake passage), 21 ... Main fuel injection valve (main fuel injection means), 23 ... Exhaust pipe (exhaust passage), 24 ... Catalyst, 32 ... EGR piping (EGR passage) ), 35 ... reforming fuel injection valve (reforming fuel injection means), 36 ... fuel reforming catalyst, 37 ... ECU (reforming control means, pressure information acquisition means), 38 ... pressure sensor (pressure information acquisition means) )

Claims (5)

内燃機関(11)に供給される主燃料を噴射する主燃料噴射手段(21)と、前記内燃機関(11)の排気通路(23)から排出ガスの一部をEGRガスとして吸気通路(12)へ還流させるEGR通路(32)と、前記EGR通路(32)内に改質用燃料を噴射する改質用燃料噴射手段(35)と、前記EGR通路(32)に配置されて前記改質用燃料噴射手段(35)により噴射された改質用燃料を改質する燃料改質触媒(36)とを備えた内燃機関の燃料改質装置において、
所定の改質制御実行条件が成立したときに前記改質用燃料噴射手段(35)で前記改質用燃料を噴射して前記燃料改質触媒(36)で前記改質用燃料を改質して改質ガスを生成する改質制御を実行する改質制御手段(37)と、
前記改質用燃料の噴射位置を通過するEGRガスの圧力又はこれと相関関係を有する情報(以下これらを「噴射位置付近のEGRガスの圧力情報」と総称する)を検出又は推定する圧力情報取得手段(37,38)とを備え、
前記改質制御手段(37)は、前記噴射位置付近のEGRガスの圧力情報に基づいて前記改質用燃料の噴射条件を設定し、
前記改質制御手段(37)は、前記噴射位置付近のEGRガスの圧力情報の脈動に同期するように前記改質用燃料の噴射時期を設定することを特徴とする内燃機関の燃料改質装置。
A main fuel injection means (21) for injecting main fuel supplied to the internal combustion engine (11), and an intake passage (12) using EGR gas as a part of exhaust gas from the exhaust passage (23) of the internal combustion engine (11). An EGR passage (32) for recirculation, reforming fuel injection means (35) for injecting reforming fuel into the EGR passage (32), and the reforming fuel disposed in the EGR passage (32). A fuel reformer for an internal combustion engine, comprising a fuel reforming catalyst (36) for reforming the reforming fuel injected by the fuel injection means (35).
When a predetermined reforming control execution condition is satisfied, the reforming fuel is injected by the reforming fuel injection means (35), and the reforming fuel is reformed by the fuel reforming catalyst (36). Reforming control means (37) for executing reforming control to generate reformed gas
Pressure information acquisition for detecting or estimating the pressure of EGR gas passing through the injection position of the reforming fuel or information correlated therewith (hereinafter collectively referred to as “pressure information of EGR gas near the injection position”) Means (37, 38),
The reforming control means (37) sets injection conditions for the reforming fuel based on pressure information of EGR gas near the injection position ,
The reforming control means (37) sets an injection timing of the reforming fuel so as to synchronize with a pulsation of pressure information of EGR gas near the injection position. .
前記圧力情報取得手段(37,38)は、前記噴射位置付近のEGRガスの圧力情報として圧力又は流量を検出又は推定することを特徴とする請求項1に記載の内燃機関の燃料改質装置。   The fuel reformer for an internal combustion engine according to claim 1, wherein the pressure information acquisition means (37, 38) detects or estimates pressure or flow rate as pressure information of EGR gas in the vicinity of the injection position. 前記改質制御手段(37)は、前記噴射位置付近のEGRガスの圧力情報がピーク値又はボトム値となるタイミングに前記改質用燃料の噴射時期を設定することを特徴とする請求項1又は2に記載の内燃機関の燃料改質装置。 The reforming control unit (37), according to claim 1, characterized in that the pressure information of the EGR gas in the vicinity of the ejection position to set the injection timing of fuel for the reforming in timing at which the peak value or the bottom value or 3. A fuel reformer for an internal combustion engine according to 2 . 前記改質制御手段(37)は、前記改質用燃料の噴射時期における前記噴射位置付近のEGRガスの圧力情報に応じて前記改質用燃料の噴射量を設定することを特徴とする請求項1乃至のいずれかに記載の内燃機関の燃料改質装置。 The reforming control means (37) sets the injection amount of the reforming fuel according to pressure information of EGR gas in the vicinity of the injection position at the injection timing of the reforming fuel. The fuel reformer for an internal combustion engine according to any one of 1 to 3 . 前記改質制御手段(37)は、前記改質用燃料の噴射時期における前記噴射位置付近のEGRガスの圧力情報が高圧側になるほど前記改質用燃料の噴射量を多くすることを特徴とする請求項に記載の内燃機関の燃料改質装置。 The reforming control means (37) increases the injection amount of the reforming fuel as the pressure information of the EGR gas near the injection position at the injection timing of the reforming fuel becomes higher. The internal combustion engine fuel reformer according to claim 4 .
JP2014258527A 2014-02-17 2014-12-22 Fuel reformer for internal combustion engine Active JP6394364B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014258527A JP6394364B2 (en) 2014-02-17 2014-12-22 Fuel reformer for internal combustion engine
PCT/JP2015/000505 WO2015122154A1 (en) 2014-02-17 2015-02-05 Fuel reforming device for internal combustion engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014028024 2014-02-17
JP2014028024 2014-02-17
JP2014258527A JP6394364B2 (en) 2014-02-17 2014-12-22 Fuel reformer for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2015166591A JP2015166591A (en) 2015-09-24
JP6394364B2 true JP6394364B2 (en) 2018-09-26

Family

ID=53799906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014258527A Active JP6394364B2 (en) 2014-02-17 2014-12-22 Fuel reformer for internal combustion engine

Country Status (2)

Country Link
JP (1) JP6394364B2 (en)
WO (1) WO2015122154A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237217A (en) * 2011-05-11 2012-12-06 Denso Corp Fuel-property reforming control apparatus for internal combustion engine
JP5640955B2 (en) * 2011-11-17 2014-12-17 トヨタ自動車株式会社 Control device for internal combustion engine
JP5476359B2 (en) * 2011-11-22 2014-04-23 本田技研工業株式会社 Pressure estimation device for internal combustion engine

Also Published As

Publication number Publication date
WO2015122154A1 (en) 2015-08-20
JP2015166591A (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP6217269B2 (en) Fuel reformer for internal combustion engine
JP6707038B2 (en) Control device for internal combustion engine
JP4013704B2 (en) Exhaust reformer system for internal combustion engine
JP2012241608A (en) Diagnostic apparatus for deterioration in catalyst in fuel-reforming system for internal combustion engine
JP2012237217A (en) Fuel-property reforming control apparatus for internal combustion engine
JP2009287532A (en) Fuel injection control device for internal combustion engine
JP2006029084A (en) Control device of internal combustion engine
JP6241147B2 (en) Catalyst temperature estimation device for internal combustion engine
JP6658374B2 (en) Control method for fuel reforming system
JP6394365B2 (en) Fuel reformer for internal combustion engine
JP5187537B2 (en) Fuel injection control device for internal combustion engine
JP6394364B2 (en) Fuel reformer for internal combustion engine
JP2006329012A (en) Fuel injection control device of cylinder injection internal combustion engine
JP2007077892A (en) Control device for internal combustion engine
JP5273480B2 (en) Intake air amount control device for internal combustion engine
JP2008095627A (en) Air-fuel ratio control device for internal combustion engine
JP2013015105A (en) Knock determination apparatus for internal combustion engine
WO2015118815A1 (en) Fuel reformulation device for internal combustion engine
JP2007092645A (en) Control device for internal combustion engine
JP6032227B2 (en) Fuel injection control device for in-cylinder internal combustion engine
JP2010084671A (en) Air-fuel ratio control device of internal combustion engine
JP2011179344A (en) Fuel injection controller for internal combustion engine
JP2007071096A (en) Control device of internal combustion engine
WO2014141598A1 (en) Cylinder injection type internal combustion engine and fuel injection controller
JP5293967B2 (en) Intake air amount control device for internal combustion engine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160307

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180813

R151 Written notification of patent or utility model registration

Ref document number: 6394364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250